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Abstract

With the advent of modern high-throughput techniques, research in molecular biology be-
comes increasingly quantitative and produces large and complex datasets. Progress in imaging
modalities and automation enabled new microscopy-based assays following this paradigm. In
particular, high-content imaging screens propose the systematic observation of the response
of cells challenged with diverse perturbations. A major open challenge resides in making the
most out of these experimental datasets and extracting meaningful and actionable biological
knowledge. Here, we explore what can be achieved in image-based screens and how to benefit the
most from the spatial and multidimensional information they provide. Our approach of choice
starts by compiling multiple descriptors of cellular morphology in integrative profiles used to
represent each experimental condition, which is known as morphological profiling. We develop
new ways to assemble, curate and work with these profiles. We also observe that combining
the profiles with follow-up experiments or integrating them with prior knowledge represented as
biological networks is essential to contextualize the results of high-content imaging screens and
derive novel insight.
In this cumulative thesis, we first review the state of the art of the literature pertaining to
high-content screening analyses and their applications to systems medicine. We introduce
the main concepts and technologies employed to test libraries of cellular perturbations, detail
how informative morphological profiles can be assembled from cell images, and justify their
importance as a way to study biological systems at scale. We also describe how high-content
screening results allow these systems to be represented as biological networks, suitable for
exploratory and integrative data analysis techniques. Second, we introduce BioProfiling.jl, a
computational toolkit that we designed to e�ciently work with morphological profiles of cellular
measurements. This simplifies the filtering and transformation of such measurements and o�ers
new ways to quantify e�ects on cell shape and organization. Our main application shows how the
tool is able to curate informative profiles describing the mechanism of action of small molecules
and provides insight into the complementarity of the morphological changes they induce and
the proteins they target. Third, we demonstrate a concrete use case of morphological profiling
by studying immune cells. We perform a morphological study of the immunological synapse
of cytotoxic lymphocytes. In this study, we profile human T and NK cells and observe the
three-dimensional reorganization of actin cytoskeleton and lytic granules. This allowed us to
discriminate between several actin defects and also guided further experiments to study dynamic
and functional aspects of the immunological synapse formation and degranulation processes that
could not be directly assessed via high-content imaging. Lastly, we discuss the outcome of our
studies, remaining limitations, and future research directions opened by the recent progress we
and others made with respect to morphological profiling. This includes follow-up image-based
screens in our group to assemble and study perturbation networks, enabled in part by the work
described in this document.
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In conclusion, the published studies compiled in this thesis expand what can be achieved with
cellular morphological profiles and propose new ways of contextualizing results. Notably, this is
achieved by modelling the relations revealed by the profiles with machine learning and network
models. Overall, morphological profiling in combination with image-based screens of large
perturbation collections can now be used as an informative and scalable approach to shed light on
cellular organization. Morphological profiling can thus be leveraged to systematically interrogate
and compare the e�ect of cellular perturbations in a way comparable and compatible with
other well-adopted high-throughput experimental modalities, commonly referred to as “OMICS”
technologies. As opposed to more targeted assays, one can simultaneously probe a large number
of genes, proteins, pathways or mechanisms of action, by characterizing perturbations and how
they relate in a single experiment. We progressively transition from a static view of cells and
organisms as the simple collection of isolated processes to a more complete picture of properties
and phenotypes emerging from complex molecular connectivity patterns. In turn, this updated
picture is ideally fitting within the framework of systems medicine, with applications ranging
from personalized treatments to improved diagnostics.
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Zusammenfassung

Mit dem Aufkommen moderner Hochdurchsatztechniken wird die Forschung in der Molekular-
biologie zunehmend quantitativ und erzeugt große und komplexe Datensätze. Die Fortschritte bei
den bildgebenden Verfahren und der Automatisierung ermöglichten neue Mikroskopie-basierte
Untersuchungen, die diesem Paradigma folgen. Insbesondere bieten bildbasierte High-Content
Screens die systematische systematische Betrachtung von Zellreaktionen an, die unterschiedli-
chen Perturbationen ausgesetzt werden. Eine große Herausforderung besteht darin, wichtigen
Informationen aus diesen experimentellen Datensätzen herauszuholen und aussagekräftige sowie
umsetzbare biologische Erkenntnisse zu gewinnen. Hier untersuchen wir, was mit bildbasierten
Screens erreicht werden kann und wie man von den räumlichen und multidimensionalen Informa-
tionen profitieren kann, die sie liefern. Der von uns gewählte Ansatz beginnt mit der Zusammen-
stellung mehrerer Deskriptoren der Zellmorphologie in integrativen Profilen, die zur Darstellung
jeder einzelnen Versuchsbedingung verwendet werden. Dieser Ansatz ist als morphologisches
Profiling benannt. Wir entwickeln neue Wege, um diese Profile zusammenzustellen, vorzube-
reiten und mit ihnen zu arbeiten. Weiter stellen wir fest, dass das Kombinieren der Profile mit
Folgeexperimenten oder die Integration von vorherigem Wissen, etwa in Form biologischer Netz-
werke, notwending ist, um die Ergebnisse von High-Content Analysen zu kontextualisieren und
neue Erkenntnisse zu gewinnen. In dieser kumulativen Dissertation geben wir als Erstes einen
Überblick über den aktuellen Stand der Literatur in Bezug auf High-Content Analysen und ihrer
Anwendungen in der Systemmedizin. Wir stellen die wichtigsten Konzepte und Technologien vor,
die zum Testen von zellulären Perturbationen verwendet werden, und erläutern, wie informative
morphologische Profile aus Zellbildern erstellt werden können. Die Bedeutung dieser Profile wird
als Mittel zur Untersuchung biologischer Systeme in einem kontextbasiertem Maßstab begründet.
Weiters erläutern wir, wie es solche experimentellen Ergebnisse ermöglichen, diese Systeme als
biologische Netzwerke darzustellen, die für explorative und integrative Datenanalysetechniken
geeignet sind. Zweitens stellen wir BioProfiling.jl vor. Diese Softwarelösung haben wir für die
e�ziente Arbeit mit morphologischen Profilen von zellulären Messungen entwickelt. Dies ver-
einfacht die Filterung und Umwandlung solcher Messungen und bietet neue Möglichkeiten zur
Quantifizierung der Auswirkungen auf die Zellform und -organisation. Unsere Hauptanwendung
zeigt, wie das Programm informative Profile erstellt, die den Wirkmechanismus kleiner Moleküle
beschreiben. Diese Profile geben Einsicht in die Zielproteine der chemischen Verbindungen und
in die Komplementarität der von ihnen ausgelösten morphologischen Veränderungen. Drittens
zeigen wir durch die Untersuchung von Immunzellen einen konkreten Anwendungsfall der mor-
phologischen Profilerstellung. Wir führen eine morphologische Studie der immunologischen Syn-
apse von zytotoxischen Lymphozyten durch. In dieser Studie erstellen wir Profile menschlicher
T- und NK-Zellen und beobachten die dreidimensionale Reorganisation des Aktinzytoskeletts
und der lytischen Granula. Auf diese Weise konnten wir zwischen verschiedenen Aktin-Defekten
unterscheiden und weitere Experimente durchführen, um dynamische und funktionelle Aspekte
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der immunologischen Synapsenbildung und des Degranulationsprozesses zu untersuchen, die mit
High-Content Bildgebung nicht direkt erfasst werden konnten. Abschließend erörtern wir die Er-
gebnisse unserer Studien, verbleibende Einschränkungen und zukünftige Forschungsrichtungen
anhand jüngster Erkenntnis, die wir und andere in Bezug auf die morphologische Profilerstellung
erzielt haben. Dazu gehören weitere bildbasierte Screens zum Aufbau und zur Untersuchung von
Perturbationsnetzwerken in unserer Arbeitsgruppe, die zum Teil durch die in diesem Dokument
beschriebenen Arbeiten ermöglicht wurden.
Zusammenfassend erweitern die hier verö�entlichten Studien die Möglichkeiten der zellula-
rer morphologischer Profile und schlagen neue Wege zur Kontextualisierung der Ergebnisse
vor. Dies wird insbesondere durch die Modellierung der durch die Profilerstellung enthüllten
Beziehungen mit maschinellem Lernen und Netzwerkmodellen erreicht. Insgesamt kann die
morphologische Profilerstellung in Kombination mit bildbasierten Screens großer Sammlungen
von Perturbationen fortan als informativer und skalierbarer Ansatz genutzt werden, um die
zelluläre Organisation zu analysieren. Die morphologische Profilerstellung kann somit genutzt
werden, um die Auswirkungen zellulärer Perturbationen systematisch auf eine Art und Weise zu
untersuchen und zu vergleichen, die vergleichbar und kompatibel mit anderen experimentellen
Hochdurchsatzverfahren ist, die gemeinhin als „OMICS“-Technologien bezeichnet werden. Im
Gegensatz zu gezielteren Assays kann man eine große Anzahl von Genen, Proteinen, Sto�wech-
selwegen oder Wirkmechanismen gleichzeitig untersuchen, indem man die Perturbationen und
ihre Beziehungen in einem einzigen Experiment charakterisiert. Wir wechseln allmählich von
einer statischen Betrachtung von Zellen und Organismen als einfache Ansammlung isolierter
Prozesse zu einem vollständigeren Bild, in dem Eigenschaften und Phänotypen aus komplexen
molekularen Vernetzungsmustern sich ergeben. Dieses aktualisierte Bild passt wiederum ideal
in den Rahmen der Systemmedizin, deren Anwendungen von personalisierten Behandlungen bis
hin zu verbesserter Diagnostik reichen.
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1
Introduction

Over the years, the growing molecular understanding of cell biology helped to identify several
pillars supporting health. These pillars can overall be grouped in three main domains: (i)
maintenance of homeostasis, (ii) response to stress and (iii) spatial compartmentalization (López-
Otín & Kroemer, 2021). To maintain homeostasis, biological systems require a careful balance
between diverse cellular components and their interactions. Thus, these systems need to be
studied in their entirety instead of looking at their individual components in isolation, which
is the main promise of systems biology (Ideker et al., 2001). In particular, molecules and their
interaction can conveniently be represented as biological networks (Barabási & Oltvai, 2004).
The response to stress covers the ability of all organisms to adapt to changes and to recover from
disturbance (Lee et al., 2014). Exposures, diseases, or even therapeutic interventions, constitute
perturbations of the delicate molecular equilibrium underlying homeostasis, either supporting or
disrupting it. Understanding these perturbations and accordingly how to navigate the landscape
of cell states to go from disease to health is at the core of the field of network medicine (Loscalzo
et al., 2017). The concept of spatial compartmentalization is also critical, as direct interaction
is only possible if molecules are close enough to bind and more generally, physical proximity is
a marker of shared function and of the modular organization of the cell (Qin et al., 2021).
Few experimental setups allow to both preserve spatial information and provide a systematic
way to assess the e�ect of large collections of perturbations of biological processes. To this
end, an approach named high-content imaging screening allows for probing the morphology
of a model system in multiple experimental conditions (Boutros et al., 2015). Typically, cells
are seeded in microplates and an automated fluorescence microscope provides thousands of
images revealing the spatial distribution of proteins and organelles. Coupled with image analysis
techniques, it is possible to extract measurements describing the morphological changes induced
by perturbations, such as drugs or genetic knockouts. These phenotypic measurements can
be combined into morphological profiles that can be compared and integrated with additional
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information about the conditions they describe (Bougen-Zhukov et al., 2017; Caicedo et al.,
2017). Successful uses of this approach result in quantitative representations of the studied
experimental conditions that reveal novel information about cellular perturbations. In this way,
morphological studies contributed to the identification and characterization of chemical modes
of action (Ziegler et al., 2021), gene functions (Mo�at et al., 2006) and perturbation interaction
profiles (Breinig et al., 2015; Caldera et al., 2019; Heigwer et al., 2018).
The success of such analyses is conditioned on the compilation of informative morphological
profiles, which presents both technical and scientific challenges (Bougen-Zhukov et al., 2017).
For instance, how to best choose morphological descriptors, integrate them despite their hetero-
geneity, account for experimental confounders, and which statistical tools are appropriate for
their analysis? Accordingly, we dedicate this document to new ways to assemble, interpret and
contextualize morphological profiles. This constitutes the central aim of this thesis, which is
further detailed and motivated in chapter 2. To achieve this goal, we hereby compile articles,
all devised in the course of the doctoral work associated with this thesis. These articles describe
improvements and applications of cellular morphological profiling, and participate in establishing
that the combination of imaging screens, morphological profiles and network medicine covers all
three categories of hallmarks of health, with the potential to provide novel biological insight.
The doctoral work described in this document was performed in the team led by Prof. Jörg
Menche, which specializes in the development of network-based analysis methods, and their
applications to biomedical research. In particular, a long-term goal pursued by our research
group is to derive an arithmetic of cellular perturbations, which would be capable of describing
the response of cells to multiple internal and external stresses and exposures. Our group
previously analysed a high-content screen of drug combinations and linked di�erent modes of
interaction to properties of drug targets on the protein-protein interaction network (Caldera
et al., 2019). In the future, larger and more comprehensive screens and could allow us to further
uncover the basic principles underlying cellular response to perturbations. Enabling ambitious
expansions of this work, such as the follow-up projects described in section 4.3, was an additional
motivation to make morphological profiling simpler and more powerful.
This first chapter defines the key concepts at the core of the compiled articles and gives
background information to understand and contextualize them. As such, the material provided
here prioritizes information that helps in motivating and explaining what we achieved. A first
section is dedicated to molecular perturbations as a means to study cell responses, and more
specifically in the context of screening experiments. A second section covers more specifically
microscopy-based assays, and presents the typical outline of a high-content imaging screen,
including the main computational analysis steps. Finally, a third section discusses the topics
of systems and network biology, which are essential for the contextualization of system-wide
morphological analyses, and their translational applications via network medicine.
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1.1 High-throughput screening of cellular perturbations

In this section, we briefly present how perturbing biological systems may shed light on the
molecular mechanisms underlying these systems. Experimentally, multiple perturbations can
be used individually or in combination to systematically study cellular response in large-scale
screens. We discuss the two main designs of biological screens, namely pooled and arrayed
screens, along with their strengths and characteristics. Furthermore, we mention the di�erent
types of perturbations typically used in screens, and how they can answer di�erent biological
questions.

1.1.1 Learning about systems through perturbations

Biological research historically followed a reductionist approach, generating data and insight
on increasingly smaller and precise phenomena with the hope that it would in turn help to
elucidate phenotypic e�ects observed at a larger scale (Lazebnik, 2002). Yet, a better resolution
into the components of a biological system also implies a larger number of components to
describe. This means that biologists constantly have to face the challenge of scaling up their
experimental setups. For instance, for a disease or phenotype of interest, one could wonder how
di�erent organs or tissues are involved, or going more in-depth what the role of every protein
or residue is. Each change of biological resolution is associated with a change in the magnitude
of the number of its components, going from around 8 ◊ 101 types of organs to 3 ◊ 1013 cells
in a human body, each with 2 ◊ 104 types of proteins encoded by a 6 ◊ 109-nucleotide-long
genome (Nurk et al., 2021; Sender et al., 2016). On top of this complexity, the combinatorial
explosion comes into play, with potential pairwise and higher-order interactions between each
of these elements (Kuzmin et al., 2018). Observations made in a given environment or specific
genetic background may not hold in another setting. Thus, it is typically necessary to study
biological properties in multiple conditions. For instance, it is well established that the sensitivity
to chemical inhibition of molecular targets is largely influenced by genetic factors, at the level
of both cells and patients (Ahmed et al., 2016; Piotrowski et al., 2017).
Being able to study the entirety of such systems requires a change in analytical approaches,
particularly visible with modern molecular biology methods such as genome-wide association
studies or next-generation sequencing. The development of these techniques is indeed tightly
linked to the expansion of statistical frameworks dedicated to the interpretation of such ex-
perimental results (Law et al., 2014; Ritchie et al., 2015; U�elmann et al., 2021). It also
requires an optimization of experimental setups to achieve a reduction in cost and an increase
in automation and throughput. The process of testing as many perturbations as possible in
a systematic manner on a given biological model is referred to as high-throughput screening,
and was pioneered decades ago by the pharmaceutical industry, initially to accelerate drug
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discovery and development (Pereira & Williams, 2007). Typically, multiple candidate drugs
would be tested to identify “hits” with a desired property in a simple model system. These
hits would be further validated and optimized before being considered “lead compounds” and
undergoing clinical trials (Malo et al., 2006). One would also di�erentiate between primary
screens, intended to narrow down a large number of candidates to a smaller number of hits,
and secondary screens which would be more extensive and aim to validate the robustness of the
hits identified in the primary screens. Other screening approaches, introduced in the following
subsection, favor lower-throughput readouts as they may be more informative or more relevant
for a given application. Screens can also be performed on a wide range of biological systems,
including in three-dimensional culture and whole organisms for species such as Dario rerio
(zebrafish) and Caenorhabditis elegans (roundworm), which provides valuable information when
studying development or growth phenotypes (Han et al., 2020; Lukonin et al., 2020; Mondal
et al., 2016; Wählby et al., 2012; Westho� et al., 2020). In the rest of this thesis, we focus on
the more common application to two-dimensional cell culture, including both immortalized cell
lines and material directly derived from donors and patients.

1.1.2 Scaling up with biological screens

Overall, biological screens aim to achieve an optimal balance between cost, scale, robustness
and information content. They are usually split in two main categories displayed on Figure 1.1:
arrayed and pooled screens.
In arrayed screens, each perturbation is tested in a separate well of a microplate. Each well
accommodates for a perturbation or for a negative control, providing a baseline of how unper-
turbed cells behave, which typically is a solvent in a drug screen, or a non-targeting control in
a genetic screen. In these experiments, plates most often have 96 or 384 such wells, which are
used as independent “test tubes”. This allows the physical segregation of the growth medium,
and several compounds or concentrations can be used without interfering with each other. This
comes at the expense of practicality, and requires dedicated resources, such as multichannel
pipettes or automated liquid dispensers. Experiments performed in wells with a limited volume
are also prone to plate-layout biases, due to increased medium evaporation at the edges, although
the e�ect can be alleviated by the use of a randomized layout (Caicedo et al., 2017; Malo et al.,
2006). However, when these challenges can be overcome and after accounting for technical
confounders, arrayed screens o�er a powerful and straightforward way to systematically test the
e�ect of various perturbations.
In pooled screens, one makes use of the knowledge of the initial and final composition in a single
well or dish where multiple perturbations are pooled, and infers the impact of the perturbations
through the changes that occurred (Doench, 2017). This is often cost-e�ective and has multiple
advantages. It enables the profiling of multiple perturbations in a single dish and involves
less repetitive tasks than arrayed screens, in which each step needs to be replicated once for
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Figure 1.1: Schematic chart of arrayed and pooled screens. Arrayed screens typically involve seeding cells
in the wells of a microplate, each representing an experimental condition. A readout is later obtained
in each well, allowing a side-by-side comparison. Pooled screens usually expose a cell population to a
pooled perturbation library. The relative composition of the final cell population is most often assessed
by high-throughput sequencing, and informs on the impact of the perturbations compared to a reference
treatment.

each microwell in use. Despite these strengths, pooled screens also have weaknesses. A main
challenge in setting up a pooled screen lays in preparing a pooled library of perturbations, in
which the initial composition is precisely known. A selection step follows, corresponding to the
phenotype of interest, such as resistance to a compound or expression of a chosen biomarker. In
genetic screens, this selection can also serve as a control to ensure that the remaining cells were
successfully transfected, for instance via the expression of a puromycin resistance gene delivered
together with the material enabling the genetic editing. As opposed to arrayed screens where the
perturbation used in each well is known, pooled screens require a way to tell which modification
was received by each cell in the final population. For this, the experimental readout needs to
be able to discriminate between perturbations. For instance, short RNA sequences delivered
with a viral construct can serve as barcodes to identify each perturbation, or in the case of
CRISPR screens, the sequence of the guide RNA can be amplified directly. After targeted
sequencing, it is therefore possible to quantify if the relative abundance of a given perturbation
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Figure 1.2: Typical aims of chemical and genetic screens. In a typical chemical screen, cells are exposed
to drugs or bioactive molecules, either to study cellular response or to learn about the process disrupted
by the chemicals. The two main purposes of genetic screens are the identification of genes underlying a
phenotype of interest (forward screen), and the study of the phenotypic consequences of a gene disruption
(reverse screen).

increased, in case of a positive selection, or decreased, due to negative selection. Of note, the
latter is harder to detect and requires a larger sample or e�ect size. For instance, ine�ective
or monoallelic edits might cause the incomplete penetrance of a deleterious genetic edit. This
means that the una�ected cells could still be present after selection, as the resistance gene
would be expressed, but the amplitude of the decrease in abundance of the target gene could be
small. On the contrary, a beneficial edit could anyway lead to a clonal advantage and a large
overrepresentation in the final genetic pool, and be associated with a large e�ect size (Sharma
& Petsalaki, 2018). Furthermore, a large population is needed to avoid bottleneck e�ects, for
which a subpopulation with low abundance would completely disappear only due to random
fluctuations (Doench, 2017). Traditionally limited to low-content and one-dimensional readouts
such as di�erential abundance, creative approaches have also been proposed in recent years to
bring pooled screens closer to the flexibility o�ered by arrayed screens (Datlinger et al., 2017;
Dixit et al., 2016; Feldman et al., 2019; Wang et al., 2019; Wheeler et al., 2020).
All screens presented in this thesis follow the arrayed approach. We based our choice on the
convenience and directness of the method, and on the access to the chemical screening facility
at CeMM from which we and our collaborators benefited. The two research papers compiled in
the result section thus deal with arrayed high-content imaging (HCI) screens. As of 2022 and
despite gradual decrease in the cost of sequencing, imaging indeed provides a more cost e�cient
readout for arrayed screens and comes with additional advantages listed in subsection 1.2.

1.1.3 Diversity of perturbations

There are multiple types of perturbations a�ecting cellular phenotypes that can be explored via
screening, allowing for flexible use in both basic and applied research (Bougen-Zhukov et al.,
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2017). Generally, perturbations fall within two main classes, (i) extrinsic and (ii) intrinsic, as
they can either a�ect cells from the outside and trigger a response, or directly alter the inner
components of the cell. Most often, this takes the form of chemical and genetic perturbations,
respectively. We will now explore how both classes of screens are designed and what they have
to o�er, starting with chemical screens and continuing with genetic screens.
Chemical perturbations correspond to the use of compounds as a way to modulate the state,
activity and function of the cell. They range from natural products to collections of small
molecules synthesized to maximize structural diversity (Barnes et al., 2016; Bray et al., 2017;
Bryce et al., 2019). These perturbations chiefly serve two distinct purposes. They might directly
be of interest to the investigators, for instance when a drug candidate is studied to be used as
a treatment, or be good models to learn about the processes underlying responses to such
perturbations. For example, a compound with a known mechanism of action that inhibits an
enzyme could be used to learn about the role of the corresponding pathway. This dichotomy
between a direct and an exploratory approach is illustrated in Figure 1.2. Both use cases are
covered in the publications compiled in this thesis. The first article, reproduced in section
3.1, is directly describing the role of the selected perturbations. It includes a chemical screen
where many compounds are approved or under investigation for disease treatment. The analysis
compares the e�ect of compounds on cellular morphology with an emphasis on the relation
between their established mechanism of action and their propensity to induce morphological
changes. In contrast, in the second article, presented in section 3.2, the chemical perturbations
serve to explore biological conditions of interest. There, di�erent compounds are used to
probe the association of morphological changes with the inhibition of di�erent steps of actin
cytoskeleton organization, including F-actin polymerization and branching.
The second main class of screens relies on genetic perturbations, which provide a key tool
for functional genomics. These screens can be further subdivided into forward and reverse
screens (Figure 1.2). Forward screens aim to identify the genotype underlying a phenotype of
interest, for instance the genetic causes of a functional defect. Reverse genetic screens start
from a genetic change to identify its phenotypic impact. Put simply, one can annotate the
role of genes by knocking them out one at a time. Genetic perturbations encompass di�erent
types of alterations of either DNA or RNA. First, the genome can be directly edited to induce
mutations, insertions or deletions. Molecular biologists have long used type II restriction
enzymes isolated from archaea and bacteria to cleave DNA at positions of interest. This
massive adoption by the research community led Werner Arber, Daniel Nathans and Hamilton
Smith to be rewarded with the Nobel Prize in Physiology or Medicine in 1978 (Pingoud et al.,
2014). More recently, the artificial expression of CRISPR systems in combination with the
endonuclease enzyme Cas9 has emerged as a tool of choice for genetic screens. In turn, this
was also recognized with a Nobel prize in Chemistry awarded to Emmanuelle Charpentier and
Jennifer Doudna in 2020. Naturally present as an immune defense mechanism against phage
infections in 50% of bacteria and 90% of archaea, CRISPR-Cas systems can also be synthetically
introduced in mammalian cells (Wright et al., 2016). This method induces programmable
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mutation-prone double strand breaks in genomes, leading to near-complete gene knockouts via
nonsense-mediated mRNA decay (Jinek et al., 2012; Wang et al., 2014). This genetic engineering
approach only requires the design of a short custom RNA sequence, called single-guide RNA
(sgRNA), to target a genetic location of interest, and displays a significant improvement in
editing rate compared to previous technologies such as short hairpin RNA (shRNA) (Doench
et al., 2016; Shalem et al., 2014). While the understanding of the DNA damage and DNA repair
mechanisms involved in CRISPR-mediated gene knockouts deepens, it is also becoming clearer
that e�cient knockouts are not possible in all biological contexts. Among other limitations, they
are tissue-specific when used in vivo (Ferreira da Silva et al., 2021). Therefore, technological
improvements will be needed to expand the potential applications of CRISPR screens. Other
approaches do not rely on mutagenesis but rather aim to silence or enhance the expression of
a gene. Gene knockdown experiments, in which expression levels are artificially reduced, are
predominantly performed at the level of nucleic acids. DNA transcription can be repressed,
which is the case in CRISPR interference experiments, where an inactivated mutant of the
Cas9 protein is used in combination with sgRNA to selectively block transcription initiation
or elongation (Qi et al., 2013). Conversely, gene overexpression can be induced by fusing the
inactive Cas9 with transcriptional activators in CRISPR activation experiments (Gilbert et al.,
2014). RNA transcripts can also be targeted in RNA interference experiments, for instance
through the delivery of custom vectors which trigger a cascade leading to the cleavage of a
targeted transcript (Brummelkamp et al., 2002). These perturbations are typically induced
thanks to a vector transfected to the cells, either in a stable or in a transient manner. This is
often achieved chemically via electroporation, or using lentiviral transduction (Bock et al., 2022).
All these technologies have already been leveraged in large-scale screens, sometimes covering
the entire genome (Boutros et al., 2006; Kampmann, 2018). Finally, perturbations acting at
the protein-level are typically induced with chemical inhibitors, and thus typically follow the
experimental outline of compound screens described above. Targeted protein degradation could
lead to a more systematic way to selectively remove proteins, which could then be used in screens.
However, this has not been achieved yet, and works in this field focused so far on genetic screens
to study and optimize a limited number of degraders at a time (Scholes et al., 2021).
Finally, screening libraries are not limited to either genetic or chemical perturbations. Some
studies combine both simultaneously (Breinig et al., 2015; Gapp et al., 2016; Piotrowski et al.,
2017), while others explore di�erent types of perturbations altogether. For instance Bruch,
Giles and colleagues studied the influence of multiple microenvironments on the e�ectiveness
of drugs used to treat chronic lymphocytic leukaemia (Bruch et al., 2021). In subsection 1.2.3,
additional examples of screens with purposes ranging from basic to translational research are
also introduced.
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1.2 High-content imaging and profiling

Cell morphology has been found to be directly indicative of specific diseases. For instance, a
disruption of polarity can be observed in epithelial cancer cells (Muthuswamy & Xue, 2012),
and interactions between pathogens and the actin cytoskeleton of host cells often lead to
visible changes (Haglund & Welch, 2011). Moreover many genetic defects are associated with
phenotypic changes observable via quantitative imaging experiments, notably inborn errors
of immunity (Brigida et al., 2018; Dupré et al., 2002; Pfajfer et al., 2018) and neurological
disorders (Fell et al., 2021; Sharma et al., 2013; Zamboni et al., 2018). Accordingly, imaging
technologies are especially suitable to study cell biology in health and disease, and are at the
core of the experimental e�ort described in the studies compiled in this thesis. In this section,
we introduce imaging modalities and their applications to large-scale screens. We start with
a presentation of light microscopy and its main promises. We then cover how automated
microscopy platforms enabled a new screening modality, high-content screening, providing mul-
tiple morphological descriptors as readout. We compile some successful applications of this
approach which highlight the diversity of use cases in which high-content imaging is employed.
We then proceed with an overview of the computational analysis of the acquired images, and
how morphological measurements can be compiled in profiles describing di�erent phenotypic
cell states across experimental conditions. The final part of this section deals more specifically
with the ways in which di�erences between morphological profiles can be quantified. This is
a prerequisite to define which perturbations impact cellular morphology significantly, and is
essential to the understanding of the work presented later in section 3.1.

1.2.1 Light microscopy

Microscopy has been a canonical way to characterize living organisms since the first prototypes
of microscopes built by Antonie van Leeuwenhoek and Robert Hooke, which led to the first
observations of microorganisms in the late seventeenth century. Since then, technical improve-
ments went hand in hand with scientific advancement. In its most simple form, a microscope is
a tool allowing to visualize an object at a larger size while preserving most details. Typically,
the magnification occurs through a system of optical lenses. A source of light illuminates the
study object. This object, the sample, absorbs and deflects the light based on its structure and
composition. The objective lens of the microscope then gathers and focuses the light e�ectively
reaching it, allowing the observation of the sample at a given magnification factor. This basic
principle is still at the core of modern-day light microscopy, which o�ers a su�cient resolution
to observe subcellular structures without strongly perturbing the imaged cells (Thorn, 2016).
Improvement in manufacturing techniques led to a better quality and a tighter setup of all
microscope parts, while progress in optics led to enhanced microscope designs. Together, the
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three key aspects of microscopy, namely magnification, resolution and contrast, were improved.
A major development, with a large impact on the biological applications of microscopy was
the adoption of fluorescence microscopy. This scientific revolution was kick-started by the
identification of a green fluorescent protein (GFP), naturally present in the jellyfish Aequorea
victoria (Shimomura et al., 1962). Years later, GFP became an essential part of the molecular
biology toolkit, for instance serving as a marker for gene expression (Chalfie et al., 1994). For
their work on GFP, Osamu Shimomura, Martin Chalfie and Roger Tsien were awarded a Nobel
Prize in Chemistry in 2008. In brief, fluorophores, also called fluorescent dyes or stains, are used
to tag molecules of interest. Typically, this is either done by genome engineering to fuse the
dye with a protein of interest, or by immunofluorescence, using fluorescently-labeled antibodies.
The fluorophores are then excited with a laser set at a given wavelength and consequently emit
light at another fixed emission wavelength, which will in turn be captured by the microscope
objective. While this may appear at first as a constraint compared to the label-free approach,
this actually opened a whole new range of avenues for molecular biology, by making it possible to
selectively highlight structures or proteins of interest (Lichtman & Conchello, 2005). Light only
needs to be detected at a specific wavelength, given by physical properties of the fluorophore,
which has the additional advantage of being less noisy than bright-field microscopy. If they
have distinct characteristic wavelengths, several dyes can also be used to stain several classes of
molecules at the same time.
Several well-adopted protocols make use of fluorescence microscopy as part of more complex
experimental designs for multiple applications. This includes single-molecule fluorescent in
situ hybridization (FISH) and multiplexed error-robust FISH to segment individual mRNA
transcripts (Chen et al., 2015; Lyubimova et al., 2013), or the use of Förster resonance energy
transfer to assess physical proximity between pairs of molecules in the cell (Algar et al., 2019).
For both papers, presented in sections 3.1 and 3.2, images were generated using automated
fluorescence microscopes. More precisely, in section 3.2, we used a spinning disk confocal
microscope, which limits the presence of out-of-focus staining intensities, occurring as the light
is initially emitted from its source in a cone. Put simply, these microscopes include pinholes
that block all rays which would not converge at the imaged focal plane. This technology makes
it possible to precisely image samples in three dimensions (Thorn, 2016), which allowed us to
study the positioning of lytic granules. One central aspect leveraged in both studies resides in
the richness of imaging as a high-dimensional readout. Compared to targeted assays providing a
single value per measurement, such as cellular viability or yeast colony proliferation, hundreds of
morphological descriptors can be derived from each image, as we detail in subsection 1.2.4, thus
permitting more applications and nuances. For instance, it becomes possible to characterize
precisely how molecular perturbations combine and influence each other (Caldera et al., 2019;
Fischer et al., 2015) or to describe several properties of the cells which would typically be
described through multiple assays (Simm et al., 2018; Way et al., 2021a). We explore in further
detail how one can benefit the most from the high dimensionality o�ered by imaging as a readout
in sections 4.3 and 4.4.
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Light microscopy also has limitations. Ernst Abbe already derived in 1873 the optimal resolution
that can theoretically be achieved by a microscope due to di�raction, based on the light
wavelength and on a physical property of the microscope called numerical aperture. Only specific
conditions and microscopes currently allow experimenters to observe molecules smaller than 200
nm thanks to so-called super-resolution light microscopy (Ji et al., 2008). Other modalities,
departing from the traditional light microscopy approach, coexist and o�er complementary views
of spatial organization of cells at di�erent scales. In particular, electron microscopy proposes to
characterize nanoscale cellular structures. This approach usually relies on accelerated electron
beams instead of photons to illuminate the sample (Zewail, 2010), and can be used in complement
to wide field or confocal microscopes, to combine the global cellular context and details at the
single-molecule resolution (de Boer et al., 2015). Using such microscopes, researchers have
been able to measure crystal spacing less than 50 pm (Erni et al., 2009). Demonstrating the
impact of these technologies, Ernst Ruska was awarded the Nobel Prize in Physics in 1986 for
pioneering electron microscopes, and Jacques Dubochet, Joachim Frank and Richard Henderson
received the Nobel Prize for Chemistry in 2017 for their work on cryo-electron microscopy.
The latter consists in the near-instantaneous freezing of biological samples to protect them
and vitrify the surrounding water, and the subsequent use of an electron microscope to resolve
molecular structures (Cheng et al., 2017). This method only requires a limited amount of
the macromolecule of interest and typically resolves its structure in its native and functional
conformation. In this thesis, we focus on static images but other technologies also allow for
timelapse imaging of live cells, which is essential to study dynamical processes such as actin-
driven motility (Kamnev et al., 2021). Other recent approaches do not rely on either visible light
nor electron transmission and could prove complementary, such as DNA microscopy, in which a
chemical tagging of transcripts is combined with a proximity-based reconstruction of the cellular
arrangement (Weinstein et al., 2019), and expansion microscopy, in which the sample itself is
physically made larger (Wassie et al., 2019).

1.2.2 Automated image acquisition

By coupling the microscope objective to a digital camera detector, it is possible to directly
record the observed signal. As long as the camera has a pixel size at most half the size of the
resolution of the optical image, no information is lost (Bernas, 2005). At this step, the optical
image is converted into an array of numbers representing the intensity of light measured at each
pixel. This digital image can then be analysed in real time, or stored and analysed at a later
time, for instance once the whole imaging component of the experiment has been conducted. In
a logical continuation of the high-throughput screening approach introduced in subsection 1.1.1,
the automation of cellular imaging fueled its use for assessing the e�ect of perturbations, and
in particular of candidate drugs, in a process called high-content screening (HCS). HCS assays
using microscopes to acquire phenotypic measurements are also referred to as high-content
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imaging (HCI) experiments. The first commercial systems branded as HCS platforms date back
to 1997. In a landmark paper, Giuliano and colleagues rightly predicted that “new reagents,
algorithms, screens, and bioinformatics will increase the power of this approach” (Giuliano
et al., 1997). Of note, the authors of this article were active in both public and private
research institutions. From its inception, HCS indeed showed promises for both applied and
basic research, and the technology was pioneered by pharmaceutical companies to facilitate
drug development. To this day, actors from academia and industry perform HCS experiments
and often collaborate to develop the field further (Caicedo et al., 2017; Mullard, 2019). The
technological requirements are still expensive, but HCI experiments are progressively getting
more a�ordable and widespread. Several commercial providers, such as PerkinElmer, GE Life
Sciences and Thermo Fischer, now o�er confocal and wide field microscopes suitable for HCI. On
top of short image acquisition time, these instruments typically provide magnification factors up
to 100, have three to seven fluorescence channels and allow controlling experimental parameters
such as CO2 levels, temperature and humidity. It is now possible to screen and characterize
the e�ect of tens or hundreds of thousands of compounds in a single experiment (Bray et al.,
2017; Bryce et al., 2019) and to stain multiple organelles and cellular structures simultaneously
for instance with the Cell Painting assay (Bray et al., 2016). More examples of successful
applications of HCS are presented in subsection 1.2.3.
The steps common to most HCI experiments are shown in Figure 1.3, together with the main
analytical steps. As described above, many di�erent arrayed cellular perturbations can be used
as the starting point of an HCI screen. No matter the chosen perturbations, the process stays
relatively unchanged (Boutros et al., 2015). Once the cells are treated or genetically edited,
the cells are washed, and stained using fluorescent dyes. As most imaging screens are only
evaluating cellular morphology at a single time point, it is often convenient to fix the cells using
formaldehyde, as it renders the results independent of the time elapsed between staining and
image acquisition, and as it increases the choice of usable dyes. The microscope then proceeds
plate by plate, well by well and usually images several fields of view in each well sequentially,
without the need for human supervision. Among others, the Opera Phenix microscope from
PerkinElmer, used in our study described in section 3.2, o�ers di�erent strategies to select fields
of view. It allows the user to choose a fixed layout to preferentially image the center or the edges
of the well, which can be convenient based on how the imaged cells preferentially grow. Alter-
natively, it can automatically detect and photograph cell clusters based on low-magnification
images, which maximizes the number of captured cells but may induce biases, as the sampling
process is no longer random and comparable in all wells. This microscope also integrates several
cameras to capture the signal in the di�erent fluorescence channels simultaneously to decrease
acquisition time. The resulting images, often following the tagged image file format (TIFF)
standard, include the measured intensities and basic metadata characterizing the acquisition.
These files can then be exported and analysed to characterize cellular morphology or other
phenotypes detectable thanks to the fluorescent probes.
Some cell lines are particularly suitable for high-content imaging screening due to their ability
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to display specific morphological states matching the mechanism of action of treatments (Kang
et al., 2015) or more generally due their expressive morphology, such as U-2-OS which is used in
multiple large screens (Bray et al., 2017; Gustafsdottir et al., 2013; Strezoska et al., 2017). This
cell line and the previously-mentioned Cell Painting assay were selected to generate a collection
of such screens by a large consortium, recently initiated by Dr. Anne Carpenter and collaborators
at the Broad Institute of MIT and Harvard and across 10 pharmaceutical companies (Mullard,
2019). The same cell line was used in our study presented in section 3.1 for the advantages it
o�ers and the ability to compare our results to a broad body of literature. U-2-OS cells were
kindly provided and expanded by the lab of Ass.-Prof. Joanna Loizou. The imaging was done
at the chemical screening facility at CeMM, directed by Anna Koren, and part of the molecular
discovery platform headed by Dr. Stefan Kubicek, on the PerkinElmer Operetta HCI system.
The facility is conveniently equipped with all the necessary tools to perform and automate HCS
experiments, including an acoustic liquid dispenser, a washer, a robot arm to handle the plates,
and an incubator to store them until they are imaged.

1.2.3 Successes of HCS

In recent years, HCS contributed to discoveries in cell biology across many studies, especially via
morphological profiling, an approach detailed later in subsection 1.2.5. It occupies a unique spot
among technologies used for research in molecular biology. Indeed, the number of imaged cells
o�ers an improved statistical power compared to traditional low-throughput light microscopy.
Morphological measurements also provide a multidimensional readout that is much more com-
prehensive than most other high-throughput assays. As HCS was initially intended to facilitate
drug discovery (Giuliano et al., 1997), it naturally found many use cases at di�erent stages of drug
development and led to the characterization of small molecules and their mechanisms of action in
multiple cellular models (Bray et al., 2017; Bryce et al., 2019; Wawer et al., 2014). Applications
are, however, reaching far beyond pharmacological research. HCI results allowed researchers to
assemble information-rich profiles able to replace multiple costly assays (Simm et al., 2018; Way
et al., 2021a) or optimize multiple biological parameters and chemical properties at once (Lin
et al., 2021). HCI is especially adequate for describing complex cellular phenotypes. Together
with the demonstrated importance of cell shape in pathologies (Barker et al., 2022), HCI appears
as a method of choice to study how function and morphology are linked in disease contexts. The
flexibility of the experimental setups even makes HCI suitable for translational applications
including ex-vivo drug screening on primary cancer patient material (Snijder et al., 2017) and
on patient-derived organoids (Betge et al., 2019). An image-based treatment prioritization in
hematological cancers has also led to good outcomes in a prospective clinical trial (Kornauth
et al., 2021).
Moreover, HCS can be used to address fundamental research questions. Some notable achieve-
ments involved the characterization of interactions between multiple chemical or genetic per-
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Figure 1.3: Common steps in high-content imaging experiments. For experimental steps, a typical
duration is provided but this may vary greatly between experiments. The tasks are divided in three
groups, corresponding to experimental, image analysis and morphological profiling steps. They are
described in subsections 1.2.2, 1.2.4 and 1.2.5, respectively.

turbations, in yeast, Drosophila and human cells (Breinig et al., 2015; Caldera et al., 2019;
Fischer et al., 2015; Heigwer et al., 2018; Mattiazzi Usaj et al., 2020), as well as the study of
di�erent aspects of healthy cellular organization. While pooled screens su�ce for many applica-
tions (Doench, 2017), arrayed genetic screens can be conducted and it has been shown recently
that the approach could be extended to imaging CRISPR screens (de Groot et al., 2018; Kim
et al., 2018; Strezoska et al., 2017; Tan & Martin, 2016). Arrayed genetic screens have been used
at several occasions to characterize gene function and links to cell shape in multiple experimental
conditions and genetic backgrounds, for instance highlighting determinants of embryonic stem
cell identity, or prioritizing metabolic disease genes (Bai et al., 2011; Chia et al., 2010; de Wet
et al., 2020; Jiao et al., 2019; Vizeacoumar et al., 2010). Large-scale imaging experiments
were also successful in basic biological research, with notable e�orts to systematically describe
protein location (Kraus et al., 2017; Ouyang et al., 2019b; Stenström et al., 2020; Sullivan et al.,
2018), observe cell cycle protein regulation (Billmann et al., 2016; Mahdessian et al., 2021) and
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identify key actors of cell division (Neumann et al., 2010). Finally, work in the field of HCS also
fueled further technological developments, and a recent study demonstrated how imaging-based
features allow for high-throughput cell sorting based on morphology (Schraivogel et al., 2022).

1.2.4 Image analysis

From hundreds of kilobytes for a dozen of images in the 1960s (Prewitt & Mendelsohn, 1966),
bioimaging datasets saw a ramp-up to tens of terabytes and millions of images, or eight more
orders of magnitude in storage space (Williams et al., 2017). Analysing HCI results thus requires
e�cient, dedicated computational tools. To this end, a large variety of software is available, as
part of both commercial and open-source projects. Overall, guidelines for such analyses have
been established and the main challenges to address are well characterized (Bougen-Zhukov
et al., 2017; Caicedo et al., 2017). The flow of a typical analysis is represented in Figure 1.3.
Many steps are usually required to go from the raw microscopy images to the answers to the
biological questions addressed in HCI experiments. The necessary conversion from raw images
to quantitative measurements fits within the scope of bioimage analysis, which is a thriving
interdisciplinary research field of its own (Meijering et al., 2016). Most methods used to process
images and extract measurements are derived from the previous work done on HCI but also
on other imaging modalities and in di�erent study models, for which many analyses steps
are shared. To streamline the image analysis process, several tools aim to combine multiple
steps and o�er visualization features. Some are widely adopted, such as ImageJ and its main
distribution Fiji, which o�er a lot of flexibility via custom plugins (Schindelin et al., 2012;
Schneider et al., 2012), or CellProfiler, which is designed to be applicable to large screening
datasets (McQuin et al., 2018). Some, like napari (Sofroniew et al., 2021), are general-purpose
visualization toolkits, while others are dedicated to some specific imaging methods, like QuPath
and its focus on digital pathology imaging (Bankhead et al., 2017). Other frameworks, such as
ImJoy and ZeroCostDL4Mic, have a focus on simplifying the training of deep learning models
and making the corresponding analyses more accessible and reproducible (Ouyang et al., 2019a;
von Chamier et al., 2021). We now describe the main steps that need to be performed to
analyse HCI data, whether using dedicated standalone tools or integrated in an end-to-end
analysis framework.
If several focal planes were imaged, as is common with confocal microscopes, the di�erent images
may be stored in separate files, in a multi-channel TIFF file, or projected onto a single image.
Maximum intensity projection is the most common method to do that, and consists in taking the
maximal intensity value across the image stack for each pixel. In all cases, the images need to be
processed to account for technical biases, such as aberrations in the optical path, non-uniform
light source or shading, varying at di�erent positions within the well and the plate (Coster et al.,
2014; Singh et al., 2014). In some HCI experiments, empty wells may be imaged to serve as a
model for background intensity distribution. Alternatively, retrospective methods may be used
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on the noisy images: To correct uneven illuminations, a reference intensity distribution function
can be computed either for each image individually, per position in the plate, or across a whole
experiment. Di�erent models have been proposed, accounting for the di�erent steps separating
the fluorescence emission from its detection by the camera. These models typically describe a
foreground intensity F representing the actual dye fluorescence to be estimated as a function of
the measured intensity values I, a background intensity B due to technical biases, and a shading
factor S. In particular, an approach proposed by Coster and colleagues considers that one can
model the signal as I = S(F + B) and suggests an algorithm to remove first the e�ect of S

then of B (Coster et al., 2014). In parallel, Singh and colleagues suggested a way to remove the
shading factor while assuming the remaining background e�ect B to be su�ciently uniform not
to impact the analyses (Singh et al., 2014). More approaches were proposed such as CIDRE,
which formalizes illumination correction as an optimization problem to simultaneously account
for S and B (Smith et al., 2015). Methods such as BaSiC are also accounting for temporal drift
in timelapse experiments, which would otherwise violate assumptions of most other techniques,
as imaging parameters may change over time and as the foreground regions in successive images
are highly correlated (Peng et al., 2017). In practice, good strategies for illumination correction
highly depend on the dataset and experimental setup, and exploring multiple approaches is
recommended.
After preprocessing the images, the position of biological objects of interest needs to be deter-
mined in a task called instance segmentation. This means being able to attribute each pixel in
the image to a specific object, such as a cell or nucleus, or to none. Traditional approaches rely on
(i) setting an intensity threshold to first split the data between background and foreground, (ii)
grouping contiguous foreground regions into separate objects, and possibly (iii) further splitting
large objects, as they might actually represent two distinct objects in contact. Many algorithms
were implemented to address each of these tasks. First, thresholding can be as simple as setting
manually a global value which results in a good separation between foreground and background,
or automated and more complex, for instance relying on intensity histograms or clustering-based
algorithms (Sezgin & Sankur, 2004). Local methods also provide adaptive thresholds, which
can be useful when the intensities are uneven across the image despite illumination correction.
The second task is usually straightforward but might need to allow some degree of fuzziness
to smoothen the objects and fill potential gaps. Third, di�erent methods allow the borders of
adjacent cells to be delineated based on shape or intensity values. The ‘watershed‘ algorithm can
be used for declumping cells, starting a di�usion process from local intensity maxima, expanding
the corresponding regions until they meet and using this interface as the separation line between
adjacent cells (Malpica et al., 1998; Vincent & Soille, 1991). Alternatively, if the shape of
the cell is likely to provide more information about how to divide cell clusters, the watershed
approach can be applied to distance-transformed images, to disregard original intensity values
and focus on distances to local maxima. Other propagation methods are also suitable for a
larger range of use cases (Carpenter et al., 2006). By implementing multiple methods for each
task, CellProfiler can segment di�erent object types for multiple imaging modalities (McQuin
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et al., 2018). The approach can also be adapted to make the best use of specific aspects of
the data and of prior biological knowledge available about the sample. For instance, dedicated
methods are available when three-dimensional image stacks are acquired (Stringer et al., 2020),
or can use previously segmented nuclei to help with the segmentation of the corresponding cell
bodies (Jones et al., 2005). As many other fields, image analysis has been impacted by the
advances of deep learning. The use of convolutional neural networks for segmenting cell images
has significantly improved accuracy in several example tasks (Falk et al., 2019; Greenwald et al.,
2021; von Chamier et al., 2021). However, the adoption of such methods by the bioimage analysis
community at large was impeded by a di�culty to adapt these models to one’s individual
experimental setup. As microscopes, imaging protocols and cell lines vary, the imaging data
and their internal structure vary, and models that excelled in one context might underperform
in another. Additionally, retraining large neural networks requires significant computational
resources and a large annotated dataset, which is costly to produce. This situation can however
be improved, and Cellpose, a generalist deep learning model based on intensity gradients, has
recently gained traction, as it is flexible and performs well for a variety of applications out of
the box (Stringer et al., 2020).
Once objects and regions of interest have been identified, it is possible to perform di�erent
types of measurements, thus quantifying biological properties across conditions. The traditional
approach, coined feature extraction, relies on handcrafted geometrical metrics (Bougen-Zhukov
et al., 2017; Caicedo et al., 2017). These features can refer to the size or shape of the cells, with
metrics such as perimeter, area, eccentricity or form factor. It is also possible to measure
the distribution of the intensity values for each dye, including summary statistics such as
variance or median intensity per object, and more complex measurements, including textural
descriptors such as Haralick features and Zernike moments (Pau et al., 2010). Moreover, some
features can help summarize the local context of an object, for instance by counting neighboring
cells or quantifying spot colocalization. Recently, new techniques emerged, powered by deep
learning (Caicedo et al., 2018; Kensert et al., 2019; Lu et al., 2019). These approaches typically
involve an intermediate ‘mock‘ task used to guide the learning of a deep convolutional network,
after which the weights in an intermediate layer of the model are used as features. Yet, learning
a meaningful and compact quantitative profile directly from the data, a concept known as
representation learning, is still a major open challenge (Bengio et al., 2012).

1.2.5 Morphological profiling

Most screens aim to identify hit perturbations leading to a phenotype of interest defined be-
forehand based on known mechanisms. For instance, it is common to track the expression of
a fluorescent marker, or geometrical changes of the nucleus or cytoskeleton. Whereas such
a targeted approach is e�cient when investigating processes with a well-studied molecular
basis, it is also possible to assemble data-driven quantitative representations of the induced
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e�ects that integrate all the information available from the screen readout (Chandrasekaran
et al., 2020). To do so, an exhaustive feature extraction step can be designed, where as many
morphological descriptors as possible are measured, or such descriptive features can be derived
directly from the images using representation learning techniques. The measured features can
be assembled into vectors describing the cellular state observed in each condition, commonly
called phenotypic or morphological profiles. These profiles have the potential to account for
unexpected molecular phenomena and guide hypothesis generation, as they include little prior
expectations of what changes might occur. However, these raw morphological profiles need
to be curated to correctly depict di�erences between experimental perturbations and provide
biological insight. To this end, Bougen-Zhukov and colleagues as well as Caicedo and colleagues
published two introductory literature reviews in 2017, covering the available software solutions
and providing guiding principles (Bougen-Zhukov et al., 2017; Caicedo et al., 2017). The main
steps of morphological profiling are also summarized in Figure 1.3.
First, it is important to ensure that the profiles adequately describe the biological objects. While
quality checks can be implemented at each analysis step, having access to the morphological
profiles eases the identification of artifacts. An object with an unusually high intensity might
correspond to a precipitation, and a cell with an extremely large area might be incorrectly
segmented or declumped. A set of filters can be put into place to remove such erroneous data
points. Compared to other experimental approaches, we here benefit from the fact that the
images can often be directly interpreted through visualization, which greatly helps diagnose
potential problems with the data.
Once multiple features describing the morphology displayed by cells for each perturbation have
been obtained, one is left with the following matrix:

C =

Q

ccca

c1,1 . . . c1,p

... . . . ...
cn,1 . . . cn,p

R

dddb

where ci,j is the value of the j-th feature for the i-th cell, for n cells and p features. It
can, however, be useful to aggregate the morphological features of all cells per image or per
perturbation for several reasons. First and foremost, this has the advantage of mitigating the
impact of extreme values present in individual measurements, thus the aggregated profiles may
be more representative of the typical cellular state. By reducing the number of profiles, it also
speeds up considerably all downstream analyses. Moreover, measurements are typically made on
the basis of individual cells but the granularity may sometimes vary. By obtaining an aggregated
value, it becomes possible to integrate cellular information with image information such as cell
confluency in a given field of view, or with other information available about the perturbations,
which could even arise from other experimental setups. Several options can be used to aggregate
cell-level features, separately or in combination. Any real-valued variadic function f can be used
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to define an aggregated profile matrix S as follows:

S =

Q

ccca

s1,1 . . . s1,p

... . . . ...
sm,1 . . . sm,p

R

dddb

with

si,j = f(ck,j | k œ Ai)

where Ai is the set of indices of the cells aggregated in the i-th profiles, out of m aggregated
profiles. Most commonly, the mean and standard deviation are used as aggregation operators.
It has also been shown that using higher-order descriptors of heterogeneity helps to discriminate
between cellular perturbations (Rohban et al., 2019), although this approach is not widely
adopted yet.
As hinted above, morphological features can describe a wide variety of cellular parameters. Each
one can correspond to a di�erent magnitude, ranging from normalized intensity values laying
between zero and one, and cell area in pixels, which can reach multiple thousands. They can even
be completely di�erent types of data, such as discrete values for a number of neighbouring cells,
pseudo-continuous values for the coe�cient of overlap between two stains, or compositional data
for the distribution of a dye intensity in a finite number of spatial bins. It is therefore essential
to transform the data in order to give an equal importance to all variables, which is typically
done by approximating a multivariate normal distribution in a high-dimensional feature space.
This usually starts with the following transformation, which reduces the skewness of the data:

ŝi,j = log
!
1 + si,j ≠ min(s1,j , . . . , sm,j)

"

with ŝi,j denoting the corrected value of the j-th feature for the i-th profile. The data can then
be centered and scaled to ensure the typical values of each feature are of a similar magnitude.
The following normalization transformation can be used:

ŝi,j = si,j ≠ mean(s1,j , . . . , sm,j)
sd(s1,j , . . . , sm,j)

The resulting features can then be considered to be Z-scores, as they represent how many
standard deviations away from the mean feature value each profile is. For such transformations,
the median and median absolute deviation (MAD) have also been used as robust counterparts of
the mean and standard deviation (Caicedo et al., 2017; Heigwer et al., 2018; Malo et al., 2006).
Batch and plate layout e�ects often cause systematic errors in HCS experiments, in part due to
increased medium evaporation at the edges of the plate. This can be handled after normalization
with methods such as Tukey’s median polish (Frederick & Tukey, 1977). If the layout of the
negative controls permits it, it might also be possible to perform these corrections during the
transformation step. In this case, each profile is scaled and centered on the control values in the
same row or column of the plate only, instead of the full dataset. This also has the advantage
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of giving a value that is indicative of the variation compared to the negative controls and not
to all tested conditions, which might include a large portion of perturbations a�ecting cellular
morphology.
After these transformations, it is possible to compare features with each other. In a typical
HCS experiment, only features displaying more variation for some perturbations than among
negative controls are of interest. Highly-correlated features are also redundant and can obscure
more interesting structures in the data for downstream applications. A step of feature selection
is therefore necessary. Several metrics can be used to quantify variation in the whole experiment
and among negative controls such as variance, MAD or coe�cient of variation. A simple method
to decorrelate features is to proceed sequentially: Features can be ordered according to a property
to prioritize, such as total variance, or randomly. The first feature is selected and everything
correlated above a certain threshold for a chosen metric is discarded. The next non-discarded
feature is then selected and the process is repeated until all features are either selected or
removed (Breinig et al., 2015). Another approach consists in assembling a network where nodes
represent features and links represent correlation above a given threshold. The network is then
rendered disconnected using a minimal cut approach, meaning that no remaining features are
correlated above the chosen threshold (Caldera et al., 2019). Depending on the setup and
goal of the experiment, features might also be selected in other ways, for instance to favor
interpretability, to match features identified as informative in the literature or to favor their
reproducibility between replicates (Heigwer et al., 2018).
If the number of features left after the selection is too large for visualization or performing the
downstream analyses at scale, dimensionality reduction can be applied. This is routinely done
via techniques such as principal component analysis (PCA) or uniform manifold approximation
and projection (UMAP) (Mcinnes et al., 2018). These methods have di�erent drawbacks and
advantages. For instance UMAP is able to account for non-linear relations between features
while the axes of the PCA-reduced space can be interpreted as linear combinations of its
input. However, all these methods are bound to distort the data in real-life applications as
the information is compressed to a more compact representation (Cooley et al., 2020). In this
thesis and the compiled articles, we call this curated reduced space the ‘morphological space‘.

1.2.6 Distance between profiles

In most screens, we need to identify which perturbations are morphologically active, that is, that
induce statistically significant changes in morphological descriptors. Morphological changes are
often visualized using variations of radar charts (Breinig et al., 2015; de Wet et al., 2020),
or by the schematic representation of an average cell for a given condition (de Groot et al.,
2018; Khawatmi et al., 2021; Sailem et al., 2015). This has the potential to conveniently
portray the main characteristics of a perturbation and to quickly allow visual comparisons.
We did so ourselves in multiple figures of the paper we introduce in subsection 3.2. However, a
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Figure 1.4: Distances accounting for dispersion to compare two statistical distributions. Both the
Mahalanobis distance and the Hellinger distance can be used to quantify the di�erence between two
populations but they di�er in the way they account for dispersion. a-b Ways to obtain a value quantifying
the statistical significance of morphological changes of perturbation profiles compared to reference profiles
using the Mahalanobis or the Hellinger distance, respectively. c Impact of a reduction in the dispersion
of the perturbation profiles for both distances. Red lines represent distances. Green points represent
control profiles and brown points represent perturbation profiles. Ellipses symbolize confidence estimates
for the covariance matrices used in the computation of the distances.

limitation of such graphs resides in that they do not convey a sense of sample size and statistical
significance of the corresponding morphological changes. In addition to these plots, it is therefore
essential to assess whether the changes observed are outside of the range of random variations
of the measured parameters and can be interpreted with confidence. Conceptually, this can be
seen as quantifying the likelihood of observing the distance measured between profiles in the
morphological space.
Di�erent methods can be used, depending on the properties of the data to be tested, such
as perturbation reproducibility or strength. A useful paradigm was introduced by Hutz and
colleagues, proposing the use of Mahalanobis distances combined with a permutation test to
quantify the significance of morphological changes (Hutz et al., 2013). In brief, the procedure
starts with a PCA of the data, scaling each axis by how much of the variance it explains. Then,
one determines the center µR and covariance �R of reference profiles, such as the negative
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controls, as well as the center µP and covariance �P of a perturbation’s profiles. These variables
are used to obtain a metric DM analogous to the Mahalanobis distance, and computed as:

(DM )2 = (µP ≠ µR)T �̂≠1 (µP ≠ µR)

where �̂ is the cardinality-weighted mean of �R and �P . To contextualize the value of DM , one
empirically estimates its distribution under the null hypothesis that there is no di�erence between
reference and perturbation by shu�ing the labels of the reference and perturbation points. The
resulting empirical p-value is coined the mp-value, and used to define which perturbations are
morphologically active.
The Mahalanobis distance has the advantage of taking the dispersion of the data into account,
as opposed to the Euclidean distance, which gives the same weight to all dimensions. One
limitation, sketched in Figure 1.4, is that it only provides a distance between a point and a
distribution. In the mp-value method, this is mitigated by using �̂ instead of �R as in the
standard definition of the Mahalanobis distance. Other distances might be more suited to
morphological profiles, as they are symmetrical and intended to account for the dispersion of
both sets of profiles. In particular, the Hellinger distance DH is defined for multivariate normal
distributions as:

(DH)2 = 1 ≠ det(�P ) 1
4 ◊ det(�R) 1

4

det(�Õ) 1
2

e≠ 1
8 (µP ≠µR)T (�Õ)≠1(µP ≠µR)

with �Õ = �R+�P
2 . This distance satisfies both criteria. However, the fact that DH is influenced

by both �R and �P simultaneously also means that it can be tedious to interpret distance
changes from this value alone, as they might be explained by both e�ects on location and
dispersion.
Another challenge when analysing HCI experiments is that technical artifacts are common,
leading to outlier profiles. Some types of statistics are better suited to dealing with extreme
values and outliers. This property is called robustness and can be quantified with metrics
such as the breakdown value, which is the minimal fraction of outliers in a population that is
su�cient to make the estimator “arbitrarily bad” (Hubert & Debruyne, 2009). Previous studies
demonstrated the benefits of using robust statistics to deal with the noise and heterogeneity of
HCS data (Caicedo et al., 2017; Heigwer et al., 2018; Malo et al., 2006). This approach was
mainly constrained to the normalization steps, and we extended it to the downstream analysis
steps as well, including the quantification of distance between morphological profiles. This focus
on robust statistics, together with the use of the Hellinger distance, formed the conceptual basis
for the work described in the article presented in section 3.1.
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1.3 Network-based modelling of biological systems

Experimental results are best interpreted when taking into account what is already known
about the system under study. For instance, Neumann and colleagues chose to classify cellular
morphology in groups based on cell cycle and nuclear state rather than describing morphological
changes with no prior expectations. This prior knowledge guided their analysis and allowed them
to identify molecular regulators of mitosis (Neumann et al., 2010). Several studies also showed
that constraining the architecture of deep learning models based on known biological properties
can be beneficial, for instance when trying to estimate signalling pathway activation or patient
survival. This approach led to a good performance of the models, and informed about the
molecular mechanisms underlying their predictions at the same time (Elmarakeby et al., 2021;
Fortelny & Bock, 2020; Ma et al., 2018). Similarly, it is essential to identify ways in which
morphological profiles, as introduced in the previous section, can be contextualized, and how
the information they contain can contribute to our molecular understanding of cells and their
response to perturbations. In recent years, a large body of work has been dedicated to so-called
systems biology approaches, aiming to bring together scattered molecular insight from multiples
sources into a single comprehensive representation. Systems biology provides both a conceptual
framework and methods for the integration and contextualization of heterogeneous data, which
may also be leveraged for HCS analyses.
This section provides key concepts in systems biology and network medicine. More specifically,
we start with a brief introduction to the necessity of studying living organisms as complex
systems made of many interacting elements, which is made possible by high-throughput exper-
imental methods. In the second subsection, we perform a literature review presenting networks
as a suitable representation of such systems. We observe how di�erent biological processes
correspond to networks at varying scales, ranging from molecules to populations, and how
they are, taken together, underlying health and disease. In a last subsection, we expand
on network-based approaches aiming to better understand and treat diseases, referred to as
network medicine. In particular, we focus on how network medicine provides a framework for
the integration of heterogeneous data from high-throughput experiments, potentially generated
via HCS. Finally, we conclude by considering the promises of network medicine regarding clinical
translation.

1.3.1 Studying biological systems as a whole

All living organisms share a collection of unusual properties, rendered possible by the interplay
between a limited number of basic building blocks. For instance, DNA is made of only four
types of nucleotides, and most biological macromolecules fall within four classes: carbohydrates,
lipids, nucleic acids and proteins. Such simple elements can interact in an astonishingly large
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number of ways, due to the mathematical concept of combinatorial explosion (Schuster, 2000).
In this way, there are already more possible nucleotide sequences of length 140, which is shorter
than a typical Illumina sequencing read, than atoms in the universe. The traditional reductionist
approach to molecular biology attempts to describe the roles of genes and molecules in isolation
and to proceed sequentially to progressively describe complete organisms. Yet, there are too
many possible combinations of the basic components forming living systems to be studied
exhaustively. Thus, the reductionist approach is limited in its ability to retrieve the emergent
properties of cells and organisms (Lazebnik, 2002). The field of systems biology explores
ways to integrate all the findings about the components of a biological system (Stéphanou
et al., 2018). First, systems biology o�ers a conceptual framework to think about biological
information (Ideker et al., 2001). The results from high-throughput perturbation experiments
conducted in multiple studies are combined into models of the interactions and pathways
that explain global changes. Second, systems biology provides concrete computational tools,
including databases and methods to navigate the complexity of the new models, which can no
longer be easily pictured and visualized as simple sequential and linear processes. For instance,
the Reactome database lists thousands of actors involved in thousands of reactions within
signalling and metabolic pathways (Fabregat et al., 2016). Its curators split all these complex
relations in hundreds of smaller functional units at di�erent levels of granularity following a
hierarchical structure, so that each term can be visually inspected separately. Systems biology
has branched into many derivatives, such as systems genetics and systems medicine, in which
the emphasis is not given anymore on single causal genes. On the contrary, studies explore
how the entire genotype and di�erent modes of interaction can lead to emerging properties,
and dictate the resulting phenotype and disease status (Goh et al., 2007; Menche et al., 2015).
Such studies often aim at uncovering general rules, which make it possible to translate the
knowledge accumulated to other systems or to adapt to the characteristics of di�erent patients
more precisely (Apweiler et al., 2018).
Although considering biological systems as a whole is beneficial in most applications, some
research directions are more amenable to a systems approach or more prone to consider
their study object as a complex system than others. The nervous system is a rare case of a
complex cellular organization structured as a tangible physical network, where information is
propagated through neurons in the form of electrical and chemical signals. This makes systemic
studies appear as a natural choice, and the complete wiring diagram of the nervous system of
Caenorhabditis elegans was already mapped in 1986 (White et al., 1986). However, scaling this
approach to humans is challenging in part due to major di�erences in scale and connectivity
patterns. Methodological changes might help to address these challenges in the future (Jonas
& Kording, 2017). Another field with a clear connection to systems approaches is immunology,
where the interaction and cooperation between di�erent cell types is key to a functional immune
system (Rieckmann et al., 2017). This can be seen as an heterogeneous system, comprised of
highly-specialized cell types which must communicate through molecular signalling, in ways
analogous to other complex systems such as human social networks (Bergthaler & Menche,
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2017).
Adopting a system-centered view of disease etiology led to notable changes to research strategies.
As opposed to Mendelian diseases, in which a handful of inherited DNA variants can lead
to a disease, complex diseases might be influenced by a larger number of genetic elements
simultaneously (Botstein & Risch, 2003). For instance, dozens of variants may participate
mechanistically in the trait of interest, a�ect large protein complexes or pathways indirectly
associated with the trait, or act through transcription regulation. In this way, many genes
might be separately identified as related to the trait, yet none would explain the presence or
absence of the trait on its own. Even compiling the hundreds or thousands of significant genetic
findings in large genome-wide association studies often does not su�ce to explain the prevalence
of transmissible traits. This is often referred to as the missing heritability problem (Manolio
et al., 2009). The omnigenic model of complex traits suggests that some traits can be explained
by a large number of variants with weak e�ects spread across open chromatin regions, of which
only a limited number of core genes are directly and mechanistically causative (Boyle et al.,
2017). The scale and high density of the gene regulatory network would thus explain parts of
the spread of trait heritability between many loci, as many regulatory variants may indirectly
a�ect one of the core genes. However, many observations also do not concur and better align
with a completely polygenic model, without a clear separation between core and peripheral
genes (Wray et al., 2018).
Finally, the emerging tendency to consider that cell properties and behaviors emerge from the
interconnection of subsystems at di�erent scales can be seen as another important paradigm
change. This can be achieved by departing from considering the gene as the sole biological unit
meaningful to explain phenotypical changes, and by realizing that di�erent biological structures
at di�erent scales are important when studying di�erent processes (Ma et al., 2018; Qin et al.,
2021). Individual genetic mutations are sometimes enough to directly disrupt an essential
molecular interaction (Meyer et al., 2018), while in other cases a phenotypic change might be
the result of altered cell-cell interaction patterns (Vladimer et al., 2017).
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1.3.2 Complex Networks in Health and Disease

Loan Vulliard and Jörg Menche. Systems Medicine. Available online: August 28, 2020.
DOI: https://doi.org/10.1016/B978-0-12-801238-3.11640-X.

Complex networks are at the core of the study of biological systems. They are mathematical
graphs representing components as nodes and interactions as edges between nodes, and they
typically exhibit some special structural properties (Barabási & Oltvai, 2004). Networks are
omnipresent in modern biology. Network science suggests that the interplay between the com-
ponents of a complex system can explain the emergence of general properties of this system. For
instance, gene expression is regulated by multiple layers of signalling and compartmentalized
physical interactions involving DNA, RNA, proteins and metabolites in the cell. These processes
can be modelled by gene regulatory and interaction networks. Networks are also common in
biomedical applications, where they permit the characterization of shared properties of disease-
related genes, which can potentially guide clinical diagnostic and treatment (Barabási et al.,
2011). In the following book chapter, we describe how prevalent and useful biological networks
are. We cover the most common types of networks encountered in biology and which methods
are available to interpret them. We also emphasize that understanding how networks relate
across scales is the key to understand drivers of health and disease.
This invited review was published as part of the collection “Systems Medicine: Integrative,
Qualitative and Computational Approaches” edited by Prof. Olaf Wolkenhauer. The aim of this
collection was to compile current state-of-the-art knowledge in the field of systems medicine.
Two entries were provided by our research group. The first one reproduced below, is written by
Prof. Jörg Menche and myself and introduces basic concepts for navigating the field’s literature.
The second contribution covers more in depth the measures which can be used to characterize
properties of complex networks at di�erent scales, from local structures to global topology
(Hancock & Menche, 2021).

https://doi.org/10.1016/B978-0-12-801238-3.11640-X
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Glossary
!ome Suffix that is commonly used to emphasize that a collection of individual elements is considered as a whole. The entirety
of all genes, for example, forms the genome. Compare with interactome and exposome.
Complex network Complex networks provide holistic models of systems that consist of many interacting elements. Each
individual element is represented as a node (also called ‘vertex’) and each interaction between two elements as a link (or
‘edge’). The connection patterns within complex networks are typically neither completely regular, nor completely random.
Disease module Genes associated with a particular disease are not scattered randomly within molecular networks, but
aggregate in certain neighborhoods or ‘disease modules.’
Exposome Organisms are constantly exposed to a multitude of biological and chemical factors through their environment,
collectively referred to as ‘exposome.’ The dynamic combination of the internal biological state (homeostatis) and external
influx (exposome) results in health or disease.
Functional networks Networks in which links represent indirect relationships, for example correlated activity patterns in
functional brain region networks or shared biological processes in gene similarity networks. Compare with physical networks.
Herd effect Phenomenon observed in epidemiology that the immunization of one part of a population also decreases the risk
of infection for the other part that is not immune. The herd effect is important to protect sub-populations that cannot be
treated (e.g., immunocompromised people) and allows for the overall success of immunization campaigns even under partial
compliance.
Interactome In analogy to the genome, the interactome represents the complex network of all molecular interactions within a
biological system. More specifically, the term often refers to physical protein-protein interactions within the cell. Over the last
two decades the interactomes of several organisms have been mapped out systematically, ranging from model organisms
to human.
P4 medicine Predictive, preventive, personalized and participative medicine. This approach aims to improve healthcare by
progressively reducing the need for one-size-fits-all palliative treatments by leveraging modern therapeutic solutions and
personal patient data such as genome or microbiome sequencing.
Physical networks Networks in which links represent physical interactions, such as physical binding between proteins in
interactome networks, or synapses in neural networks. Compare with functional networks.
Protein-Protein Interaction (PPI) Cellular processes rely on the coordinated interaction between different proteins. Several
experimental methods are available to detect such interactions, for example yeast two-hybrid approaches or affinity
purification combined with mass spectrometry.

Introduction

In the 19th century, brilliant pioneers the like of Mendel, Darwin and Semmelweis required little more thanmeticulous observation
of their surroundings for developing their theories on inheritance, evolution and infectiology that would become the foundations of
modern biology and medicine. Since then, a range of sophisticated technologies have been developed that now allow us to observe
biological systems at molecular resolution. However, our rapidly growing knowledge at the molecular level also revealed the
fundamental limitations of traditional reductionist approaches that aim to understand complex biological systems by dissecting
their individual elements (Greene and Loscalzo, 2017; Stéphanou et al., 2018). It is becoming increasingly clear that many system-
wide phenomena cannot be understood in this fashion, and that often the ‘whole is more than the sum of its parts.’ It is thus
essential to systematically study not only the isolated elements of these systems, but also their interactions. These interactions are
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key to understand the emergence of novel properties and behaviors, in particular when moving across different scales, i.e., from
molecules to cells, tissues, organs and organisms or entire populations (Fig. 1). Complex networks provide a natural framework for
systematically investigating the various relationships between the constituents of biological systems within and between scales.

In the following we aim to provide an overview of how tools and concepts from network theory may help address important
fundamental and practical challenges in biology and medicine. We start by reviewing key relationships between structural network
properties and functional characteristics of the represented biological system. We then introduce frequently used networks, from the
molecular level of protein-protein interactions within the cell, all the way to the level of transportation networks that span the globe.
We conclude by highlighting a few future challenges in this highly active and dynamic research field.

From Network Structure to Biological Function

Network theory provides a versatile and general toolbox for investigating complex systems composed of interacting elements. In the
most generic case, each element of the system is represented by a node and each interaction between a pair of nodes by a link
(Fig. 2). In mathematical terms, the collection of all nodes and links is also called a ‘graph.’ This simple definition can be extended,
for example by adding weighted or directed links, by including time-dependence or different layers of connectivity between the
nodes, resulting in so-called weighted, directed, temporal or multi-layer networks, respectively.

Networks can be characterized at different levels, ranging from the level of individual nodes (e.g., their number of connections,
or their centrality within the network) to the level of groups of nodes (e.g., their connection density), to the global level of the entire
network (e.g., the distribution of the number of connections per node across all nodes in the network). The finding that these
properties can be associated with important biological characteristics makes network theory a valuable tool in biology and
medicine. For example, proteins that are located at a highly central position within molecular interaction networks have been
shown to perform important roles in the cell, whereas more peripheral proteins are often less essential (Piñero et al., 2016; Costanzo
et al., 2019). Densely interconnected groups of nodes correspond to functionally closely related groups of proteins (Barabási et al.,
2011). Similarly, genes that are associated to the same disease tend to aggregate in specific disease moduleswithin molecular networks
(Menche et al., 2015; Ghiassian et al., 2015).

Random Networks as Reference Models

In order to assess the magnitude and statistical significance of an observed network characteristic, suitable random controls are
needed. Network theory provides a wide range of well-studied random graph models that can be used as reference (Albert and
Barabási, 2002; Piñero et al., 2016). The most basic model is the classic random graph, in which a given number of links is
distributed randomly among a given number of nodes (Erdős and Rényi, 1960). In contrast to many real world networks, including
most molecular networks, random graphs do not contain highly connected nodes, so-called hubs, underlying their importance as
they could not have emerged by chance alone. More advanced reference models can be introduced by keeping additional properties
of the original network constant during the randomization procedure. Rewiring algorithms, for example, keep the number of links
per node fixed and have been used to uncover basic design principles of gene regulatory networks, such as the tendency of highly
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Fig. 1 The processes involved in human health and disease range from the molecular to the population scale. Networks provide a unifying framework for
describing and investigating the complex interactions that occur both within and across scales: They can be used to describe the molecular interactions forming the
basis of all biological processes within the cell, as well as the social interactions that form the basis for the spread of infectious diseases. Diseases can be
conceptualized as perturbations of these intricate systems. These perturbations may be internal, for example genetic mutations, or external, for example
environmental exposures.
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connected hubs to avoid each other (Maslov and Sneppen, 2002) or the discovery of network motifs, i.e., recurrent connectivity
patterns among small groups of nodes (Milo et al., 2002).

Also dynamic aspects of networks, such as their growth over time, can be assessed through randommodels. An important class of
networks that are characterized by the presence of hubs are so-called scale-free networks (Albert and Barabási, 2002). These
networks emerge by iteratively adding new nodes to the network, such that they have a tendency to form links with already highly
connected nodes. The basic model can be extended by adding a latent fitness to each node (Bianconi and Barabási, 2001) to
investigate the role of evolutionary processes and positive selection of genes with high fitness in shaping the structure of molecular
networks.

Molecular Interaction Networks

The first layer of information transfer and transformation from genotype to phenotype is mediated by molecular networks within
the cell. In analogy to the genome representing the blueprint for all molecular components, the collection of all their interactions is
referred to as the interactome. The interactome thus represents the blueprint for the collective functions that emerge from interactions
between individual components. Most commonly, the term interactome is used specifically for protein-protein interaction (PPI)
networks. Over the last two decades, genome-scale PPI networks have become available for a variety of species (Alanis-Lobato et al.,
2017; Oughtred et al., 2019). PPIs can be mapped out systematically using yeast two-hybrid approaches (Rolland et al., 2014) or

(B)(A)

Fig. 2 (A) Illustration of basic network characteristics for a protein-chemical interaction network (data from the BioGRID database (Oughtred et al., 2019), obtained
and laid out using the NDEx platform (Pratt et al., 2015)). Green and blue nodes represent chemicals and proteins, respectively, that interact with each other. Several
network characteristics are highlighted: network motifs are small recurrent connection patterns; hubs are nodes that have a large number of neighbors; densely
interconnected groups of nodes are called ‘communities’ (also ‘modules’ or ‘clusters’); high centrality indicates that the respective nodes/edges are of structural
importance to the network. (B) Overview of different biological networks and their basic characteristics (data from the BIOSNAP repository (Leskovec and Sosi!c,
2016; Zitnik et al., 2018)). The average clustering coefficient is a measure for the overall local density of a network; the diameter of a network is given by the greatest
distance between any pair of nodes.
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mass spectrometry based methods (Huttlin et al., 2017). The most comprehensive PPI networks also incorporate results compiled
from numerous small-scale experiments from the literature (Oughtred et al., 2019) or computational predictions (Kovács
et al., 2019).

PPIs are not the only molecular interactions within the cell that are biologically relevant and can be experimentally assessed.
Other important molecular networks include metabolic networks and signaling cascades (Choudhary and Mann, 2010; Fabregat
et al., 2016). Moreover, links may also represent indirect relations, for example in gene regulatory networks, where one gene can act
on another via transcribed RNA or a translated protein, resulting from the binding of transcription factors and regulatory elements
to the genetic material, which can be assessed experimentally through chromosome conformation capture techniques (Babaei
et al., 2015).

Over the last two decades, numerous relationships have been uncovered between the structural characteristics of molecular
networks and the function of the systems that they represent. In PPI networks, for example, connection patterns such as the number
of interaction partners, network distance between proteins or densely interconnected network neighborhoods are directly related to
biological functions in both healthy and disease states (Barabási et al., 2011; Caldera et al., 2017; Meyer et al., 2018). In a network
context, disease states can often be identified with localized perturbations of the underlying molecular network. Such perturbations
may be internal, for example genetic mutations associated with severe hereditary diseases (Köhler et al., 2008), or external, such as
chemical or other environmental exposures (Kalia et al., 2019). Collectively, the set of all such external factors is called the exposome.
Given the broad nature of this term, it is unclear whether a comprehensive mapping of the exposome and its impact on the
interactome is at all achievable. First attempts in this direction focus on specific exposures, for example the impact of toxicants on
metabolite networks (Kalia et al., 2019; Veneman et al., 2017). These approaches enable on the one hand the inference of which
chemicals a system has encountered, and offer on the other hand an opportunity to elucidate the response mechanisms following a
particular exposure.

Beyond Physical Interactions

The links in the molecular networks discussed above represent physical interactions that can be directly measured. In addition to
these physical networks, we can also construct functional networks, where links represent more indirect relationships or similarities. The
most commonly used functional networks are co-expression networks, where two genes are linked if their expression levels were
found to be correlated across different experimental conditions (Saha et al., 2017). Other important examples are genetic
interaction networks, where a link between two genes indicates that the phenotype of their combined knock-out deviates from
the expectation based on the individual knockouts (Costanzo et al., 2016; Rauscher et al., 2018), drug-drug interaction networks, in
which links connect non-additive drugs (Caldera et al., 2019) or chemical networks, in which compounds are linked based on
structural similarity (Lo and Torres, 2016).

Functional networks may also contain various types of nodes, connecting for example genes and drugs: A genome-wide screen in
Saccharomyces cerevisiae has recently been used to map out the interactions between 1377 chemical compounds and 177 genes
(Piotrowski et al., 2017). Systematically exploring pairwise combinations of cellular perturbations has great potential for function-
ally annotating individual components, such as genes, drugs or environmental factors, as well as for identifying the involved
molecular pathways and, more generally, for elucidating the fundamental rules that underlie the cellular response to combinations
of perturbations.

Similarity networks were further used to study individual exposomes, by connecting co-occurring species or chemicals, revealing
temporal and environmental patterns such as compounds that were released simultaneously during rainy days (Jiang et al., 2018).
This exemplifies the potential to investigate different aspects of a biological concept (here the exposome) through complementary
network approaches.

From Molecules to Organisms

While biological processes span a wide range from molecules to cells, tissues, organs and whole organisms, the networks at the
molecular level are the most studied and best understood at this point. This reflects their importance as the primary interface
between genotype and phenotype, but also the fact that they are more easily accessible experimentally compared to other relevant
networks.

At the level of cellular organization, the neural networks that constitute the nervous system have probably received most
attention (Bullmore and Sporns, 2009). Considerable efforts are made to systematically map out neural networks, in humans, as
well as in model organisms. Similar to the different types of molecular networks introduced above, neural networks may also either
represent direct cellular networks, where nerve cells are connected through synapses, or functional networks, in which regions of the
brain are linked if they show correlated patterns of activity. The first complete direct neural network was resolved as early as 1986 for
the worm Caenorhabditis elegans (White et al., 1986). For higher organisms, only partial maps are available to date, for example in
mice (Briggman et al., 2011; Bock et al., 2011), but also in human (Glasser et al., 2016), if only at a very coarse grained level.
Mapping out the complete human ‘connectome’ of all our brain cells will likely remain out of reach for many years due to its
staggering size (Sporns, 2013).

4 Complex Networks in Health and Disease



A similarly complex and important biological system is the immune system, whose primary objective is to maintain the normal
function of an organism under constant threat by internal and external challenges, ranging from tumor cells to viral infections.
Given the diversity of participating organs, cell types and molecules, it has been proposed to conceptualize the immune system as a
multi-layered network (Bergthaler and Menche, 2017; Rieckmann et al., 2017; Kveler et al., 2018). The nodes in this network
represent cells, links represent communication through signaling molecules, such as cell-surface receptors or secreted molecules.
Different layers may represent different contexts, such as organs, tissues or activation status.

Global Networks in Epidemiology

An effective response to a viral or bacterial infection is not only critical for individual organism, but may also be seen in the much
larger, potentially world-wide, context of epidemics. To accurately model the spread of a contagious disease, we must understand
both the social networks of personal interactions, as well as the local and global transportation networks along which people travel
(Pastor-Satorras et al., 2015). Interestingly, it was shown that not only infectious diseases are transmitted across networks of social
interactions, but also other sociological and health-related conditions, such as smoking behavior (Christakis and Fowler, 2008),
weight gain (Christakis and Fowler, 2007) or happiness (Fowler and Christakis, 2009).

Mathematical models have a long history in epidemiology and date back to the early 20th century (Kermack and McKendrick,
1927). Classical models divide a population into three compartments, in which people are either susceptible to an infection (S),
currently infected (I), or recovered (i.e., immunized) or otherwise removed (R) from the susceptible pool. The temporal dynamics
of these SIR models can be described by differential equations. Early models typically assumed ‘uniform mixing,’ i.e., an equal
probability for any infected individual to contaminate any susceptible individual. More recently, these models have been
significantly improved by considering the relevant social and transportation networks that underly the disease spreading process
(Wang et al., 2017). For instance, the structure of the face-to-face contact network has a profound impact on how fast and how far a
contagious disease may spread among a population (Pastor-Satorras et al., 2015). Likewise, the efficiency of different immunization
strategies can only be fully understood when taking these networks into account.

Smallpox is currently the only human infectious disease that was successfully eradicated through immunization. There are two
key aspects for the success of an immunization campaign: First, the effective access to immunization, which includes the availability
of a vaccine, but also the individual willingness to get vaccinated. The latter may decline along with the disease prevalence, even in
countries where immunization is compulsory. It has been shown that a better understanding of the herd effect improves the
adherence to such programs (Brockmann, 2017; Betsch et al., 2017). Second, the impact that an immunization of a certain
subpopulation has on the spreading of the disease, i.e., how it reduces the contagion rate in total, as well as within smaller
subcommunities. This aspect can be studied from a network theory point of view. The structure of the social face-to-face contact
network determines whether bottlenecks (such as high centrality nodes or links) could prevent a disease outbreak and whether
some communities are more at risk than others. This enables the design of more efficient quarantine strategies with maximal impact
on the social network connectivity. In the past, epidemiological modeling was essential for example in handling the avian influenza
outbreak in 2005 (Longini et al., 2005). More recently, great efforts have been made to profile and constrain the spread of the 2019-
nCov virus, including charting the phylogeny of viral samples (Hadfield et al., 2018) and mapping the spreading risk based on
global transportation networks, which allow for predicting disease spread much more accurately than maps based on geographic
distance (Brockmann and Helbing, 2013).

Summary and Outlook

Networks provide a powerful framework for investigating biological systems ranging from the molecular to the global scale. A key
factor for the success of network theory in biomedical applications is that many structural network characteristics can be related to
functional properties of the respective biological system. In molecular networks, for example, densely connected node communities
often correspond to proteins involved in a particular cellular process. Likewise, disease associated processes can be identified with
specific connectivity patterns between groups of perturbed nodes.

An important open question in this context is how exactly different network perturbations influence each other. For example, it
has been found that a network overlap between a drug-induced perturbation and a disease associated perturbation may either
indicate an effective treatment of the respective disease, but also the opposite, namely that the disease may be a side effect of the
treatment (Cheng et al., 2019; Guney et al., 2016). This highlights an important methodological and conceptual limitation of
current network approaches: We are still lacking a systematic understanding of the combined effect of independent perturbations, in
particular when considering complex phenotypes. To date, most large-scale experimental efforts for elucidating the combined effect
of perturbations relied on relatively simple, one-dimensional readouts, such as growth assays, for example in the characterization of
genetic interactions (Kuzmin et al., 2018) and drug-gene interactions in yeast (Piotrowski et al., 2017). More recently, more
informative readouts have been employed as well, such as high-content imaging or next-generation sequencing, which allow for a
much more detailed assessment of the interactions between different perturbations. Using these high-dimensional readouts it is
possible to identify different types of interactions between perturbations (positive, negative), as well as their direction. Furthermore,
high-dimensional readouts allow for the identification of interactions that lead to the emergence of entirely new phenotypes. The
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first studies aiming to map out such high-resolution ‘perturbome’ networks were based on morphological changes induced by
combinations of genetic perturbations in a model organism (Fischer et al., 2015) and combinations of drug perturbations in cell
lines (Caldera et al., 2019), respectively.

Another major focus of recent network-based biomedical research is the integration of the diverse data describing different levels
of biological organization. While combinations of different ‘omics’ data, e.g., genomics, transcriptomics, proteomics, metabolomics
and microbiome data, are becoming more and more common in basic research, their translation into clinical applications is still
scare (Karczewski and Snyder, 2018), despite their potential for applications in P4 medicine being widely recognized (Apweiler et al.,
2018). Network approaches can offer valuable contributions to solving current technical and conceptual challenges in integrating
multi-omics and multi-scale data (McGillivray et al., 2018). Indeed, concrete translational impact is the ultimate ambition of
network biology and network medicine.
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Websites for delving deeper into network theory, including many visualizations and applications from different areas and interactive examples
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http://cbdm-01.zdv.uni-mainz.de/"mschaefer/hippie/.
https://thebiogrid.org/.
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https://gtexportal.org.
http://snap.stanford.edu/data/.

Complex Networks in Health and Disease 7



34 1.3. NETWORK-BASED MODELLING OF BIOLOGICAL SYSTEMS

1.3.3 Network medicine as a framework

From its inception, the field of network medicine has aimed at elucidating “the molecular
relationships between apparently distinct (patho)phenotypes”, as defined by Barabási and col-
leagues (Barabási et al., 2011). This can indeed be achieved as the genes mutated in inherited
diseases display specific properties in molecular interaction networks (Feldman et al., 2008;
Goh et al., 2007). In particular, the well-studied localization of disease-related genes in network
modules highlights the relevance of the approach to explore the molecular mechanisms underlying
pathologies (Ghiassian et al., 2015; Menche et al., 2015). Genes implicated in drug response,
adverse e�ect and modulating pharmacokinetics parameters are also associated with various
multi-scale network structures (Piñero et al., 2016). Such network-informed principles were
further leveraged for biomedical applications. Notably, biological interaction networks proved
to be particularly adapted to support drug repurposing, an approach in which drugs that are
are already in clinical use for a given disease are investigated for the treatment of another
disease (Cheng et al., 2018; Guney et al., 2016). If successful, drug repurposing would drastically
decrease drug development and treatment costs by avoiding compound optimization and safety
trials, and using existing production sites. The approach has been used among others for
neurological disorders (Lüscher Dias et al., 2020) and COVID-19 (Morselli Gysi et al., 2021;
Verstraete et al., 2020; Zhou et al., 2020). On top of the economical benefits of drug repurposing,
the outbreak of infectious diseases such as COVID-19 requires a rapid response, and considerable
time could be gained by reusing approved drugs with established supply chains (Sharma et al.,
2021). Because networks excel at representing how novel properties emerge from the interaction
between individual elements, network medicine also delivered new results on the modelling
and prediction of the e�ect of combinations between multiple drugs (Caldera et al., 2019;
Cheng et al., 2019; Hu et al., 2019; Regan-Fendt et al., 2019). Accordingly, the advances of
polypharmacology, defined as the synergistic use of multiple treatments, increasingly allow to
tackle causal disease mechanisms instead of treating symptoms (Nogales et al., 2021). Biological
networks can also be used in multiple other ways, for instance to contextualize the transcriptomic
profiles of cardiomyopathy patients (Maron et al., 2021), to better translate knowledge gained
in animal models to human physiology (Blais et al., 2017), or for compound prioritization in
drug discovery (Sidders et al., 2018). As cancer is among the leading causes of death in upper
income countries and is primarily a somatic genetic disease, it is naturally one of the diseases
studied the most at the molecular level. Thus, multiple studies aimed to leverage network
approaches to o�er more personalized treatments (Dinstag & Shamir, 2020; Liu et al., 2020;
Zhang et al., 2017). More recently, protein interaction have been mapped in detail and compared
in the context of di�erent cancer types. Specific protein interaction interfaces were found to be
disrupted by common cancer mutations, and this finding provided suggestions for potential novel
therapies (Kim et al., 2021; Swaney et al., 2021; Zheng et al., 2021).
These last examples highlight the plasticity of protein-protein interactions (PPIs), which is an
important observation for future research directions. Indeed, most studies used general-purpose
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interactomes derived for the whole genome of model cell lines using yeast two-hybrid or mass
spectrometry methods so far (Luck et al., 2020; Richards et al., 2021). An alternative is to take
a patient’s or a disease’s mutation and expression profiles into account to infer a customized
PPI network that better represents the interactions happening in a context of interest. Such
networks are typically assembled under the assumption that proteins would interact if they are
known to do so in model cell lines and if both interaction partners are abundant in a particular
context, which is often proxied by the expression level of the corresponding genes (Liu et al.,
2014). Another layer of complexity arises from the tissue specificity of certain interactions.
Considerable e�orts have been made to map transcriptome levels and splicing across biological
tissues, most recently by the GTEx consortium (Melé et al., 2015). Tissue-specific networks
revealed that PPIs di�er to a large extent between tissues, with a trend for tissue-specific genes
to interact with essential housekeeping genes (Bossi & Lehner, 2009; Yeger-Lotem & Sharan,
2015). These findings led to improvements in disease gene prioritization (Magger et al., 2012).
Expression levels can also be considered to define networks of disease-tissue associations, based
on the local presence of disease proteins and their interactors (Kitsak et al., 2016). Taken
together, these studies reinforce the need to further depart from model cell lines, and study
which interactions are conserved or experiment-specific. Then, one can generalize and validate
such findings, so that network-based methods can be more adapted to various biological contexts.
Another evolution of network medicine might come from the increased tendency of biological data
to be thought of and natively stored as entities connected in a network through di�erent types
of relationships. This emerging concept is referred to as knowledge graphs and is not limited
to biomedical applications (Hogan et al., 2022). Several project already compiled biological
and clinical information into large knowledge graphs that can be queried to answer complex
questions (Santos et al., 2020; Walsh et al., 2020). For instance, they were used to ease the
identifications of pathways, drugs and biomarkers. Another noticeable example comes from
the gene ontology consortium, which is already well established for their extensive classification
of cellular processes and their functional annotation of genes (Ashburner et al., 2000). They
recently implemented a new framework called Causal Activity Modeling, aiming to be more
flexible and to better structure the relationships between di�erent gene annotations compared,
which can be seen as a knowledge graph (Thomas et al., 2019).
The development of network medicine is also tightly linked to the emergence of modern molecular
biology techniques, in particular high-throughput sequencing and its applications (Goodwin
et al., 2016). However, the considerable advances provided by the so-called OMICS technologies
in biomedical research were not followed by a large adoption for clinical translation so far (Kar-
czewski & Snyder, 2018). A major open challenge is to better integrate the complementary
aspects provided by multiple OMICS modalities to form a more comprehensive description
of a disease phenotype and deliver actionable patient-specific insight. From their most basic
definition, networks model connections between agents, without enforcing what the connections
or agents represent. This means that they inherently o�er a solution to compile di�erent types
of relationships together if deemed meaningful, and therefore provide a way to integrate data
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generated in multiple OMICS experiments (Tuncbag et al., 2016). Di�erent biological processes
can be seen and modelled as a network of heterogeneous networks, each one describing a
subsystem such as a tissue, or using a di�erent definition for edges. Theoretical frameworks
also exist to analyse such a network of networks (Gao et al., 2014; Kawakubo et al., 2019). In
practice, various molecular information, ranging from co-expression and shared drug association
to physical interactions and pathway membership, can also be combined into large multilayer
networks. This approach can reveal disease signatures and can be used to progressively refine
which type of information is most relevant to characterize a particular disease (Buphamalai et al.,
2021). Linking such disease-related gene networks also allows for patient stratification and for
the identification of groups of genes with a functional disease relevance (Núñez-Carpintero et al.,
2021).
Finally, not only traditional OMICS modalities such as transcriptomics, metabolomics and
proteomics served to build informative biological networks. At multiple occasions, networks
describing how genetic or chemical interactions combine were assembled based on HCS experi-
ments with an imaging readout (Caldera et al., 2019; Fischer et al., 2015; Heigwer et al., 2018;
Mattiazzi Usaj et al., 2020). One key overarching question addressed in the work compiled
in this thesis is precisely how to best extract morphological profiles from such experiments so
that they can characterize disease phenotype and be integrated with prior information through
networks.



2
Aims of the thesis

The work described in this thesis aims first and foremost at developing and applying new ways
to compile, curate, contextualize and interpret morphological profiles in high-content imaging
(HCI) experiments. Indeed, new ways of analysing HCI data would serve as a computational
and analytical basis for the systematic characterization of perturbations of biological systems.
In particular, we seek to be able to integrate morphological profiles with other data types,
following the guiding principles of systems medicine. Figure 2.1 shows how our contributions
to morphological profiling and its integration with systems medicine approaches could increase
the biological insight that can be gained from perturbation-based biological experiments. Our
working hypothesis is twofold. First, improved methods for morphological profiling would allow
to extract more information from the imaging readout than the more targeted analyses that
are currently used the most. Second, a better integration of morphological data within the
framework of network medicine could add up to the knowledge derived from other experimental
modalities, with concrete biomedical and clinical applications.
This thesis started with an introduction to the ways in which biological systems can be probed
via multiple types of perturbations and how more complex and powerful screening setups
were progressively developed to evaluate the e�ects of such perturbations. The diversity of
these setups is also linked to the flexibility that screens enable in terms of scale, readout
and types of perturbations. The emergence and current state of HCI screens and associated
analysis methods is then summarized. I then highlighted how these technologies enable large-
scale screening experiments with multidimensional and functional readouts, which are ideal for
systems biology studies. By insisting on the potential of HCS experiments, we motivate our
choice of conducting large-scale imaging screens to explore guiding principles of cell biology.
Our decision is also substantiated by a more precise introduction of the core computational
concepts relevant to the morphological profiling analyses reproduced later in this document,
such as the data transformation and distance computation steps. I also provided an overview
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of network medicine techniques, by including a literature review, authored by my doctoral
supervisor and me, and published as a book chapter. This review is complemented by a broader
description of the systems biology paradigm and of the current achievements and promises of
network medicine. Such network-based techniques are suitable to many experimental modalities
and are also highly relevant to the topic of HCI screens, as the resulting morphological profiles
are best contextualized in the light of the prior knowledge available about the biological systems
studied. The work described in this thesis suggests that network-based integration methods are
especially useful to achieve this goal. We have now set up the context and stake of image-based
profiling analyses. In the following chapter, I will present concrete advances in the direction of
the aforementioned goals, with both methodological improvements and novel biological results,
in the form of two research articles.
The first one is entitled “BioProfiling.jl: Profiling biological perturbations with high-content
imaging in single cells and heterogeneous populations”. Presented in section 3.1, it showcases a
software solution for handling profiles that compile informative descriptors of cellular morphol-
ogy in di�erent experimental conditions. It also introduces a way to compare these profiles via
robust statistical distances, and demonstrates that they can further be integrated with external
perturbation annotations. In the analysis conducted, drug profiles are put into context with a
comparison to a biological network representing protein-protein interactions.
The second article, entitled “Morphological profiling of human T and NK lymphocytes by high-
content cell imaging”, is included in section 3.2. It relies on the HCI technology and on morpho-
logical profiles to study the structure of the immunological synapse in cytotoxic lymphocytes.
The main experiments involved the assembly and comparison of the morphological profiles for
di�erent disruptions of the normal actin organization. With this, we observed the structure of
the actin cytoskeleton and the distribution of lytic granules in three dimensions, in healthy cells
and in the context of inborn errors of immunity. Notably, we took di�erent approaches in our
two compiled studies to interrogate morphological profiles and to determine what morphological
properties are linked to specific experimental conditions. In the first one, we looked at the
morphological measurements changing the most in di�erent conditions. In contrast, we used
machine learning in the second study to attribute morphological properties to actin defects.
Moreover, this article also illustrates that HCI can serve as a tool for hypothesis generation,
guiding further complementary experiments, such as live cell imaging and degranulation assays.
Finally, this thesis includes an extensive discussion of the implications and limitations of our
results and the avenues they opened. This includes both observations that were made when
working on the two compiled research articles, as well as open challenges in the fields of morpho-
logical profiling and network medicine that we believe could be further addressed. Accordingly,
current work is ongoing in our research group which builds upon our previous achievements to
study via HCI the e�ect of large libraries of genetic and chemical perturbations, in isolation and
in combination. This discussion closes with the an assessment of the progress we and others
made regarding the analysis and contextualization of morphological profiling. In particular, we
see how high-content imaging, morphological profiling and network medicine fit together, and
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we figure out where we stand regarding clinical translation.
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Figure 2.1: Potential contribution of morphological profiling and network medicine to research in
molecular biology. In a) the traditional approach to biological perturbation experiments, low-throughput
assays focus on specific targets and only provide information about a restricted number of molecules or
mechanisms. For one thing, high-content assays allow to test more perturbations simultaneously, but
are often underused, for instance by only serving as a proxy for cell viability, therefore providing limited
insight. At the same time, OMICS technologies can also be high-throughput and provide a rich readout,
which can be leveraged by network medicine to gain system-level insight. This thesis aims to contribute
to the emergence of b) a new paradigm for HCS analysis, in which informative morphological profiles are
systematically assembled. They would unlock the full potential of the data generated in HCS experiments,
by being able to represent quantitatively all measurable phenotypic changes. These image-based profiles
would also constitute an additional layer of information in systems medicine approaches. Thus, they
would complement well-established OMICS technologies, and increase even more the insight that network
medicine may provide and its potential for clinical translation.
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As introduced in section 1.2.5, morphological profiling consists in creating and comparing
profiles describing cellular morphology assessed in imaging screens. This approach has the
potential to systematically characterize a wide range of biological and experimental conditions
in multiple organisms and cell types (Breinig et al., 2015; Caldera et al., 2019; Fischer et al.,
2015; Heigwer et al., 2018). However, it requires the careful selection and transformation
of the initial quantitative descriptors extracted from the images. Well-established guidelines
enumerate which tasks typically need to be performed (Bougen-Zhukov et al., 2017; Caicedo
et al., 2017) but there is currently no flexible standard implementation adopted by the research
community. In particular, no solution was available for the up-and-coming programming
language Julia (Bezanson et al., 2017; Roesch et al., 2021). We aimed to fill this gap with
BioProfiling.jl, a toolkit covering di�erent aspects of morphological profiling, ranging from data
normalization and filtering to visualization and quantification of the statistical significance of
morphological changes. In the following paper, we present what BioProfiling.jl can achieve.
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44 3.1. BIOPROFILING.JL: PROFILING BIOLOGICAL PERTURBATIONS WITH HIGH-CONTENT
IMAGING IN SINGLE CELLS AND HETEROGENEOUS POPULATIONS

To do so, we analyze a compound screen and compare the information gained about drug
mechanisms of action either from the morphological changes they induce or from the network
of interactions between the proteins they target.
When working on multiple morphological analyses run in our group, we noticed the lack
of flexible and e�cient tools to ease the handling and filtering of morphological profiles.
This prompted the development of BioProfiling.jl. The package started as a compilation of
methods that I implemented, in part for the analyses I produced for the study presented in
section 3.2, and sought to made reusable by myself and others. It was then expanded and
improved with additional methods to make it an end-to-end solution able to handle “raw”
morphological measurements and transform them into profiles usable for multiple tasks. This
is achieved with a unified conceptual framework, in which the data is wrapped in a dedicated
object and progressively curated. Keeping a high degree of control over the filtering and data
transformation process allowed us to explore multiple strategies to define what constitutes a
significant morphological activity. We observed that the choice of profiling method greatly
a�ect the final results. In our main approach, we used robust statistics to account for the
presence of imaging artifacts and biological outliers and developed a robust distance inspired
by the Hellinger distance which resulted in a meaningful list of hit compounds.
All the code of the package was written by myself, and is shared as an open source project on
the code sharing platform GitHub. The features, concepts and directions given to the project
were discussed together with Joel Hancock and Prof. Jörg Menche. All other authors were
involved in the design, supervision and realization of the drug screen. Of note, we are closely
collaborating with the labs led by Dr. Vanja Nagy, Dr Loïc Dupré and Ass.-Prof. Joanna
Loizou for the development of large image-based screens, described in the Discussion section of
this thesis. The main dataset used in the article below was generated in order to explore the
morphological e�ects of chemical compounds in the context of a larger chemical-genetic screen.
The microscopy images as well as the phenotypic measurements were made freely available for
other researchers to use, both for method development and to further explore the morphological
activity of the compounds. Finally, the resulting manuscript was written by Prof. Jörg Menche
and myself, with contributions from all co-authors.
Supplementary material can be found in the appendix chapter at the end of this thesis.

https://github.com/menchelab/BioProfiling.jl
https://github.com/menchelab/BioProfiling.jl
https://doi.org/10.1101/2021.06.18.448961
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Abstract

Motivation: High-content imaging screens provide a cost-effective and scalable way to assess cell states across di-
verse experimental conditions. The analysis of the acquired microscopy images involves assembling and curating
raw cellular measurements into morphological profiles suitable for testing biological hypotheses. Despite being a
critical step, general-purpose and adaptable tools for morphological profiling are lacking and no solution is available
for the high-performance Julia programming language.
Results: Here, we introduce BioProfiling.jl, an efficient end-to-end solution for compiling and filtering informative
morphological profiles in Julia. The package contains all the necessary data structures to curate morphological
measurements and helper functions to transform, normalize and visualize profiles. Robust statistical distances and
permutation tests enable quantification of the significance of the observed changes despite the high fraction of out-
liers inherent to high-content screens. This package also simplifies visual artifact diagnostics, thus streamlining a
bottleneck of morphological analyses. We showcase the features of the package by analyzing a chemical imaging
screen, in which the morphological profiles prove to be informative about the compounds’ mechanisms of action
and can be conveniently integrated with the network localization of molecular targets.
Availability and implementation: The Julia package is available on GitHub: https://github.com/menchelab/
BioProfiling.jl. We also provide Jupyter notebooks reproducing our analyses: https://github.com/menchelab/
BioProfilingNotebooks. The data underlying this article are available from FigShare, at https://doi.org/10.6084/m9.fig
share.14784678.v2.
Contact: joerg.menche@univie.ac.at
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-Content Screening (HCS) enables profiling cellular phenotypes
across hundreds of thousands of conditions by combining

automated microscopy with advanced image analysis methods. HCS
thus represents a flexible and cost-effective solution for replacing
multiple specific assays (Chandrasekaran et al., 2020; Simm et al.,
2018; Way et al., 2021a), and has been widely adopted in both basic

VC The Author(s) 2021. Published by Oxford University Press. 1
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 2021, 1–8

https://doi.org/10.1093/bioinformatics/btab853

Advance Access Publication Date: 22 December 2021

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab853/6478274 by guest on 03 January 2022



and applied research. Notable achievements range from drug discov-
ery (Chandrasekaran et al., 2020; Scheeder et al., 2018; Simm et al.,
2018) to the elucidation of combinatorial drug effects (Caldera
et al., 2019) and to ex-vivo drug–response screening in patients
(Snijder et al., 2017). Depending on the application, the analysis of
HCS experiments may involve a variety of tasks. For instance, one
might perform a classification task to infer the mechanism of action
of candidate drugs (Ando et al., 2017; Ljosa et al., 2013; Pawlowski
et al., 2016), compare cellular phenotypes in various conditions
(German et al., 2021; Gustafsdottir et al., 2013; Rohban et al.,
2017) or describe interactions between cellular perturbations
(Billmann et al., 2016; Breinig et al., 2015; Caldera et al., 2019;
Fischer et al., 2015; Heigwer et al., 2018). All these cases involve
numerous experimental and analytical steps.

A typical HCS experiment starts from preparing microplates
with cells subjected to various perturbations, such as different drugs,
and stained using standardized protocols, such as the Cell Painting
assay (Bray et al., 2016; Fig. 1a). These microplates are then imaged
using automated confocal fluorescence microscopy, resulting in a
large number of images. Each image is then analyzed to extract
quantitative morphological measurements that describe the respect-
ive cellular phenotype. Some tools are commonly used for this nu-
merical feature extraction step (McQuin et al., 2018; Pau et al.,
2010), and recent deep learning approaches attempt to replace
expert-curated measurements with data-driven discriminative fea-
tures (Ando et al., 2017; Lu et al., 2019; Pawlowski et al., 2016).

While the analytical tasks of HCS experiments vary between
applications, they involve common data normalization and filtering
steps, and guidelines have been proposed for computing informative
representations of cellular phenotypes, usually referred to as mor-
phological profiles (Bougen-Zhukov et al., 2017; Caicedo et al.,
2017). An analysis pipeline suitable to facilitate morphological
profiling should meet several criteria. First, it should be versatile, to
adapt to different HCS use cases and to cope with the diverse chal-
lenges inherent to such experiments (Boutros et al., 2015; Caicedo
et al., 2017; Chandrasekaran et al., 2020; Ljosa et al., 2013). These
challenges include technical problems such as blurred images, poorly
adherent cells, saturated pixels, staining artifacts and segmentation
mistakes. HCS studies need to address these frequent limitations, as
in some experiments most images are affected (Fig. 1b and c).
Second, the approach should account for background noise, inten-
sity bias and potential confounders, including plate layout and batch
effects. Third, the considerable heterogeneity of the morphological
descriptors needs to be handled. Cellular morphology might vary
greatly in the analyzed cell populations due to the experimental
setup, heterogeneous cell types or cell states, inconsistencies in per-
turbation efficiency, or when timing-dependent phenomena are
imaged as snapshots.

The few actively maintained HCS analysis tools attempting to
fulfill these needs include CellProfiler Analyst and its graphical user
interface, designed to handle CellProfiler measurements (Jones et al.,
2008; McQuin et al., 2018), as well as the general-purpose cyto-
miner and Pycytominer in the R and Python languages, respectively
(Becker et al., 2021; Way et al., 2021b). There are also packages
addressing similar challenges but focusing on other modalities
(which generally provide less spatial information or less throughput
than high-content imaging screens) such as the R packages
cellHTS2, optimized for measurements from plate readers (Boutros
et al., 2006), and more recently cytomapper for analyzing imaging
mass cytometry experiments (Eling et al., 2021). Despite the exist-
ence of these tools, HCS analysts still heavily rely on custom imple-
mentations of morphological profile curation for each study to
account for different imaging modalities and analytical goals
(Ziegler et al., 2021).

Julia is a high-performance, high-level open-source programming
language specifically designed for scientific computing and data sci-
ence (Bezanson et al., 2017). It is increasingly adopted by researchers
in bioinformatics and biomedical research (Roesch et al., 2021), with
applications ranging from protein sequence analysis (Zea et al., 2016)
to structural bioinformatics (Greener et al., 2020) and flux balance
analysis (Heirendt et al., 2017). Julia is also ideal for tackling the

challenges of morphological analyses, as they are both computational-
ly demanding and inherently high-level. In this article, we introduce
BioProfiling.jl, the first Julia library for efficient and convenient mor-
phological profiling that (i) handles noisy data through systematic fil-
tering and robust statistics, (ii) provides dedicated functions to
normalize data and mitigate layout effects and (iii) implements statis-
tical tests for quantifying the strength of morphological changes that
take the variability of morphological profiles into account. Our inte-
grated software solution is thus bridging the existing gap between ex-
perimental data and biological interpretation. Furthermore, we
conduct an image-based chemical screen to validate our approach and
characterize the morphological impact of compounds in U-2-OS cells.

2 Materials and methods

2.1 Package implementation and features
We created BioProfiling.jl, a package for the Julia programming lan-
guage that compiles over 30 methods and data structures for all
steps in assembling and curating morphological profiles. To enable
the bioimage analysis community to apply BioProfiling.jl to their
own data, a complete documentation and a set of notebooks repro-
ducing the analyses described in this paper are provided. In brief, the
whole process of morphological profiling is conceptually simplified
by defining an Experiment object that includes both quantitative
data and metadata in a tabular format, and methods able to interact
with these objects directly to curate, transform and visualize the cor-
responding profiles. After creating the Experiment object from a
table of morphological features, such as measurements obtained
from CellProfiler (McQuin et al., 2018) or activation values from a
deep neural network (Ando et al., 2017; Lu et al., 2019; Pawlowski
et al., 2016), one would typically filter entries (rows representing
biological units) and select features (columns representing phenotyp-
ic descriptors) with the Filter and Selector types, respectively.
Convenient shorthand is provided such as the NameSelector type to
select features based on their name rather than their values, or the
CombinationFilter type to join simple Filter objects with any logical
operator. The selected measurements can then be transformed with
the logtransform! and normtransform! methods, and decorrelate!
discards highly correlated measurements. The filtered Experiment
objects also support uniform manifold approximation and projec-
tion (UMAP) visualizations (Mcinnes et al., 2018) as implemented
in UMAP.jl. The resulting feature profiles can be visually inspected
by highlighting images and individual cells matching a Filter with
the diagnostic_images method, currently implemented for TIFF
images in any accessible folder. Up to three distinct files can be
specified to produce an RGB image. Finally, robust_morphologi-
cal_perturbation_value and efficient implementations of statistical
distances, described in detail below, are available for quantifying the
significance of morphological changes induced by a particular per-
turbation. Freely available from GitHub and the Julia package regis-
try under the MIT license, BioProfiling.jl is part of a growing open-
source software ecosystem ensuring that it stays flexible, maintain-
able and interoperable. To ensure its stability, the package is thor-
oughly validated with more than 120 tests, systematically run on
multiple environments using GitHub Actions for continuous integra-
tion. The total testing coverage is reported using Codecov. Together
with the simplicity of its design and properties of the Julia language
itself such as multiple dispatch, BioProfiling.jl can easily be extended
by users to address their specific use cases if they are not yet covered
by the features we implemented. Finally, we encourage such contri-
bution to be integrated and shared through pull requests on the
BioProfiling.jl repository.

2.2 Cell culture
We selected the U-2-OS cell line as it is morphologically expressive
and commonly used in HCS experiments (Gustafsdottir et al.,
2013; Rohban et al., 2017; Wawer et al., 2014). U-2-OS cells
(ATCC HTB-96) were cultured in high glucose Dulbecco’s modi-
fied Eagle’s medium (Thermo Fisher #11960044), 10% fetal bo-
vine serum (Sigma-Aldrich #F0804), 1! penicillin/streptomycin
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(Biowest #L0022-020) and 1 mM sodium pyruvate (Thermo Fisher
#11360070) and maintained in a humidified incubator (5% CO2,
37 "C).

2.3 Chemical screen
A total of 311 compounds were selected to cover a wide range of
biological processes and based on their propensity to impact cellular
morphology in in-house and published studies (Wawer et al., 2014).
A full list of the compounds and their concentration is provided in
Supplementary Table S1. Drugs were transferred to 384-well plates
(PerkinElmer #6057302) using a liquid handler, in which 32 di-
methyl sulfoxide (DMSO) wells were used as a reference to assess
the effect of the compounds as DMSO was used as solvent for the
chemical library. The positions of the compounds were randomized
on each plate while ensuring the presence of two DMSO control
wells in each row and of one to two in each column. Two drug
plates were seeded in 50ml of culture medium with U-2-OS cells at
750 and 1500 cells/well, respectively, and incubated at 37 "C with
5% CO2 for 72 h. Living cells were then washed three times with
phosphate-buffered saline (PBS) and stained for 10 min using
CellMask Orange Plasma membrane stain (Thermo Fisher
#C10045). Cells were washed three more times with PBS and fixed
with a solution of 4% Formaldehyde (Thermo Fisher #28908). After
washing three more times with PBS, cells were permeabilized with
50ml of permeabilization solution, consisting of PBS supplemented
with 0.1! saponin-based permeabilization solution (Invitrogen #00-
8333-56) and 5% fetal calf serum (Sigma #F7524), for 1 h. F-actin
was stained overnight with Phalloidin-488 staining solution (0.6 U/
ml in permeabilization buffer; Thermo Fisher #A12379). Nucleic
acids were stained with 30ml of 40,6-diamidino-2-phenylindoleDAPI
(DAPI, 5mg/ml in PBS, Thermo Fisher #D1306) for 10–20 min.
Finally, cells were washed three times with PBS and 50ml of PBS so-
lution was added per well. The entire surface of each well was
imaged (20 fields of view with a 20! magnification Long-Working
Distance (LWD) objective) on an Operetta High-Content Imaging
System (PerkinElmer) using three fluorescence channels to detect
DAPI (360–400/410–480 nm), Phalloidin (460–490/500–550 nm)
and CellMask (520–550/560–630 nm). All images are available
from FigShare (DOI: 10.1101/2021.06.18.448961).

2.4 Image analysis
We processed and analyzed microscopy images using CellProfiler
3.1.8 (McQuin et al., 2018), the full pipeline is available from
FigShare (DOI: 10.1101/2021.06.18.448961). In brief, the image
quality was assessed, the intensities were log-transformed, the illu-
mination on each image was corrected based on background inten-
sities before segmenting cell nuclei using global minimum cross
entropy thresholding. Two successive secondary segmentation steps
were performed using the propagation method (Jones et al., 2005)
and global minimum cross entropy thresholding first on the
CellMask then on the phalloidin channel to detect the cell bodies
surrounding each nucleus. Finally, measurements were acquired for
intensities in the nuclei and cytoplasms, granularity on all channels,
textural and shape features, intensity distributions and number of
neighboring cells <5 pixels away. This led to a total of 385 morpho-
logical features per cell.

2.5 Morphological profiling with BioProfiling.jl
All measurements were compiled for each cell in a BioProfiling.jl
Experiment object, and non-numerical and uninformative features
such as cell orientation were excluded from the profiles. We
designed four cell filters to exclude technical outliers such as poorly
segmented objects. Thresholds for the different filters were set by
based on the distribution of geometrical and intensity measure-
ments, so that extreme values would be discarded, while ensuring
that the filtered objects were indeed problematic via a systematic vis-
ual inspection with the diagnostic tools available in BioProfiling.jl.
These filters excluded cells with high CellMask to Phalloidin or
DAPI to CellMask segmented area ratios, with a low nucleus form
factor or with a high maximal CellMask intensity. From these cura-
ted measurements, we aggregated profiles for each field of view con-
taining three valid cells or more by taking the median value of all
cell-level values corresponding to each field of view, for each feature
individually. We then removed features which were constant across
all DMSO controls or over the complete plate, and log-transformed
the values to reduce the skewness of the distribution of some meas-
urements. To correct for plate effects and bring features to compar-
able scales, for each feature, individual field-of-view measurements
were centered and scaled based on the median and median absolute
deviation (MAD) of the control profiles in the same row or column,
as follows:

Fig. 1. HCS experiments require adequate analysis tools. (a) Standard analysis workflow of HCS experiments. (b) Quantification of imaging artifacts that may lead to biases in
HCS analyses in sample images from four published studies (Breinig et al., 2015; Caldera et al., 2019; Gustafsdottir et al., 2013; Rohban et al., 2017). (c) Examples of such
imaging artifacts. Boxes highlight regions of interest
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ŝx;y ¼
sx;y $ median Sctrlx:y

! "

mad Sctrlx:y

! " ;

with sx;y being the initial value of a field of view in row x and col-
umn y for feature s, ŝx;y its value after correction, and Sctrlx:y

the set
of all values in control wells either in row x or column y. After this
transformation, a high feature spread corresponds to a large devi-
ation from the negative control profiles for some perturbations. We
then reduced redundancy in the profiles by ordering features by
decreasing MAD, which prioritizes features displaying changes com-
pared to controls, and sequentially removing features with a
Pearson’s correlation coefficient higher than 0.8 with any of the pre-
viously selected features. We obtained the list of most variable
selected features using to the most_variable_features method
(Supplementary Table S2). Lastly, we reduced the profiles to four
dimensions with UMAP (Mcinnes et al., 2018), aiming to preserve
the cosine distances between points, with min_dist set to 2 and all
other parameters left to default values. We also visualized the results
when no filters were applied using a two-dimensional UMAP
embedding with default parameters and projecting cell-level profiles
for all objects. We found several clusters driven by artifacts and bio-
logical outliers (Supplementary Fig. S1).

2.6 Hit detection with the robust Hellinger distance
BioProfiling.jl offers several statistical distances for quantifying the
significance of morphological changes in HCS. The Mahalanobis
distance takes the spread of the data in each dimension into account,
which can be useful to compare two experimental conditions as pre-
viously described (Hutz et al., 2013). We also implemented the ro-
bust Mahalanobis distance which does not get biased by outliers by
replacing the mean and covariance matrix by robust estimators of
location and dispersion obtained using the minimum covariance de-
terminant (MCD) algorithm (Cabana et al., 2019; Rousseeuw and
van Driessen, 1999). This approach was used previously in an HCS
analysis (German et al., 2021), yet without efficient, ready-to-use
implementation. In comparison, the profile curation could be twice
as compact when taking advantage of BioProfiling.jl’s logtrans-
form!, normtransform! and decorrelate_by_mad! methods. The
nearly 100 lines of code dedicated to the quantification of morpho-
logical activity could be reduced to a one-liner and significantly
accelerated thanks to parallelization and to the speed of Julia. This
could be achieved via a single call to the robust_morphological_per-
turbation_value method, thus avoiding the definitions of the MCD
computation, of the robust Mahalanobis distance, and of the permu-
tation scheme, as well as the aggregation of the results.

Note that the Mahalanobis distance is defined between a single
point and a distribution. The Hellinger distance generalizes this con-
cept for two distributions, by incorporating estimators of location
and scatter of two distributions, and is defined as follows:

H2 ¼ 1 $ det S1ð Þ
1
4 ' det S2ð Þ

1
4

det Sð Þ
1
2

e$
1
8 l1$ l2ð ÞT S$ 1 l1$ l2ð Þ;

with S ¼ ðS1 þ S2Þ=2; where S1, l1, S2 and l2 are the covariance
matrices and means of the distributions 1 and 2, respectively. As for
the robust Mahalanobis distance, we can substitute the covariance
matrices S1 and S2 and the centers l1 and l2 using the MCD estima-
tors and thus define the robust Hellinger distance (RHD) that we
used to quantify the distance between DMSO controls and each
chemical perturbation. One requirement for the MCD computation,
and therefore for using the RHD, is to have twice as many measure-
ments per condition as dimensions. The filtering scheme described
above results in some field-of-view profiles being discarded in many
wells, yet most wells had more than eight valid fields of view. We
thus chose to work in a four-dimensional space in order to charac-
terize most treatments. To assess the statistical significance of these
values, we conducted a permutation test by shuffling the label of the
points (perturbation or control) and calculating again the RHD
5000 times, which formed a null distribution associated with an em-
pirical P-value. As the statistical power of this test depends on the

number of permutations, an empirical P-value of zero corresponds
to the case where no permutation led to a distance greater than the
one actually observed between profiles and can be interpreted as an
estimation of a P-value <1/5000. To accelerate this process, the per-
mutations were computed in parallel by distributing computations
on 16 threads. After Benjamini–Hochberg false discovery rate
(FDR) correction, we obtained a significance score coined the robust
morphological perturbation value (RMPV) and defined all com-
pounds with an RMPV<0.1, equivalent to an FDR cutoff of 10%,
as morphological hits. Of note, the list of hits (Supplementary Table
S1) was stable when doubling the number of permutations, showing
that the process converged correctly.

To compare our results with other approaches that could be
adopted with BioProfiling.jl, we quantified the Mahalanobis dis-
tance between the centroid (arithmetic mean of all points) and the
centroid of the DMSO controls, either from unreduced profiles or
after PCA transformation to two dimensions, which preserved
97.8% of the dataset variance. These distances were used in a per-
mutation test as previously described to obtain FDR-corrected P-
values describing how likely it is to observe such distances in the ab-
sence of a compound effect.

2.7 Morphological and network distances
We integrated morphological profile information with publicly
available data about each compound. First, we collected mecha-
nisms of action (MOAs) and molecular targets from the LINCS per-
turbation database (Stathias et al., 2020). We queried the
Application Programming Interface ( API) for exact name matches
or removed pharmaceutical salts or chirality when necessary to find
the correct compound. All annotations are presented in
Supplementary Table S1. In total, 141 compounds had known tar-
gets and 112 were annotated with one or several MOAs. In particu-
lar, 23 MOAs were associated with 2 or more compounds and
considered for downstream analysis. The largest changes induced
for several MOAs were obtained using the characteristic_features
method (Supplementary Table S3). To compare morphological pro-
files between pairs of MOAs, we projected the profiles of the 59 hit
compounds in four dimensions using UMAP and computed pairwise
RHDs as described above. The morphological distance between two
MOAs was then defined as the average pairwise distance between
compounds annotated to each MOA. We also obtained all human
protein–protein interactions (PPIs) from the HIPPIE database
(Alanis-Lobato et al., 2017), filtered out those with a confidence
score below 0.63 (median of the score distribution), and assembled
them into a PPI network. The conversion between gene symbols and
ENTREZ identifiers of the targets was done with MyGene.info (Xin
et al., 2016). We define the targets of an MOA as all known targets
of the hit compounds associated with this MOA. We then assessed
the network separation between the targets of each MOA using the
sAB score, which was previously found to be a good metric to study
disease module and drug module separation (Caldera et al., 2019;
Menche et al., 2015). The score is defined as

sAB ¼ lAB $
lAA þ lBB

2
;

where lAA and lBB are the means of the minimum shortest network
distances among the targets of MOA A and B, respectively, and lAB

is the mean of the minimum shortest distance between the targets of
MOA A and B.

2.8 Counting and classifying image artifacts
To quantify the prevalence of common imaging artifacts in HCS
experiments, we visually inspected images from published studies
deposited in the Image Data Resource (Breinig et al., 2015; Caldera
et al., 2019; Gustafsdottir et al., 2013; Rohban et al., 2017;
Williams et al., 2017). Depending on the study, we manually anno-
tated either all four fields of view from the wells A1 to A6 and B1 to
B6 (Breinig et al., 2015; Caldera et al., 2019) or all nine fields of
view from the wells A1 to A3 and B1 to B3 (Gustafsdottir et al.,
2013; Rohban et al., 2017). Artifacts included dye clots and
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precipitations, cells not properly attached to the substrate, and other
less frequent artifacts such as out-of-focus images or visible micro-
well edges. Despite only covering a fraction of each plate and includ-
ing parts of the well edge, where evaporation frequently leads to
altered phenotypes (Bray et al., 2016; Caicedo et al., 2017), this
sample demonstrates that there are many obstacles to overcome in
HCS analyses. The most common artifacts only affected a restricted
region of the image, suggesting that the unaffected parts of the
images could be informative nonetheless, and motivating the exten-
sive image filtering and quality controls performed in the respective
studies. Given the overall abundance of such artifacts, however, we
expect that a fraction of them will fail to be excluded and thus im-
pact the image analysis and lead to outlier measurements. The issue
was also present in the experiment we conducted, as artifact and
outlier clusters were observed in the absence of filtering
(Supplementary Fig. S1).

2.9 Profiling overexpression in Cell Painting
experiments
We used a dataset from the Cell Painting Image Collection, a re-
source made publicly available under the CC0 1.0 license for the
CytoData Hackathon 2018 and compiling several HCS experiments
(Caicedo et al., 2018). We retrieved CellProfiler measurements
aggregated per well from two plates in an experiment characterizing
the overexpression of 135 genes in A549 cells using the Cell Painting
assay (Bray et al., 2016), identified as ‘BBBC041-Caicedo’. From the
untransformed measurements, we filtered out metadata and features
related to object localization, excluded genetic targets with less than
four replicates per plate, log-transformed the data and decorrelated
the features by decreasing MAD as previously described. Finally, we
reduced these profiles to two dimensions using UMAP, with the
spread parameter set to 10 and other values left to default. The pro-
cess was repeated independently for both plates, resulting in two
sets of selected features and two distinct UMAP embeddings.

3 Results

3.1 Profiling chemical perturbations with BioProfiling.jl
We conducted and analyzed a chemical HCS experiment to study
the morphological effect of small molecules in human osteosarcoma
cells and demonstrate the applicability of BioProfiling.jl. In brief, we
selected 311 compounds at a single concentration based on their
morphological activity, and on their wide range of MOAs and dis-
ease associations. U-2-OS cells were seeded on top of drug plates,
and were fixed and stained to display nuclei, F-actin and total pro-
tein. Fluorescence images were acquired at a 20! magnification
(Fig. 2a). The images were analyzed with CellProfiler (McQuin
et al., 2018) and morphological descriptors were measured for each
cell. These measurements were imported in Julia and used to define
an Experiment object to be processed with BioProfiling.jl (Fig. 2b).
Two Jupyter notebooks enable the reproducibility of the following
morphological profiling analysis (see Availability and implementa-
tion). First, filters are iteratively defined to identify cellular outliers
based on extreme values. For instance, cells with unusually large
cytoplasms compared to their nuclei were likely to be missegmented
and therefore excluded (Fig. 2c). After aggregating the profiles per
image and discarding the least informative features for characteriz-
ing chemical effects compared to DMSO controls, we reduced the
dimensionality of the profiles to four dimensions using UMAP
(Mcinnes et al., 2018). The most discriminative measurements con-
tained various descriptors of both nuclei and cytoplasm, as well as
intensities of all dyes, suggesting that all aspects of morphology con-
sidered in our study were relevant (Supplementary Table S2). These
features formed a morphological space in which the profiles of some
compounds, such as Vinblastine (tubulin inhibitor) and Wiskostatin
(actin polymerization inhibitor) but also Pentamidine (antifungal
agent), were clustered away from images of DMSO treatment
(Fig. 2d and Supplementary Fig. 2a). Using the dedicated methods
for quantifying the significance of statistical distances implemented

in BioProfiling.jl, we identified 248 compounds with a significant
morphological activity compared to DMSO controls in a plate
seeded with 750 cells per well (Fig. 2e) with an FDR of 10%, coined
morphological hits. In comparison, 242 hits were identified in a
denser plate seeded with 1500 cells (Supplementary Fig. 2b). Of
note, the seeding density had only a minor impact on whether com-
pounds were identified as hits or not (Supplementary Fig. 2c). The
hits on the two plates showed a large and highly significant overlap
given the total number of tested compounds (Jaccard index of 0.78;
v2 test of independence: P¼1.5e$ 13). This observation also held
true for a more stringent FDR of 5% (Jaccard index of 0.73; v2 test
of independence: P¼9.0e$ 13).

3.2 Investigating curation strategies
The curation of these profiles exemplified a particular set of meth-
odological choices adapted to the specific experimental dataset at
hand. BioProfiling.jl does not enforce any single approach and other
options could be considered at all steps, from feature selection to
dimensionality reduction and quantification of profile distances. As
a comparison, we also used one of the other implemented distance
metrics, namely the Mahalanobis distance between the center of a
perturbation’s profiles and the refence profiles. When no dimension-
ality reduction was applied, we observed that all profiles were sig-
nificantly distant from the DMSO. This reflects one consequence of
the curse of dimensionality, namely that pairwise distances tend to
be similar in high-dimensional spaces (Supplementary Fig. S3a).
Using PCA in a strategy analogous to the mp-value (Hutz et al.,
2013), we obtained a space where the first axis explained the major-
ity of the data variance, but still displayed some compound cluster-
ing (Supplementary Fig. S3b). When comparing the hits obtained
with this approach to the initial hit list obtained with UMAP and
the RHD (Supplementary Fig. S3c), we observed a partial but sig-
nificant overlap (Jaccard index of 0.23; v2 test of independence:
P¼1.5e$ 13). The hits obtained with PCA were only a subset of the
hits initially obtained, suggesting that certain morphological changes
can be better detected using nonlinear dimensionality reduction
techniques. Overall, the choice of methodology has a considerable
impact on which perturbations are identified as morphologically ac-
tive, and consequently on all downstream analyses.

Note that BioProfiling.jl is not only versatile in respect to the
profiling approaches, but also supports multiple experimental setups
and data types, as any tabular data compatible with the common
DataFrame structure can be used as input to define an Experiment
object. We provide one additional example from a publicly available
dataset using the Cell Painting assay (Bray et al., 2016) to character-
ize overexpression constructs. By curating and representing profiles
for two plates, we observe a visible clustering for some target genes
(Supplementary Fig. S4a and b). Overall, comparing the RHD of
each target to non-targeting controls correlates well across plates
despite processing both plates independently (Supplementary Fig.
4c), which supports the robustness of the chosen approach.

3.3 Exploring MOAs of active compounds
We next went on to characterize the compounds with a strong mor-
phological impact identified on the plate seeded with 750 cells per
well using the approach relying on UMAP reduction and RHD.
Among the wide range of MOAs covered by the library, 10 hit com-
pounds were known Dopamine receptor antagonists, six hit com-
pounds were annotated to Calcium channel blockers and six to
Adrenergic receptor antagonists (Fig. 3a). In this experiment, some
MOAs were likelier than others to induce morphological changes,
often in accordance with their biological role. In particular, all
Tubulin inhibitors caused cytoskeletal defects and were identified as
hits. In contrast, only half of the Topoisomerase inhibitors, which
modulate DNA replication and transcription and are more likely to
impact cell shape indirectly, if at all, were found to modulate the
morphology. We note the presence of many oncological and chemo-
therapeutic agents (PDGFR receptor inhibitors, Topoisomerase
inhibitors, KIT inhibitors, Tubulin inhibitors) and neurological
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drugs (Dopamine receptor antagonists, Tricyclic antidepressants,
Norepinephrine reuptake inhibitors) among the morphological hits.
Cell shape indeed plays an essential role in cancers, as cancerous
cells are typically diagnosed by pathologists based on their morph-
ology. Cell proliferation and several signaling pathways are also
associated with cell geometry (Aragona et al., 2013; Dupont et al.,
2011; Sero et al., 2015). Some compounds used to treat neurological
disorders were also previously reported to induce morphological
changes (Wawer et al., 2014), yet the mechanisms linking morph-
ology and disease phenotype are still to be uncovered.

3.4 Integrating target properties and morphological
profiles
We also compare effects between compounds to further exploit the
richness of the morphological profiles. We quantified the similarity
between the morphological impact of MOAs by aggregating the
mean of the pairwise RHD between their respective hit profiles
(Fig. 3b). While each MOA had a distinct signature, Glycogen
synthase kinase inhibitors and CDK inhibitors were consistently
distant from all other MOAs, hinting that modulation of kinase
activity and cell signaling is likely to impact the cellular

Fig. 2. Robust cellular profiling with BioProfiling.jl characterizes the morphological diversity induced by pharmacologically active compounds. (a) Experimental setup of the
HCS experiment. Images are uncropped examples of untreated (top) and treated (middle) cells. (b) Computational workflow using BioProfiling.jl. Boxes are annotated with
the name of the notebooks with which to reproduce the analyses. (c) Example of images displaying cells kept in the analysis (left) or problematic cells discarded by one of the
quality-control filters (center, right). Cytoplasm and nucleus centers are marked with a white cross for each cell. (d) UMAP embedding preserving the cosine distance between
the morphological profiles aggregated per field of view in the plate seeded with 750 cells/well. Two out of four dimensions are represented. (e) RHD and RMPV (FDR-cor-
rected P-value) of each compound in the plate seeded with 750 cells/well compared to DMSO. Vertical dotted line indicates an FDR threshold of 0.1 and all compounds on its
left are defined as morphological hits

Fig. 3. Morphological profiling and data integration characterize compound MOAs. (a) Number of hits and total number of compounds for the most common MOAs in the
chemical library. (b) Dissimilarity of the molecular targets on a PPI network (sAB score, upper triangle) and of the morphological profiles (RHD, lower triangle) for the MOAs
with at least two hit compounds. (c) Relation between drug module separation (bins of sAB scores) and morphological distance (RHD)
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morphology in broad and distinctive ways as opposed to inducing
a particular cytoskeletal defect. The largest changes induced by
compounds of these MOAs were impacting shape, intensities and
distributions of multiple dyes (Supplementary Table S3). Of note,
Kenpaullone is both a CDK inhibitor and a Glycogen synthase kin-
ase inhibitor (Supplementary Table S1) which partly explains the
observations shared for both MOAs.

While the morphological profiles are informative by themselves,
they are best used by integrating additional information about the
perturbations they describe. Here, we used available information on
the targets of the compounds to contextualize their molecular envir-
onment within the PPI network. We quantified the network separ-
ation between the targets of different MOAs via the sAB score,
which was used previously to quantify the separation of disease and
drug modules (Caldera et al., 2019; Menche et al., 2015). A positive
score is associated with well-separated sets of nodes, whereas a
negative score corresponds to an overlap. We found that all the
strongest network overlaps between MOAs corresponded to shared
drug classes. Tricyclic antidepressants and Norepinephrine reuptake
inhibitors corresponded to non-selective monoamine reuptake inhib-
itors (ATC code N06AA). Serotonin receptor antagonists and
Dopamine receptor antagonists both included Antipsychotics (ATC
code N05A). PDGFR receptor inhibitors and KIT inhibitors were
annotated to the exact same compound, Imatinib mesylate,
Pazopanib and Sunitinib, which are all protein kinase inhibitors
(ATC code L01E).

When comparing morphological profiles, Histamine receptor
antagonists were close to many other MOAs and showed the most
striking similarities with selective serotonin reuptake inhibitors and
Norepinephrine reuptake inhibitors. All three affected primarily the
cell shape (Supplementary Table S3). Of note, Histamine receptor
antagonists displayed a consistent level of network similarity with
all other MOAs. The sAB values close to zero reflect in part the
spread of their 12 molecular targets on the PPI network, suggesting
that generic PPI alteration patterns may correspond to morphologic-
al effects that are distinctive, but not unique.

By comparing morphological distances to molecular network
separation, we observed that overlapping target modules are associ-
ated with more similar morphological profiles (Fig. 3c). The effect
does not fully explain morphological variability, which emphasizes
the presence of intermediate regulatory processes between genotype
and phenotype, and that the disruption of some biological processes
is not detectable with general cell shape descriptors as experimental
readouts. The quantification of morphological distances between
profiles based on the UMAP-reduced space also means that part of
the information contained in the original data is lost or distorted.
Future development of methodologies leveraging the manifold learn-
ed by the UMAP method without the need for an embedding in
Euclidean space will further alleviate this limitation. However, our
results so far already confirm that there is a general association be-
tween the PPI network neighborhood targeted by a compound and
their morphological outcome. This could be further explored to sys-
tematically link cellular morphology to function in health and
disease.

4 Discussion

HCS experiments offer a scalable and cost-efficient way to assess
multiple conditions in a single experiment with a rich cellular read-
out. Assembling morphological profiles to describe these experimen-
tal conditions is thus essential and requires dedicated tools for data
curation, feature selection, quality control, visualization and quanti-
fication of morphologically active perturbations. We implemented
these tools in a single open-source software with intuitive and flex-
ible data structures and syntax. We demonstrated by a concrete use
case how BioProfiling.jl enables new research and allows the explor-
ation of changes in cellular morphology by easing the analysis of
large high-content imaging screens.

As Julia is an efficient programming language and allows paral-
lelization of the computations, BioProfiling.jl can process large

datasets in a performant manner. The biggest limitation for analyz-
ing large experiments at the single cell level is currently the memory
usage, as the full set of morphological measurements needs to be
loaded, which can be an issue on personal computers. This may be
improved in the future by using lazy loading and allowing the user
to process the data by batches. In regard to profile interpretability,
BioProfiling.jl can help identify which features are varying the most,
rank features by absolute fold-change when comparing two condi-
tions, highlight correlated measurements and format the data for
other tools, for instance to represent the typical cell morphology in a
particular condition (Khawatmi et al., 2021; Sailem et al., 2015). Of
note, BioProfiling.jl offers a systematic way to define filters for data
curation and feature selection. This simplifies the automated defin-
ition of these steps and could contribute toward the future develop-
ment of data-driven feature engineering and machine-learning-
powered artifact removal techniques to further streamline the pro-
cess of morphological profiling.

BioProfiling.jl expands the existing landscape of resources avail-
able for biological data analysis, as illustrated in our application
where we processed morphological measurements so that they can
be integrated with PPIs as well as chemical annotations. The library
contributes to the growing package ecosystem for bioinformatics in
Julia (Roesch et al., 2021) which ensures that the morphological
profiling analyses can be combined in larger projects together with
other tasks ranging from sequencing to systems biology (Greener
et al., 2020; Heirendt et al., 2017; Zea et al., 2016), and other libra-
ries are conveniently available to integrate these different data types
(Zakeri et al., 2018). Julia’s interoperability with other program-
ming languages also makes the onboarding easy for users with prior
programming experience who, for instance, might prefer to perform
certain tasks in R or Python. This is demonstrated in the provided
Jupyter notebooks, with all plots being generated using R’s ggplot2
library (Wickham, 2016) and with the computation of the MCD
estimators for robust statistical distances which relies on R’s robust-
base package, which in turn calls efficient Fortran routines.

Despite being initially designed and extensively tested for mor-
phological profiling, the ability of BioProfiling.jl to handle large
high-dimensional datasets and provide dedicated robust normaliza-
tion and comparison methods could also be leveraged for other data
analyses such as single cell transcriptomics or metabolomics experi-
ments, which also require the curation and transformation of data
in tabular format.

To provide an exemplary full use case of the BioProfiling.jl pack-
age, we conducted and analyzed a chemical high-content imaging
screen for characterizing the effect of small molecules across diverse
MOAs. The compounds used in the screen were selected to cover a
wide range of morphological activity. While large-scale, hypothesis-
free screening of small molecules can offer an unbiased view of the
compound types that affect cellular morphology (Bryce et al., 2019;
Wawer et al., 2014), our library design enabled us to observe signifi-
cant changes induced by more than three quarters of the used com-
pounds. At the same time, the focused library design limits the
interpretation of MOA enrichment among hits. We observed both
commonalities and differences in the effects induced by different
MOAs, which alter cellular morphology via different molecular
changes, involving cytoskeleton, nucleus and protein relocation
(Supplementary Tables S2 and S3). The corresponding morphologic-
al profiles were further integrated with the information available
about the PPI network properties of the compound targets, which
proved to offer complementary views of compound effects and
emphasized the role HCS could play in unraveling the relationship
between cellular morphology and function.

Acknowledgements

We thank Raphael Bednarsky for discussion and feedback on the library and

Daniel Malzl for his feedback on the manuscript.

BioProfiling.jl for high-content imaging 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab853/6478274 by guest on 03 January 2022



Funding

This work was supported by the Vienna Science and Technology Fund
(WWTF) through projects VRG15-005 (to J.M.) and LS16-060 (to J.M. and
L.D.) and by the CNRS (International Research Project SysTact to L.D.).
C.W.F. was supported by a DOC-fellowship of the Austrian Academy of
Sciences: 25525.

Conflict of Interest: none declared.

References

Alanis-Lobato,G. et al. (2017) HIPPIE v2.0: enhancing meaningfulness and re-
liability of protein–protein interaction networks. Nucleic Acids Res., 45,
D408–D414.

Ando,D.M. et al. (2017) Improving phenotypic measurements in high-content
imaging screens. bioRxiv, https://doi.org/10.1101/161422.

Aragona,M. et al. (2013) A mechanical checkpoint controls multicellular
growth through YAP/TAZ regulation by actin-processing factors. Cell, 154,
1047–1059.

Becker,T. et al. (2021) cytominer: methods for image-based cell profiling.
https://github.com/cytomining/cytominer.

Bezanson,J. et al. (2017) Julia: a fresh approach to numerical computing.
SIAM Rev., 59, 65–98.

Billmann,M. et al. (2016) A genetic interaction map of cell cycle regulators.
Mol. Biol. Cell, 27, 1397–1407.

Bougen-Zhukov,N. et al. (2017) Large-scale image-based screening and profil-
ing of cellular phenotypes. Cytometry Part A, 91, 115–125.

Boutros,M. et al. (2006) Analysis of cell-based RNAi screens. Genome Biol.,
7, R66.

Boutros,M. et al. (2015) Microscopy-based high-content screening. Cell, 163,
1314–1325.

Bray,M.-A. et al. (2016) Cell Painting: a high-content image-based assay for
morphological profiling using multiplexed fluorescent dyes. Nat. Protoc.,
11, 1757–1774.

Breinig,M. et al. (2015) A chemical-genetic interaction map of small molecules
using high-throughput imaging in cancer cells. Mol. Syst. Biol., 11,
846–846.

Bryce,N.S. et al. (2019) High-content imaging of unbiased chemical perturba-
tions reveals that the phenotypic plasticity of the actin cytoskeleton is con-
strained. Cell Syst., 9, 496–507.E5.

Cabana,E. et al. (2019) Multivariate outlier detection based on a robust
Mahalanobis distance with shrinkage estimators. Stat. Pap., 62, 1583–1609.

Caicedo,J.C. et al. (2017) Data-analysis strategies for image-based cell profil-
ing. Nat. Methods, 14, 849–863.

Caicedo,J.C. et al. (2018) Cell Painting image collection. https:
//registry.opendata.aws/cell-painting-image-collection.

Caldera,M. et al. (2019) Mapping the perturbome network of cellular pertur-
bations. Nat. Commun., 10, 5140.

Chandrasekaran,S.N. et al. (2020) Image-based profiling for drug discovery:
due for a machine-learning upgrade? Nat. Rev. Drug Discov., 20, 145–159.

Dupont,S. et al. (2011) Role of YAP/TAZ in mechanotransduction. Nature,
474, 179–183.

Eling,N. et al. (2021) cytomapper: an R/Bioconductor package for visualiza-
tion of highly multiplexed imaging data. Bioinformatics, 36, 5706–5708.

Fischer,B. et al. (2015) A map of directional genetic interactions in a metazoan
cell. eLife, 4, e05464.

German,Y. et al. (2021) Morphological profiling of human T and NK lympho-
cytes by high-content cell imaging. Cell Rep., 36, 109318.

Greener,J.G. et al. (2020) BioStructures.jl: read, write and manipulate macro-
molecular structures in Julia. Bioinformatics, 36, 4206–4207.

Gustafsdottir,S. et al. (2013) Multiplex cytological profiling assay to measure
diverse cellular states. PLoS One, 8, e80999.

Heigwer,F. et al. (2018) Time-resolved mapping of genetic interactions to
model rewiring of signaling pathways. eLife, 7, e40174.

Heirendt,L. et al. (2017) DistributedFBA.jl: high-level, high-performance flux
balance analysis in Julia. Bioinformatics, 33, 1421–1423.

Hutz,J.E. et al. (2013) The multidimensional perturbation value. J. Biomol.
Screen., 18, 367–377.

Jones,T.R. et al. (2005) Voronoi-based segmentation of cells on image mani-
folds. In: Proceedings of the First International Conference on Computer
Vision for Biomedical Image Applications, CVBIA’05 . Springer-Verlag,
Berlin, Heidelberg, pp. 535–543.

Jones,T.R. et al. (2008) CellProfiler analyst: data exploration and analysis

software for complex image-based screens. BMC Bioinform., 9, 482.
Khawatmi,M. et al. (2021) ShapoGraphy: a glyph-oriented visualization ap-

proach for creating pictorial representations of bioimaging data. bioRxiv.
Ljosa,V. et al. (2013) Comparison of methods for image-based profiling of cel-

lular morphological responses to small-molecule treatment. J. Biomol.
Screen., 18, 1321–1329.

Lu,A.X. et al. (2019) Learning unsupervised feature representations for single

cell microscopy images with paired cell inpainting. PLoS Comput. Biol., 15,
e1007348.

Mcinnes,L. et al. (2018) UMAP: uniform manifold approximation and projec-

tion. J. Open Source Softw., 3, 861.
McQuin,C. et al. (2018) CellProfiler 3.0: next-generation image processing for

biology. PLoS Biol., 16, e2005970.
Menche,J. et al. (2015) Uncovering disease-disease relationships through the

incomplete interactome. Science, 347, 1257601.
Pau,G. et al. (2010) EBImage—an R package for image processing with appli-

cations to cellular phenotypes. Bioinformatics, 26, 979–981.
Pawlowski,N. et al. (2016) Automating morphological profiling with generic

deep convolutional networks. bioRxiv, https://doi.org/10.1101/085118.
Roesch,E. et al. (2021) Julia for biologists. https://arxiv.org/abs/2109.09973.
Rohban,M.H. et al. (2017) Systematic morphological profiling of human gene

and allele function via Cell Painting. eLife, 6, e24060.
Rousseeuw,P.J. and van Driessen,K. (1999) A fast algorithm for the minimum

covariance determinant estimator. Technometrics, 41, 212–223.
Sailem,H.Z. et al. (2015) Visualizing cellular imaging data using PhenoPlot.

Nat. Commun., 6, 5825.
Scheeder,C. et al. (2018) Machine learning and image-based profiling in drug

discovery. Curr. Opin. Syst. Biol., 10, 43–52.
Sero,J.E. et al. (2015) Cell shape and the microenvironment regulate nuclear

translocation of NF-jB in breast epithelial and tumor cells. Mol. Syst. Biol.,
11, 790.

Simm,J. et al. (2018) Repurposing high-throughput image assays enables bio-
logical activity prediction for drug discovery. Cell Chem. Biol., 25,

611–618.e3.
Snijder,B. et al. (2017) Image-based ex-vivo drug screening for patients with

aggressive haematological malignancies: interim results from a single-arm,

open-label, pilot study. Lancet Haematol., 4, e595–e606.
Stathias,V. et al. (2020) LINCS Data Portal 2.0: next generation access point

for perturbation-response signatures. Nucleic Acids Res., 48, D431–D439.
Wawer,M.J. et al. (2014) Toward performance-diverse small-molecule libra-

ries for cell-based phenotypic screening using multiplexed high-dimensional

profiling. Proc. Natl. Acad. Sci. USA, 111, 10911–10916.
Way,G.P. et al. (2021a) Predicting cell health phenotypes using image-based

morphology profiling. Mol. Biol. Cell., 32, 823–1005.
Way,G.P. et al. (2021b) Pycytominer: data processing functions for profiling

perturbations. https://github.com/cytomining/pycytominer.
Wickham,H. (2016) ggplot2: Elegant Graphics for Data Analysis.

Springer-Verlag New York, NY.
Williams,E. et al. (2017) Image Data Resource: a bioimage data integration

and publication platform. Nat. Methods, 14, 775–781.
Xin,J. et al. (2016) High-performance web services for querying gene and vari-

ant annotation. Genome Biol., 17, 91.
Zakeri,P. et al. (2018) Gene prioritization using Bayesian matrix factorization

with genomic and phenotypic side information. Bioinformatics, 34,

i447–i456.
Zea,D.J. et al. (2016) MIToS.jl: mutual information tools for protein sequence

analysis in the Julia language. Bioinformatics, 33, 564–565.
Ziegler,S. et al. (2021) Morphological profiling of small molecules. Cell

Chem. Biol., 28, 300–319.

8 L.Vulliard et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab853/6478274 by guest on 03 January 2022



3.2. MORPHOLOGICAL PROFILING OF HUMAN T AND NK LYMPHOCYTES
BY HIGH-CONTENT CELL IMAGING

53

3.2 Morphological profiling of human T and NK lymphocytes

by high-content cell imaging

Yolla German*, Loan Vulliard*, Anton Kamnev, Laurène Pfajfer, Jakob Huemer, Anna-
Katharina Mautner, Aude Rubio, Artem Kalinichenko, Kaan Boztug, Audrey Ferrand, Jörg
Menche and Loïc Dupré.
Published in Cell Reports. Volume 36, article number 109318. Publication date: July 6, 2021.
DOI: https://doi.org/10.1016/j.celrep.2021.109318.
* These authors contributed equally

The human immune system relies on the synergy between multiple specialized cell types
to protect us from external threats such as pathogens, and internal defects such as cancerous
cells. The immune system is usually divided into two arms, namely the innate response, forming
the first line of defense and the adaptive response, slower but more targeted. Although this
conceptual separation is convenient, the identification of interconnections and cell types at
their interface has been blurring the line between the two response types (Drano�, 2004). In
both arms, lytic granules are mediating the elimination of infected cells. They contain perforin
monomers, which polymerize to form pores at the surface of the target cell, and granzymes,
which contribute to induce programmed cell death (OsiÒska et al., 2014). These granules
are produced and released by cytotoxic lymphocytes, whose most prominent examples are
natural killer (NK) cells and CD8+ T cells for the innate and adaptive arms of the immune
system, respectively. In brief, target cells typically present non-self peptides via the major
histocompatibility complex (MHC) of type I, which get recognized by receptors harbored by
the cytotoxic T cells. However, some cancerous or virus-infected cells evade detection by not
expressing MHC molecules. NK cells precisely detect and repress this behavior (Campbell &
Hasegawa, 2013).
The immunological synapse (IS) is the structure at the interface between a lymphocyte and
the cell being targeted. The dynamic architecture of the IS relies on actin re-organization to
be functional and to allow the release of the lytic granules. Because of this direct link between
spatial organization and cytotoxic activity, microscopy is an approach of choice to study the IS.
So far, microscopy-based immunological studies were typically constrained in their scale and
conducted in microplates with few wells. Experimentalists only selected and imaged a limited
number of cells, allowing for the comparison of a restricted set of morphological parameters.
In contrast to this approach, the research group of Dr. Loïc Dupré aimed to leverage the
throughput and flexibility o�ered by HCI.
In this article, we demonstrate that this experimental approach is ideal for assessing the
morphology of cytotoxic lymphocytes. Here, the microplates were coated with a stimulatory
medium to make the cells adherent and additionally to mimic the formation of the IS. We show
that HCI enables the characterization of subtle changes in morphology and the discrimination
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between di�erent alterations of the actin cytoskeletons, either induced chemically or resulting
from actinopathies. The flexibility of the approach allowed us to study multiple experimental
and biological conditions, with both T and NK lymphocytes, represented by cell lines, primary
and patient-derived cells. Moreover, by sharing openly the complete data and computational
tools generated, this study constitutes a valuable resource to cell biologists and immunologists
interested in perturbations of the cytoskeleton or aiming to characterize other conditions or
actinopathies based on HCI.
This project was initiated by Dr. Yolla German and Dr. Loïc Dupré, who planned and
performed the experiments. In the following publication, I designed and conducted the
morphological profiling in all experiments and carried out computational analyses, including
data visualization and characterization of morphological changes using random forest classifiers
and robust statistics. The article was written by Dr. Yolla German, Dr. Loïc Dupré and
myself with contributions from all co-authors. See the section of the paper entitled “AUTHOR
CONTRIBUTIONS” for more information.
Of note, a complementary view of this project, providing additional insight regarding the
experimental setup and biological context, is proposed in the doctoral thesis of Dr. Yolla
German, completed at the Université Toulouse III - Paul Sabatier (German, 2020).
Supplementary material can be found below in the appendix chapter.
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SUMMARY

The immunological synapse is a complex structure that decodes stimulatory signals into adapted lympho-
cyte responses. It is a unique window to monitor lymphocyte activity because of development of systematic
quantitative approaches. Here we demonstrate the applicability of high-content imaging to human T and nat-
ural killer (NK) cells and develop a pipeline for unbiased analysis of high-definitionmorphological profiles. Our
approach reveals how distinct facets of actin cytoskeleton remodeling shape immunological synapse archi-
tecture and affect lytic granule positioning. Morphological profiling of CD8+ T cells from immunodeficient in-
dividuals allows discrimination of the roles of the ARP2/3 subunit ARPC1B and the ARP2/3 activatorWiskott-
Aldrich syndrome protein (WASP) in immunological synapse assembly. Single-cell analysis further identifies
uncoupling of lytic granules and F-actin radial distribution in ARPC1B-deficient lymphocytes. Our study pro-
vides a foundation for development of morphological profiling as a scalable approach to monitor primary
lymphocyte responsiveness and to identify complex aspects of lymphocyte micro-architecture.

INTRODUCTION

Recent advances in high-content imaging (HCI) allow morpho-
logical profiling of cell populations at a rich level of detail,
providing an integrative readout for complex biological events.
HCI is particularly suitable for systematic analysis of cellular phe-
notypes. It is employed widely in cancer and toxicology research
on adherent cell lines to evaluate cellular fitness and viability
upon drug treatment or genetic alterations (de Groot et al.,
2018; Joshi and Lee, 2015; Papakonstantinou and O’Brien,
2014; Priestley et al., 2019; Wu and Li, 2018). HCI is also a
powerful approach for identification of novel systemic properties
of cells (Bryce et al., 2019; Caldera et al., 2019; Heigwer et al.,
2018; Mattiazzi Usaj et al., 2020). To the best of our knowledge,
HCI has not yet been applied to study immune cell populations,
which are traditionally studied by flow cytometry. Because these
highly specialized cells adopt distinctive morphologies and
structures to sustain their various immuno-surveillance tasks,
HCI would be highly relevant to monitor immune cell shape re-

modeling upon activation. In particular, the immunological syn-
apse (IS) is a complex structure that sets lymphocyte activation
and function during encounters with antigen-presenting cells
and target cells. Low-throughput microscopy approaches have
revealed that the IS is characterized by a symmetrical architec-
ture consisting of concentric rings of F-actin and integrins,
whereas the antigen receptors occupy a central position (Gra-
koui et al., 1999; Monks et al., 1998). The lymphocyte spreading
associated with IS assembly and organization relies on dynamic
rearrangements of the actin cytoskeleton (Dustin and Long,
2010). In cytotoxic lymphocytes, including CD8+ T cells and nat-
ural killer (NK) cells, the IS is particularly important because it
sustains polarized delivery of cytolytic molecules, such as per-
forin and granzymes, toward target cells (Somersalo et al.,
2004). The study of IS organization has remained low throughput
and has been restricted to analysis of a limited number of
morphological measurements. A more systematic and in-depth
assessment of the IS would leverage this structure as a pivotal
readout for characterization of lymphocyte activation.
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In this study, we report implementation of a scalable HCI
approach combining confocal imaging of human T and NK cells
stimulated over 2D surfaces functionalizedwith ICAM-1 and stim-
ulatory antibodies (Abs), and high-dimensional profiling and clus-
tering of IS morphologies. Comparison of lymphocytes treated
with drugs affecting different facets of actin cytoskeleton remod-
eling highlights a variety of morphological alterations and effects
on lytic granule distribution and degranulation. Application of
our HCI pipeline to lymphocytes isolated from human blood re-
veals distinct morphological profiles in individual healthy donors.
Furthermore, our method allows discrimination of synapse de-
fects in untransformed CD8+ T cells from individuals with related
deficiencies in the actin regulators ARPC1B and WASP, illus-
trating its potential to identify disease-specific morphological sig-
natures. Single-cell analysis points to a loss of relationship be-
tween actin radial distribution and lytic granule dispersion as a
possible explanation for the reduced cytotoxic activity of
ARPC1B-deficient CD8+ T cells. This inspired complementary
time-lapse recording of actin and lytic granule dynamics, indi-
cating unstable positioning of the lytic granule pool in ARPC1B-
deficient CD8+ T cells. Finally, we detail our experimental and
computational methods and provide a reproducible analysis envi-
ronment to enable their application to other study models.

RESULTS

Morphological profiles of T and NK cell ISs
To systematically analyze the morphological profile of T and NK
cells, we designed a custom HCI workflow consisting of seeding
cells on stimulatory surfaces in microwells of 96- or 384-well
plates with subsequent fixation and staining for nuclei, the actin
cytoskeleton, and perforin or LFA-1 with combinations of fluores-
cent dyes and Abs. Confocal images were acquired on an Opera
Phenix high-content screening system equipped with a water im-
mersion 403 objective and 4 scientific complementary metal-ox-
ide-semiconductor (sCMOS) cameras. Images were acquired
along 8 Z-planes with a 0.5-mm interval starting from the cell-sub-
strate interface andwere analyzedwith CellProfiler (McQuin et al.,
2018) to automatically segment individual cells and extract quan-
titative morphological descriptors based on the different fluores-
cent markers (Figure 1A). As proof of concept, we applied our
approach to NK-92 and Jurkat cells, two human cell lines
commonly used as models for NK cells and T cells, respectively.
Cell morphologieswere compared upon interactionwith a poly-L-
lysine (PLL)-coated or stimulatory surface with the LFA-1 ligand
ICAM-1 and stimulatory Ab evoking IS assembly. Upon co-stim-
ulation with ICAM-1 and anti-NKp30/NKp46 Ab, NK-92 cells
spread, emitted F-actin-rich peripheral pseudopodia, and gath-
ered perforin-containing granules toward the center of the cell-
substrate interface, as indicated by their detection in proximity
of the cell-substrate interface (Figure 1B; Figure S1A). These ob-
servations are in line with the hallmarks of the IS in cytotoxic lym-
phocytes (Dieckmann et al., 2016; Dustin and Long, 2010), vali-
dating our high-throughput stimulation and staining procedure.
Wefirst assembled a curated set of descriptors to serve as the ba-
sis for morphological profiling. Based on literature describing the
IS and reporting polarization of F-actin and lytic granules in NK
cells (Krzewski and Coligan, 2012;Mace et al., 2012, 2014), we in-

tegrated morphological descriptors for F-actin and perforin stain-
ing and completed them with nuclear measurements via DAPI
staining (Figure 1C; Table S1). The selected descriptors were ex-
tracted asmean values per field of view averaged across 3 exper-
iments. The increases in F-actin intensity and cell areawereprom-
inent features of the stimulation comparedwith the PLL condition.
Furthermore, the number of perforin-containing granules de-
tected at the cell-substrate interface increased upon stimulation,
which is indicative of their enrichment toward the IS. We detected
relative spreading of the area covered by lytic granules, support-
ing the notion of multiple docking domains at the synapse (Brown
et al., 2011). Notably, our analysis also highlights an increase in
nucleus area as a typical feature of the IS in stimulated NK-92
cells. The nucleus area increased noticeably alongwith F-actin in-
tensitywhen assessed across three experiments (Figure 1D), sug-
gesting that cortical actin is associated with mechanical tensions
that may flatten the nucleus. Of note, the absolute values for F-
actin intensity were higher in one of the 3 experiments, possibly
resulting from differences in staining quality. This indicates that
absolute values for staining intensities across experiments should
be considered with caution. Consequently, all further compari-
sons of samples and treatments were donewithin the same stain-
ing/acquisition batches and within the same plates. To ensure
that no morphological heterogeneity across cells was overlooked
by comparing mean values per field of view, F-actin intensity was
assessed on a per-cell basis (Figure 1E). The unimodal increase in
F-actin intensity driven by stimulation of NK-92 cells indicates a
relatively homogeneous IS assembly, which validates our
approach.
In parallel, the HCI workflow was applied to Jurkat cells, which

were stimulated with ICAM-1 and anti-CD3 Abs. We selected, in
this instance, 12 measurements to constitute our curated set of
morphological descriptors, which pertained to F-actin, LFA-1,
and DAPI staining to monitor hallmarks of the T cell IS (Dustin
and Long, 2010). Because Jurkat cells do not express perforin,
the LFA-1 integrin was stained instead. Compared with the
neutral PLL surface, ICAM-1/anti-CD3 Ab stimulation led to
cell spreading, assembly of a peripheral F-actin ring-like struc-
ture, and distribution of the integrin LFA-1 as a dense array of
clusters at the cell-substrate interface (Figure 1F; Figure S1B),
which are characteristic for the IS (Dustin and Long, 2010; Hou-
madi et al., 2018). Our quantification over multiple fields showed
that, similar to NK-92 cells, F-actin intensity and cell area are
prominent features of the Jurkat cell IS (Figure 1G; Table S2).
Moreover, LFA-1 intensity and LFA-1 area also increased upon
stimulation, and we noted that F-actin and LFA-1 intensities
correlated in individual fields of view with a Pearson correlation
coefficient of 0.50 (Figure 1H). At the single-cell level, F-actin
clearly increased in response to ICAM-1 and anti-CD3 Ab stim-
ulation despite noticeable heterogeneity (Figure 1I). The data
collected on assembly of the IS in NK-92 and Jurkat cells reveal
commonalities, such as a raise in F-actin intensity and cell
spreading, whereas Jurkat cells, but not NK-92 cells, became
rounder upon co-stimulation of LFA-1 and T cell receptors
(TCR). Furthermore, although NK-92 cells flattened their nuclei,
this effect was not observed in Jurkat cells, indicating a distinct
cell spreading behavior in each cell line. Such differences among
the 2 cellular models might be due to distinct IS architectures or
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different kinetics of the IS assembly, as highlighted recently by a
comparison of primary T and NK cells (Carisey et al., 2018).
Overall, our data validate the reliability and power of our HCI
pipeline for automatedmorphological profiling of stimulated lym-
phocytes with high spatial resolution.

Cytoskeleton drugs induce distinct alterations of the NK
cell IS
In line with the role of actin remodeling in sustaining IS assembly
(Dustin and Cooper, 2000), our data point to the rise in F-actin

content as a prominent feature of this process. To gain a system-
atic view of how distinct facets of actin dynamics, including poly-
merization, coupling to myosin, and branching or elongation of
filaments, might contribute to assembly of ISs in cytotoxic lym-
phocytes, we performed morphological profiling of NK-92 cells
stimulated with ICAM-1 and anti-NKp30/NKp46 Abs upon
treatment with three concentrations of the drugs latrunculin B,
jasplakinolide, blebbistatin, Y-27632, CK-869, wiskostatin, and
SMIFH2. To comparemorphological alterations, we used curated
morphological descriptors identified previously (Figures 2A and

A

B C F G

D E H I

Figure 1. HCI of the IS in lymphocytic cell lines
(A) Schematic of the HCI pipeline.

(B) Representative images of NK-92 cells seeded on poly-L-lysine (PLL) or ICAM-1 plus anti-NKp30/NKp46 Abs, stained for F-actin (green), perforin (yellow), and

the nucleus (DAPI). Scale bars, 10 mm.

(C) Selected IS features analyzed as fold change of ICAM-1 plus anti-NKp30/NKp46 Abs over PLL. The data represent the mean of three separate experiments

(n = 933–5,860 cells).

(D) Mean nucleus area in pixels and median F-actin intensity per image across PLL and ICAM-1 plus anti-NKp30/NKp46 Ab conditions.

(E) F-actin intensity distribution per cell across PLL and ICAM-1 plus anti-NKp30/NKp46 Ab conditions.

(F) Representative images of Jurkat cells on PLL or ICAM-1 plus anti-CD3 Abs, stained for F-actin (green), LFA-1 (red), and the nucleus (DAPI). Scale bars, 10 mm.

(G) Selected IS features analyzed as fold change of ICAM-1 plus anti-CD3 Abs over PLL. The data represent the mean of triplicates (n = 125–940 cells).

(H) Median F-actin and LFA-1 intensity per image across PLL and ICAM-1 plus anti-CD3 Ab conditions.

(I) F-actin intensity distribution per cell across PLL and ICAM-1 plus anti-CD3 Ab conditions.

See also Figure S1 and Tables S1 and S2.
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2B). This analysis was complemented with measurement of
LAMP-1 surface exposure to assess the effects of the tested
drugs on lytic granule exocytosis (Figure 2C; Figure S2). As ex-
pected, inhibition of actin polymerization by latrunculin B led to
a concentration-dependent decrease in F-actin intensity (Figures
2A and 2B), validating our approach. Although cell spreading was
not fully impeded, as revealed by only a minor reduction in cell
area, cell roundness increased, possibly because of a reduction
in peripheral actin-rich protrusions. Latrunculin B treatment eli-
cited an increase in the number and area of perforin granules. In
parallel, the treated cells exhibited increased LAMP-1 surface
exposure upon stimulation (Figure 2C). This suggests that the
loss of F-actin density evoked by latrunculin B treatment impaired
the filter function of the F-actin cortical network (Carisey et al.,
2018; Mace et al., 2012), resulting in uncontrolled and poorly
polarized lytic granule exocytosis. F-actin stabilization by jaspla-
kinolide did not result in an increase in F-actin intensity (Figures
2A and 2B). Treatment with an intermediate concentration of
1 mM led to a mild decrease in F-actin intensity, possibly through
competition of the drug with phalloidin-AF488 for F-actin binding
(Bubb et al., 1994). Different from latrunculin B, jasplakinolide ap-
peared to not alter the cell morphological descriptors, implying
that F-actin polymerization, but not stabilization, is crucial for
NK cell IS assembly. A higher concentration of 2.5 mM jasplakino-
lide was tested but discarded because of its apparent detrimental

effect on cell viability. Treatment with jasplakinolide elicited an in-
crease in the perforin-related descriptors, corresponding tomore,
larger, and brighter granules. In contrast to latrunculin B, jasplaki-
nolide treatment was associated with severe impairment of lytic
granule exocytosis (Figure 2C), indicating accumulation of lytic
granules at the synapse plane. This confirms that actin turnover
is required for lytic granule exocytosis (Carisey et al., 2018; Lyub-
chenko et al., 2003). Inhibition of acto-myosin contractility via the
Rho-associated protein kinase (ROCK)-myosin pathway using
blebbistatin or Y-27632 yielded overlapping effects with a mild in-
crease in F-actin intensity and mild decrease in cell roundness
(Figures 2A and 2B), suggestingminor control over overall assem-
bly of the IS. Treatment with blebbistatin and Y-27632 increased
the number of granules detected at the synapse and the area they
occupied but had no effect on LAMP-1 surface exposure (Fig-
ure 2C; Figure S2). In partial contrast with previous reports
regarding the role of myosin IIA in promoting lytic granule fusion
with the cell membrane (Andzelm et al., 2007; Sanborn et al.,
2009), our data suggest that acto-myosin contractility contributes
to lytic granule positioning at the IS without affecting degranula-
tion per se. Given the prominent role of actin polymerization in
controlling the IS, we compared the relative contribution of actin
branching and actin filament elongation, employing inhibitors of
the ARP2/3 complex (CK-869), WASP (wiskostatin), and formins
(SMIFH2). CK-869 treatment led to a concentration-dependent

A

B

C

Figure 2. Comparative analysis of the effect of actin-targeting drugs on lytic granule distribution and exocytosis in NK-92 cells
(A and B) Representative images (A) and graphs (B) representing the fold change of IS descriptors for NK-92 cells seeded on ICAM-1, anti-NKp30, and anti-

NKp46, stained for F-actin (green), perforin granules (yellow), and nuclei (blue) and treated with three concentrations of latrunculin B, jasplakinolide, blebbistatin,

Y-27632, CK-869, wiskostatin, and SMIFH2 with respect to the untreated control. The data represent the mean of triplicates for each concentration (1,425–5,541

cells). Scale bars, 10 mm.

(C) Evaluation of LAMP-1 expression on NK-92 cells upon stimulation and treatment with the indicated drugs.
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decrease in F-actin intensity and cell shape alterations, whereas
wiskostatin andSMIFH2 treatments resulted in amodest increase
in F-actin intensitywithout distinct alteration of cell shape descrip-
tors (Figures 2A and 2B). A specific property of CK-869 treatment
was a reduction in the number of and area covered by perforin
granules, possibly reflecting the inability of CK-869-treated cells
to polarize lytic granules toward the stimulatory surface because
of defective IS assembly. In agreement, this was accompanied by
adose-dependent reduction in lytic granuleexocytosis (Figure2C;
Figure S2), as reported previously (Randzavola et al., 2019). Low-
concentration wiskostatin and SMIFH2 treatments resulted in an
increase in perforin intensity and area, supporting a role of WASP
and formins in lytic granule positioning at the IS (Houmadi et al.,
2018; Butler and Cooper, 2009). The effect of these treatments
on degranulation was not conclusive because cell toxicity was
observed over the 4 h of the LAMP-1 surface exposure experi-
ments. Overall, our comparative analysis shows that lytic granule
distribution at the NK IS is dependent on the integrity of various
facets of actin dynamics, supporting the notion that multiple
actin-dependent steps control lytic granule docking and exocy-
tosis (Mace et al., 2014). We further identify the ARP2/3 complex
as playing a dominant role in driving actin polymerization, sustain-
ing IS assembly, and controlling lytic granule positioning.

High-definition morphological profiling of NK cells upon
drug treatment
To further enrich the morphological analysis of the IS in the
context of drug treatment, the initial set of curated descriptors
was expanded to include all available measurements. These
included various descriptors of cell shape, staining intensity dis-
tributions and textures, as well as descriptors of heterogeneity,
such as standard deviation of the aforementioned measure-
ments per field of view, because they were found to be informa-
tive in other morphological profiling studies (Breinig et al., 2015;
Bryce et al., 2019; Caldera et al., 2019; Rohban et al., 2019).
From 1,898 initial measurements, a set of 383 morphological de-
scriptors was retained following filtering of non-informative and
redundant descriptors. By opposition to the curated morpholog-
ical descriptors used previously, we further refer to this new set
as comprehensive morphological descriptors. To visualize and
quantify the significance of morphological changes upon drug
treatment compared with untreated cells, we applied a uniform
manifold approximation and projection (UMAP) dimensionality
reduction to these morphological profiles. This allows visualiza-
tion of the relation between the morphology displayed on each
field of view in a 2D morphological space, summarizing the vari-
ation on all the 383 comprehensive morphological descriptors
(Figure S3A). We sorted these measurements based on the
cellular compartment (nucleus, cytoplasm, or granules) and the
concept they described, such as granularity or shape. By exam-
ining the relation between them, we observed no strong clus-
tering, suggesting that the different types of measurements ac-
quired and the different compartments studied provided
complementary and non-redundant information about the IS
changes occurring across treatments (Figure S3B). This also
implied that none of these morphological descriptors were
repeating technical confounders, such as experimental plate po-
sition effect or cell density, because the confounders were more

similar to each other than to any other descriptor. The morpho-
logical space revealed that latrunculin B, jasplakinolide, and
CK-869 treatments were clustered away from the untreated cells
and from one another, most likely because of these drugs having
prominent and distinct effects on the ability of NK-92 cells to
assemble the IS (Figures 3A, 3B, and 3E). In comparison, mor-
phologies of cells treated with blebbistatin, Y-27632, wiskosta-
tin, and SMIFH2 appeared to be less distinct from the untreated
condition and to cluster in close vicinity of one another (Figures
3C, 3D, 3F, and 3G). The three concentrations assayed per treat-
ment fell into distinct sub-clusters, clearly indicating dose-
dependent effects, as detailed for CK-869 and SMIFH2 (Figures
S3C and S3D). All drug-evoked morphological profiles were
found to be significantly distant from the untreated state. Indeed,
the median robust Mahalanobis distances between the fields of
view of treated cells and their matching negative controls are
larger than expected at random (Figure S3E; Hutz et al., 2013;
Rousseeuw and Leroy, 1987). To get insight into the nature of
the morphological changes identified in this experiment and
pinpoint which of these changes are hallmarks of the chemical
treatments, we trained a random forest classifier (Breiman,
2001). This tells us (1) whether the changes are strong enough
to result in good model performance and (2) which features are
essential to delimit each class. The image set was split to carry
out parameter optimization and validate the performance of
the model by cross-validation. The classifier achieved good per-
formance, as shown on the confusion matrix (Figure 3H), with an
F1 score and an accuracy of 0.89 and 89%, respectively, which
highlights the relevance of the comprehensive morphological
descriptors to characterize treatment effects. Most drugs were
predicted with high accuracy based on the corresponding image
measurements, whereas the morphological effects of blebbista-
tin and Y-27632 weremore challenging to distinguish, in line with
their highly relatedmechanism of action. The importance of each
descriptor for classification was proxied by the average increase
in accuracy obtained by including the given variable in a decision
tree. In particular, our analysis shows that CK-869 treatment
mostly affected nucleus and cytoplasm shape descriptors (Fig-
ure 3I), whereas SMIFH2 treatment altered radial intensity distri-
butions in the cytoplasm (Figure 3J). Only four measurements
described intensities in the cytoplasm within the comprehensive
descriptors. Interestingly, those few descriptors, on average,
increased model accuracy the most, strengthening the neces-
sity, but not sufficiency, of actin intensity measurements to pro-
file the IS. Descriptors pertaining to lytic granules also played a
determinant role in reinforcing model accuracy, providing further
evidence of a tight regulation of lytic granule distribution at the IS.
In comparison, we trained a classifier only on the curated de-
scriptors used previously (Figure S3f). The overall accuracy of
69% and F1 score of 0.70 confirmed that these descriptors char-
acterize relatively well the morphological effects of the actin
drugs, but the unbiased comprehensive approach offers a
considerably higher definition of the morphological description
of the IS. It also confirmed F-actin intensity as a major discrimi-
nating feature and identified cell eccentricity and roundness as
key features to account for the morphological alterations
induced by the drugs (Figure S3G). Our data therefore demon-
strate the ability of the unbiased profiling to identify relevant
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spatially localized events and characterize perturbed cell states
with high-definition power.

Morphological profiling of primary human NK cells upon
drug treatment
Wenext explored the applicability of HCI to study primary human
lymphocytes. For that purpose, NK cells were purified from the
peripheral blood of three normal donors, treated with four con-
centrations of CK-869 or SMIFH2, and stimulated with ICAM-1
and anti-NKp30/NKp46 Abs (Figure 4A). We disregarded PLL
as a control surface because primary NK cells appeared to
strongly remodel their morphology over this surface, in line
with recent observations (Santos et al., 2018). The stimulatory

surface promoted an actin-rich IS with lytic granules concen-
trated in one area on the side of the nucleus. The four concentra-
tions of CK-869 caused amarked decrease in F-actin intensity in
the NK cells from the three donors, demonstrating the capacity
of morphological profiling to detect actin cytoskeleton alter-
ations in primary lymphocytes. Notably, the area covered by
the perforin granules, taken as an absolute value or divided by
the cell area, was increased in the CK-869-treated NK cells
from the three donors, showing a clear dose-dependent
response (Figure 4B). This effect is opposite to what was
measured in NK-92 cells, highlighting contrasting responses of
model cell lines and primary cells. Moreover, the four concentra-
tions of SMIFH2 also caused a decrease in F-actin intensity in the

A

E

I J

F G H

B C D

Figure 3. Morphological profiling of the NK cell IS upon drug treatment
(A–G) NK-92 cells were treatedwith the indicated drugs. Corresponding imageswere analyzed with CellProfiler for an array of measurements and visualized using

UMAP to position drug-treated cells with respect to untreated cells from the same row.

(H) Confusion matrix and class-wise performance on held-out data of a random forest model trained to predict drug treatment based on themorphology of NK-92

cells seeded on ICAM-1, anti-NKp30, and anti-NKp46.

(I and J) Total and average importance for prediction of morphological features per measurement type and biological object described of NK-92 cells seeded on

ICAM-1, anti-NKp30, and anti-NKp46 and treated with (I) CK-869 or (J) SMIFH2.

In (H)–(J), a darker color indicates a higher number of images or descriptors for a given box, and the corresponding count is provided alongside.
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A

B

C

Figure 4. CK-869 and SMIFH2 treatments alter IS architecture and lytic granule polarization in primary NK cells
(A) Representative images of primary NK cells isolated from peripheral bloodmononuclear cells (PBMCs) of three normal donors seeded on ICAM-1, anti-NKp30,

and anti-NKp46, stained for F-actin (green), perforin granules (yellow), and nuclei (blue) and left untreated or treated with four concentrations of CK-869 or

SMIFH2. Scale bars, 10 mm.

(B and C) Graphs representing the fold changes of IS parameters of primary NK cells treated with (B) CK-869 and (C) SMIFH2 with respect to untreated controls.

The data represent the mean of 4 replicates for each drug concentration (60–409 cells).
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NK cells from the three donors, highlighting the importance of
formins for actin remodeling at the IS of primary NK cells (Fig-
ure 4C). SMIFH2 treatment also strongly affected the distribution
of perforin granules. Remarkably, dose-dependent reductions in
perforin granule number and covered area were observed in NK
cells from the first two donors and to a lesser extent in the NK
cells from the third donor. Therefore, although inhibition of actin
branching and actin elongation yields comparable net decreases
in polymerized actin, these treatments differentially affect the
distribution of lytic granules. Those observations highlight the
potential of HCI to identify complex relationships between cyto-
skeleton remodeling and organelle trafficking. In addition, HCI
reveals features underlying inter-donor variability upon stimula-
tion and treatment of lymphocyte populations.

Distinct IS defects in CD8+ T cells from ARPC1B- and
WASP-deficient individuals
To broaden the scope of application of HCI and assess its rele-
vance in hematological disease settings, we implemented
morphological profiling of CD8+ T cells isolated from individuals
suffering from two related inborn errors of immunity (IEIs) caused
by mutations in ARPC1B and WAS, which encode a subunit of
the ARP2/3 complex and the ARP2/3 activator WASP, respec-
tively. Cells from three ARPC1B-deficient and three WASP-defi-
cient individuals and three normal donors were stimulated with
ICAM-1 anti-CD3 Abs and stained for F-actin, perforin, the nu-
cleus, and CD8 (for exclusion of contaminating non-CD8+

T cells). Analysis of 13 curated morphological descriptors high-
lighted that F-actin intensity was decreased in cells from
ARPC1B- and WASP-deficient individuals compared with cells
from normal donors (Figures 5A and 5B). This decrease was
observed in all individuals (Figures S4A–S4D). When examining
the mean values of the descriptors pertaining to shape and the
nucleus, T cells from ARPC1B-deficient and WASP-deficient in-
dividuals did not appear to display striking alterations (Figure 5B;
Figures S4A–S4D). Remarkably, the number of detected perforin
granules and, consequently, the average fraction of the cell area
they occupied was increased in T cells from ARPC1B- and
WASP-deficient individuals (Figure 5B). This was the case for
all three WASP-deficient individuals and two of three ARPC1B-
deficient individuals (Figures S4A–S4D). The effect of these nat-
ural deficiencies on lytic granule positioning is reminiscent of the
increase in perforin descriptors observed above upon treatment
of primary NK cells with the ARP2/3 inhibitor CK-869. Our find-
ings also align with a previous characterization of IS defects in
WASP-deficient (Houmadi et al., 2018) and ARPC1B-deficient
individuals (Brigida et al., 2018; Randzavola et al., 2019). We
took advantage of the side-by-side HCI analysis of T cells from
the 2 disease entities to identify specific traits. We selected a
comprehensive set of 306 informative descriptors we projected
onto amorphological space with UMAP. This analysis evidenced
amarked segregation of affected individuals from control donors
but also among the 2 disease entities (Figure 5C). This indicates
that, beyond reduced F-actin intensity and altered distribution of
lytic granules, additional morphological descriptors might be
differentially altered in ARPC1B- and WASP-deficient CD8+

T cells. Applying a random forest model, we then tested the abil-
ity of our approach to distinguish cells from normal donors and

from each of the two deficiencies. Near-perfect classification
was obtained on the validation set of images, with an overall ac-
curacy of 96% and F1 score of 0.96 (Figure 5D), confirming that
the ARPC1B and WASP deficiencies were associated with
distinct morphological alterations. The categories of descriptors
selected most often by the random forest model indicated that
ARPC1B-deficient T cells were mostly recognized on the basis
of descriptors pertaining to the cell periphery (referred to as
‘‘cytoplasm’’ and corresponding to the cell mask extending
beyond the nucleus projection) (Figures 5E and 5F). These de-
scriptors included mean and standard deviation of radial distri-
bution of actin intensities as well as shape- and texture-related
parameters. These descriptor classes also accounted partly for
the discrimination of WASP-deficient T cells. However, these
cells were mostly recognized on the basis of descriptors pertain-
ing to the cell center (referred as to ‘‘nucleus’’ and corresponding
to the nucleus projection mask). These descriptors included
shape- and texture-related parameters. This ranking of discrim-
inative descriptor classes reveals distinct morphological signa-
tures in T cells with the related ARPC1B and WASP deficiencies
that suggest non-overlapping spatial distribution of associated
defects in the context of IS assembly.

Altered lytic granule distribution in ARPC1B-deficient
CD8+ T cells revealed by single-cell analysis
CD8+ T cells isolated from an ARPC1B-deficient individual have
been shown recently to be unable to kill target cells, and this
impairment was associated with a combination of defects in la-
mellipodium formation, centrosome polarization, lytic granule
dispersion, and expression of TCR, CD8, GLUT1, and granzyme
B (Randzavola et al., 2019). Here we sought to exploit the
confocal resolution and single-cell granularity of our HCI
approach to investigate in more detail how defective actin re-
modeling may relate to aberrant distribution of lytic granules in
the context of ARPC1B deficiency. We confirmed that
ARPC1B-deficient CD8+ T cells have reduced cytotoxic activity
(Figure S5D) with evidence of aberrant morphology upon contact
with target cells (Figure S5E). However, the CD8+ T cells from the
ARPC1B-deficient individuals considered in our study ex-
pressed normal levels of the TCR, CD8, perforin, and granzyme
B (Figure S5C), indicating that the killing defect was not related to
aberrant expression of these molecules. We first took advantage
of the confocal resolution of our imaging approach to quantify
lytic granule distance from the synaptic plane. Eight confocal sli-
ces spanning 3.5 mm above the cell-substrate interface were ac-
quired in cells stained for perforin, F-actin, and the nucleus. Our
analysis indicates that lytic granules are detected all along the
considered Z-planes with enrichment in z layers 3 to 5 corre-
sponding to the layer 1–2 mm from the synapse plane (Figure 6A).
Clearly, polarization of the lytic granules toward the synapse
plane was not altered in CD8+ T cells from the 2 ARPC1B-defi-
cient individuals, implying that ARPC1B deficiency in the 2 stud-
ied individuals did not prevent lytic granule positioning toward
the IS. Next we exploited the power of our HCI approach in col-
lecting morphological descriptors pertaining to individual cells to
extract relations between actin and perforin features at a single-
cell level. Usingmultiple linear regression, we estimated the rela-
tionship between key actin-based descriptors and lytic granule
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positioning in individual normal donor CD8+ T cells at the Z-plane
the most proximal to the cell-substrate interface (Figure 6B). The
mean minimal distance between lytic granules and the cell edge
was considered to account for the radial dispersion of lytic gran-

ules. We wanted to find out whether descriptors pertaining to
F-actin distribution and cell shape might correlate with lytic
granule dispersion. Eight independent variables were found to
significantly contribute to the capacity of our model to predict

A B

C E

D F

Figure 5. HCI of the IS in WASP- and ARPC1B-deficient CD8+ T cells
(A) Representative images of CD8+ T cells from normal donors and affected individuals, seeded on ICAM-1/anti-CD3 Abs and stained for F-actin (green), perforin

granules (yellow), CD8 (red), and nuclei (blue). Scale bars, 10 mm.

(B) Average characteristics of the IS of CD8+ T cells from affected individuals, represented as fold change with respect to the average of three normal donors. The

data represent the mean of eight replicates for each sample (24–443 cells per replicate, 2,890–4,881 cells per condition).

(C) UMAP projection of CD8+ T cell morphological profiles. Different shapes denote different samples under each condition (dots, squares, and triangles for the

first, second, and third donor/affected individual, respectively).

(D) Confusion matrix and class-wise performance on held-out data of a random forest model trained to discriminate between affected individuals and normal

donors.

(E) Total and average importance of morphological features per measurement type and biological object described for prediction of ARPC1B deficiency status.

(F) Total and average importance of morphological features per measurement type and biological object described for prediction of WASP deficiency status.

In (D)–(F), a darker color indicates a higher number of images or descriptors for a given box, and the corresponding count is provided alongside.
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lytic granule dispersion in individual cells (r2 = 0.2886; Table S3).
In particular, our analysis revealed that the radial distribution of
F-actin was associated with lytic granule dispersion even when
accounting for geometrical confounders. More precisely, the
higher the fraction of F-actin intensity at the synapse center,
the higher the dispersion of lytic granule toward the cell edges
(Figure 6B). This is in line with the notion that partial depletion
of F-actin at the IS center is required for lytic granule exocytosis
at this site. When this analysis was applied to ARPC1B-deficient
T cells, the association of lytic granule dispersion with 7 of the 8
F-actin/shape descriptors held true (Figure 6B; Table S3).
However, the association with F-actin density at the IS center
was inverted, meaning that higher central F-actin intensity was
associated with more central lytic granules (Figure 6B; Table
S4). This analysis of parameter correlation at the single-cell level
indicates that ARPC1B deficiency disrupts the association be-
tween the radial distribution of F-actin and lytic granule posi-
tioning. To resolve the temporal aspect of lytic granule disper-

sion in ARPC1B-deficient CD8+ T cells, we complemented our
HCI 3D analysis by time-lapse microscopy using identical stim-
ulatory conditions. We employed a spinning disk microscopy
setting to focus on the 1- to 2-mm layer above the IS and acquired
images every 35 s. Actin dynamics were visualized with SiR-
actin, whereas lytic granules were revealed with LysoTracker.
In line with the HCI data, ARPC1B-deficient T cells displayed
aberrant IS assembly upon interaction with the stimulatory sur-
face with abnormal cell edge dynamics (Figure 6C; Video S1).
In healthy donor and ARPC1B-deficient CD8+ T cells, lytic gran-
ules gathered around a ring-like actin structure, presumably cor-
responding to the previously described peri-centrosomal F-actin
network (Obino et al., 2016). However, this F-actin ring and the
bulk of lytic granules appeared to oscillate more in ARPC1B-
deficient CD8+ T cells and to occupy a less central position
compared with their normal counterparts (Figure 6C; Video
S1). Our HCI measurements, complemented by live-recording
observations, indicate that ARPC1B deficiency does not affect

A

B C

Figure 6. In-depth characterization of ARPC1B deficiency through single-cell analysis of the 3D distribution of lytic granules, granule-actin
covariate analysis, and live imaging
(A) Distribution over consecutive focal planes of individual perforin+ objects identified as lytic granules in CD8+ T cells from 3 healthy donors and 2 ARPC1B-

deficient individuals upon interaction with ICAM-1 and anti-CD3 Abs.

(B) Positive (green) or negative (red) associations using linear regression of the average minimum distance between the lytic granules and the cell edge based on

eight actin-based morphological descriptors at the synapse plane of the indicated cells. Representative images of healthy donor and ARPC1B-deficient CD8+

T cells, showing the relationship between lytic granule and F-actin distribution.

(C) Snapshots of representative video recordings of healthy donor and ARPC1B-deficient CD8+ T cells interacting with an ICAM-1 and anti-CD3 Ab-coated

surface and stained with silicon rhodamine (SiR)-actin (red) and LysoTracker (green).
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the overall polarization of the lytic granule pool but affects its dy-
namic distribution at the synaptic plane. Our analysis points to
the aberrant radial organization of the actin cytoskeleton at the
IS as a major factor contributing to this defective distribution.

DISCUSSION

By combining automated cell imaging with computational image
analysis pipelines, HCI provides novel opportunities to systemat-
ically analyze cellular mechanisms (Breinig et al., 2015; Bryce
et al., 2019; Rohban et al., 2017). However, the potential of this
approach has not yet been explored for the study of immune cells.
Here we tailor an HCI approach for high-definition morphological
profiling of various human cytotoxic lymphocyte populations and
focus on imaging of the IS as a means to capture the responsive-
ness and effector potential of these cells. We validate our HCI
approach by identifying distinct morphological signatures evoked
by a panel of actin-targeting drugs. We were thus able to charac-
terize different defects occurring at the IS and how they converge
in altering lytic granule positioning. We further reveal the power of
our HCI approach to discriminate individual donors on the basis of
immune cell morphological traits. We also exemplify the clinical
applicability of this approach by identifying cytotoxic lymphocyte
aberrations in individuals with severe congenital IEIs.
Conveniently, a simple 2D static approach based on adsorption

of stimulatory molecules on the surface microwells was sufficient
to robustly stimulate assembly of morphological structures qual-
ifying as ISs. We show that various human lymphocyte popula-
tions, including model cell lines, cells freshly isolated from the
blood, as well as expanded primary cells, can be stained and
imaged with an automated confocal microscope at high resolu-
tion in a 384-well format, allowing analysis of several samples,
activation conditions, and perturbations in parallel. Computation-
ally, we use robust statistics and work at an image-level resolu-
tion, typically gathering a few dozen cells imaged over four
Z-planes (along the optical axis) representing the 2-mm section
of the cells most proximal to the stimulatory substrate. Although
mostmorphological profiling studies have been limited to average
profiles over wells or replicates (Breinig et al., 2015; Caie et al.,
2010; Caldera et al., 2019), a few approaches have defined pro-
files based on single cells (Caicedo et al., 2018; Lu et al., 2019).
To compare samples and treatments, we considered the vari-
ability in morphology displayed in each image by including mea-
sures of dispersion that have been proven to be beneficial for
morphological profiles and could potentially be improved by add-
ing a higher-order joint statistical moment (Rohban et al., 2019).
We also exploit individual cell heterogeneity to extract relation-
ships among detected descriptors (e.g., F-actin radial distribution
and lytic granule dispersion) at single-cell resolution. From an
analytical point of view, we elaborate two complementary
methods. First, we focus on a pre-defined set of morphological
descriptors based on prior knowledge, including cell and nucleus
shape parameters as well as intensities of F-actin, LFA-1, and
perforin at the synaptic plane. We show that this method can be
applied to relatively low numbers of images and provides mean-
ingful identification of discriminative features when comparing
experimental conditions. Second, we implement a high-definition
and unbiased morphological profiling pipeline from which novel

relevant parameters can be identified and high-performance clas-
sifiers can be trained to discriminate cell states corresponding to
different stimulations, drug treatments, or genetic defects.
Beyond the methodological advance provided in this study,

we present data relevant to understanding lymphocyte activa-
tion from a fundamental and medically relevant perspective.
Among the pre-defined set of morphological descriptors we
identify an increase in F-actin as a hallmark of T and NK lympho-
cyte stimulation by combinations of ICAM-1 and Abs directed
against CD3 or NK receptors, respectively. This is in line with
the previously established role of the actin cytoskeleton in driving
the cell spreading behavior supporting IS assembly (Fritzsche
et al., 2017; Roy and Burkhardt, 2018). Further investigation of
the role of actin cytoskeleton remodeling by treatment of NK
cells with a drug array reveals distinct morphological alterations
upon targeting actin polymerization, depolymerization, and
myosin II. Our data also point to converging morphologies
induced by some of the drugs with distinct modes of action,
possibly related to a limited number of configurations of the cyto-
skeleton, as described recently in an adherent neuroblastoma
cell line (Bryce et al., 2019; Yin et al., 2014). Strikingly, most
tested drugs yield prominent alteration of the distribution of per-
forin-containing granules, indicating that the different facets of
actin cytoskeleton dynamics are important to regulate polarized
delivery of lytic granules at the IS (Carisey et al., 2018; Hetrick
et al., 2013). Because of the distinct morphological profiles
observed for each drug and detection of dose-dependent effects
in cell lines and primary cells, we envision that such an approach
could be applied for screening immunotherapeutic drugs.
Application of morphological profiling to lymphocyte popula-

tions reveals a previously unappreciated level of heterogeneity
in cellular morphological traits among individuals. When consid-
ering the data pertaining to NK cells freshly isolated from the
blood, we cannot rule out that morphological differences arise
from distinct activation states of cells from different donors.
However, in vitro stimulation and expansion of T lymphocytes,
which are expected to robustly drive cells toward a differentiated
phenotype (Litterman et al., 2014), were also associated with
distinct morphological traits. Further analysis of larger cohorts
of donors and sorted subpopulations of lymphocytes, which
would be compatible with the approach developed here, will
be required to precisely evaluate the degree of morphological
heterogeneity among individuals and lymphocyte subsets. The
sensitivity of the HCI approach is also highlighted by its ability
to distinguish morphological alterations in T lymphocyte popula-
tions isolated from individuals suffering from related IEIs. We
show that the limited set of IS morphological descriptors
(because they might be selected for a classic analysis) suggests
an overlap of IS alterations in CD8+ T cells ofWASP-deficient and
ARPC1B-deficient individuals. However, implementation of
high-definition morphological profiling unravels distinct traits
for each disease entity, with WASP and ARPC1B deficiencies
affecting features of the IS center and periphery, respectively.
Focusing on the recently identified ARPC1B deficiency, we

further exemplify the potential of HCI to extract robust quantifica-
tion of cellular events with high spatial resolution at the single-cell
level. In particular, staining of perforin combined with acquisition
of 8 confocal planes covering a deep layer of the IS allows
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analysis of lytic granule positioning toward the cell-substrate
interface. Our 3D analysis indicates that ARPC1B deficiency
does not impair lytic granule polarization in the context of 2D syn-
apses. Further analysis of the XYdispersion of lytic granules at the
IS plane across normal individual cells reveals numerous corre-
lateswithmorphological and F-actin-related descriptors, pointing
to the covariates that contribute to lytic granule distribution. Inter-
estingly, ARPC1B deficiency appears to reverse the correlation
between dispersion of lytic granules and radial distribution of
F-actin. These findings motivated complementary investigation
of lytic granule and F-actin dynamics by live imaging. Our data
indicate that the reduced cytotoxic activity of CD8+ T cells from
ARPC1B-deficient individuals is mostly related to loss of coordi-
nation between F-actin distribution and lytic granule distribution
at the IS plane. Distinct secondary events, such as compensatory
mechanisms (e.g., the level of ARPC1A expression) or mutations
in other modifier genes, might differentially compensate for the
ARPC1B-related defects in the different individuals and explain
themore restricted defects we observed in our study (Randzavola
et al., 2019; Somech et al., 2017). Our focused study of ARPC1B
deficiency illustrates the potential of HCI to provide guidance for
implementation of complementary low-throughput assays to
assess morphological and functional defects. At this stage, we
cannot generalize the case of ARPC1B deficiency in establishing
a systematic relationship between IS alteration and functional de-
fects. However, it is interesting that multiple IEIs have been found
by us and others to be associated with IS defects and functional
impairment (Gil-Krzewska et al., 2018; Kalinichenko et al., 2021;
Mace and Orange, 2014; Pfajfer et al., 2017; Salzer et al., 2016).
Previous reports have also shown that IEIs where the IS is defec-
tive fail to eliminate target cells (Mace and Orange, 2014; Mizesko
et al., 2013; Pfajfer et al., 2017). Systematic analysis of multiple
such pathologies and corresponding cellular models would
certainly provide a unique opportunity to establish rules linking
morphology to function.

Here we provide an innovative HCI approach that surpasses
current approaches in unbiasedly detecting morphological traits
of lymphocyte populations upon activation. We thoroughly
report the experimental and computational methods and provide
all scripts used in the analysis to maximize the reproducibility of
the approach developed here. Further research will be needed to
leverage application of HCI to different blood-derived cell sub-
sets, with foreseeable translation into the fields of cancer therapy
and personalized medicine.
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Dupré, L., Vasconcelos, Z., Malphettes, M., Moshous, D., Neven, B., et al.

(2019). Lymphoproliferative disease in patients with Wiskott-Aldrich syn-

drome: Analysis of the French Registry of Primary Immunodeficiencies.

J. Allergy Clin. Immunol. 143, 2311–2315.e7.

de Groot, R., L€uthi, J., Lindsay, H., Holtackers, R., and Pelkmans, L. (2018).

Large-scale image-based profiling of single-cell phenotypes in arrayed

CRISPR-Cas9 gene perturbation screens. Mol. Syst. Biol. 14, e8064.

De Meester, J., Calvez, R., Valitutti, S., and Dupré, L. (2010). The Wiskott-Al-
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Mouse anti-human NKp30 antibody, clone P30-15 BioLegend Cat#325202; RRID:AB_756106

Mouse anti-human NKp30 antibody, clone #210847 R&D systems Cat#MAB18491; RRID:AB_2149445
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Institut Universitaire du Cancer

de Toulouse - Oncopole,

Toulouse, France

Somech et al., 2017

Brigida et al., 2018

Dupré et al., 2002

De Meester et al., 2010

Cheminant et al., 2019

Chemicals, peptides, and recombinant proteins

Phalloidin-Alexa Fluor 488 ThermoFisher Scientific Cat#A12379

40,6-diamidino-2-phenylindole, DAPI ThermoFisher Scientific Cat#D1306; RRID:AB_2629482

Recombinant human ICAM-1/Fc chimera R&D systems Cat#720-IC

Ionomycin Sigma-Aldrich Cat#I0634-5MG

Phorbol 12-myristate 13-acetate, PMA Sigma-Aldrich Cat#79346-1MG

Latrunculin B Abcam Cat#ab144291

Jasplakinolide Calbiochem Cat#420127-50UG

Blebbistatin Sigma-Aldrich Cat#B0560-1MG
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Arp2/3 Complex Inhibitor II, CK-869 MedChemExpress Cat#HY-16927-10mM/1ml

Wiskostatin Sigma-Aldrich Cat#W2270-5MG

Formin FH2 Domain Inhibitor, SMIFH2 Calbiochem Cat#344092-10MG
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Loı̈c Dupré
(loic.dupre@inserm.fr).

Materials availability
Raw images of individual experimental sets can be obtained upon request.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Dimethyl sulfoxide, DMSO Sigma-Aldrich Cat#41640-1L-M

Phytohaemagglutinin, PHA ThermoFisher Scientific Cat#R30852801

Recombinant human IL-2 Peprotech Cat#200-02

Aphidicolin Sigma Aldrich Cat#A0781

CellTrace Violet ThermoFisher Scientific Cat#C34571

Fibronectin Sigma Aldrich Cat#F1141-1MG

Cell Tracker green CMFDA ThermoFisher Scientific Cat#C7025

SiR-actin Tebu-bio Cat#SC001

LysoTracker Blue ThermoFisher Scientific Cat#L7525

Protease and Phosphatase Inhibitor Cocktail ThermoFisher Scientific Cat#78442

Poly-L-Lysine Solution (0.01%) Merck Cat#A-005-C

Paraformaldehyde 16%, EM grade ThermoFisher Scientific Cat#50-980-489

Critical commercial assays

EasySep Human CD8+ T cell enrichment kit StemCell Cat#19053

MagniSort Human NK enrichment kit Invitrogen Cat#8804-6819

Super Signal West Pico Chemiluminescence Substrate ThermoFisher Scientific Cat#34080

Deposited data

Morphological measurements This manuscript FigShare: https://doi.org/10.6084/

m9.figshare.11619960

Experimental models: Cell lines

NK-92 lymphoblastic natural killer cell line, originating

from the peripheral blood of a male subject

ATCC Cat#CRL-2407; RRID:CVCL_2142

Jurkat lymphoblastic T cell line, originating from the

peripheral blood of a male subject

ATCC Cat#TIB-152; RRID:CVCL_0367

P815 mastocytoma cell line of murine origin (DBA/2 strain) ATCC Cat#TIB-64; RRID:CVCL_2154

Software and algorithms

FlowJo BD FlowJo 10.7.2

R The R Foundation R 3.5.1

Excel Microsoft 1902

umap-learn McInnes et al., 2018 0.3.6

robustbase CRAN 0.93

randomforest CRAN 4.6

CellProfiler McQuin et al., 2018 3.0

ggplot2 CRAN 3.1.1

Harmony high-content imaging and analysis software PerkinElmer HH17000012

Analysis notebooks This manuscript Zenodo: https://doi.org/10.5281/

zenodo.4562363

Other

CellCarrier-384 Ultra Microplates PerkinElmer Cat#6057300
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Data and code availability
All the CellProfiler pipelines and morphological measurements used in this analysis are made available on FigShare with the DOI
10.6084/m9.figshare.11619960. The analyses can be found and reproduced using the Docker image and scripts provided via Zen-
odo: https://doi.org/10.5281/zenodo.4562363

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and primary cells
Jurkat cells were cultured in RPMI (GIBCO) supplemented with 10%FBS, 100U/ml penicillin/streptomycin, 1 mMsodiumpyruvate, 1X
non-essential amino acids and 10 mM HEPES (all from ThermoFisher Scientific). NK-92 cells were cultured according to the recom-
mendations from ATCC. Primary NK cells were purified from freshly isolated PBMCs using the MagniSort Human NK enrichment kit
(Invitrogen) and maintained in RPMI supplemented with 5% human serum, 100 U/ml penicillin/streptomycin, 1 mM sodium pyruvate,
1X non-essential amino acids and 10mMHEPES. Primary CD8+ T cells were purified from frozen PBMCs of three healthy donors, three
ARPC1B-deficient patients and threeWASP-deficient patients by negative selection using the EasySepHumanCD8+ T cell enrichment
kit (StemCell Technologies, Inc.). CD8+ T cells were stimulated inRPMI supplementedwith 5%human serum, 100U/ml penicillin/strep-
tomycin, 1 mM sodium pyruvate, 1X non-essential amino acids, 10 mM HEPES, 1 mg/ml PHA and 100 IU/ml IL-2. CD8+ T cells were
expanded for further rounds every two weeks with a mixture of irradiated PBMCs from three normal donors. Peripheral blood from
healthy donors and patients was obtained in accordance with the 1964 Helsinki declaration and its later amendments or ethical stan-
dards. Informed consents were approved by the relevant local Institutional Ethical Committees.

Patients
ARPC1B Patient 1 (ARPC1B-Pt1, male, 15 years) corresponds to Pt1 in the study by Brigida et al. (2018). The patient carries a
c.64+1G > C splice donor variant in the ARPC1B gene resulting in insertion of 21 nucleotides from intron 2 and usage of an alternative
splice site with partial intron retention and maintenance of the reading frame. ARPC1B-Pt1 was initially described as having a subpop-
ulation (21%) of T cells expressing normal levels of ARPC1B (as detected by flow cytometry), possibly resulting from a secondary mu-
tation. However, expanded CD8+ T cells failed to express ARPC1B (Figure S5B). ARPC1B-Pt2 (male, 2 months) corresponds to Pt2 in
the study by Somech et al. (2017) and to Pt7 in the study byBrigida et al. (2018). ARPC1B-Pt2 carries a 2-bp deletion (n.c.G623DEL-TC)
causing a putative frameshift resulting in premature termination (p.V208VfsX20). The ARPC1Bprotein was not detected (short fragment
could theoretically be expressed but remain undetected; see Figure S5B). ARPC1B Pt3 (male, 4 years) is a patient with early disease
onset. He carries an homozygous 2-bp duplication (c.613_614dup), leading to a frameshift and premature termination (p.H206YfsX16).
ARPC1B protein failed to be detected by western blotting in the T cells from the patient (Figure S5B). WAS-Pt1 (male, 1 year) corre-
sponds to patient WAS1 in the study by De Meester et al. (2010). WAS-Pt1 carries a WAS gene nonstop mutation (c.1509A > C), re-
sulting in undetectableWASP expression in the PBMC-derived CD8+ T cells (Figure S5A). WAS-Pt2 (male, 5 years) corresponds to pa-
tient WAS2 in the study by Dupré et al. (2002). WAS-Pt2 carries a 2-nucleotide deletion (ag) in exon 4 (position 484 to 485) resulting in a
stop codon (codon 167). Accordingly, no WASP expression was detected in the expanded CD8+ T cells from the patient (Figure S5A).
WAS-Pt3 (male, 51 years) corresponds to patient P10 in the study by Cheminant et al. (2019). WAS-Pt3 carries a c.1453G > A mis-
splicing mutation. This patient was reported to express revertant WASP in a minor fraction of peripheral lymphocytes. However we
failed to detect WASP expression in the expanded CD8+ T cells from the patient (Figure S5A).

METHODS DETAILS

Flow cytometry-based NK-92 cell degranulation
NK-92 cells were incubated for 1 hr with Blebbistatin (5, 10 and 50 mM), CK-869 (10, 25 and 50 mM), Jasplakinolide (0.1, 1 and 2.5 mM),
Latrunculin B (0.1, 0.25 and 0.5 mM), SMIFH2 (50, 100 and 250 mM), Wiskostatin (10, 50 and 100 mM), Y-27632 (5, 10 and 25 mM) and
DMSO as control (all drugs fromMerck). For stimulation cells were transferred into a 96 well plate (Nunc MaxiSorp) coated overnight
at 4!C with 5 mg/ml anti-NKp30 Ab and 0.4 mg/ml recombinant human ICAM-1-Fc chimera (R&D Systems) in PBS, briefly spun down
and further incubated in the presence of chemical compounds and anti-CD107a Ab for 4 hr. Following incubation, NK-92 cells were
stained with anti-CD56 and anti-CD107a Ab for 30 min, washed, fixed and analyzed using LSR-Fortessa flow cytometer.

Cytotoxicity assay
Target P815 cells were stained for 30 min with Cell Tracker green CMFDA (ThermoFisher Scientific) and coated with 0 to 10 mg/ml
anti-CD3 Ab (OKT3, eBiosciences) for one hour at 37!C. They were also treated with 0.2 mg/ml aphidicolin to prevent proliferation
during assessment of killing. CD8+ T cells were stained in parallel with CellTrace Violet (CTV, ThermoFisher Scientific). Stained
P815 and CD8+ T cells were seeded at a 1 to 1 ratio in a 384-well plate precoated with 1 mg/ml fibronectin and incubated at
37!C, 5% C02 for 24 hr. Cells were imaged on an automated spinning disk confocal HCS device (Opera Phenix, PerkinElmer) with
a 20x objective, necessitating 25 fields of view per well for full surface coverage. Residual alive target cells were counted automat-
ically with the Harmony software on the basis of their size and CMFDA staining. Percentage of killing was calculated as 100 - (100 x
residual alive target cells / unexposed target cells).
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Live microscopy
Eight-well chamber slides (IbiTreat, ibidi) were coated overnight with 4 mg/ml recombinant human ICAM-1-Fc chimera (R&DSystems)
and 10 mg/ml anti-CD3 Ab (OKT3, eBiosciences) at 4!C. Cells were stained with 2 mMSiR-actin (tebu-bio) and 1 mMLysoTracker Blue
(ThermoFisher Scientific) for 1 hr at 37!C before transfer to the pre-warmed coated slides. Cells were imaged on a Nikon inverted
spinning disk confocal microscope equipped with an oil immersion 40X objective (NA 1.3), a SCMOS camera (6.5 mm/pixels) and
a temperature and CO2 controlled chamber. Acquisition of SiR-actin, LysoTracker Blue and DIC were done over multiple wells at
1 image every 35 s for a total of 61 frames.

Phenotypic analysis
Expanded CD8+ T cells from normal donors and ARPC1B-deficient patients were stained with fluorochrome-coupled Ab recognizing
the extracellular markers CD8 (BioLegend) and LFA-1 (BioLegend) for 30 min at 4!C. Intracellular staining was performed following
fixation and permeabilization, with Ab specific for perforin (BioLegend) and granzyme B (BD Pharmigen) for 45 min at 4!C. The data
were acquired on a MacsQuant Q10 (Miltenyi) and analyzed with FlowJo. Student’s t test was used to calculate significance.

Western blotting
Cell extracts were prepared from 103 106 expanded CD8+ T cells. Briefly, T cells were washed in PBS and resuspended in RIPA lysis
buffer (Millipore), supplemented with protease and phosphatase inhibitor cocktail (ThermoFisher Scientific). After 20 min on ice,
lysates were cleared by centrifugation. Laemmli sample buffer (BioRad) was added to supernatants and, after boiling, samples
were subjected to SDS-PAGE. Proteins were transferred to nitrocellulose membranes (GE Healthcare). WASP and ARPC1B were
detected with, respectively, anti-WASP Ab (H-250, Santa Cruz Biotechnology) and anti-ARPC1B Ab (HPA004832, Sigma Aldrich),
followed by secondary HRP-conjugated anti-rabbit Ab (Cell Signaling). Control of protein loading was performed by hybridizing
the same membranes with anti-GAPDH or anti-HSP90 Abs (both from Santa Cruz Biotechnology). Detection was performed using
the Super Signal West Pico Chemiluminescence Substrate (ThermoFisher Scientific).

Staining for high-content imaging
CellCarrier-384 Ultra tissue culture treated plates (PerkinElmer) were coated with either 0.1 mg/ml poly-L-lysine (Merck) or a combina-
tion of 2 mg/ml recombinant human ICAM-1-Fc chimera (R&DSystems), 1 mg/ml NKp30 (MAB18491, R&D systems) and 1 mg/ml NKp46
(557487, BD Biosciences). NK-92 cells were cultured in IL-2 free medium overnight. NK-92 cells or primary NK cells were seeded at
15000 and 5000 cells per well, respectively and incubated for 30 min at 37!C. Cells were fixed with 3% paraformaldehyde (Thermo-
Fisher Scientific) and stained with anti-perforin Ab (dG9, Biolegend) and phalloidin-AF 488 (ThermoFisher Scientific). AF 555-conju-
gated goat anti-mouse IgG2bAb (ThermoFisher Scientific) was used to reveal perforin staining. Nuclei were stainedwithDAPI (Thermo-
Fisher Scientific).

NK-92 cells were treated with 5, 10 and 50 mM Blebbistatin, 10, 25 and 50 mMCK-869, 0.1, 1 and 2.5 mM Jasplakinolide, 0.1, 0.25
and 0.5 mM Latrunculin B, 50, 100 and 250 mM SMIFH2, 10 50 and 100 mMWiskostatin and 5, 10 and 25 mM Y-27632 (all drugs from
Merck) for 30 min at 37!C and washed twice in PBS before seeding onto the plates and letting them adhere for 30 min. The same
procedure was applied to primary NK cells treated with 5, 10, 25 and 50 mM CK-869 and 25 50, 100 and 250 mM SMIFH2.

CellCarrier-384 Ultra tissue culture treated plates were coated with either 0.1 mg/ml poly-L-lysine or a combination of 2 mg/ml re-
combinant human ICAM-1-Fc chimera (R&D Systems) and 10 mg/ml anti-CD3 Ab (OKT3, eBioscience). Jurkat cells or untransformed
CD8+ T cells were seeded at 10000 and 5000 cells per well, respectively and incubated for 15 min at 37!C. Cells were fixed with 3%
paraformaldehyde and stained with anti-LFA-1 Ab (clone HI-111, BioLegend) and phalloidin-AF 488 (ThermoFisher Scientific) in per-
meabilization buffer (eBioscience). AF 647-conjugated goat anti-mouse IgG1 Ab (ThermoFisher Scientific) was used to reveal LFA-1
staining. CD8+ T cells were in addition stained with anti-perforin Ab and AF 555-conjugated goat anti-mouse Ab (ThermoFisher Sci-
entific) was used to reveal perforin staining. Where indicated, cells were stained with anti-CD8 Ab instead of anti-LFA-1 Ab. Nuclei
were stained with DAPI. Stained cells were kept in PBS at 4!C until imaging. Comparisons of samples or treatments were done within
the same staining/acquisition batches, as well as within the same plates to avoid possible bias due to staining intensity variability. To
account for possible well-to-well variability, each well was replicated at least 3 times.

Image acquisition and processing
Images were acquired on an automated spinning disk confocal HCS device (Opera Phenix, PerkinElmer) equipped with a 40x 1.1 NA
Plan Apochromat water immersion objective and 4 sCMOS cameras (16 bits, 21603 2160 pixels, 6.5 mm pixel size), allowing simul-
taneous acquisition in 4 channels. For each well, 40 automatically selected fields and 8 Z-planes per field (0.5 mm step, starting from
the cell-substrate contact plane) were acquired, making use of a spinning microlens disk. For the experiment on primary NK cells,
only 31 fields of view and 6 Z-planes were imaged, while 13 fields and 13 Z-planes were imaged in the experiment on WASP-
and ARPC1B-deficient patients.Where indicated, stacks of imageswere combinedwithmaximumprojection of 4 focal slices in prox-
imity of the cell-substrate contact plane (z from 2 to 5 with a 0.5 mm step). Image datasets were processed with CellProfiler 3.0
(McQuin et al., 2018) (see Data and code availability). In brief, the image quality was assessed, the intensities for experiments
with high background noise were log-transformed, the illumination on each image was corrected based on background intensities,
and DNA precipitations were avoided by multiplying intensities on DAPI channel by phalloidin intensities before segmenting cell

e4 Cell Reports 36, 109318, July 6, 2021

Resource
ll

OPEN ACCESS



nuclei using global minimum cross entropy thresholding. A secondary segmentation of the cytoplasms was performed using the
watershed method (Vincent and Soille, 1991) and global minimum cross entropy thresholding on the phalloidin channel. Image
sets with low maximal DNA intensity or showing no nucleus were discarded. Cells having more than 30% of their cytoplasm surface
at less than 5 pixels of another cell were removed, in order to ignore clusters of cells and to focus on single cells displaying an IS. Small
actin speckles in the cytoplasm at more than 3 pixels from the membrane as well as speckles of perforin and secondary objects
spanned around the nuclei by LFA-1 staining were segmented. Additionally, primary NK and expanded CD8+ T cells with low
CD8 intensities (if stained) or associated with less than two perforin granules were excluded from the analysis. Finally, measurements
were acquired for colocalization of these objects, intensities in the nuclei and cytoplasms, granularity on all channels, textural and
shape features, intensity distributions, distance and overlap between objects, number of speckles and neighbors less than 10 pixels
away. The average and the standard deviation per field of view of these features were kept. This led to 1898 and 2076 morphological
features in NK-92 and Jurkat cells respectively. For primary NK cells and expanded patient CD8+ T cells, features related to actin
speckles were excluded, as they were not found to be informative, resulting in 2386 and 1780 features, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing and visualization
Analyses in R 3.5.1 with the data visualization package ggplot2 3.1.1 andMicrosoft Excel (Version 1902) were subsequently conduct-
ed. A smaller set of informative morphological features was selected and the quality of processed images was checked by (i)
removing wells with low maximal DNA intensity and cell count, (ii) removing features and images generating missing values and
(iii) removing constant features in the study dataset or the subset of negative controls used as reference. From these images passing
our quality checks, up to 16 raw summary variables were extracted, based on their interpretability and on their known relevance to
describe the IS. The fold changes compared to unstimulated or untreated controls were further reported and displayed in the form or
radar charts. On the other hand, for all features, per-image values X were transformed successively with the following functions f1 and
f2, with XControl the negative controls in X on which the dataset is normalized:

f1 Xð Þ= log X + 1$ Xð Þð Þ

f2 Xð Þ=X $median XControlð Þ
mad XControlð Þ

To remove redundancy in the set of features used for downstream analyses, we ensured that the selected variables were not exces-
sively linearly correlated. To do so, all features were ordered from highest to lowest median absolute deviation (hence by variation in
the experiment compared to negative controls). Starting from the top of this list, all other features linearly correlated to the first feature
with a Pearson’s coefficient higher than 0.6 were excluded. We sequentially went on with the next remaining feature in the list and
iterated until the acquisition of a small and informative set of uncorrelated features. This led to 383 of such features for the drug screen
onNK-92 (Figure 3) and 306 for the experiment on ARPC1B- andWASP-deficient patients (Figure 5), coined comprehensivemorpho-
logical descriptors. This set of features was used for visualization and quantification of the overall morphological changes induced by
perturbations. The dimensionality of the data was reduced using the UMAP algorithm (McInnes et al., 2018) to two dimensions for
visualizations and three dimensions for computation of the statistical significance of morphological effects in the drug screen on
NK-92. This pipeline succeeded in selecting a wide range of features that were not excessively biased by confounders (Figure S3B).

Robust morphological perturbation value
To quantify the significance of overall changes in morphology between a perturbed state and a reference state (healthy or untreated
cells), we defined the Robust Morphological Perturbation Value (RMPV). This extends the concept of Multidimensional Perturbation
Value (Hutz et al., 2013) which defines a single value summarizing the statistical significance ofmorphological changes inmultidimen-
sional spaces, by using robust statistics and the minimum covariance determinant (Rousseeuw and Leroy, 1987) decreasing the
sensitivity to technical (unfiltered artifacts) and biological outliers (images displaying extreme morphologies or uncommon cell
states). In brief, the RMPV is obtained for X the set of all filtered and uncorrelated features and XWT the subset of the data correspond-
ing to images of the reference population in five steps. First, the minimum covariance determinant estimatorMðXWT Þ is calculated to
describe the variation of morphologies observed in the reference set, using its implementation in the R package robustBase version
0.93. Second, this value is used to determine R, the robust Mahalanobis distance of each images of X to XWT (Cabana et al., 2019).

Third, the median value ~R=medainðRÞ was obtained for each drug tested. Fourth, for 2000 iterations the labels of the condition and

the reference were randomly permuted to obtain an empirical distribution of ~R under the assumption that there was no difference
between the multivariate location and scatter of the morphological parameters of the perturbation and the reference. Finally, the
RMPV is defined as the empirical p value obtained from these distributions after FDR adjustment for testing changes in multiple con-
ditions and indicates the probability of observing at least half of the images displaying morphological changes of a similar intensity if
the perturbation was similar to the reference.
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Random forest models
We used the random forest algorithm (Breiman, 2001) with its implementation in the R package randomForest version 4.6 and built
classifier models to characterize the strength and types of the morphological changes observed and identify what was specific of
each cellular condition (chemical perturbation or disease state). In brief, the algorithm generates a set of decision trees. Each tree
is constructed tominimize the number of misclassified entries of a bootstrap sample of the training data by choosing between a fixed
number mtry of randomly selected input features at each split. The final prediction of the model is the most common one out of the
predictions of all individual trees. We trained themodel on the comprehensive set of informative and uncorrelated morphological fea-
tures measured per image – previously used for dimensionality reduction. Each forest included 1000 decision trees. The dataset was
split in 6 folds of equal size (459 feature vectors per fold for the treated NK cells and 126 for the ARPC1B- andWASP-deficient patient
cells), each containing all possible classification labels. To select the optimal number mtry of variables selected at each split, we in-
cremented the parameter value from 20 to 90 by steps of 10 and assessed the performance using the macro F1 score as defined
below in a 5-fold cross-validation scheme. One extra fold was used as validation set to estimate the performance of the model after
selection of the optimal parameters and retraining on all of the 5 folds used for cross-validation. In the case of the drug screen on the
NK-92 cell line, we used a similar approach using the 13 features of known relevance in describing the IS as input, and testing mtry
values from 1 to 13 with steps of 3. Overall, the performance was evaluated using the macro F1 score:

F1 =
1

n

Xn

i = 1

23TPi

23TPi +FPi +FNi

where n is the number of categories in the classification, and TPi, FPi and FNi are respectively the number of true positives, false
positives and false negatives for category i in the validation set. To interpret the feature importance in the prediction, the mean
decrease in accuracy obtained when including each feature was extracted, either for the prediction of a given class or overall using
micro averaging. The total and average importance of features split in distinct groups based on the type of measurements and bio-
logical object described were calculated as well. These feature groups were defined based on the corresponding CellProfiler mea-
surement types and biological objects. Features that did not describe the cytoplasm, nucleus, perforin granules or actin granules
were counted in the ‘‘Other’’ biological object category. Similarly, features that did not correspond to the ‘‘Texture,’’ ‘‘AreaShape,’’
‘‘RadialDistribution,’’ ‘‘Granularity’’ or ‘‘Intensity’’ measurements were grouped under the term ‘‘Other.’’

Regression of morphological descriptors
For the single-cell morphological measurements of ARPC1B-deficient patients and normal donors (Figures 6A and 6B), we modeled
the average radial position of lytic granules per cell, defined as the minimum number of pixels between a perforin granule and the
edge of the segmented cell, in terms of eight other measurements based on the actin staining, using a multiple least-square regres-
sion with intercept. These covariates were describing the geometry of the cell (‘‘AreaShape_Perimeter,’’ ‘‘AreaShape_FormFactor,’’
‘‘AreaShape_MeanRadius,’’ ‘‘AreaShape_MaximumRadius,’’ ‘‘AreaShape_MinorAxisLength’’), the total average actin intensity
(‘‘Intensity_MeanIntensity_CorrActin’’) as well as the radial distribution of the actin at the synaptic plane (‘‘RadialDistribution_
FracAtD_CorrActin1_1of3’’ and ‘‘RadialDistribution_FracAtD_CorrActin1_2of3’’). To note, this corresponds to the intensity fraction
when separating the cell in three concentric regions centered on the nucleus and numbered from 1, for the space directly surrounding
the nucleus, to 3, for the edge of the cell. The third bin was not included in the model as it is purely redundant to the information
contained in bins 1 and 2. Three separate models were obtained across cells from all three normal donors, ARPC1B-Pt1 and
ARPC1B-Pt2, respectively (Table S3).
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4
Discussion

Taken together, the two articles reproduced above demonstrate how HCI is able to quantify
subtle phenotypic changes, which provide valuable information about cellular response to both
intrinsic and extrinsic perturbations. Morphological profiling, relying on the quantification
of changes in morphological descriptors combined with a careful statistical analysis of such
values, takes full advantage of the rich data provided by HCI. The resulting profiles can first be
analysed on their own, for instance to study similarity in drug e�ects as demonstrated in the
first paper, or to characterize di�erent actin defects as performed in the second paper. They
can also be seen as a global depiction of cellular state as assessed from cellular morphology.
Thus, they constitute a layer of valuable information analogous but orthogonal to well-developed
OMICS modalities, and can be complemented and integrated with other sources of data. In
our analyses, we explored the possibilities of data integration when comparing morphological
and PPI network distances, and when contextualizing patient morphological profiles with their
molecular phenotyping. Integrative methods could also be developed further in follow-up studies.
In this chapter, we broadly discuss the implications, limitations, and avenues opened by the work
described in this thesis.
First, we present the developments we envision for the Julia package we implemented. Second,
we examine more broadly how profiling analyses may benefit the characterization of immune
responses. Third, we briefly describe new HCI projects running in our group that were enabled
by the work compiled in the Results chapter, involving both CRISPR knockouts alone or in
combination with chemical perturbations. Fourth, we wonder what role morphological profiling
will play in the future. We then move on more specifically to an understudied aspect of the
profiling workflow, and detail the problems faced when analysing the dispersion of heterogeneous
morphological profiles. Finally, we conclude with a section dedicated to the emerging overlap
between morphological profiling and network medicine.

77
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4.1 Future of BioProfiling.jl

Initially, the development of BioProfiling.jl was prompted by our own needs. Our research group
previously contributed to several studies deriving quantitative metrics from cell imaging, mostly
by using CellProfiler for feature extraction and custom scripts implemented in Python for the
subsequent data analysis (Caldera et al., 2019; Marini Thian et al., 2020; Salzer et al., 2020).
Building on this expertise, I have written and compiled a considerable amount of code, mainly in
R and Python, to perform morphological profiling analyses, notably when working on the study
presented in section 3.2. By switching from an unstructured collection of code to a dedicated
tool following the best practice principles of research software engineering, we achieved several
milestones:

• We greatly increased the internal and external re-usability of the code by making it more
general and adaptable, writing an extensive documentation, and providing detailed and
reproducible examples.

• We made the software more accessible and easier to install, from the main Julia package
registry or through Docker images.

• We formalized and streamlined our approach to morphological profile curation into a
unified framework, where the user iteratively filters entries and selects features of interest,
then applies transformations to the curated dataset. This makes the analysis considerably
clearer and reduces the need for error-prone convoluted custom code.

• We improved the tool’s performance and features, in part by porting the functions to
Julia, allowing parallel computing for the most time-consuming step, and optimizing data
transformation methods.

• All methods got extensively validated via unit testing, thus reducing the likelihood of bugs.

• The code became more maintainable and future-proof, thanks to continuous integration, an
engineering principle promoting the streamlined merging and testing of code contributions,
and to the compatibility features implemented in the central Julia package repository.

• We facilitate the reproducibility of analyses performed with our code, with tagged releases
and DOI identifiers.

• Finally, we encourage collaboration by making the project open source and including
contribution guidelines and a code of conduct.

On the one hand, the release of our tool and the subsequent publication helped to make the
contribution and expertise of our group in the field of bioimage analysis more visible. This
already got us involved in more collaborative image-driven projects. On the other hand, the
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highest scientific impact of BioProfiling.jl will be obtained if the package gets widely adopted by
the community at large. To this end, one of the biggest remaining challenges is to expand our user
base outside of our own group and direct collaborators. This would have the additional benefit of
providing us with valuable constructive feedback from users to further enhance BioProfiling.jl.
Therefore, we have been continuously advertising BioProfiling.jl at venues dedicated to Julia
packages, such as the JuliaCon 2021, and to bioimage analysis, including the Crick BioImage
Analysis Symposium 2021 and the “From Images to Knowledge (I2K) 2022” conference of the
Center for Open Bioimage Analysis and Bioimaging North America.
The relative novelty of the Julia programming language, which is not yet an established industry
standard, acted both as an obstacle and an incentive. On the downside, as fewer researchers
are familiar with it than Python or R, it may seem harder to use than other bioinformatics
software. However, this di�culty is in practice mitigated by a user-friendly syntax and by a
good interoperability of the di�erent languages. Dedicated libraries allow to execute foreign
code in Julia (RCall.jl, PyCall.jl) or Julia code in other languages (JuliaCall, PyJulia). On
the upside, more and more developers recognize the potential that Julia o�ers, and Julia is
progressively becoming a sound and sustainable language choice for bioinformatics applications
by combining performance and ease of use. There is a growing universe of Julia tools for the
analysis of biological data and the budding developer community is very welcoming towards
new packages (Roesch et al., 2021). Overall, it is relatively easy to interact with other package
developers to ensure compatibility and integrate in the existing landscape. It is also easier to
identify existing projects to avoid duplicates and to find an unoccupied niche for a new tool
than in the crowded package ecosystem of more established languages.
This project did not end with the publication of the article and the package keeps maturing.
Many more improvements are planned and under development. New features will include ways
to make the methods more flexible and better deal with missing and non-numerical values.
The performance could also be enhanced by supporting parallel computing for more steps, and
avoiding storing complete datasets in memory via lazy loading, when possible. On the more
conceptual side, the way we quantify distances between morphological profiles could and will be
further improved, as detailed in subsection 4.5.
A last aspect that became evident while working on the analyses presented in the paper is the
scarcity of benchmarking resources for imaging-based screens. This is made especially di�cult
by the variety of tasks performed in HCS experiments, but some open datasets are already
freely available for common tasks such as mechanism of action prediction. Large collections of
genetic and chemical perturbations without any “ground truth”, namely which morphological
e�ects should cluster together, were also publicly shared. Two of the largest and most widely-
used available collections are the Broad Bioimage Benchmark Collection (Ljosa et al., 2012) and
the RxRx datasets from Recursion Pharmaceuticals, including recent cellular images of potential
treatments for COVID-19 (Heiser et al., 2020). The Image Data Resource also aims at improving
the situation by collecting reference imaging datasets along with extensive annotations allowing
to connect the metadata to reference databases and ontologies (Williams et al., 2017).
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4.2 Further profiling human lymphocytes

Our study of the immunological synapse (IS) of cytotoxic lymphocytes, presented in section 3.2,
o�ered insight into how the actin cytoskeleton and the lytic granules are organized and how this
structure is disrupted in the context of actinopathies. Simple machine learning models were able
to precisely infer disease status and perturbations for cellular images based on morphological
measurements. This supported the existence of a strong link between morphology and function,
which could be more generally established in follow-up studies. We also observed that a static
two-dimensional snapshot of the cells only provides an incomplete picture of the state of the IS,
which we complemented by three-dimensional analyses of the synapse organization and live cell
imaging. This is of prime importance when studying T and NK cells, as cytotoxicity is a dynamic
process, and timelapse and dedicated assays are essential for obtaining a finer view of immune
functions, for instance to study motility (Kamnev et al., 2021). Overall, the HCS experiments
we conducted served as an e�cient hypothesis-generating tool, giving a good overview of the
spatial organization of our study object, which can then be completed by additional, more
targeted assays.
In the future, it will also be important to work with models of immune activity that match more
closely human physiology. Organoids have recently been used in image-based screens, showing
that observing the interplay between cells adds considerable value to such experiments (Betge
et al., 2019; Lukonin et al., 2020). Immune cells, which are individually motile, cannot be made
to aggregate into three-dimensional structures, yet they are heavily influenced by interactions,
both with immune cells and with other cell types and pathogens. The identification of infected
cells as non-self drastically modulates the state of immune cells by triggering their activation.
In low throughput cytotoxicity assays, the IS is typically observed by combining a population of
cytotoxic lymphocytes with antigen-presenting or target cells, thus eliciting the formation of the
synapse at their interface (Dupré et al., 2005; Kalinichenko et al., 2021; Mace & Orange, 2014;
Salzer et al., 2016). Follow-up studies might explore whether it is also possible to adapt such
co-culture methods to high-throughput assays. The interactions between host cells are shaping
the immune response as well. The lymphocytes do not act in isolation, but are part of a complex
system involving many cell types. This was well illustrated by Vladimer and colleagues, who
screened a large chemical library on leukocytes from peripheral blood and observed that around
10% of the perturbations a�ected physical cell-cell interactions (Vladimer et al., 2017). Thus,
they demonstrated that such interactions can be seen as a hallmark of immune response. Overall,
our understanding of immunity is evolving rapidly, and more cell types have been recently shown
to participate, including structural cells and red blood cells (Krausgruber et al., 2020; Lam et al.,
2021). Integrating inter-cellular context, microenvironment and activation state of immune cells
will therefore be a major challenge and opportunity to unravel the molecular basis of inborn
errors of immunity, infections and cancers, and hopefully lead to novel treatments.
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4.3 Understanding biological systems through perturbations

The e�orts described in this thesis fall within our attempts to better characterize biological
systems through their response to cellular perturbations. HCI o�ers a scalable and systematic
way to quantify e�ects of genetic and chemical libraries. This allows us to look for principles
underlying such responses. Accordingly, we strive to compile an arithmetic of cellular perturba-
tions, permitting to predict the e�ect of combinatorial perturbations based on the knowledge of
the biological system and of the e�ect of each individual perturbation in isolation. This approach
was already adopted by our research group in a study of drug-drug interactions (Caldera
et al., 2019). In this work, both structural and functional annotations of the compounds
and the localization of their molecular targets on the interactome helped to contextualize
the interactions. This project and the design of the perturbation arithmetic framework were
discussed in depth in the doctoral thesis of Dr. Michael Caldera (Caldera, 2020).
Tackling the technological and analytical challenges inherent to HCI screens paves the way for
larger and more systematic experiments. In addition to the published articles described above,
I also worked on the design and analysis of large-scale screens, involving CRISPR knockouts
in isolation or in combination with chemical treatments. This project was highly collaborative
and involved researchers with di�erent and complementary skill sets. It was conceptualized by
Prof. Jörg Menche and me, with inputs from our collaborators. The group of Ass.-Prof. Joanna
Loizou, and in particular Joana Ferreira da Silva, led the experimental work for the generation
of the sgRNA library and shared their experience with the U-2-OS cell line. The group of
Dr. Vanja Nagy, and in particular Christopher Fell and Viktoriia Kartysh, also participated
in the generation of the library, brought their expertise with the SK-N-AS cell line and took
care of the cell culture, transfection and seeding steps. The group of Dr. Loïc Dupré, and in
particular Dr. Anton Kamnev, handled the staining and imaging of the cells and the preparation
of the Jurkat cell line. The screening facility at CeMM, and in particular Anna Koren, assisted
us with the preparation of the chemical library and the automated image acquisition on the
PerkinElmer Operetta HCS platform. Data was also generated on the PerkinElmer Opera
Phenix microscope from the group of Prof. Giulio Superti-Furga, which kindly gave us access.
Finally, our group is in charge of all computational analyses. Raphael Bednarsky, supervised
by Prof. Jörg Menche and myself, wrote his master’s thesis on an analysis of a subset of the
genetic screens. I already analysed the data pertaining to chemical perturbations on their own,
as presented in section 3.1. Finally, I am currently conducting all downstream data analyses
across all remaining experiments.
These screening e�orts are divided into two parts. First, we aimed to systematically explore the
e�ect of intrinsic, genetic perturbations on cellular morphology, and the role of the biological
context by using the same perturbations in di�erent cell lines (Figure 4.1a). The first step was
to design an sgRNA library which targets 240 genes. The selection of genetic targets was based,
among other criteria, on their expected tendency to induce morphological changes, based on
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Figure 4.1: First part of the follow-up project dealing with genetic perturbations. a) Outline of the
experiments. b) Most common disease associations among the 240 genes targeted in our experiment,
according to the DisGeNET database (Pinero et al., 2015). c) Example images showing the morphological
impact of RPL31 and FGD1 knockouts compared to a non-targeting control in Jurkat cells.

published data and simulations. The resulting library includes multiple Rho-GTPases and actin
cytoskeleton remodelers, as they play an essential role in cell morphology (Svitkina, 2018) and
genes related to several rare monogenic diseases, in particular inborn errors of immunity (Brigida
et al., 2018; Dupré et al., 2015; Pfajfer et al., 2018) and neurodevelopmental disorders (Zamboni
et al., 2018). Here as well, we benefit from the expertise of our experimental collaborators, who
contribute their knowledge regarding gene editing, intellectual disabilities and inborn errors of
immunity. The library, focusing on a limited number of genes, is practical and cost-e�cient,
and still covers multiple biological pathways and disease associations (Figure 4.1b).
Following its design, the library was synthesized and used to conduct genetic screens. Oligonu-
cleotides were purchased to target four sites per gene. They were further inserted into pLCV3
vectors from Horizon Discovery, including the cas9 gene and a puromycin resistance gene. The
four guides per gene were pooled, so that each well of three 96-well plates targets a given gene
or includes a non-targeting control, and cloned into lentiviral particles. The neuroblastoma
cell line SK-N-AS, the T lymphocyte line Jurkat and the osteosarcoma cell line U-2-OS were
transduced in microplates with this library, and successfully transfected cells were selected with
puromycin. The cells were then fixed, stained for DNA, beta-actin and total protein, and imaged
on the PerkinElmer Opera Phenix automated microscope. The resulting images display distinct
cellular morphology induced by some of the knockouts (Figure 4.1c).
The second part of the project is dedicated to the creation of the first map of chemical-
genetic interactions in a human cell line. Thus, we are expanding the lab’s previous work
on combinatorial perturbations. Experimentally, this was achieved by systematically testing
combinations of one chemical compound with one gene knockout from our custom sgRNA
library. As for the assembly of the genetic library, compounds in the drug library were selected
to maximize morphological activity and relevance in a broad biological context. We pursue
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the hypothesis that basic principles of cellular response to perturbations are encoded in the
interactome and that we can use cell morphology to observe and decipher these principles.
Recent advances in the characterization of complex genetic interactions (Kuzmin et al., 2018) and
drug-gene interactions (Piotrowski et al., 2017) were made in yeast solely based on growth assays.
We believe that HCI has the potential to describe more precisely how di�erent perturbations are
a�ecting each other. Interactions between perturbations are typically defined as a deviation from
the simple additive e�ect of the individual perturbations (Iorio et al., 2016). Our research group
previously generalized this idea and expanded an existing computational framework (Caldera
et al., 2019; Fischer et al., 2015) to allow for a detailed characterization of how intrinsic and
extrinsic perturbations combine at the cell-level, for a well-defined and controlled model system.
In this project, we tackle chemical-genetic interactions, representing extrinsic and intrinsic cel-
lular perturbations, respectively, and aim to derive potential suppression (negative interaction),
enhancement (positive interaction) and new e�ects that emerge as a result of the perturbation
combination. We first knocked out genes in U-2-OS cells and plated them on drug plates
(Figure 4.2a). We then acquired images using the PerkinElmer Operetta high-content analysis
system, from which we extract quantitative descriptors of cellular morphology. In brief, we
quantify the e�ect of two perturbations as vectors in a morphological space. An interaction
then corresponds to a di�erence between the sum of the vectors of the individual perturbations
and the measured vector of the combined perturbation (Figure 4.2b). Using this conceptual
framework, we aim to identify and characterize the interactions in our model system. This goes
beyond the traditional undirected interactions inferred from one-dimensional readout assays,
such as cytotoxicity assays, and gives more insight about the molecular phenomena occurring,
as morphology is an informative marker of cell function. We already collected the data and the
investigations of interactions are ongoing. Some gene knockouts and compounds induce clear
morphological changes (Figure 4.2c). In addition to investigating basic principles of gene-drug
interactions, we envision that our work may contribute to advancing precision medicine. This
could be done both by applying the principles uncovered, and through the validation of specific
observations made in the screen. A careful selection of our experimental model system aims to
expedite this ambition, while at the same time ensuring the more direct impact of this project
on the biology of rare monogenic diseases. To this end, we chose to work with human cell lines
and a selection of genes that are amenable to high-throughput imaging, as well as potentially
relevant in the context of known genetic defects. Gene knockouts can indeed help to identify
drug candidates in compound screens. For example, mutations in the LMNA gene that cause
laminopathies can be rescued by remodelin, a small molecule targeting NAT10 (Larrieu et al.,
2014).
Finally, by characterizing the obtained map of drug-gene interactions in a systematic manner, for
example through network clusters and motifs, we hope to identify underlying rules contributing
to the understanding of how intrinsic and extrinsic cell perturbations combine and a�ect the
cell morphology. Overall, we expect to (i) gain new insights into the landscape of directed
drug-gene interactions, (ii) expand our understanding of perturbations of molecular interactome
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Figure 4.2: Second part of the follow-up project dealing with mixed chemical and genetic perturbations.
a) Outline of the experiments. b) Interaction framework describing how two perturbations combine.
Three types of interactions (left) can coexist and combine in 18 di�erent outcomes (center). An example
(right) shows how a reduced change in the morphological space in the direction spanned by the genetic
perturbation could correspond to a drug rescue. c) Example images showing the e�ect of pentamidine
with and without a knockout of PLXNB1, compared to DMSO-treated U-2-OS cells transduced with a
non-targeting control sgRNA.

networks and (iii) identify core principles of how perturbations interact with each other that may
also apply to other biological systems. This approach harnesses the power of systems biology
and networks science to go beyond what can be concluded from the interactions individually,
allowing for improved system-wide conclusions (Barabási et al., 2011), and embodies our vision
that morphological profiling can work hand in hand with network medicine.

4.4 Expanding the reach of morphological profiling

Morphology is a complex phenotype linked to the global organization of the cell and resulting
from the complex interplay between many actors, including organelles, tubulin and actin cy-
toskeletons. In this context, the phrase “Form follows function” is often used to emphasize that
cell shape is a comprehensive readout that can be linked to cellular function, from migration
to cell-cell interactions and structural properties of tissues (Caldera, 2020; Sailem et al., 2014).
HCS can thus provide a more reliable marker of activity in many biological processes than
molecular readouts, such as transcriptome- or proteome-level measurements, which are often
poorly correlating with each other and weakly predict downstream e�ects including translation
and signaling (Brunner et al., 2020; Gabor et al., 2021; Tuncbag et al., 2016). Thanks to a
relatively low price per sample and an increasing availability of automated microscopes, HCS
may serve as a reference multipurpose assay. It is able to provide single cell measurements, at
a high-throughput and with high-dimensional readout, and includes spatial information that is



4.4. EXPANDING THE REACH OF MORPHOLOGICAL PROFILING 85

missing from many other assays. Yet, technologies based on sequencing and mass spectrometry
tend to be favored for many applications. One of the reasons for this is certainly the di�culty
to convert the raw images into usable and informative descriptions of the molecular changes
that cells undergo. Conceivably, this may be eased more and more by advances in the field of
morphological profiling. An overarching goal for HCS is therefore to reach the maturity level
su�cient to be considered as an additional OMICS technology, to be used on its own or in
integrative approaches.
The parallel development of other spatially-resolved assays could also blur the line between
HCS and OMICS analyses. Crowned “method of the year” in 2020 by the journal Nature
Methods (Marx, 2021), spatial transcriptomics combines gene expression and local information
in tissue, at the resolution of a couple of cells. Common methods include FISH techniques,
mentioned above in subsection 1.2.1, or involve massive parallel sequencing performed on spots
of biological tissues after imaging, such as proposed by the popular Visium platform from 10x
Genomics. Other emerging spatially-resolved technologies also include imaging mass cytometry,
o�ering to simultaneously stain for tens of markers in pathology images, which already found
applications ranging from breast cancer to COVID-19 (Jackson et al., 2020; Rendeiro et al.,
2021), and multiplexed imaging, allowing for instance the combined detection of RNA and
protein abundance (Schulz et al., 2018). Here as well, the data is best interpreted by integration
across multiple modalities. For example, traditional histological images were used to increase
the resolution of spatial transcriptomics experiments (Bergenstråhle et al., 2021; Pang et al.,
2021). This suggests that methods to integrate spatially-resolved data with other data types
will remain an important research direction.
Novel screening technologies also emerged, allowing the combined acquisition of morphological
and genetic readouts, and often being high-throughput and suitable for large-scale genetic
screens (Bock et al., 2022). Some methods allow for the physical isolation of cells with a morpho-
logical phenotype of choice (Schraivogel et al., 2022; Wheeler et al., 2020). Other methods rely
on in-situ sequencing, where fluorescent barcodes are used to identify perturbations (Feldman
et al., 2019; Reicher et al., 2020; Wang et al., 2019). If they become more popular, they could
lead to significant changes in the subsequent analysis steps. For instance, comparisons between
conditions would be made more direct, as there would no longer be plate layout e�ects. As
for the arrayed setup proposed by de Groot and colleagues, which performs CRISPR editing
in a subset of the imaged cells by low rate transient transfections, each image could include its
own negative control in the form of unperturbed cells (de Groot et al., 2018). Real multimodal
readouts could also be considered, allowing to simultaneously monitor the internal state of a
cell at the transcriptional level, and the resulting morphology. This would provide a tool of
choice to further refine the link between genotype and phenotype. However, the adoption of
these methods to replace arrayed screens with more cost-e�ective alternatives will depend on the
technological advances of pooled screens in general, as some issues such as their low sensitivity
still remain.
As hinted by our ability to classify ARPC1B- and WASP-deficient patients, or by the recent
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report of the prediction of lung cancer variants from HCS-derived features (Caicedo et al.,
2021), it might be possible to di�erentiate between a limited number of genetic defects based
on morphology alone. Yet, image-based profiles are likely to be best used not as a replacement
of technologies describing the internal state of the cells but as a complementary view, closer to
the function served by these cells. Independently from experimental setups providing multiple
readouts, attempts to integrate and contextualize morphological information with other data
sources are also becoming more common. For instance, studies put together morphological and
transcriptomic profiles, derived from HCS and from the L1000 assay, to propose quantitative
models of the relation between both feature types (Haghighi et al., 2021; Nassiri & McCall, 2018).
The informativeness and reproducibility of both modalities were also extensively compared and
their combination appeared beneficial (Way et al., 2021b).

4.5 Importance of distances to quantify morphological activity

In our analyses, we observed that the choice of a distance metric to quantify morphological
activity has strong implications, and that the most suitable choice depends on specific require-
ments of the data at hand. HCI o�ers a rich readout which makes it possible to systematically
describe di�erences compared to a baseline state, as with OMICS technologies. However, no
general conclusion can be drawn when the e�ect or the sample size is not su�cient to guarantee
that the observed e�ects are not entirely stochastic. Determining which perturbations induce
statistically significant changes before characterizing such changes is therefore essential, yet
sometimes neglected.
The mp-value approach, introduced above in subsection 1.2.6, proposes an empirical test to
quantify whether the centers of two profile distributions, typically corresponding to a pertur-
bation and a reference, di�er significantly. We wanted a modern and computationally e�cient
implementation of such principles and specifically aimed to make the analyses unbiased by
biological and technical outliers, as they are common in HCI data. To achieve these goals,
we used robust statistics and non-linear dimensionality reduction, which is able to recapitulate
e�ects that linear methods such as PCA would miss, in both studies compiled in this thesis.
In our analyses, we quantified morphological distances in the low-dimensional space obtained
after running UMAP (Mcinnes et al., 2018). In short, the method starts by building a fuzzy
neighborhood graph by linking each data point to its closest neighbors, accounting for the
uneven spatial distribution of the data. It then finds a projection of this graph to a low-
dimensional Euclidean space that best preserves some of its characteristics. Ideally, one would
keep the ability of the method to represent complex data structures in a computationally
e�cient way while avoiding the significant distortion induced by the graph layout step (Cooley
et al., 2020). As mentioned in the paper describing BioProfiling.jl, working in the original
space is often intractable and typically limited by the so-called curse of dimensionality. An
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appealing alternative that our group is currently pursuing would be to measure distances in the
neighborhood-based graph assembled by the UMAP algorithm while avoiding the subsequent
bias-inducing projection step. Network distances could then be used to quantify changes between
profiles for di�erent conditions, now corresponding to distinct sets of nodes.
Whether on such a graph, in the original dataset, or in the reduced space, many di�erent metrics
can be used and are able to convey di�erent properties of the data. In the analyses we conducted,
I mainly quantified morphological distances with the Mahalanobis and the Hellinger distances.
They di�er in that the former compares a point to a distribution while the latter considers two
distributions, although they both are measuring distances between two location estimators. This
means that two profiles may have a null distance if they have the same center despite having
di�erent variances. It might be tempting to also compare the spread of these distributions and
consider that a perturbation that induces an increase or a decrease in the heterogeneity of the
profiles should be considered morphologically active. However, this would require to carefully
consider what the profiles actually represent. Most assays di�erentiate between technical and
biological replicates, when measurements are performed multiple times on the same sample, or
on multiple samples, respectively (Blainey et al., 2014). Biological replicates are considered “true
replicates”, as they increase the number of independent statistical sampling out of the biological
distribution of interest. They are usually performed for secondary screens where the sensitivity of
the test is important in order to confirm or invalidate previous findings, but not systematically
conducted for primary screens (Malo et al., 2006). Technical replicates, on the other hand,
are useful to reduce the variance in the sampling process and mitigate eventual experimental
mistakes or artifacts, but fail to provide information about the variance of the biological process
studied. HCS analyses constitute an analogous case. Screens often provide a large number of
images per well, each displaying multiple cells, yet all measurements performed in the same well
arise from a single treatment and cannot give insight into the robustness or heterogeneity of the
perturbation. This has concrete implications regarding the interpretation of distances between
profiles: When comparing profiles corresponding to technical replicates, such as multiple image-
level profiles originating from the same well per condition, one first needs to ensure that the
measurements are equally reproducible in all conditions. It is only then possible to attribute the
observed variation in cell morphology to the e�ect of the perturbation. For instance, this could
be an issue when a condition a�ects the cell count and the image-based profiles are aggregating
cell-level measurements. Profiles would then show more variation in conditions a�ecting cell
viability than in the conditions with a large number of cells. Additionally, when comparing
profiles corresponding to biological replicates, a di�erence of spread could also correspond to
varying responses to the perturbation, such as incomplete penetrance of a phenotype, varying
genetic editing rates, or simply di�erent outcomes of cell count bottlenecks. There are therefore
multiple factors that may increase the spread of morphological profiles. Among those, the main
factors that we presented are also illustrated on Figure 4.3. Disentangling all these putative
causes of profile variation is a major challenge but has the potential to provide valuable insight
about cellular response to perturbations.
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Figure 4.3: Schematic depiction of how di�erent biological and technical parameters may a�ect the
dispersion of morphological profiles. Biological heterogeneity corresponds to an actual variability in
phenotype between samples. Technical variation covers all the changes that can be attributed to the
experimental design and setup. Incomplete penetrance refers to the cases where a phenotypic change
might only be visible in a fraction of the studied population. All these parameters may lead, in isolation
or in combination, to the heterogeneity observed between measurements for a given condition. It is
therefore necessary to implement proper experimental controls and replicates to unravel these e�ects and
interpret profile heterogeneity.
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Figure 4.4: Interaction of high-content screening, morphological profiling and network medicine. We
envision that the following “virtuous circle” may hold the key to the fast generation and testing of
biological hypotheses. The proposed approach would combine emerging techniques from the field of high-
content screening, morphological profiling and network medicine and benefit from a cross-disciplinary
synergy bringing together experimental and computational biologists.

4.6 Interfacing morphological profiling and network medicine

Taken together, the manuscripts compiled in this thesis and the ongoing projects in our research
group contribute to develop the link between morphological profiling and network medicine.
Advances in the field of morphological profiling and new tools such as BioProfiling.jl make
it increasingly more convenient and practical to assemble a comprehensive and quantitative
description of changes occurring in image-based screens. However, this should only be seen as a
means to an end, and should foster downstream analyses aiming to address major research ques-
tions and provide novel biological insight. To this end, the combination of morphological profiling
and network medicine o�ers an appealing solution, as morphological profiling is dedicated to
transforming raw imaging data into quantitative profiles that can be further interrogated, and
network medicine is especially suitable to integrate and interpret well-curated data. On the
one hand, network medicine proposes to generate hypotheses from existing data based on well-
defined goals, such as how to target a protein, trigger a signaling cascade or explain the etiology
of a disease. On the other hand, HCS and morphological profiling make it possible to quickly
test such hypotheses experimentally, assess perturbation e�ects and guide follow-up assays.
They embody how in vitro and in silico approaches may complement each other to advance our
knowledge of biological systems. The potential synergy between HCI, morphological profiling
and network medicine, as depicted in Figure 4.4, is supported by advances in these fields,
including our own contributions. We conclude that such a virtuous circle holds the key to the
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concrete implementation of the aims described in section 2 and in Figure 2.1, that is to test
system-level hypotheses at a high-throughput and unlock the full information available from a
screening readout.
A striking example is drug development, where independent approaches to prioritize and assess
candidate drugs based on both morphology and molecular network properties were described,
even for the same disease. Here, we may use COVID-19, the disease caused by the SARS-CoV-2
virus infection, as a study case for which many relevant articles were published in the span of
two years, to address the challenges of the resulting pandemic. It was suggested at an early
stage that existing data about other human coronaviruses integrated in PPI networks could
support drug repurposing (Zhou et al., 2020). Rapidly, a large group of researchers formed a
consortium to produce and share a high-confidence map of interactions between SARS-CoV-2
and human proteins, and found that some of them are druggable targets (Gordon et al., 2020).
This valuable resource was later used by multiple studies, and notably to assess multiple network-
based methods for drug repurposing (Morselli Gysi et al., 2021). Moreover, network approaches
were used to integrate the various data available from multiple sources about all actors involved
in the disease (Verstraete et al., 2020). The relevant scientific literature was also parsed and
summarized into knowledge graphs specific of COVID-19 (Sharma et al., 2021). Independently,
several groups developed screens for the unbiased image-based identification of approved drugs to
revert morphological e�ects of SARS-CoV-2 infections in cell lines (Bakowski et al., 2021; Ellinger
et al., 2021; Heiser et al., 2020), to study infection-induced platelet aggregation (Nishikawa et al.,
2021) and to reduce the resulting fibrosis (Marwick et al., 2021). Of note, the latter study also
used a network-based pathway analysis to explore the mechanism of action of its targets. The
e�orts made in describing the spatial organization of the disease were not limited to screens but
also aimed to better understand the underlying mechanisms. For instance a landscape of lung
pathology was assembled using imaging mass cytometry (Rendeiro et al., 2021). HCS methods,
albeit limited to the analysis of single intensity parameters, were also able to distinguish between
healthy and infected cell populations (Francis et al., 2021) or to support the maintained activity
of drugs for multiple variants of concern (Vangeel et al., 2022).
All in all, the amount of articles describing HCS and network medicine methods to tackle
the problems caused by the emerging infectious disease, and the prominence of this body of
work, are remarkable. This demonstrates nicely the flexibility and the many promises of these
approaches, as well as their success within the research community. Nevertheless, it should
be noted that no novel treatment was approved as a direct result of these publications so far,
which emphasizes how challenging the clinical translation of biomedical research is. However,
these strategies are maturing rapidly, among others within the framework of precision medicine.
Methods delivering an informed decision based on molecular measurements of a patient are now
reaching outside of academic research, and are making good progress regarding drug development
for multiple diseases. For instance, a platform proposing the ex-vivo prioritization of treatments
in patients with hematological cancers based on an image-based functional assay underwent
a successful prospective study (NCT03096821) and is now followed-up by a larger-scope ran-
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domized study (NCT04470947) (Kornauth et al., 2021). The technology used in this trial is
also developed commercially by Allcyte, a company recently acquired by Exscientia, which itself
focuses on modern computational approaches to drug discovery and is supporting a phase 1 trial
(NCT04727138). Recursion Pharmaceuticals, a company specialized on the automated analysis
of cellular morphology, is conducting a phase 2 clinical trial for cerebral cavernous malformation
(NCT05085561), following previous work done by its founders (Gibson et al., 2015). The
field of network medicine also explored new treatment options, notably with applications to
oncology (Nogales et al., 2021). System-level insight guided the development of preclinical
studies for drug repurposing aiming to ease the testing of in silico approaches (Schmidt, 2018).
Of note, a study investigated repurposed drugs to treat glioblastoma in a phase 1 and 2 trial
(NCT02770378), and justified the e�cacy of its protocol based on the altered signaling and
metabolic networks observed in patients (Kast et al., 2014). Overall, we hope to see more
contributions of modern computational approaches integrated with high-throughput and high-
content experiments to both basic biology and medical applications in the future.
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Appendix

Supplementary material - BioProfiling.jl: Profiling biological

perturbations with high-content imaging in single cells and

heterogeneous populations

This section reproduces the supplementary material corresponding to the paper entitled “Bio-
Profiling.jl: Profiling biological perturbations with high-content imaging in single cells and
heterogeneous populations” presentend in section 3.1.

122



(a) Morphological space
 Single cells, no filtering

(b) Example of filtered cells

Supp. Figure 1: Filtering of artifacts and biological outliers is required for defining an informative morphological space. 
(a) UMAP embedding preserving the Euclidean distance between the morphological profiles of single cells in the plate seeded with 750 
cells per well and without any filtering. Cells that we excluded from further analysis based on a set of feature thresholds (see Methods) are 
highlighted in brown. Six individual cells are labeled with a unique identifier. Marginal plots show relative density of filtered and kept cells. 
(b) Cropped images of six example cells discarded from further analyses along with their unique identifier. Channels are CellMask (red), 
phalloidin (green) and DAPI (blue). All images are shown at the same scale.
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(a) Morphological space
 1500 cells per well

(c) Hit agreement between
 seeding densities

(b) Identification of hits
 1500 cells per well

Supp. Figure 2: BioProfiling.jl profiles of plates seeded with 750 and 1500 cells per well show similarities. (a) UMAP embedding 
preserving the cosine distance between the morphological profiles aggregated per field of view in the plate seeded with 1500 cells per 
well. Two out of four dimensions are represented. (b) Robust Hellinger distance and Robust Morphological Perturbation Value (FDR-cor-
rected p-value) of each compound in the plate seeded with 1500 cells per well compared to DMSO. Vertical dotted line indicates an FDR 
threshold of 0.1 and all compounds on its left are defined as morphological hits. (c) FDR-corrected p-value of the significance of morpho-
logical changes induced by each compound in both plates. Dotted lines indicate an FDR threshold of 0.1 and a number indicates the 
number of points in each of the regions delineated by the dotted lines.
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Supp. Figure 3: BioProfiling.jl supports various approaches to hit detection. (a) FDR-corrected p-value of the significance of 
morphological changes induced by each compound based either on the robust Hellinger distance in the UMAP-reduced space or the 
Mahalanobis distance to the center of the DMSO profiles in the original space.(b) PCA embedding of the morphological profiles aggregat-
ed per field of view in the plate seeded with 750 cells per well. (c) FDR-corrected p-value of the significance of morphological changes 
induced by each compound based either on the robust Hellinger distance in the UMAP-reduced space or the Mahalanobis distance to the 
center of the DMSO profiles in the PCA space. In (a) and (c), dotted lines indicate an FDR threshold of 0.1 and a number indicates the 
number of points in each of the regions delineated by the dotted lines.



Supp. Figure 4: BioProfiling.jl generates robust morphological profiles from CellPainting experiments. (a-b) UMAP embedding 
preserving the Euclidean distance between the morphological profiles aggregated per well in plate 1 (a) or plate 2 (b), subsetted to non-tar-
getting controls and overexpression of CTNNB1 and KRAS. (c) Robust Hellinger Distance (RHD) between each perturbation and the 
non-targeting profiles in both plates. Data source: Cell Painting Image Collection (see Methods).
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Compound name MOA Targets RMPV750 RMPV1500 Conc.

(+)-Butaclamol hydrochloride 0.2479 0 0.02

(+)-Cyclazocine 0.0288 0.0012 20

(+/-)-Sulfinpyrazone ["Uricosuric blocker"]
["ABCC1", "ABCC2", "FPR1", 
"SLC22A12"] 0.0019 0.0154 20

(-)-JQ1 0.0004 0 20

(-)-Perillic acid 0.157 0.0018 20

(-)-Quinpirole hydrochloride ["Dopamine receptor agonist"]

["DRD2", "DRD3", "DRD4", 
"DRD1", "HTR1A", "HTR2A", 
"HTR2B", "HTR2C"] 0.0016 0.1061 0.2

(-)-trans-(1S,2S)-U-50488 
hydrochloride 0.0087 0.0278 20

(S)-(+)-Camptothecin 0 20

(S)-Propranolol hydrochloride ["Adrenergic receptor antagonist"]
["ADRB2", "ADRB3", "ADRB1", 
"CYP2C19", "HTR1A", "HTR1B"] 0.0287 0 2

(±)-Isoproterenol hydrochloride 20

(±)-Methoxyverapamil 
hydrochloride 0.2

(±)-Metoprolol (+)-tartrate 0.2

(±)-Octoclothepin maleate 20

(±)-SKF-38393 hydrochloride 20

(±)-Sulpiride 0.02

(±)-Verapamil hydrochloride 2

(±)-alpha-Lipoic Acid 2

1,10-Phenanthroline monohydrate 0.0208 0.0026 2

1,7-Dimethylxanthine 0.0558 0.1604 20

2,2'-Bipyridyl 0.0013 0.0308 20

2,3-Dimethoxy-1,4-
naphthoquinone 0.0055 0.0642 0.02

2-Phenylaminoadenosine 0.1222 0 20

2-methoxyestradiol 0 0.1733 2

4-(2-Aminoethyl)benzenesulfonyl 
fluoride hydrochloride 0 0.0015 20

4-Hydroxy-3-
methoxyphenylacetic acid 0 0.1915 20

5-(N,N-hexamethylene)amiloride 0 0 20.000633

5-(N-Ethyl-N-isopropyl)amiloride 0 0 19.999068

5-Bromo-2'-deoxyuridine 0 0 20

5-Fluorouracil 0 0 20

5-azacytidine 0 0 19.99822

5HPP-33 0.398 0.3161 0.02

5alpha-Pregnan-3alpha-ol-20-one 0.0173 0 20

6,7-ADTN hydrobromide 0 0.3031 0.02

6-Nitroso-1,2-benzopyrone 0 0 0.02

7-Cyclopentyl-5-(4-
phenoxy)phenyl-7H-pyrrolo[2,3-
d]pyrimidin-4-ylamine 0.0016 0 20



Compound name MOA Targets RMPV750 RMPV1500 Conc.

A-77636 hydrochloride 20.000382

AC-93253 iodide 0 0 0.2

AEG 3482 0 0 20

AMG 9810 ["TRPV antagonist"] ["TRPV1"] 0.0314 0.0003 2

AZ191 20

Acepromazine maleate ["Dopamine receptor antagonist"]
["ADRA1A", "ADRA1B", "DRD1", 
"DRD2", "HTR1A", "HTR2A"] 0.1114 0.0097 0.02

Adaphostin 20

Albendazole
["Anthelmintic", "Tubulin 
inhibitor"]

["CYP1A2", "CYP2J2", 
"TUBA1A", "TUBB", "TUBB4B"] 0 0 20

Aliskiren

["Antihypertensive", "Peptidase 
inhibitor", "Protease inhibitor", 
"Renin inhibitor"] ["REN"] 0.0063 0.2234 20

Ammonium 
pyrrolidinedithiocarbamate 0 20

Amodiaquine ["Histamine receptor agonist"] ["HNMT", "CYP2C8"] 0 0 20

Amsacrine hydrochloride ["Topoisomerase inhibitor"] ["TOP2A", "KCNH2"] 0.2101 0.5859 2

Ancitabine hydrochloride 0 0 0.2

Apomorphine hydrochloride 
hemihydrate

["DRD2", "DRD5", "ADRA2A", 
"ADRA2B", "ADRA2C", "DRD1", 
"DRD3", "DRD4", "HTR1A", 
"HTR2A", "HTR2B", "HTR2C", 
"TRPA1", "CALY", "HTR1B", 
"HTR1D"] 0.0126 0.0012 1.9999762

Arbidol hydrochloride 0.0039 0.1244 2

Auranofin 20

Aurora-A Inhibitor I 0.1221 0.0731 20.000985

Aurothioglucose 0 20

Azatadine 0.1125 0.6573 20

Azithromycin
["Bacterial 50S ribosomal subunit 
inhibitor"] ["MLNR"] 0.1359 0.1024 2

BAY 61-3606 hydrochloride 
hydrate 0 20

BIO 0 0.0003 20

BIX 01294 trihydrochloride 
hydrate 20

BMS-193885 0 20

BRD3308 0 0 20

BTO-1 0.0842 0.0118 19.998522

BW 723C86 ["Serotonin receptor agonist"] ["HTR2B", "HTR2A", "HTR2C"] 0.0126 0 0.02

Bay 11-7082 20

Bay 11-7085 19.999076

Benidipine hydrochloride ["Calcium channel blocker"]
["CACNA1C", "CACNA1G", 
"CYP3A5"] 0 0 20

Benoxathian hydrochloride 0.0004 0 20

Benzamil hydrochloride

["PKD2L1", "SCNN1A", 
"SCNN1B", "SCNN1G", "ASIC1", 
"SCNN1D", "SLC8A1"] 0.0004 0 20.000339

Benztropine mesylate 0 0 20.00068

Bortezomib 20



Compound name MOA Targets RMPV750 RMPV1500 Conc.

Brefeldin A from Penicillium 
brefeldianum

["Protein synthesis inhibitor", 
"Brefeldin A inhibited guanine 
nucleotide exchange protein 
inhibitor", "Golgi-specific 
brefeldin A-resistance guanine 
nucleotide exchange factor 
inhibitor"]

["ARF1", "ARFGEF1", 
"ARFGEF2", "CYTH2", "GBF1", 
"SAR1A"] 0 0 20

Brequinar sodium salt hydrate 0 0 0.2

Budesonide ["NR3C1", "CYP3A5", "CYP3A7"] 0 0 19.999503

CCCI-01 0 0 20

CCT137690 0 2

CGS-15943 ["Adenosine receptor antagonist"]
["ADORA1", "ADORA2A", 
"ADORA2B", "ADORA3"] 0.1351 0.5604 2

CID 11210285 hydrochloride 0 0 20

CID2858522 0.0053 0 20

CP466722 ["ATM kinase inhibitor"] ["ATM"] 0 0 20

CYM50358 0 0 0.2

Caffeic Acid

["Lipoxygenase inhibitor", "HIV 
integrase inhibitor", "NFkB 
pathway inhibitor", "Nitric oxide 
production inhibitor", "PPAR 
receptor modulator", "TNF 
production inhibitor", "Tumor 
necrosis factor production 
inhibitor"] ["ALOX5", "MIF", "RELA", "TNF"] 0 0.0062 0.0200001

Caffeic acid phenethyl ester ["RELA"] 0.0326 0 0.02

Calcimycin 20

Cantharidic Acid 0.0071 0.0097 20

Cantharidin String[] 0.0053 0 20

Carmofur
["Thymidylate synthase 
inhibitor"] ["TYMS"] 0 0 20

Carvedilol ["Adrenergic receptor antagonist"]

["ADRB1", "ADRB2", "ADRA1A", 
"ADRA1B", "ADRA1D", 
"ADRA2A", "ADRA2B", 
"ADRA2C", "ADRB3", 
"CYP2C19", "CYP2E1", "GJA1", 
"HIF1A", "KCNH2", "NDUFC2", 
"NPPB", "RYR2", "SELE", 
"VCAM1", "VEGFA"] 0 0 20

Cerivastatin 20

Chloroquine ["Antimalarial"]
["CYP2C8", "GSTA2", 
"MRGPRX1", "TLR9", "TNF"] 0 0 20

Chlorpromazine hydrochloride ["Dopamine receptor antagonist"]

["DRD2", "ADRA2A", "ADRA2B", 
"ADRA2C", "DRD1", "DRD3", 
"DRD4", "DRD5", "HRH1", 
"HTR1A", "HTR2A", "HTR2C", 
"HTR6", "HTR7", "ADRA1A", 
"ADRA1B", "ADRA1D", 
"CALM1", "CHRM1", "CHRM3", 
"HRH4", "HTR2B", "KCNH2", 
"KIF11", "ORM1", "ORM2", 
"SMPD1", "TRPC5"] 0.0022 0.6397 0.02



Compound name MOA Targets RMPV750 RMPV1500 Conc.

Chlorprothixene hydrochloride ["Dopamine receptor antagonist"]

["DRD2", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"DRD1", "DRD3", "HRH1", 
"HTR2A", "HTR2B", "HTR2C"] 0 0 20

Cilengitide trifluoroacetic acid 
salt 0 0 20

Cilnidipine ["Calcium channel blocker"] ["CACNA1B", "CACNA1C"] 0.0007 0 20

Cinacalcet 20

Clemizole hydrochloride String[] 0.2636 0 21

Clodronic acid
["SLC25A4", "SLC25A5", 
"SLC25A6"] 0.001 0.0635 20

Clofarabine
["Ribonucleoside reductase 
inhibitor"]

["RRM1", "POLA1", "RRM2", 
"SLC22A8"] 0.0332 0 2

Clomipramine hydrochloride
["Serotonin transporter inhibitor 
(SERT)"]

["SLC6A4", "SLC6A2", 
"CYP2C19", "GSTP1", "HTR2A", 
"HTR2B", "HTR2C", "SLC6A3"] 0.1222 0.041 2

Clotrimazole
["Cytochrome P450 inhibitor", 
"Imidazoline receptor ligand"]

["KCNN4", "CYP3A4", 
"CYP51A1", "NR1I2", "NR1I3", 
"TRPM2", "TRPM4", "TRPM8"] 0 0 20

Colchicine
["TUBB", "GLRA1", "GLRA2", 
"TUBB1"] 0.0167 0.6355 2

Cyclosporin A

["PPIA", "ABCB11", "CAMLG", 
"CYP3A5", "CYP3A7", "FPR1", 
"PPID", "PPIF", "PPP3CA", 
"PPP3R2", "SLC10A1", 
"SLCO1B1", "SLCO1B3"] 0 0 20

Cyproterone acetate

["Androgen receptor antagonist", 
"Progesterone receptor agonist", 
"Testosterone receptor 
antagonist"] ["AR", "ADORA1", "ESR1"] 0 0.0178 0.02

Cytarabine
["Ribonucleotide reductase 
inhibitor"] ["POLB", "POLA1"] 0 0 20

Cytosine-1-beta-D-
arabinofuranoside hydrochloride 0 8.86

D-Cycloserine
["Bacterial cell wall synthesis 
inhibitor"] ["GRIN1"] 0.0791 0.0635 35.985971

D-ribofuranosylbenzimidazole 0.0045 0.0003 20

DCEBIO ["Potassium channel activator"] ["KCNN2", "KCNN3", "KCNN4"] 0 0.6868 20

Danshensu sodium salt 0.0039 0.2793 20

Dantrolene sodium ["Calcium channel blocker"] ["RYR1", "RYR3"] 0.635 0 2

Dequalinium chloride hydrate ["KCNN1", "KCNN3"] 0 0 2

Digitoxin 20

Dihydroartemisinin 0 0 20

Dihydroergotamine

["HTR1D", "HTR1B", "ADRA2A", 
"DRD2", "HTR1E", "HTR1F", 
"HTR2B", "HTR7"] 0.1428 0.0401 20

Dihydroergotamine 
methanesulfonate

["HTR1D", "HTR1B", "ADRA2A", 
"DRD2", "HTR1E", "HTR1F", 
"HTR2B", "HTR7"] 0.0034 0.007 20

Dihydroouabain 0.0053 0 2

Diphenyleneiodonium chloride
["Nitric oxide synthase 
inhibitor"]

["ALDH1A2", "ALDH2", 
"ALDH5A1", "ALDH7A1", 
"NOX3", "XDH"] 0 0 20



Compound name MOA Targets RMPV750 RMPV1500 Conc.

Dipyridamole ["Phosphodiesterase inhibitor"]

["ADA", "PDE5A", "PDE10A", 
"PDE4A", "PDE7B", "PDE8A", 
"PDE8B", "SLC29A1"] 0.3587 0.6785 2

Docetaxel

["TUBB", "BCL2", "MAP2", 
"MAP4", "MAPT", "NR1I2", 
"TUBB1"] 0 0 2

Domperidone ["Dopamine receptor antagonist"]
["DRD2", "DRD3", "ABCG2", 
"CYP3A5"] 0 0 0.2

Doxazosin mesylate ["Adrenergic receptor antagonist"]

["ADRA1D", "ADRA1A", 
"ADRA1B", "CYP2C19", 
"KCNH2", "KCNH6", "KCNH7"] 0.0107 0.6036 2

Doxorubicin ["TOP2A"] 0 0 2

Doxycycline hydrochloride

["Bacterial 30S ribosomal subunit 
inhibitor", "Metalloproteinase 
inhibitor"] ["MMP8", "MMP1"] 0.0004 0 20

Droperidol ["Dopamine receptor antagonist"] ["DRD2", "ADRA1A"] 0.0045 0.3943 20

E-64 0 0.1733 20

Ebastine 0 0 20

Efavirenz ["HIV protease inhibitor"]

["CYP2B6", "CYP2C19", 
"CYP2C8", "CYP3A4", 
"CYP3A5"] 0.1994 0.014 0.0224

Ellipticine ["Topoisomerase inhibitor"] ["TOP2A", "TOP2B"] 0 0 2

Emetine dihydrochloride hydrate ["Protein synthesis inhibitor"] ["RPS2"] 0 0 20

Enclomiphene hydrochloride 20

Endoxifen 0 20

Eptifibatide 0 0.1203 20

Ethinyl Estradiol

["DNA directed DNA polymerase 
stimulant", "Estrogenic 
component in oral 
contraceptives", "Estrogen 
receptor agonist"]

["CYP2C8", "ESR1", "ESR2", 
"NR1I2"] 0.0958 0.0479 0.02

Etoposide
["TOP2A", "CYP2E1", "CYP3A5", 
"TOP2B"] 0 0 20

Flunarizine dihydrochloride ["Calcium channel blocker"]

["CACNA1G", "CACNA1H", 
"CACNA1I", "CALM1", 
"CYP2J2", "HRH1"] 0.0112 0 20

Fluoxetine hydrochloride
["Selective serotonin reuptake 
inhibitor (SSRI)"]

["SLC6A4", "ANO1", "CYP2C19", 
"HTR2B"] 0 0 20

Fluspirilene ["Dopamine receptor antagonist"]

["DRD2", "HTR2A", "CACNG1", 
"HRH1", "HTR1A", "HTR1D", 
"HTR1E"] 0.0206 0 20

Forskolin ["ADCY2", "ADCY5", "GNAS"] 0.0013 0.0003 2

Furamidine dihydrochloride 0 0 20

GANT61 0 0.0003 20

GBR-12909 dihydrochloride 0 0 20

GSK-650394 ["SGK1", "SGK2"] 0 0.0107 0.02

GSK1210151A 0 0 20

GW2974 0 0.0095 20

GW9662 0.0048 0 20

Gefitinib ["EGFR inhibitor"] ["EGFR", "CYP2C19"] 0.0403 0.0024 0.02

Gemcitabine hydrochloride
["Ribonucleotide reductase 
inhibitor"]

["RRM1", "CMPK1", "RRM2", 
"TYMS"] 0 0 20



Fig. 2 Robust morphological profiling of chemical perturbations using BioProfiling.jl.

Compound name MOA Targets RMPV750 RMPV1500 Conc.
Histamine, R(-)-alpha-methyl-, 
dihydrochloride 0.5132 0.1118 0.02

Hydroquinone 0.0728 0.1129 0.02

Hydroxychloroquine ["TLR7", "TLR9"] 0.0763 0 20

IKK-16 dihydrochloride ["IKK inhibitor"] ["IKBKB"] 0 0 0.02

IMS2186 0 0 20

IN-1130 0 0 20.000786

Icaritin 0 0.4267 20

Idarubicin ["TOP2A"] 0 0 20

Idazoxan hydrochloride ["NISCH"] 0 0 2

Imatinib

["BCR-ABL kinase inhibitor", 
"KIT inhibitor", "PDGFR receptor 
inhibitor"]

["ABL1", "KIT", "PDGFRA", 
"BCR", "CSF1R", "PDGFRB", 
"ABCG2", "CYP2C19", 
"CYP2C8", "CYP3A5", "DDR1", 
"NTRK1", "RET"] 0.1198 0 2

Imatinib mesylate

["BCR-ABL kinase inhibitor", 
"KIT inhibitor", "PDGFR receptor 
inhibitor"]

["ABL1", "KIT", "PDGFRA", 
"BCR", "CSF1R", "PDGFRB", 
"ABCG2", "CYP2C19", 
"CYP2C8", "CYP3A5", "DDR1", 
"NTRK1", "RET"] 0.0039 0 20

Imipramine hydrochloride

["Norepinephrine reuptake 
inhibitor", "Serotonin reuptake 
inhibitor"]

["SLC6A2", "SLC6A4", "CHRM2", 
"ADRA1A", "ADRA1B", 
"ADRA1D", "CHRM1", "CHRM3", 
"CHRM4", "CHRM5", 
"CYP2C19", "DRD1", "DRD2", 
"DRD5", "HRH1", "HTR1A", 
"HTR2A", "HTR2C", "HTR6", 
"HTR7", "KCND2", "KCND3", 
"KCNH1", "KCNH2", "SLC6A3"] 0 0 20

Iodoacetamide 0 0 20

Irinotecan 0 20

Isoproterenol 0.1221 0.0733 20

JFD00244 0 0 20

JS-K String[] 0.0066 0.0012 20

K114 0 0 20

KB-R7493 0 0 20

KT203 0 0.0125 2

KU-55933 ["ATM kinase inhibitor"] ["ATM", "PRKDC"] 0.0016 0.001 2

KY-05009 0 0 2.0001077

Kenpaullone
["CDK inhibitor", "Glycogen 
synthase kinase inhibitor"]

["GSK3B", "CDK1", "CDK5", 
"CCNB1", "CDK2", "LCK"] 0 0 20

Ketoconazole ["Sterol demethylase inhibitor"]

["AR", "CYP19A1", "CYP21A2", 
"CYP2C19", "CYP3A5", 
"CYP3A7", "KCNA10"] 0.0013 0 20

Ketotifen fumarate

["Histamine receptor agonist", 
"Histamine receptor ligand", 
"Leukotriene receptor antagonist", 
"Phosphodiesterase inhibitor"]

["HRH1", "PDE4A", "PDE4B", 
"PDE4C", "PDE4D", "PDE7A", 
"PDE7B", "PDE8A", "PDE8B", 
"PGD"] 0.0063 0.3895 20

L-703,606 oxalate salt hydrate 0.0861 0.168 2

L-741,626 0 0 20

L-Cycloserine 0.073 0.1592 0.2



 Robust morphological profiling of chemical perturbations using BioProfiling.jl.

Compound name MOA Targets RMPV750 RMPV1500 Conc.

L-Tryptophan 0.0007 0.0354 2

LDN-214117 0.026 0.0084 2

LP 12 hydrochloride hydrate 0.0007 0 20

LP44 0 0 20

LY-294,002 hydrochloride 0 0 20

Lasofoxifene tartrate 0.2

Lercanidipine hydrochloride 
hemihydrate 0.0019 0 20

Levetiracetam ["Calcium channel blocker"] ["SV2A", "CACNA1B", "SCN1A"] 0.0264 0.1362 20

Loperamide ["Opioid receptor agonist"]

["OPRM1", "OPRD1", 
"CACNA1A", "CALM1", 
"CYP2B6", "CYP2C8", "NPR2", 
"OPRK1", "POMC"] 0 0 20

Loperamide hydrochloride ["Opioid receptor agonist"]

["OPRM1", "OPRD1", 
"CACNA1A", "CALM1", 
"CYP2B6", "CYP2C8", "NPR2", 
"OPRK1", "POMC"] 0 0 20

Loratadine ["Histamine receptor antagonist"] ["HRH1", "CYP2C19", "CYP3A5"] 0.1217 0.1974 0.02

Lorcainide hydrochloride 0 0.0021 2

Lubeluzole dihydrochloride 0 0 20

M-110 0 0 20

MG 624 0 0 20

MK-677 0 0 0.2

ML-7
["Myosin light chain kinase 
inhibitor"] ["MYLK"] 0.0016 0 20

ML240 0.0882 0.0404 0.02

ML324 0 0 20

Maprotiline

["Norepinephrine reuptake 
inhibitor", "Tricyclic 
antidepressant"]

["SLC6A2", "ADRA1A", 
"ADRA1B", "ADRA1D", 
"ADRA2A", "ADRA2B", 
"ADRA2C", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"DRD2", "HRH1", "HTR2A", 
"HTR2C", "HTR7"] 0.0395 0.0015 2

Maprotiline hydrochloride

["Norepinephrine reuptake 
inhibitor", "Tricyclic 
antidepressant"]

["SLC6A2", "ADRA1A", 
"ADRA1B", "ADRA1D", 
"ADRA2A", "ADRA2B", 
"ADRA2C", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"DRD2", "HRH1", "HTR2A", 
"HTR2C", "HTR7"] 0 0 20

Metergoline 20

Methiothepin mesylate 0 0 20

Methoxamine hydrochloride
["ADRA1A", "ADRA1B", 
"ADRA1D"] 0.0013 0.0537 0.2

Metrazoline oxalate 0 0 20

Mibefradil dihydrochloride
["T-type calcium channel 
blocker"]

["CACNA1G", "CACNA1H", 
"CACNA1C", "CACNA1I", 
"ANO1", "CACNA1D", 
"CACNA1F", "CACNA1S", 
"CACNB1", "CACNB2", 
"CACNB3", "CACNB4", 
"CATSPER1", "CATSPER2", 
"CATSPER3", "CATSPER4", 
"CYP3A5", "CYP3A7", "SCN2A", 
"SCN4A", "SCN5A", "SCN9A"] 0 0 0.2



Compound name MOA Targets RMPV750 RMPV1500 Conc.

Mifepristone

["Glucocorticoid receptor 
antagonist", "Progesterone 
receptor antagonist"]

["PGR", "NR3C1", "AR", 
"CYP2B6", "CYP2C8", 
"CYP3A5", "CYP3A7", "NR1I2"] 0.0727 0.0049 20

Mitotane ["Antineoplastic"]
["CYP11B1", "CYP11A1", 
"CYP3A4", "ESR1", "FDX1"] 0.0165 0.1653 20

Mitoxantrone ["Topoisomerase inhibitor"] ["TOP2A", "PIM1"] 0.7198 0.1515 2

Mycophenolic Acid

["Dehydrogenase inhibitor", 
"Inositol monophosphatase 
inhibitor"] ["IMPDH1", "IMPDH2"] 0 0 20

N-p-Tosyl-L-phenylalanine 
chloromethyl ketone 0.0004 0.0015 2

NG-Monomethyl-L-arginine 
acetate 0.0577 0 20

Nestorone 0.0007 0.0594 19.998523

Nicardipine hydrochloride ["Calcium channel blocker"]

["CACNA1C", "ADORA3", 
"ADRA1A", "ADRA1B", 
"ADRA1D", "CACNA1D", 
"CACNA2D1", "CACNB2", 
"CALM1", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"PDE1A", "PDE1B"] 0 0.0764 0.2

Niclosamide
["DNA replication inhibitor", 
"STAT inhibitor"] ["STAT3"] 0.0457 0 2

Nisoldipine ["Calcium channel blocker"]

["CACNA1C", "CACNA1D", 
"CACNA1S", "CACNA2D1", 
"CACNB2", "CYP3A5"] 0 0 20

Nitidine chloride 20

Nocodazole ["Tubulin inhibitor"] ["HPGDS"] 0 0 20

Nortriptyline hydrochloride ["Tricyclic antidepressant"]

["KCNJ10", "SLC6A2", 
"SLC6A4", "ADRA1A", 
"ADRA1B", "ADRA1D", 
"ADRA2A", "ADRA2B", 
"ADRA2C", "ADRB1", "ADRB2", 
"ADRB3", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"CYP2C19", "DRD2", "HRH1", 
"HTR1A", "HTR2A", "HTR2C", 
"HTR6", "PGRMC1", "PIK3CD", 
"SIGMAR1"] 0 0 20

Olanzapine
["Dopamine receptor antagonist", 
"Serotonin receptor antagonist"]

["DRD2", "HTR2A", "HTR2C", 
"DRD1", "DRD3", "DRD4", 
"HRH1", "HTR1A", "HTR1B", 
"HTR1D", "HTR1E", "HTR6", 
"HTR7", "ADRA1A", "ADRA1B", 
"ADRA2A", "ADRA2B", 
"ADRA2C", "ADRB1", "ADRB2", 
"ADRB3", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"CYP2C8", "DRD5", "GABRA1", 
"GABRA2", "GABRA3", 
"GABRA4", "GABRA5", 
"GABRA6", "GABRB1", 
"GABRB2", "GABRB3", 
"GABRD", "GABRE", "GABRG1", 
"GABRG2", "GABRG3", 
"GABRP", "GABRQ", "HRH2", 
"HRH4", "HTR1F", "HTR2B", 
"HTR3A", "HTR5A"] 0.0076 0.0777 20



Compound name MOA Targets RMPV750 RMPV1500 Conc.

Ouabain ["ATPase inhibitor"]

["ATP1A1", "ATP1A2", 
"ATP1A3", "ATP1A4", "ATP1B1", 
"ATP1B2", "ATP1B3", "ATP1B4", 
"FXYD2"] 0 0 20

PAPP 0 0 0.2

PD-407824 0 20

PD153035 hydrochloride 0.0068 0.0057 19.998253

PF-429242 dihydrochloride 0 0 20

PMEG hydrate 0 20

Palonosetron hydrochloride ["Serotonin receptor antagonist"] ["HTR3A"] 0 0.004 0.02

Paroxetine hydrochloride 
hemihydrate (MW = 374.83)

["Selective serotonin reuptake 
inhibitor (SSRI)"]

["SLC6A4", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"HTR2A", "SLC6A2"] 0 0 20.000106

Parthenolide 20

Pazopanib
["KIT inhibitor", "PDGFR receptor 
inhibitor", "VEGFR inhibitor"]

["KDR", "KIT", "FLT1", "FLT4", 
"PDGFRB", "PDGFRA", "BRAF", 
"CSF1R", "CYP2B6", "CYP2C8", 
"CYP2E1", "DDR2", "FGF1", 
"FGFR1", "FGFR3", "ITK", 
"SH2B3"] 0.0037 0 20

Pentamidine ["TRDMT1"] 0 0 20

Pentamidine isethionate ["TRDMT1"] 0 20

Pergolide methanesulfonate ["Dopamine receptor agonist"]

["DRD1", "DRD2", "ADRA2A", 
"ADRA2B", "ADRA2C", "DRD3", 
"DRD4", "DRD5", "HTR1A", 
"HTR1B", "HTR1D", "HTR2A", 
"HTR2B", "HTR2C", "ADRA1A", 
"ADRA1B", "ADRA1D", 
"KCNA5"] 0 0.0512 2

Perphenazine ["Dopamine receptor antagonist"]

["DRD2", "CALM1", "DRD1", 
"HRH1", "HTR2A", "HTR2C", 
"HTR6", "HTR7"] 0.0039 0.0125 0.02

Phenamil methanesulfonate ["TRPV antagonist"] ["PKD2L1"] 0.0325 0.1496 2

Pheniramine maleate ["Histamine receptor antagonist"] ["HRH1"] 0.0169 0.0024 20

Phorbol 12-myristate 13-acetate ["PKC activator"]
["CD4", "KCNT2", "PRKCA", 
"TRPV4"] 0 0 2

Pifithrin-mu ["HSP inhibitor"] ["HSPA1A", "TP53"] 0 0.0003 2

Pimozide ["Dopamine receptor antagonist"]

["DRD2", "DRD3", "CACNA1I", 
"CALM1", "HRH1", "HTR1A", 
"HTR2A", "KCNA10", "KCNH2"] 0.001 0.0174 20

Piperlongumine
["Glutathione transferase 
inhibitor"] String[] 0.0747 0.0144 2

Podophyllotoxin
["Microtubule inhibitor", 
"Tubulin inhibitor"]

["IGF1R", "CASP3", "TOP2A", 
"TUBA4A", "TUBB"] 0.001 0 2

Prazosin hydrochloride ["Adrenergic receptor antagonist"]

["ADRA1A", "ADRA1B", 
"ADRA1D", "ADRA2A", 
"ADRA2B", "ADRA2C", "CDK1", 
"KCNH2", "KCNH6", "KCNH7"] 0 0.0003 0.2

Progesterone

["PGR", "CYP17A1", "NR3C2", 
"CATSPER1", "CATSPER2", 
"CATSPER3", "CATSPER4", 
"CYP2C19", "ESR1", "OPRK1", 
"TRPC5"] 0 0 20



Compound name MOA Targets RMPV750 RMPV1500 Conc.

Proguanil
["Dihydrofolate reductase 
inhibitor"] ["CYP2C19", "DHFR"] 0.0016 0 20

Promazine hydrochloride ["Dopamine receptor antagonist"]

["CHRM5", "DRD2", "ADRA1A", 
"ADRA1B", "ADRA1D", 
"CHRM1", "CHRM2", "CHRM3", 
"CHRM4", "DRD1", "DRD3", 
"DRD4", "HRH1", "HTR2A", 
"HTR2C"] 0.0243 0 2

Propafenone hydrochloride ["Antiarrhythmic"]

["KCNH2", "SCN5A", "ADRB1", 
"ADRB2", "KCNA5", "KCNK2", 
"KCNK3"] 0 0 20

Propionylpromazine 
hydrochloride 0 0 20

Protriptyline hydrochloride ["Tricyclic antidepressant"] ["SLC6A2", "SLC6A4"] 0 0 20

Psoralidin 0 0 20

Pyridostatin trifluoroacetate salt 0 0.1911 20

Quinacrine dihydrochloride 20

Quinidine sulfate 0 20

RN-9893 0.2081 0.1042 0.02

RU-SKI 43 maleate 0 0 20

Rabeprazole sodium
["ATPase inhibitor", "Gastrin 
inhibitor"] ["ATP4A", "CYP2C19"] 0.0919 0 20.000126

Raloxifene hydrochloride

["Estrogen receptor antagonist", 
"Selective estrogen receptor 
modulator (SERM)"]

["ESR1", "ESR2", "ACVRL1", 
"ENG"] 0 0 20

Ranolazine dihydrochloride ["Sodium channel blocker"]
["SCN9A", "SCN10A", "SCN5A", 
"SLC22A2"] 0.0022 0.0209 2

Reserpine
["Vesicular monoamine 
transporter inhibitor"] ["SLC18A2", "SLC18A1"] 0 0 20

Ro 11-1464 0.0028 0 20

Ro 90-7501 ["Beta amyloid inhibitor"] ["APP"] 0 0.0012 20

Roscovitine ["CDK inhibitor"]
["CDK2", "CDK9", "CDK7", 
"CDK1", "CDK5"] 0 0 20

Rotenone ["MT-ND1"] 0.0004 0 20

Ruthenium red 0.0627 0 20

S-(+)-Fluoxetine hydrochloride 0 0.2889 2

S-Methylisothiourea hemisulfate 0.0518 0.2182 20

SB 202190 ["p38 MAPK inhibitor"]

["MAPK14", "AKT1", "ALOX5", 
"CHEK1", "GSK3B", "LCK", 
"MAPK1", "MAPK11", 
"MAPK12", "MAPK8", "PRKCA", 
"ROCK1", "RPS6KB1", "SGK1"] 0 0 2.0000599

SB 415286
["Glycogen synthase kinase 
inhibitor"] ["GSK3B", "GSK3A", "RPS6KB1"] 0 0.0012 20

SB743921 hydrochloride 0 0 20

SID 3712249 0.0025 0 20

SKF 83959 hydrobromide 0.0457 0 20

SMER28 0 0 20

SP600125 0 0 20

SR 59230A oxalate ["Adrenergic receptor antagonist"] ["ADRB3", "ADRB1", "ADRB2"] 0.0107 0 20

SR9243 0.0694 0.0012 20

SU 5416 0.0212 0.3581 2



Compound name MOA Targets RMPV750 RMPV1500 Conc.

SU1498 0 0 20

Sanguinarine chloride 20

Sertaconazole nitrate ["Sterol demethylase inhibitor"] String[] 0.0119 0 20

Stattic 20

Sunitinib

["FLT3 inhibitor", "KIT 
inhibitor", "PDGFR receptor 
inhibitor", "RET tyrosine kinase 
inhibitor", "VEGFR inhibitor"]

["FLT3", "KDR", "KIT", "FLT4", 
"FLT1", "PDGFRA", "PDGFRB", 
"RET", "CSF1R", "FGFR1"] 0 0.3832 20

Supercinnamaldehyde 0 0.0144 20

Suprafenacine 0 0 20

T0070907 0 0 20

TBBz 0.001 0.0026 2

TIC10 angular 0 0 20

Tacrine

["Acetylcholinesterase inhibitor", 
"Acetylcholine release stimulant", 
"Butyrylcholinesterase inhibitor", 
"Potassium channel antagonist"] ["ACHE", "BCHE"] 0 0 20

Tamoxifen citrate 20

Taurine 0 0.4691 20

Testosterone ["Androgen receptor agonist"]
["AR", "CYP19A1", "CYP2C19", 
"CYP2C8", "CYP3A5"] 0.0126 0.0554 20

Tetraethylthiuram disulfide 20

Thiabendazole 0.0103 0.0012 20

Thiocolchicine 0 0 20

Tirapazamine 0.0007 0.0021 2.2628831

Tizanidine hydrochloride ["Adrenergic receptor agonist"]
["ADRA2A", "ADRA2B", 
"ADRA2C", "CYP1A2", "NISCH"] 0 0 20

Tolazoline ["Adrenergic receptor antagonist"]

["ADRA2A", "ADRA2B", 
"ADRA2C", "ADRA1A", "HRH1", 
"HRH2"] 0.0338 0.1042 20

Topotecan hydrochloride hydrate ["Topoisomerase inhibitor"] ["TOP1", "TOP1MT"] 0 0 2

Torin2 0 0 20

Trifluperidol hydrochloride 0.0007 0 20

Triflupromazine hydrochloride ["Dopamine receptor antagonist"]
["HTR2B", "CHRM1", "CHRM2", 
"CHRNA7", "DRD1", "DRD2"] 0 0 20

Trihexyphenidyl
["CHRM1", "CHRM2", "CHRM3", 
"CHRM4", "CHRM5"] 0.0467 0.1044 0.2

Trilostane 0 0 20

Trimipramine maleate

["Norepinephrine reuptake 
inhibitor", "Tricyclic 
antidepressant"]

["SLC6A2", "SLC6A4", 
"SLC6A3", "ADRA1A", 
"ADRA1B", "ADRA2A", 
"ADRA2B", "ADRB1", "ADRB2", 
"ADRB3", "CHRM1", "CHRM2", 
"CHRM3", "CHRM4", "CHRM5", 
"DRD1", "DRD2", "DRD5", 
"HRH1", "HTR1A", "HTR1D", 
"HTR2A", "HTR2C", "HTR3A"] 0.0216 0 20

Tyrphostin AG 879 0 0 20

U-101958 maleate 0.3587 0.1733 2



Supp. Table 1: Compound list in chemical HCS experiment. Description of the name of the screened compounds (CompoundName), their mechanisms 
of action (MOA) and genetic targets (Targets), their robust morphological perturbation value (FDR-corrected p-value for a comparison to matching DMSO 
controls) computed on the plate seeded with 750 cells (RMPV750) or 1500 cells (RMPV1500), as well as their concentration in µM (Conc.). For a 
machine-readable version of this table, see FigShare dataset (DOI: 10.1101/2021.06.18.448961). For accessing the data programatically see the GitHub 
repository (DOI: 10.5281/zenodo.5659932).

Compound name MOA Targets RMPV750 RMPV1500 Conc.

U-62066 0.5627 0.0015 20

U0126
["JAK2", "MAP2K1", "MAP2K2", 
"MAP3K1", "MAP3K2"] 0 0 20

UNC0379 trifluoroacetate salt 0.0013 0 2

Vinblastine
["Microtubule inhibitor", 
"Tubulin inhibitor"]

["TUBB", "JUN", "TUBA1A", 
"TUBD1", "TUBE1", "TUBG1"] 0 0.1859 20

Vincristine sulfate ["TUBB", "TUBA4A"] 0.0004 0 20

Vorinostat 20

WIN 62,577 0.0101 0.0021 2

WZ4003 0 0 0.2

Wiskostatin
["Neural Wiskott-Aldrich 
syndrome protein inhibitor"] ["WAS", "WASL"] 0 0 20

XL388 0 0 20

Y-27632 dihydrochloride
["Rho associated kinase 
inhibitor"]

["ROCK1", "ROCK2", "LRRK2", 
"PKIA", "PKN2", "PRKACA", 
"PRKCE"] 0.0268 0.0057 0.2

Yoda1 0 0.0443 2

alpha-Lobeline hydrochloride 0.0107 0.0347 0.02

beta-Lapachone 20



Supp. Table 2: Top 10 most variable features for the plate seeded with 750 cells per well. Features  are ranked by decreasing median absolute 
deviation. As the data is normalized on the DMSO controls, this corresponds to the features varying the most in response to chemical perturbations across 
the plate.

Rank Feature Type Object
1 Granularity_10_CorrCM_median Granularity, CellMask Cell
2 Granularity_9_CorrCM_median Granularity, CellMask Cell
3 AreaShape_FormFactor_1_median Shape Nucleus
4 AreaShape_Solidity_median Shape Cell
5 AreaShape_Zernike_3_1_1_median Shape Cell
6 Intensity_MassDisplacement_CorrDNA_1_median Intensity distribution, DAPI Nucleus
7 Granularity_7_CorrActin_median Granularity, Phalloidin Cell
8 AreaShape_Compactness_median Shape Cell
9 AreaShape_Compactness_1_median Shape Nucleus
10 RadialDistribution_RadialCV_CorrActin_2of3_median Intensity distribution, Phalloidin Cell



Supp. Table 3: Top 4 most distinctive features (absolute log-fold change of mean field-of-view profiles) as compared to DMSO controls, for 
selected Mechanisms Of Actions (MOAs) for the plate seeded with 750 cells per well. Recurrent features are colored consistently across MOAs.

MOA Feature 1 Feature 2 Feature 3 Feature 4
Glycogen synthase kinase inhibitor RadialDistribution_ZernikeMagnitude_CorrDNA_7_3_median AreaShape_Zernike_8_6_1_median RadialDistribution_ZernikeMagnitude_CorrCM_9_3_median Intensity_MADIntensity_CorrCM_median
CDK inhibitor AreaShape_Zernike_8_6_1_median RadialDistribution_ZernikeMagnitude_CorrCM_9_3_median Intensity_MaxIntensity_CorrCM_median AreaShape_Zernike_4_0_1_median
Histamine receptor antagonist AreaShape_Zernike_4_2_2_median AreaShape_Zernike_4_0_1_median RadialDistribution_ZernikeMagnitude_CorrCM_9_3_median Intensity_MaxIntensity_CorrCM_median
Selective serotonin reuptake inhibitor AreaShape_Zernike_4_2_2_median AreaShape_Zernike_4_0_1_median RadialDistribution_ZernikeMagnitude_CorrDNA_7_3_median Granularity_1_CorrActin_median
Norepinephrine reuptake inhibitor AreaShape_Zernike_4_2_2_median AreaShape_Zernike_4_0_1_median RadialDistribution_ZernikeMagnitude_CorrDNA_7_3_median AreaShape_Zernike_9_3_2_median



APPENDIX 141

Supplementary material - Morphological profiling of human T

and NK lymphocytes by high-content cell imaging

This section reproduces the supplementary material corresponding to the paper entitled “Mor-
phological profiling of human T and NK lymphocytes by high-content cell imaging” presentend
in section 3.2.



Cell Reports, Volume 36

Supplemental information

Morphological profiling of human T and NK

lymphocytes by high-content cell imaging

Yolla German, Loan Vulliard, Anton Kamnev, Laurène Pfajfer, Jakob Huemer, Anna-
Katharina Mautner, Aude Rubio, Artem Kalinichenko, Kaan Boztug, Audrey
Ferrand, Jörg Menche, and Loïc Dupré



Figure S1 | Individual channels and z planes of single cells isolated from representa-
tive fields of view. a. Maximum intensity projection (MIP) of a representative field of view 
of NK-92 cells seeded on PLL (top) or ICAM-1, anti-NKp30 and NKp-46 (bottom), with 
zoom on a single representative cell stained for F-actin (green), perforin granules (yellow) 
and nuclei (DAPI) imaged at 4 z-planes with a step of 0.5 μm and its MIP. b. MIP of a repre-
sentative field of view of Jurkat cells seeded on PLL (top) ICAM-1, anti-CD3 (bottom), with 
zoom on a single cell stained for F-actin (green), LFA-1 (red) and nuclei (DAPI) and imaged 
at 4 z-planes with a step of 0.5 μm and its MIP. Scale bars: Field of view 50 μm and single 
cell 10 μm.  Related to Figure 1.
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Figure S2 | Actin-targeting drugs differentially affect lytic granule exocytosis in  NK-92  
cells. Percentage of LAMP-1+ NK-92 cells upon stimulation with coated ICAM-1 and 
anti-NKp30  Ab.  DMSO  or  actin-targeting  drugs  were  tested  at  the  indicated  concentra-
tions. Histograms correspond to mean ± SD of triplicate measurements. Related to Figure 2.
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Figure S3 | Drug treatment leads to distinct immunological synapse phenotypes in 
NK-92 cells. a. Confusion matrix and class-wise performance of a random forest model 
trained to predict drug treatment based on 13 curated morphological descriptors of NK-92 
seeded on ICAM-1, anti-NKp30 and anti-NKp46. b. Importance of the 13 morphological 
descriptors for the classification described in panel (a). c. UMAP representing the cluster-
ing of all the drugs and the untreated conditions. d. UMAP representing the relations 
between confounders and morphological descriptors, obtained by fitting the UMAP on the 
transpose of the data underlying panel (c). e-f. Violin plots representing the effect size of 
drug concentrations on morphological descriptors for (e) CK-869 and (f) SMIFH2. g. 
FDR-corrected Robust Morphological Perturbation Value (RMPV) of the different drugs.  
Related to Figure 3.
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Overlay CD8 F-actin DAPIPerforin

Normal donors

Figure S4 | Individual morphology of patient CD8+ T cells. a. Average characteristics of 
the IS of CD8+ T cells from patients represented as fold change with respect to the average 
of three normal donors (312-3091 cells per donor or patient). b-d. Representative images of 
CD8+ T cells from (b) normal donors, (c) ARPC1B-deficient or (d) WASP-deficient patients. 
Scale bar: 10 μm. Related to Figure 5.
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Figure S5 | Phenotypic and functional charaterization of CD8+ T cells a-b. Western blot 
analysis of WASP AND ARPC1B expression in the corresponding patients. c. Expression 
levels of CD8, perforin, LFA-1 and granzyme B in the indicated T cells. d. Cytotoxic activity of 
CD8+ T cells against anti-CD3-coated P815 target cells. e. Representative images of 
the interaction of CD8+ T cells (purple) with P815 target cells (green). Arrows point to dead 
target cells. Stars point to ARPC1B-deficient T cells with aberrant morphologies. Related to 
figure 5 and 6.



Table S1 | Mean values and fold increase of immunological synapse parameters in 
NK-92 cells. Mean values of individual parameters pertaining to the immunological synapse 
in NK-92 cells seeded on PLL or ICAM-1, anti-NKp30 and anti-NKp46, and the fold change 
of the ratio of each mean value on the stimulated condition with respect to PLL. Intensity is 
measured in arbitrary units and area in μm2. Related to Figure 1.



Table S2 | Mean values and fold increase of immunological synapse parameters in 
Jurkat cells. Mean values of individual parameters pertaining to the immunological synapse 
in Jurkat cells seeded on PLL or ICAM-1 and anti-CD3, and the fold change of the ratio of 
each mean value on the stimulated condition with respect to PLL. Intensity is measured in 
arbitrary units and area in μm2. Related to Figure 1.



Table S3 | Coefficient values in linear models of the distance between lytic granules 
and cell edges based on morphological descriptors in single lymphocytes. Related to 
Figure 6.

Normal donors Estimate Std. Error t value Pr(>|t|)
Intercept -0.205921 0.1595205 -1.291 0.196754

AreaShape_Perimeter -0.004858 0.0005022 -9.674 < 2e-16
AreaShape_MaximumRadius 0.4582657 0.0158259 28.957 < 2e-16
AreaShape_MinorAxisLength -0.0095155 0.0030981 -3.071 0.002132

AreaShape_MeanRadius 0.3306122 0.0440017 7.514 5.86E-14
AreaShape_FormFactor -0.7657327 0.2011575 -3.807 0.000141

Intensity_MeanIntensity_CorrActin 7.0413384 0.585683 12.022 < 2e-16
RadialDistribution_FracAtD_CorrActin1_1of3 -3.0109743 0.4111895 -7.323 2.47E-13
RadialDistribution_FracAtD_CorrActin1_2of3 3.8917133 0.2652633 14.671 < 2e-16

Adjusted R-squared:  0.2884

ARPC1B-Pt1 Estimate Std. Error t value Pr(>|t|)
Intercept 0.8029111 0.2525619 3.179 0.00148

AreaShape_Perimeter -0.0049727 0.0009152 -5.433 5.61E-08
AreaShape_MaximumRadius 0.5992636 0.0273474 21.913 < 2e-16
AreaShape_MinorAxisLength -0.0060863 0.0072368 -0.841 0.400351

AreaShape_MeanRadius 0.0203988 0.0722717 0.282 0.777754
AreaShape_FormFactor -0.751234 0.2694728 -2.788 0.005313

Intensity_MeanIntensity_CorrActin 5.0379313 1.3418843 3.754 0.000174
RadialDistribution_FracAtD_CorrActin1_1of3 -0.7157633 0.4704314 -1.522 0.128152
RadialDistribution_FracAtD_CorrActin1_2of3 1.3439737 0.3781638 3.554 0.000381

Adjusted R-squared:  0.2878

ARPC1B-Pt2 Estimate Std. Error t value Pr(>|t|)
Intercept 0.0541722 0.180384 0.3 0.763939

AreaShape_Perimeter -0.004052 0.0004741 -8.546 < 2e-16
AreaShape_MaximumRadius 0.5642439 0.0207764 27.158 < 2e-16
AreaShape_MinorAxisLength -0.0157821 0.0043454 -3.632 0.000282

AreaShape_MeanRadius 0.11303 0.0553829 2.041 0.041274
AreaShape_FormFactor -1.1368577 0.2379435 -4.778 1.78E-06

Intensity_MeanIntensity_CorrActin 6.7594643 1.1084589 6.098 1.09E-09
RadialDistribution_FracAtD_CorrActin1_1of3 2.5718437 0.5322001 4.832 1.36E-06
RadialDistribution_FracAtD_CorrActin1_2of3 1.4839242 0.352878 4.205 2.62E-05

Adjusted R-squared:  0.324



Table S4 | Morphological descriptors values of representative cells. The cells are 
described in the same order as shown in Figure 6b. In the CellProfiler analysis, the corre-
sponding parameters in the table are respectively called ‘Mean_FilterNKPerfGranules1_Lo-
cation_Center_X’, ‘Mean_FilterNKPerfGranules1_Location_Center_Y’, ‘Mean_FilterNKPerf-
Granules1_Distance_Minimum_FilterNKCytoplasm’, ‘AreaShape_Perimeter’, ‘AreaShape_-
MaximumRadius’,  ‘AreaShape_MinorAxisLength’, ‘AreaShape_MeanRadius’, ‘AreaShape_-
FormFactor’,  ‘Intensity_MeanIntensity_CorrActin’, ‘RadialDistribution_FracAtD_CorrAc-
tin1_1of3’ and ‘RadialDistribution_FracAtD_CorrActin1_2of3’.  Related to Figure 6.

Donor Row Column Field X Y

Mean 
minimum 
distance 
granule-

edge at z=1
Cell 

perimeter

Cell 
maximum 

radius
Cell minor 
axis length

Cell mean 
radius

Cell 
roundness

Mean 
intensity F-

actin

Radial 
distribution 
at z=1, bin 

1/3

Radial 
distribution 
at z=1, bin 

2/3
ND3 14 8 9 387.75 230.75 4.61511 193.924 18.1108 39.2498 6.61522 0.56706 0.068513 0.11376 0.300318
ND1 3 8 17 734.60385 602.26538 9.81357 198.888 19.0263 42.6223 6.79265 0.567696 0.0646902 0.0723923 0.277189
ND2 4 15 32 172 406.5 13.3571 212.409 17.4642 42.2882 6.60718 0.546465 0.0654103 0.0497074 0.271457

ARPC1B-Pt2 10 13 22 334.70238 591.58333 12.0592 228.859 18.6011 41.7853 6.29407 0.394436 0.0539251 0.146708 0.29765
ARPC1B-Pt2 9 14 27 394.80949 975.90586 8.93749 254.38 18.6815 41.0687 6.2795 0.377715 0.0587798 0.0765422 0.280822
ARPC1B-Pt2 9 14 18 671.72049 157.47093 7.95421 232.001 19 40.6662 6.31474 0.391061 0.0525494 0.0407361 0.276465
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