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Abstract

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease of B cells affecting mostly
elderly individuals. While great improvement in the treatment of CLL has been made through
development of targeted therapy and close patient monitoring, improved methods for stratifying

patients by relative risk and necessity of treatment are still needed.

Biochemical assays powered by next-generation sequencing for chromatin and transcription
profiling in bulk samples and single cells are now amenable to application in primary human
material, providing an opportunity to profile large numbers of patients. These methods generate
rich, high-dimensional data that can be used for patient stratification, treatment recommendation,

and disease monitoring, while at the same time providing insights into the disease mechanisms.

In the course of this thesis work, we explored the value of novel high-dimensional assays
measuring different layers of cellular regulation to provide insights into patient stratification and

disease monitoring in two cohorts of CLL patients.

Profiling the genome-wide chromatin accessibility of a large cohort of CLL patients revealed a
dynamic regulatory landscape dominated by the differentiation state of the cell-of-origin giving rise
to the malignant cells in each patient. Inference of the underlying gene regulatory networks of the
two major groups of CLL cells uncovered key transcription regulators in CLL. Furthermore,
chromatin accessibility data were readily amenable to machine learning-powered classification of
patient samples with high accuracy, attesting to the usefulness of this data type for patient

stratification.

To assess how useful high-dimensional data is for disease monitoring during treatment, we
investigated a second cohort of seven CLL patients starting ibrutinib therapy. Assembling a
longitudinal dataset of immunophenotypes, transcription at single-cell level, and chromatin
accessibility in eight time points, we were able to characterize the biological changes induced by
ibrutinib across several immune cell types. While each cell type was affected differently, we
identified a conserved signature of ibrutinib effect on lymphocytes characterized by a quiescent-like
state as therapy progressed. This signature allowed us to monitor the patient’s molecular response
to treatment and was validated in an independent cohort for which bulk transcriptome profiles were
available. Furthermore, using machine learning algorithms leveraging the vast single-cell dataset,
we developed a method for predicting the speed of response to ibrutinib treatment for individual

patients.

The work in this thesis demonstrates the power of modern high-dimensional assays for genome-

centric, data-driven, personalized treatment and biological understanding of leukemia.






Zusammenfassung

Die chronische lymphatische Leukamie (CLL) ist eine lymphoproliferative Erkrankung der B-Zellen,
an der vor allem altere Patienten erkranken. Obwohl durch die Entwicklung gezielter Therapien
und eine genauere Uberwachung der Patienten zuletzt groRe Erfolge in der Behandlung der CLL
erzielt werden konnten, werden dringend bessere Methoden zur Abschatzung des Risikos und

Behandlungserfolges bendtigt.

Molekularbiologische Methoden basierend auf DNA Sequenzierung erlauben die Analyse des
Epigenoms und Transkriptoms in gro3en Patientenkohorten. Diese Methoden generieren
umfangreiche, hochdimensionale Daten, die zur Stratifizierung von Patienten, zur Empfehlung
bestimmter Behandlungen und zur Uberwachung des Krankheitsverlaufes herangezogen werden

kdénnen, aber auch einen genauen Einblick in die Mechanismen der Erkrankung bieten.

In dieser Dissertation untersuchen wir mittels neuartiger Verfahren verschiedene Ebenen der
Genregulation, und erproben deren Anwendung zur Stratifizierung und Uberwachung von

Patienten in zwei Patientenkohorten mit CLL.

Genomweite Messungen der Chromatinregulation in einer groRen CLL Kohorte zeigten eine sehr
dynamische Regulation, dominiert vom Differenzierungsstatus der urspriinglichen Tumorzellen in
jedem Patienten. Die zugrunde liegenden genregulatorischen Netzwerke in den zwei
Hauptgruppen der CLL werden dominiert von einer Gruppe Transkriptionsfaktoren. Wir konnten
zeigen, dass epigenetische Daten sich gut zur Klassifikation und Stratifizierung von Patienten

durch maschinelles Lernen eignen.

Um die Eignung von hochdimensionellen Daten zur Uberwachung der Erkrankung wahrend der
Behandlung zu prifen, verfolgten wir eine zweite Patientenkohorte von insgesamt sieben
Patienten wahrend der Therapie mit Ibrutinib. Unsere Verlaufsstudie erfasst Uber acht Zeitpunkte
detaillierte Immunphanotypen, Einzelzell-Transkriptome und Chromatin-Daten. Wir konnten durch
Ibrutinib verursachte biologische Veranderungen in verschiedenen Immunzellen charakterisieren.
Obwohl jeder Zelltyp unterschiedlich betroffen war, konnten wir im Laufe der Behandlung eine
allgemeine Signatur von Ibrutinib auf Lymphozyten identifizieren, die an ruhende Zellen erinnert.
Diese Signatur erlaubte uns das Ansprechen der Patienten auf die Therapie zu messen, und
konnte in einer unabhangigen Patientengruppe validiert werden. Auflerdem entwickelten wir

Algorithmen welche die Dauer bis zum Ansprechen der Patienten vorhersagen kénnen.

Diese Dissertation demonstriert eindrucksvoll die Anwendung hochdimensionaler Methoden zur

personalisierten Therapie der Leukdmie und Grundlagenforschung.
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Introduction

Chronic lymphocytic leukemia

Epidemiology, etiology and diagnosis of CLL

Chronic lymphocytic leukemia (CLL) is a mostly incurable disease of blood cells. Being one of the
most common leukemias in Western countries (Rozman & Montserrat, 1995), it affects between 2
to 7 persons per 100,000 (Lenartova et al, 2016; Hao et al, 2019), constituting more than 1% of all
cancers (Siegel et al, 2018). The median age of patients at the time of CLL diagnosis is 70 years,
with only about 10% of patients diagnosed before 55 years of age. The risk of CLL developing in

males is twice that of female individuals (Montserrat et al, 1991).

CLL patients present with an accumulation of monoclonal B cell lymphocytes (lymphocytosis) due
to over-proliferation (Montserrat et al, 1991; Linet et al, 2007). These cells can accumulate in the
bone marrow, spleen, liver and peripheral lymphoid organs, where they overcrowd other cells that
constitute the normal hematopoietic and immune system, preventing their normal differentiation
and function (Montserrat et al, 1991; Rozman & Montserrat, 1995; Linet et al, 2007). This is the
root cause of most symptoms that CLL patients display. CLL cells are generally small mature
lymphocytes with a particularly highly skewed ratio of nucleus-to-cytoplasm (Criel et al, 1997). CLL
cells often form compact proliferation centres together with other cells such as prolymphocytes and

stromal cells in infiltrated tissues (Herishanu et al, 2011; Kipps et al, 2017).

Other leukemias and lymphoproliferative disorders exist with similar global phenotypes and
symptoms, such as Hairy cell leukemia, Mantle cell lymphoma, and Prolymphocytic leukemia
(Campo et al, 2011). A differential diagnosis can be achieved upon observing the morphology of
the cells in a blood smear and the expression levels of specific cell surface markers. The high
expression of CD19, CD5, CD23, and low expression of CD20 and immunoglobulins on the cell
surface is sufficient for the diagnosis of CLL (Rawstron et al, 2018; Kipps et al, 2017; Hallek et al,
2018).

In addition the above separate disease entities, Monoclonal B-cell lymphocytosis (MBL), and Small
Lymphocytic Lymphoma (SLL) share the broad phenotype of CLL cells and are considered to be
the same disease as CLL, albeith with different stages. MBL is considered a pre-malignant stage of
CLL with overall less degree of lymphocytosis, while SLL tends to manifest preferencially in lymph

nodes. Nonetheless, from a biological view they are the same disease (Hallek et al, 2018).
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Cellular signaling in B cells and the pathobiology of CLL

Central to the pathophysiology of CLL is the B cell receptor (BCR) and the cellular signaling
associated with it (Burger & Chiorazzi, 2013). The BCR of normal B cells is formed by a
heterodimer between an immunoglobulin molecule capable of antigen binding, and an intracellular
domain that effects the cellular signaling (Wang & Clark, 2003; Burger & Chiorazzi, 2013). The
extracellular part is formed of a heterodimer of two heavy chain and two light chain immunoglobulin
molecules. Each of the heavy or light chains comprises three parts referred to as V, D, and J.
These are combined in a manner unique to each cell from a number of genes, in a process called
VDJ recombination, which is unique to the immune system (Depoil et al, 2008). One of the sections
of the heavy chain immunoglobulin genes is always one of five isotypes, namely IgG, IgM, IgA,
IgE, and IgD. This process allows the body to produce cells with a myriad of receptor combinations
capable of detecting an astronomical number of antigens (Depoil et al, 2008; Schroeder &
Cavacini, 2010). Rearrangement of the heavy chain immunoglobulins is one of the first steps in the
development of a B cell. The intracellular part of the BCR is constituted by the CD79a and CD79b
heterodimer (also known as Ig-a/lg-B) (Fu et al, 1974; Jondal, 1974; Radaev et al, 2010), which
contain a small transmembrane moiety and immunoreceptor tyrosine-based activation motif (ITAM)
which induces the signaling cascade once the receptor recognizes an antigen (Nel et al, 1984,
Radaev et al, 2010).

Activation of the BCR can induce several signaling pathways. Among the most prominent is the
IKK/Nuclear Factor KB (NFKB) transcription factor pathway. In this case, upon BCR receptor
cross-linking after antigen binding, the CD79 dimer is phosphorylated which in turn activates the
Src family kinase SYK, and the Bruton Tyrosine Kinase (BTK) subsequently (Packard & Cambier,
2013). BTK in turn phosphorilates 1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase
gamma-2 (PLCG2) and Phosphoinositide 3-kinase (PIK3). These last two proteins work to move a
gradient of Phosphatidylinositol 4,5-bisphosphate (PIP2) to the secondary messengers
Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and subsequently into diacylglycerol (DAG) in the
cellular membrane (Koyasu, 2003). Following this cascade, Protein Kinase C beta (PKCB) is
activated by the increased DAG concentration and in turn activates the CARD11-MALT1-BCL10
signalosome (CMB). This important signaling complex activates the IkB kinase, itself composed of
IKKa (aka IKK1 or CHUK) and IKKb (aka IKK2 or IKBKB) and IKKy (also known as NEMO or
IKBKG). IKKb then phosphorylates the NFKB Inhibitor Alpha protein (NFKBIA) which forms a
complex with Nuclear factor NF-kappa-B p105 subunit (NFKB) and the nuclear factor NF-kappa-B
p65 subunit (encoded by the RELA gene) (Kaisho et al, 2001). The relevant activity of NFKBIA is to
sequester p65 in the cytoplasm. Proteosomal degradation of NFKBIA occurs upon its

phosphorylation, which frees the p65-p105 dimer. When free, p105 is post-translationally
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shortened to its N-terminus region making the p50 protein (Fan & Maniatis, 1991). Now, in the p50-
p65 form, the complex translocates to the nucleus where binding to sequence-specific DNA motifs
can activate transcription. NFKB target genes are generally associated with cell survival and cell

proliferation.

An important molecule for BCR signaling is the co-receptor Cluster of Differentiation 19 (CD19). On
the one hand CD19 has a crucial function in BCR signaling by localizing cytoplasmatic signaling
proteins involved in the cascade to the cellular membrane in the vicinity of CD79 (Depoil et al,
2008); on the other hand, it also has a regulatory function on BCR signaling when in complex with
the complement-binding receptor CD21, by lowering the threshold of BCR activation upon antigen
binding (Fearon et al, 2000). In addition to NFKB transcription factor activation, BCR signaling is
also tightly linked to activation of cellular survival and proliferation through activation of the PI3K-
AKT-mTOR signaling axis. Since BCR signaling is conveyed through PIK3 kinases and the
balance of PIP2 to PIP3, another important kinase that is consequentially activated is the AKT
Serine/Threonine Kinase (AKT) (Pogue et al, 2000). AKT has several targets, among which the
most prominent is mechanistic target of rapamycin (mTOR), which in turn participates in numerous
signaling pathways, among which activation of the cell cycle inducing the BRAF-MAPK-MEK-ERK
pathway.

In CLL cells, BCR signaling and several of the pro-proliferative downstream pathways such as
NFKB, PI3SK-AKT-mTOR and MAPK-MEK-ERK signaling are overactive. At the same time,
signaling provided by tumor suppressors p53 and PTEN is suppressed, and several BCL2-like
proteins are overexpressed. This results in the malignant, over-proliferative phenotype of B cells.
There is considerable heterogeneity in both the amount of BCR signaling and the downstream
efects of that cascade on CLL cells between different patients. In CLL patients, different levels of
BCR signaling can cause either increased cell activation or cell anergy — a state of cellular lethargy
caused by chronic surface receptor activation without proper T helper cell engagement. B cell
activation is more common in CLL cells that express unmutated immunoglobulin heavy chain
variable region genes (IGHV), whereas anergy is more often observed in cases expressing
mutated IGHV. Anergic CLL cells have less proliferative capacity in response to BCR signaling
compared with activated cells, and this accounts in part for a more indolent disease in patients with
mutated IGHV genes. This interaction between cellular anergy/activation and IGHV gene mutation
appears to be due to the stage of B cell differentiation of the cell from which the malignant

phenotype originated.

3/115



Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

Normal development of B cells and its influence in CLL
B cells are formed through cellular differentiation within the hematopoietic lineage, which starts

with hematopoietic stem cells (HSC) in the bone marrow. HSCs differentiate throughout a human’s
life into multipotent progenitors and lymphoid progenitor cells — the progenitor of B and T cells
(Corces et al, 2016; Farlik et al, 2016; Buenrostro et al, 2018). Commitment of a progenitor to the B
cell lineage elicits or is concurrent with the process of somatic hypermutation of immunoglobulin
genes, and the arrangement of the immunoglobulin genes of variable (V), diversity (D), and joining
(J) segments (collectively also called VDJ recombination), which with the constant (C) segment
part make the final immunoglobulin gene to be expressed by the B cell (Akira et al, 1987; Bassing
et al, 2002). This process allows the creation of an enormous diversity of antibody conformations

used by the immune system to bind arbitrary foreign antigens.

From this point, B cell development in the bone marrow is dependent on two key selection events:
a) antigen-independent positive selection for the binding of the pre-BRC and BCR receptors and
subsequent signaling (Bannish et al, 2001; Yam-Puc et al, 2018); b) antigen-dependent negative
selection of B cells whose BCR strongly binds self-antigens (Nemazee, 2017; Yam-Puc et al,
2018). To complete maturation, immature B cells migrate to the spleen (transitional T1 B cells),
where they further mature (transitional T2 B cells). Dependent on a complex balance of signaling
stimulus, transitional B cells can become marginal zone (MZ) B cells or follicular (FO) B cells —
completing their maturation and collectively called naive B cells (Yam-Puc et al, 2018). While MZ B
cells remain mostly in the spleen, FO B cells are circulating between secondary and tertiary

lymphoid organs and primary and secondary lymphoid follicles.

When B cells encounter and strongly bind an antigen, a new chapter in B cell development starts.
Antigen binding in FO B cells when supported by adequate T cell help, elicits a strong activation of
B cells which causes proliferation and clonal expansion of the specific antigen-recognizing cell
(Parker, 1993; Yam-Puc et al, 2018). These cells will undergo somatic hypermutation of the
variable immunoglobulin genes to increase affinity for the antigen, in a process that is dependent of
the activation-induced cytidine deaminase (AID) for hypermutation and on several DNA repair
pathways for the proper reparation of DNA breaks (Li, 2004). At the same time, activated B cells
may also undergo a switch in the class of immunoglobulin being expressed. Since naive B cells
express membrane bound IgM or IgD variants, immunoglobulin class switching allows for example
the secretion of antibody to the serum and elicit an immunological action independent of direct
cellular contact. B cells which specialize in antibody production develop further and are called
plasma cells (also known as effector B cells), whereas a smaller fraction of activated B cells
undergoes a different maturation which requires tight interactions with helper T cells, but finally

reside in the germinal centres as long-lived memory B cells.
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In addition to binding antigens and producing antibodies, B cells are also professional antigen-
presenting cells (APCs) and cytokine secreters (Kambayashi & Laufer, 2014). The large spectrum
of immunological functions that B cells display, together with their relatively complex differentiation
process and relative high proliferation rate compared with most other tissues, are likely factors
contributing to the fairly frequent occurrence of hematopoietic malignancies such as CLL in
humans. For CLL in particular, the increasing knowledge of B cell development has brought to light
the interaction of B cell development with the pathogenesis and aggressiveness of CLL, as
demonstrated by the prognostic value of the mutation status of immunoglobulin genes in CLL — a
proxy for the stage of B cell differentiation and a routinely measured clinical variable during patient

prognostication.

Genetic and epigenetic factors of CLL
Germline genetic variation mutation contributing to CLL
A commonly used tool to identify genetic loci associated with a phenotypic trait are genome-wide

association studies (GWAS). In these studies, the genotype of large numbers of donors carrying a
trait of interest (e.g. a disease such as CLL) are compared with the ones from donors not carrying
that trait (i.e. healthy donors) (Gibson, 2018). This allows the discovery of loci containing mostly
single nucleotide polymorphisms (SNP) inherited through the germline that are associated with the
trait. The procedure is usually performed in a discovery cohort and a replication cohort in order to
assess the replicability of the findings. There have been at least eight GWAS studies for CLL,
employing between 700 and 20,000 participants, which cumulatively vyielded 101 unique
associations of genomic loci containing single nucleotide polymorphisms (SNP), all studies recently
jointly analysed in a meta study (Berndt et al, 2016). These include genes with relevance for B cell
biology such as IRF4, but the discovered associations have provided little new insights into with

the development and biological basis of CLL.

Somatic mutation of CLL
There is abundant evidence that somatic genetic alterations influence the development of CLL.

One of the earliest discovered such factors were large chromosomal aberrations present in CLL
cells (Autio et al, 1979; Gahrton et al, 1987; Ross & Stockdill, 1987; Juliusson et al, 1990). These
manifest in alterations to the diploid number of somatic chromosomes (Gahrton et al, 1987), or in
alterations to their structure, such as loss of an arm (Ross & Stockdill, 1987) or translocations
between or within them (Autio et al, 1979). In approximate order of frequency, the most common
chromosomal aberrations in CLL are deletions of chromosome 13q14 (del13q), chromosome 11q
(del11q), trisomy of chromosome 12, amplification of chromosome 2p (amp2p), and deletion of

chromosome 17p (del17p) (Landau et al, 2015). While varying in length and abundance within the
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CLL cells, it is estimated that approximately 80% of CLL patients carry at least one of these major
chromosomal aberrations (Landau et al, 2015). It is thought that these aberrations facilitate or
promote the development of the malignant cells in part due to the genes encoded in those
chromosome parts being of relevance: the del13q region encompasses the cluster of microRNA
(miR) genes 15 and 16, which are known to induce apoptosis by targeting the BCL2 transcript
(Cimmino et al, 2005); del17p overlaps the master tumor suppressor gene TP53 (Campo et al,
2018); del11q often causes absence of the ATM gene, which encodes a protein with DNA-repair
function (Guarini et al, 2012); while the link between trisomy 12 and CLL pathogenesis is less more
difficult to explain. Due to the recurrence and importance of such chromosomal aberrations,
fluorescent in situ hybridization (FISH) assays have been developed and are routinely employed in
routine clinical diagnostic of CLL (Hallek et al, 2018).

With the advent of affordable massively parallel sequencing techniques, a wider repertoire of
somatic mutations was identified (Puente et al, 2011; Wang et al, 2011; Quesada et al, 2012;
Landau et al, 2013; Ramsay et al, 2013; Baliakas et al, 2014; Puente et al, 2015; Landau et al,
2015). Genes that are recurrently mutated in CLL have a role in the processing of messenger and
ribosomal RNA (SF3B1, XPO1, DDX3X, EWSR1, NXF1, XPO4, FUBP1, RPS15), chromatin
modification and regulation (ASXL1, BAZ2A, CHD2, IKZF3, HIST1H1B, HIST1H1E, ZMYMS3,
MED12), DNA damage and cell cycle control (ATM, TP53, POT1, ELF4, CHEK2, DYRK1A, ELF4,
BRCC3), and important signaling pathways (NOTCH1, FBXW7, MYD88, RIPK1, SAMHD1, KRAS,
NRAS, TRAF2, TRAF3, EGR2, IRF4, BCOR, BRAF, MAP2K1, ITPKB, CARD11, GNB1, FUBP1,
MGA, PTPN11, FBXW?7).

While several of these mutations have no or little independent influence on progression-free
survival (PFS) or overall survival (OS) (Landau et al, 2015), the functional consequences of some
have been elucidated. It has been shown for example that activating mutations in Wnt pathway
genes such as WNT1, CHD8, BRD7 and BCL9, reduce the viability of primary CLL cells (Wang et
al, 2014), while mutations in the POT1 gene have caused its protein to be unable to bind telomeric
regions of chromosomes, resulting in chromosomal abnormalities (Ramsay et al, 2013). Other
examples include mutation or deletion of MGA — a regulator of the oncogene MYC (Chigrinova et
al, 2013; Puente et al, 2015; Landau et al, 2015), mutations in IKZF3 (Puente et al, 2015; Landau
et al, 2015) — an important transcription factor in B cells. Nonetheless, for most cases, precisely
how the recurrent mutation of most of genes contributes to growth advantages in CLL cells during

the formation of malignancy remains to be discovered.

In addition, the relative abundance of the mutations within the pool of sampled CLL cells and its

quantification seems variable across different cohorts analyzed with exome and whole-genome
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sequencing. Nonetheless, SF3B1, ATM and NOTCH1 mutations are generally the most abundant
and all other mutations are present in frequencies below 10% (Landau et al, 2013; Baliakas et al,
2014; Puente et al, 2015; Landau et al, 2015).

With the increasing usage of whole genome sequencing recurrent somatic mutations in non-coding
regions occurring in CLL cells are being discovered (Spina & Rossi, 2019). Early examples include
somatic mutations in an intron of the PAX5 gene, which overlaps a regulatory element which is a
putative enhancer element of the PAX5 gene — an important transcription factor for the
development and survival of B cells (Puente et al, 2015). Another example of non-coding mutations
in CLL is a mutation in the 3’ untranslated region of the NOTCH1 gene. This mutation confers to
carrying patients reduced overall survival, mimicking the impact of activating mutations in the

coding region of NOTCH1 that alter the protein’s amino-acid sequence (Puente et al, 2015).

While the genetic landscape of the disease has been the initial focus, genetic variation within a
patient has recently become the subject of increased scrutiny (Ouillette et al, 2013; Landau et al,
2013). It is commonly assumed that all CLL cells within a patient come from a single cell that
developed the malignant phenotype, gaining proliferative or survival advantage over similar other
cells (Ouillette et al, 2013; Gruber et al, 2019). These cells are subject to pressure and constrain
of immune, nutritional, environmental, and therapeutic origin, and therefore under the influence of
natural selection (Quail & Joyce, 2013; McGranahan & Swanton, 2017). This means that cells that
accumulate new mutations are more likely to have an evolutionary advantage, which gives rise to

an evolutionary process with a clonal branching pattern.

Next generation sequencing provides a quantitative way to probe into the somatic genetic
variability between CLL cells in the same patient and therefore a way to reconstruct the clonal
structure of these cells (Landau et al, 2013, 2015). In addition to identifying the various clones
present at the given time of sampling, it is also possible to infer hierarchical relationships between
the present mutations. For example, deletion of chromosome 13, trisomy of chromosome 12 or
mutations in MYD88 are often found in a large majority of CLL cells of a patient, whereas others
such as NOTCH1 or deletion of chromosome 17p tend to occur in subclones (Landau et al, 2013).
By observing these frequencies of these mutations and using parsimonious reasoning, one can
infer that MYD88 mutations are much more likely to have arisen earlier, and that the NOTCH1 and
del17p appeared later in the development of most CLLs (Landau et al, 2013, 2015). Due to this,

the former mutations are thought to be more important in the start of the leukemic process.

Shifts in clonal structure of the CLL cells of a patient have also been observed along disease
progression (Braggio et al, 2012), following treatment and are under great scrutiny for their likely

role in the acquisition of resistance to treatment (Landau et al, 2013, 2017). For example,
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prolonged use of PI3K and BTK inhibitors has been shown to create genomic instability in B cells
by deregulating AID and increasing the rate of mutations and translocations (Compagno et al,
2017). Another example is when sub-clones harboring specific mutations causing direct resistance
to the BTK inhibitor ibrutinib have been detected after treatment (Burger et al, 2016; Landau et al,
2017).

Another factor that has been shown to contribute to clonal diversity particularly in CLL is the
epigenetic state within single cells (Landau et al, 2014; Oakes et al, 2014; Pastore et al, 2019;
Gaiti et al, 2019). Taking advantage of measurements of DNA methylation using sequencing of
bisulfite-converted DNA, it was observed that the fraction of contiguous CG di-nucleotides in the
genome that have non-matching methylation pattern reflects the state of order of the epigenome
and low ordering is associated with adverse clinical outcomes (Landau et al, 2014; Oakes et al,
2014). More recently, joint inspection of the DNA methylation and transcriptional landscapes in
single cells showed that an inherently disorganized DNA methylation lanscape gives rise to

disordered transcription (Pastore et al, 2019).

Genetic regulation of CLL
The first genome-scale dissection of transcription in CLL used gene expression microarrays in

order to quantify the expression of CLL patient cells in an unprecedentedly unbiased manner (Klein
et al, 2001; Rosenwald et al, 2001). In these two studies the authors found that a considerable
portion of the transcriptome of CLL cells was different from healthy naive or memory B cells
circulating in the periphery or present in germinal centres, and different from cells from non-
Hodgkin lymphoma, follicular lymphoma, and diffuse large B cell lymphoma. Contributing to these
differences were genes that likely have important functions in the formation or development of the
malignancy such as over-expression of the anti-apoptotic BCL2, the immune checkpoint receptor
CTLAA4, the surface molecule CD5, the interleukin 2 receptor, and the immune-supressor cytokine
TGF-Beta. Furthermore, cells from CLL patients of different IGHV mutation status were readily
distinguishable, indetifying or confirming important genes used later in the stratification of CLL
patients such as ZAP70 (Claus et al, 2014). These early studies ask many of the still relevant
questions about CLL nowadays and in fact contain a roadmap for tackling challenging aspects on
the biology of cancer which come to be the norm a decade later: apply modern biochemical assays
on primary human tissues in a systematic manner in order to gain a systems-level perspective of

the biological question at hand (Liu et al, 2018).

At the same time that massively parallel sequencing was illuminating the landscape of somatic
mutations of CLL and many other cancers, it also allowed new insights into the regulation of the

genome. DNA methylation in particular is a very appealing aspect of DNA regulation to study. This
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is because DNA methylation is a key mechanism regulating gene expression and responsible for
the maintenance of a certain state of genomic regulation that encodes cellular identity, lineage, and
differentiation potential (Barrero et al, 2010). Profiing DNA methylation is also attractive from a
practical point of view, since it allows the use of previously collected samples from routine clinical
follow-up or even from preserved material as formalin-fixed paraffin-embedded (FFPE) in a

retrospective fashion.

Following on early studies of DNA methylation in CLL cells focused on only a few CLL candidate
markers with the intent of developing biomarkers for CLL stratification (Corcoran et al, 2005;
Chantepie et al, 2010; Amin et al, 2012; Claus et al, 2014), massively parallel sequencing was
employed to sequence the whole genome DNA methylation landscape of three types of B cells
from healthy donors (Kulis et al, 2015). Comparing different populations of healthy B cells, the
authors were able to observe a major shift in the genome-wide levels of DNA methylation: memory
B cells have a massively hypo-methylated genome when compared with naive B cells. This
observation stems likely from an event of major hypo-methylation that takes place in germinal
centres during B cell maturation and remains in memory cells, happening prior to the
immunoglobulin class switching event since it is present in both class-switched and non-class-

switched memory B cells.

The implications of such a massive DNA demethylation event in B cells can also be seen in CLL
cells (Kulis et al, 2012, 2015). Overlaying the whole-genome DNA methylation sequencing data
with data from a DNA methylation microarray from CLL patients, the authors show that CLL cells
likely originate from at least two distinct ends of the differentiation process of B cells that
correspond broadly with the status of IGHV gene mutation. These results confirmed the earlier
gene expression based studies, but shine an unprecedented light on the issue, tying B cell
differentiation with the phenotype of CLL cells. On the other hand, it also demonstrated the value of
understanding the epigenomic regulation of cancer compared to transcriptome sequencing, which
was performed on the same matched samples but could not distinguish cells expressing
unmutated from mutated IGHV genes as easily, something that was observed later (Ferreira et al,
2014).

The observation that CLL cells from different patients can have origin in different B cell subtypes as
revealed from their DNA methylation profiles was further expanded in a subsequent paper where
additional B cell populations and CLL cells from more than four hundred patients were profiled for
DNA methylation (Oakes et al, 2016). By establishing a hierarchy of differentiation using the DNA
methylation data from the healthy B cells and positioning the CLL cells along this trajectory, large

differences between CLL samples was likely attributed to different stages in B cell development
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from which the original malignant clone transformed rather than massive malignant reprogramming

of the epigenome in CLL patients.

Survival and prognosis of CLL patients
In order to stratify the patients based on relative risk, two staging systems have been developed for

CLL. The current Rai classification system comprises three stages: lymphocytosis in the blood and
or bone marrow (low-risk); lymphocytosis and enlarged lymph nodes and either spleno- or
hepatomegaly (intermediate); anemia or thrombocytopenia due to the disease (high-risk) (Rai et al,
1975). The Binet staging system is based on hemoglogin and platelet levels as well as on the
number of locations with leukemic cells infiltrated. The first two stages (A and B) are both defined
as having hemoglobin levels above 10 g/dL and platelets greater than 100x10°%/L but either two or
three affected areas respectively. Stage C requires that either the hemoglobin or platelet level is
below these thresholds (Binet et al, 1977). These two systems require only routine examination

and widely available blood tests and are therefore widely used (Hallek et al, 2018).

There are additionalprognostic factors that can be used in combination as a prognostication score
for more refined risk stratification (The International CLL-IPI working Group, 2016; Hallek et al,
2018). The widely accepted CLL international prognostic index (CLL-IPI) combines the clinical
stage, age of the patient, the IGHV mutation status of the CLL cells, serum B2 microglobulin levels,
and TP53 mutations or chromosome 17p deletions of the CLL cells (The International CLL-IPI
working Group, 2016). A weighted combination of these factors have been shown to have
independent prognostic value in large cohorts of CLL patients across the whole spectrum of
disease progression and treatment. This score eventually classifies patients in four levels of risk
depending on the presence of each of these factors (The International CLL-IPI working Group,
2016).

The decision to treat a patient should not however be based on the CLL-IPI score since it has not
been developed and evaluated for that purpose, but only for overall hazard (i.e. inverse of overall
survival). In addition, the development of the CLL-IPI is conditioned by the therapy administered to
the patients under study and certain therapies can render the independent prognostic value of a
marker (Eichhorst & Hallek, 2016). For example, the poor prognosis of 11q deletion is diminished if
chemotherapy achieves sufficient depletion of CLL cells (Eichhorst & Hallek, 2016). With new
therapies being adopted, this is likely to continue being the case. As an example, since it has been
shown that TP53 mutation is not a factor conditioning response to ibrutinib therapy (Farooqui et al,
2015), the prognostic score is likely to be inaccurate to estimate risk in patients undergoing

ibrutinib therapy, since it uses TP53 mutation (or deletion of the small arm of chromosome 17,
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where TP53 is located) for risk calculation (Brander et al, 2016). This illustrates the need for

biomarkers and prognostic scores independent of categorical factors.

Treatment of CLL
The clinical course of CLL patients can vary widely, with patients in the lowest risk group with a 70-

80% overall survival five years after diagnosis, whereas the highest risk group has a 50% survival
rate over two years (The International CLL-IPI working Group, 2016). Treatment is not
recommended for CLL patients in early-stage, low-risk disease (Binet stage A or B; Rai stage 0-11)
which are asymptomatic. For such patients a “watch-and-wait” approach is employed, highlighting
the need for accurate and robust metrics and biomarkers to stratify patients depending on the need
for treatment. Moreover, when the patient meets the criteria for treatment, a careful choice of
treatment should take the patient’s specific symptoms, the genetic makeup of the CLL cells, the

patient’s previous clinical history, and the clinical indication of drugs into account.

Chemotherapy
The oldest class of drugs approved for the clinical treatment of CLL are small molecules that form

the large family of chemotherapeutic drugs (Fenn & Udelsman, 2011). These molecules generally
work by impairing cell proliferation, either by targeting nucleic acids or their metabolism. Broad
classes of chemotherapeutic drugs are antimetabolites, alkylating agents and alkaloids.
Antimetabolites, including purine analogs such as fludarabine, pentostatin, and cladribine mimic
the adenosine nucleoside and inhibit ribonucleotide reductases, adenosine deaminases or DNA
polymerases, thereby interfering with the process of producing or depositing adenosine in newly
synthesized DNA (Swift & Golsteyn, 2014; Parker, 2009). Alkylating agents such as chlorambucil,
bendamustine, and cyclophosphamide, cause covalent changes in DNA bases such as intra- and
inter-strand cross-links, causing damage to DNA which can prove fatal to the cell if not repaired
(Swift & Golsteyn, 2014). Alkaloid drugs, such as vinblastine and vincristine, target the cytoskeletal
proteins such as tubulin, inhibiting their polymerization, which is essential for cell cycle progression
(Mukhtar et al, 2014).

The general strategy behind the mode of action of chemotherapeutic drugs, leverages that cancer
cells divide more often than most healthy cell types. Interfering with the DNA synthesis or
replication processes should therefore target the treatment primarily to cancer cells (Mukhtar et al,
2014). While useful in many cancer types, this approach suffers from the disadvantage that the
biological functions they try to interfere with are also used by healthy cells and often constitute
essential cellular functions. This can result in generalized cytotoxicity, leading to extensive side
effects for the patient (Swift & Golsteyn, 2014; Parikh, 2018). In addition, cancer cells can either be

resistant or evolve resistance to chemotherapeutic agents for example by up-regulating anti-
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apoptotic proteins, thereby circumventing programmed cell death upon the accumulation of DNA
lesions (Woyach & Johnson, 2015).

Targeted treatment
In order to decrease the general cytotoxic effect of chemotherapeutic drugs by increasing

specificity for cancer cells, a set of drugs aiming to target specific vulnerabilities of cancer cells has
been developed over the recent years (Zhang et al, 2009). The growing understanding of cancer at
the molecular level, in particular the identification of disease driver oncogenes and genes
conferring resistance to treatment have led to rational development of drugs that target specifically
used or altered key players in a specific cancer or cancer subtype (Jain & O’Brien, 2015; Woyach
& Johnson, 2015). Following this paradigm, several targeted therapies that exploit the specific
characteristics of CLL cells have been approved, and these currently constitute some of the most

powerful types of cancer treatment (Woyach & Johnson, 2015).

Since CLL cells are phenotypically very similar to B cells, several monoclonal antibodies have
been developed and approved that target cell surface molecules which are primarily expressed in
B cells only (Mavromatis & Cheson, 2003; Jaglowski et al, 2010). The mode of action of
monoclonal antibodies is either by causing Complement-dependent cytotoxicity (CDC) — activation
of the complement cascade resulting in a membrane attack complex which lyses the target cells —
or by Antibody-dependent cellular cytotoxicity (ADCC) — recognition of the antibody by Natural
Killer cells and subsequent activation leading to the release of cytotoxic factors that cause death of
the target cell (Jaglowski et al, 2010). The CD20 protein is an example of such a target surface
molecule, with three monoclonal antibodies approved for use in CLL: Rituximab (Reff et al, 1994),
Ofatumumab (Coiffier et al, 2007) and Obinutuzumab (Bologna et al, 2011). While the three
antibodies bind different epitopes of the CD20 protein, all are capable of causing death of the
target cells by both CDC and ADCC, albeit to different levels. Another interesting target protein is
the sperm cell- and lymphocyte-specific CD52 surface protein, which is targeted by Alemtuzumab

(Byrd et al, 2004), a monoclonal antibody which acts primary through ADCC.

Another vulnerability of CLL cells that can be exploited is the expression of specific proteins that

make part of signalling cascades active in lymphocytes in general or B and CLL cells specifically.

The BCL2 inhibitor Venetoclax is indicated for refractory or relapsed CLL as a single agent where it
has a 79% and 20% overall and complete response rate, respectively (Roberts et al, 2016). Of
note, Venetoclax seems successful even with high-risk patients such as carriers of 17p deletion
and unmutated IGHV genes. Since BCL2 over-expression is of importance to CLL cell survival by

preventing apoptosis (Tzifi ef al, 2012), its inhibition is an attractive therapeutic option.
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Protein Tyrosine Kinases are a family of proteins that often participate in cellular signaling for which
there are various small molecular inhibitors available due to the attractive binding pockets used
(Rosenthal, 2017; Zhang et al, 2009). Drugs of this class constitute some of the most earlier and
successful targeted treatments of leukaemia (Druker & Lydon, 2000). For CLL, inhibitors of
Phosphoinositide 3-kinases (PI3Ks) complex Idelalisib (Furman et al, 2014; O’Brien et al, 2015)
and Duvelisib (Flinn et al, 2018) are available for the treatment of relapsed disease. Moreover,
Bruton’s Tyrosine Kinase (BTK) inhibitor Ibrutinib has been approved for the treatment of relapsed
CLL as well as first-line therapy for patients which require treatment and have been recently
diagnosed (Farooqui et al, 2015; O'Brien et al, 2018; Burger et al, 2014). BTK acts at the centre of
the signalling cascade of the B cell receptor, where it conducts signalling that eventually manifests
largely as pro-proliferative, pro-inflammatory and therefore contributing to the malignant phenotype
(Forconi et al, 2010). By inhibiting this protein in a covalent, permanent way, ibrutinib effectively
stops BCR signalling within days of administration (Herman et al, 2014). Recent studies aim to

enhance the efficacy of ibrutinib by combining it with approved drugs for CLL (Burger et al, 2019).

An important aspect of most cancer treatments, particularly of targeted treatments, is the
acquisition of resistance to treatment over time (Zhang et al, 2009). Due to the nature of targeted
treatments to focus on one (or a few) specific molecular entities, the acquisition of genetic mutation
conferring resistance to the treatment is a clinical reality. To combat this, targeted treatments are
often administered in combinations. One reason is that the usage of a combination can create an
additive or synergistic effects regarding killing of cancer cells, but also that a single mutation that
could confer resistance to all the effects of the combination treatment is extremely unlikely (Dancey
& Chen, 2006; Zhang et al, 2009). Successful drug combinations in CLL include Fludarabine,
Cyclophosphamide and Rituximab (FCR) (Tam et al, 2008) or Ibrutinib and Obinutuzumab (Moreno
et al, 2019).

Steroids as co-adjuvants and palliative care
Steroid drugs such as the glucocorticoid prednisone and corticosteroids methylprednisolone and

dexamethasone are also an important part of treatment for CLL patients. Administered in high
doses to high-risk patients relapsing from chemotherapy agents (e.g. patients with TP53 mutation
treated with purine analogs), they can cause quick remission (Burger & Montserrat, 2013). This is
however not a viable long-term solution, but such treatment regiments are often used prior to
allotransplantation to increase the odds of success. Another common use of steroid drugs in CLL is
as palliative care. This can be administered as relief for pain and physical stress caused by the
accumulation of CLL cells or administered jointly with chemotherapeutic drugs to induce some
relief from side-effects (Pufall, 2015).
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Immunotherapy
An emerging type of therapy for cancer are treatments which help the patient's own immune
system fight the malignant cells — while diverse approaches are being pursued in this area, the

general class of treatment is called Immunotherapy.

One major class of immunotherapy drugs are immune checkpoint inhibitors (Pardoll, 2012). These
drugs work by blocking cell surface receptors with immunological activity such as the Programmed
cell death protein 1 (PD-1) and its ligand PD-L1. Interaction between PD-1 and PD-L1 is an
immune checkpoint that guards against immune cell activation and thereby prevents autoimmunity
(Darvin et al, 2018). However, several cancer types hijack this as a way of suppressing the action
of the immune system (Park et al, 2018). While immune checkpoint inhibitors are rapidly
developing and successful anti-cancer therapies, none has yet been approved for clinical treatment
of CLL.

Another class of treatments that also rely on the immune system are chimeric antigen receptor T
cells (CAR-T cells). This approach uses T cells that are artificially engineered to express a receptor
that targets a specific protein epitope (Eshhar et al, 1993; Turtle et al, 2016; Park et al, 2016;
Abken et al, 2012). In CLL, CAR-T cell immunotherapy has had some early success, with high
short-persistent and activity of the cells in the recipients (Brentjens et al, 2011) or in punctual cases
an effective curative outcome (Bagg & June, 2016). Despite this, acute toxicity due to strong
cytokine release as well as the high costs and logistics involved in the application of the therapy
have so far prevented the broad adoption of CAR-T cell therapy for CLL. In addition, mechanisms
of resistance and factors contributing to the success of CAR-T therapy in CLL have been described
(Ninomiya et al, 2015; Fraietta et al, 2018), revealing that no unique therapeutic option for CLL is
likely to work as a “silver bullet” for all patients. Rather, close monitoring, combination therapies,
personalization of drug indications, and continuous research are the path to follow for ever-

improving clinical care of CLL patients.

Aims of this thesis
The main aims of this thesis were: 1) to evaluate the practical feasibility and scientific value of

epigenome and single-cell transcriptome profiling in primary human CLL samples in large scale; 2)
to understand the regulatory basis of CLL during its progression and treatment; 3) to explore the
use of high-dimensional analysis methods including machine learning for patient stratification and
disease monitoring; 4) to discover biologically meaningful multivariate biomarkers of disease
subtypes and response to treatment that can be used for differential diagnosis and treatment

monitoring of CLL.

14/115



Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

Results

Manuscript #1

The following section contains the manuscript entitled “Chromatin accessibility maps of chronic
lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory
networks”, which has been published in Nature Communications:

André F. Rendeiro, Christian Schmidl, Jonathan C. Strefford, Renata \Walewska, Zadie Dauvis,
Matthias Farlik, David Oscier & Christoph Bock (2016). Chromatin accessibility maps of chronic
lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory
networks. Nature Communications (2016). doi:10.1038/ncomms11938

15/115


https://doi.org/10.1038/ncomms11938

Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

nature
COMMUNICATIONS

ARTICLE
Received 21 Dec 2015 | Accepted 16 May 2016 | Published 27 Jun 2016 DOI: 10.1038/ncomms 11938 OPEN

Chromatin accessibility maps of chronic
lymphocytic leukaemia identify subtype-specific
epigenome signatures and transcription regulatory
networks

André F. Rendeiro"*, Christian Schmidl'"*, Jonathan C. Strefford?*, Renata Walewska3, Zadie Davis?,
Matthias Farlik!, David Oscier3 & Christoph Bock!#>

Chronic lymphocytic leukaemia (CLL) is characterized by substantial clinical heterogeneity,
despite relatively few genetic alterations. To provide a basis for studying epigenome
deregulation in CLL, here we present genome-wide chromatin accessibility maps for 88 CLL
samples from 55 patients measured by the ATAC-seq assay. We also performed
ChIPmentation and RNA-seq profiling for ten representative samples. Based on the resulting
data set, we devised and applied a bioinformatic method that links chromatin profiles to
clinical annotations. Our analysis identified sample-specific variation on top of a shared core
of CLL regulatory regions. IGHV mutation status—which distinguishes the two major subtypes
of CLL—was accurately predicted by the chromatin profiles and gene regulatory networks
inferred for IGHV-mutated versus [GHV-unmutated samples identified characteristic
differences between these two disease subtypes. In summary, we discovered widespread
heterogeneity in the chromatin landscape of CLL, established a community resource for
studying epigenome deregulation in leukaemia and demonstrated the feasibility of large-scale
chromatin accessibility mapping in cancer cohorts and clinical research.
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ARTICLE

André F. Rendeiro

type of leukaemia in the Western world!. Tt is

characterized by a remarkable clinical heterogeneity,
with some patients pursuing an indolent course, whereas others
progress rapidly and require early treatment. The diverse clinical
course of CLL patients, in particular those that initially present
with low disease burden, fuels interest in prognostic biomarkers
and personalized therapies®. Current clinical biomarkers for CLL
include mutational status of the IGHV genes®*, IGHV gene
family usage®, stereotyped B-cell receptors®’, serum markers®?,
chromosomal aberrations!®!! and somatic mutations!>!4,
Most notably, IGHV mutation status distinguishes between a
less aggressive form of CLL with mutated IGHV genes (mCLL)
and a more aggressive form with unmutated IGHV genes (uCLL).
Several surrogate biomarkers of IGHV mutation status have been
described. For example, high levels of ZAP70 expression appear
to be associated with uCLL'. In addition to these focused
biomarkers, transcriptome profiling has been used to define
broader molecular signatures that may improve disease
stratification independent of IGHV mutation status'®.

Recent genome and exome sequencing projects have identified
additional genes that are recurrently mutated in CLL'718, some of
which have prognostic significance. Nevertheless, CLL samples
carry relatively few genetic aberrations compared with other adult
cancers'?, and some patients develop progressive disease despite
being classified as low risk” based on genetic markers, suggesting
that non-genetic factors are relevant for CLL aetiology and
outcome. Several lines of evidence point to a role of epigenome
deregulation in CLL pathogenesis: first, somatic mutations have
been observed in non-coding regions of the genome, where they
appear to induce deregulation of relevant cancer genes'®, Second,
chromatin remodelling proteins such as ARIDIA and CHD2 are
recurrently mutated in CLL'7*'%, indicating causal links between
chromatin deregulation and CLL. Third, aberrant DNA
methylation was observed in all studied CLL patients?*-22,
correlated with IGHV mutation status and identified a new
subtype (iCLL) that appears to be an intermediate between mCLL
and uCLL*0%,

Although prior studies of epigenome deregulation in primary
cancer samples have focused almost exclusively on DNA
methylation®®, recent technological advances now make it
possible to map chromatin landscapes in large patient cohorts.
Most notably, the assay for transposase-accessible chromatin
using sequencing (ATAC-seq) facilitates open chromatin
mapping in scarce clinical samples?® and ChIPmentation
provides a streamlined, low-input workflow for genome-wide
mapping of histone marks and transcription factors?®. These
two assays use a hyperactive variant of the prokaryotic
Tn5 transposase, which integrates DNA sequencing adapters
preferentially in genomic regions with accessible chromatin.
ATAC-seq profiles are similar to those of DNase-seq, sharing the
ability to detect footprints of transcription factor binding in
the chromatin accessibility landscape?”. ChIPmentation closely
recapitulates the results obtained by more classical chromatin
immunoprecipitation followed by sequencing protocols®. Both
assays work well on scarce patient samples, and they enable fast
sample processing on timescales that would be compatible with
routine clinical diagnostics.

To establish the feasibility of large-scale chromatin analysis in
primary cancer samples and to provide a basis for dissecting
regulatory heterogeneity in CLL, we performed chromatin
accessibility mapping using the ATAC-seq assay on a cohort of
88 primary CLL samples derived from 55 patients. Furthermore,
for ten of these samples we established histone profiles using
ChIPmentation for three histone marks (H3K4mel, H3K27ac
and H3K27me3) and transcriptome profiles using RNA

C hronic lymphocytic leukaemia (CLL) is the most common
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sequencing (RNA-seq). We also developed a bioinformatic
method for linking these chromatin profiles to clinical
annotations and molecular diagnostics data, and we performed
an initial analysis of gene regulatory networks that underlie the
major disease subtypes of CLL. In summary, this study provides a
publicly available reference data set and a rich source of testable
hypotheses for dissecting CLL biology and pathogenesis.

Results

Chromatin accessibility maps for 88 CLL samples. To map the
chromatin accessibility landscape of CLL (Fig. 1a), we performed
ATAC-seq on 88 purified lymphocyte samples obtained from
the peripheral blood of 55 CLL patients. These patients were
managed at a single medical centre, and they collectively repre-
sent the spectrum of clinical phenotypes that are commonly
observed in CLL (Supplementary Data 1). Their average age at
sample collection was 73 years, and 8% of patients were sampled
at relapse following initial or subsequent therapy. The majority of
samples (58%) had been classified as IGHV-mutated as part of
routine clinical diagnostics (Supplementary Fig. 1 and
Supplementary Data 1).

All samples selected for ATAC-seq library preparation
contained at least 80% leukaemic cells. The ATAC-seq libraries
were sequenced with an average of 254 million fragments,
resulting in a data set comprising a total of 2.2 billion sequenced
fragments (Supplementary Data 2). Data quality was high in all
cases, with mitochondrial read rates in the expected range
for ATAC-seq (mean: 38.3%; s.d.: 9.3%) and the characteristic
patterns of nucleosome phasing derived from paired-end data
(Supplementary Fig. 2).

The individual samples were sequenced with sufficient depth to
recover the majority of chromatin-accessible regions that are
detectable in each sample (Supplementary Fig. 3). Moreover, by
combining data across all 88 samples we approached cohort-level
saturation in terms of unique chromatin-accessible regions
(Fig. 1b), indicating that our cohort is sufficiently large to
identify most regulatory regions commonly accessible in CLL
samples.

As illustrated for the BLK gene locus (Fig. 1¢), our ATAC-seq
data set can be aggregated into a comprehensive map of
chromatin accessibility in CLL. This map comprises 112,298
candidate regulatory regions, of which 11.6% are constitutively
open across essentially all CLL samples, whereas 59.1% are open
in a sizable proportion of samples (5-95% of samples) and 29.3%
are unique to only one or very few samples (Supplementary
Fig. 4a). All data are available for interactive browsing and
download from the Supplementary Website (http://cll-chromatin.
computational-epigenetics.org/).

Chromatin-accessible regions in CLL are widely distributed
throughout the genome, with moderate enrichment at genes
and promoters (Fig. 1d and Supplementary Fig. 4b). We also
compared the CLL-accessible regions with epigenome segmenta-
tions for CD19+ B cells (Fig. 1e and Supplementary Fig. 4c),
a related cell type for which comprehensive reference epigenome
data are publicly available?®. Strong enrichment was observed for
regions that are classified as transcription start sites or as
enhancer elements in the B cells, indicative of a globally similar
chromatin accessibility landscape between B cells and CLL.
Nevertheless, a sizable fraction of CLL-accessible regions carried
quiescent or repressive chromatin in B cells, which is the expected
pattern for regulatory elements that are subject to CLL-specific
activation.

Heterogeneity in the CLL chromatin accessibility landscape.
Although the number of constitutively accessible regions in our
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cohort was relatively low (11.6%, Supplementary Fig. 4a), we still
observed high consistency between individual samples and, any
two samples in our data set shared 70-98% of their chromatin-
accessible regions (Supplementary Fig. 5a). Conversely,
we also observed robust differences in the ATAC-seq signal
intensity between samples. To facilitate gene-by-gene investiga-
tion of this heterogeneity, we established the ‘chromatin
accessibility corridor’ as a means of aggregating the cohort-level
variation into a single intuitive genome browser track (Fig. 2a and
Supplementary Website). As illustrated by the PAX5 and BCL6
gene loci, even where the locations of chromatin accessible

a CLL patients

4
[

88 samples

Lymphocyte
purification

ATAC-seq

ATAC-seq
signal

Consensus regions of
accessible chromatin

ﬁ

regions are shared across most samples, substantial differences in
the ATAC-seq intensity levels were observed (Fig. 2a).

For a more systematic investigation of chromatin heterogeneity
in CLL, we calculated the cohort-level variance for each of the
112,298 regions in the CLL consensus map and linked these
regions to nearby genes that they may regulate (see Methods for
details). Promoters of genes with a known role in B-cell biology
and/or CLL pathogenesis showed significantly reduced variability
(P<10~3, Kolmogorov-Smirnov test; Supplementary Fig. 5b),
which was not due to differential representation of CpG islands
among the promoters of the gene sets (P=0.49, Fisher’s exact
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Figure 1| The chromatin accessibility landscape of CLL. (a) ATAC-seq profiling and analysis workflow for establishing patient-specific and cohort-level
maps of chromatin accessibility in CLL. (b) Saturation analysis showing the number of unique chromatin-accessible regions detected across 88 samples
and with a total sequencing depth of 2.2 billion ATAC-seq fragments. The narrow blue and green corridors indicate 95% confidence intervals for
samples added in random order (1,000 iterations). (¢) Genome browser plot showing ATAC-seq signal intensity for 88 individual CLL samples (top),
average signal intensity across the cohort and cohort-level peak calls (centre) and reference data from the ENCODE project (bottom). Interactive genome
browser tracks are available from the Supplementary Website: http://cll-chromatin.computational-epigenetics.org/. (d) Absolute (frequency) and relative
(fold change) co-localization of unique chromatin-accessible regions in CLL with gene annotations (left) and chromatin state segmentations for CD19 + B

cells from the Roadmap Epigenomics project (right).

CATIONS|7:11938 | DOI: 10.1038/ncomms11938 | www.nature.com/naturecommunications 3

18/115



Stratification and monitoring of chronic lymphocytic leukemia
with high-dimensional molecular data and computational methods

ARTICLE

André F. Rendeiro

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11938

a chr9:36,968,564-37,064,963 20 kb Signal across cohort
21 mmmm 95th Percentile
ATAC-seq = KASth Percentile
: m—— \ean
signal mmmm 25th Percentile
. LL v " ' A s 5t Percentile
Peaks | 1 1 [ I N L] IR 1 1
Genes | } ! } 1 ¥
PAX5 gene
chr3:187,392,267-187,530,913 20 kb
16
ATAC-seq
signal
0 ek A L i ikl
Peaks n n mow ] f- . ] T '
Genes
BCL6 gene
500 bp 1kb 1 kb
_— Y N
ATAC-seq o8 19 8
signal
0 0:
Peaks N —
chr9:37,026,754-37,028,572 chr3:187,461,678-187,464,758 chr3:187,490,849-187,492,477
b 10 c
.
.
T b3
£ 8 S
= g8
[7} ©
gs °© 5%
N o o >
ER] R
Ec 4 4N
o= Cw
ZE £~
e 2 o
£
o [ Promoter
0 I Distal elements Principal component 1

(6.7% variance)

A5 I AR DR DR TR 2Tt Ca b v
v ¥ ,{25'" A Vé(<+(<’@ «E)OQO«OOQ« ¥ oL C%o'bv‘b%oe oM O IGHV mutation status: @ Unmutated
Q ® Mutated
@ Unknown

Figure 2 | Heterogeneity in the chromatin accessibility landscape of CLL. (a) Genome browser plot showing ATAC-seq signal intensity across the CLL
cohort in the vicinity of two genes with a known role in B-cell biology (PAX5 and BCL6). This cohort-level track uses colour-coded percentiles to visualize
the observed heterogeneity between samples. The bottom row zooms in on the chromatin accessibility landscape at three specific regulatory regions.
(b) Violin plots showing the cohort-wide distribution of chromatin accessibility at promoters (chromatin-accessible regions located within 2,500 bp from
the transcription start site) and putative enhancers of genes with a known role in B-cell biology and/or CLL pathogenesis. (€) Unsupervised principal
component analysis based on the chromatin accessibility for all 88 samples at each of the 112,298 chromatin-accessible regions in the CLL cohort. Samples
are colour coded according to their IGHV mutation status, using <98% germline homology as threshold for classifying a sample as mutated.

test). For distal enhancer elements we did not observe any clear
differences in heterogeneity between genes with and without a
link to B cells and CLL (P =0.08, Kolmogorov-Smirnov test).

Beyond these global trends, the variance and distribution of
chromatin accessibility across samples was highly gene specific
(Fig. 2b and Supplementary Fig. 5¢), as illustrated by CLL-linked
genes including B-cell surface markers (CDI19), B-cell receptor
signalling components (CD79A/B, LYN and BTK), common
oncogenes (MYCN, KRAS and NRAS) and genes that are
recurrently mutated in CLL (NOTCHI, SF3BPI, XPOl and
CDKNI1B)\7:1829,

Unsupervised principal component analysis clearly identified
IGHV mutation status as the major source of heterogeneity in
chromatin accessibility among CLL samples (Fig. 2c¢ and
Supplementary Fig. 6). However, the first two principal
components explained only 6.8 and 5.2% of the total variance
in the chromatin accessibility data set, suggesting that many other
factors contribute to the observed differences between samples.

4 NATURE COMMUNICAT

The most direct way by which differences in chromatin
accessibility may influence disease course would be through
differential regulation of CLL-relevant genes. Therefore, to
systematically assess the link between chromatin accessibility
and gene expression in our cohort, we performed RNA-seq
on ten CLL samples with matched ATAC-seq data. A weak
positive correlation was observed between chromatin accessibility
and gene expression (Pearson’s r = 0.33; Supplementary Fig. 7a),
which was highly dependent on the distance of the chromatin-
accessible region to the nearest transcription start site
(Supplementary Fig. 7b).

For chromatin-accessible regions in the vicinity of genes
that RNA-seq identified as differentially expressed between
IGHV-mutated (mCLL) and IGHV-unmutated (uCLL) samples
(Supplementary Data 3), we observed significant differences in
chromatin accessibility, which provided partial separation of
the two disease subtypes (Supplementary Fig. 7c). A more
pronounced separation was observed when we focused our
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analysis on those regions that had been identified as differentially
methylated between mCLL and uCLL in a prior study of DNA
methylation in CLL? (Supplementary Fig. 7d).

Finally, we assessed whether patterns of differential variability
between mCLL and uCLL (that is, higher levels of heterogeneity
in one or the other subtype) may provide insights into the biology
of these two disease subtypes. We identified 389 regions that
showed a higher degree of variability among mCLL samples,
whereas 581 regions were more variable among uCLL samples
(Supplementary Fig. 8a)—consistent with prior results showin
higher gene expression variability among uCLL samples®”.
These differentially variable regions were distributed across a
broad range of ATAC-seq intensity values and were not a side
effect of differences in average chromatin accessibility
(Supplementary Fig. 8b). Genomic region enrichment analysis
using the LOLA software’! found mCLL-variable regions
enriched for B-cell-specific transcription factor binding (ATF2,
BATF, BCL6, NFKB and RUNX3) and active histone marks
(Supplementary Fig. 8¢). In contrast, uCLL-variable regions were
strongly associated with the cohesin complex, including binding
sites for CTCF, RAD21 and SMC3.

Disease subtype-specific patterns of chromatin accessibility.
To link the CLL chromatin accessibility landscape to clinical
annotations and molecular diagnostics data (most notably to the
IGHV mutation status that distinguishes between mCLL and
uCLL), we devised a machine learning-based method that derives
subtype-specific signatures directly from the data (Fig. 3a).
Random forest classifiers were trained to predict whether a
sample is IGHV-mutated or IGHV-unmutated, based on the
chromatin accessibility values for all 112,298 regions in the CLL
consensus map. We evaluated the performance of the resulting
classifier by leave-one-out cross-validation and observed excellent
prediction accuracy with a receiver operating characteristic
(ROC) area under curve of 0.96 (Fig. 3b), which corresponds to a
sensitivity of 95.6% at a specificity of 88.2%. To confirm that this
cross-validated test set performance was not inflated by any form
of overtraining, we repeated the same predictions one thousand
times with randomly shuffled class labels. Much lower ROC area
under curve values were observed in all cases, and their mean was
very close to the theoretical expectation of 0.5 (Fig. 3b).

Next, we extracted the most predictive regions from the trained
classifiers, giving rise to data-driven chromatin signatures that
discriminate between mCLL and uCLL (Supplementary Data 4).
Hierarchical clustering categorized these regions into 719 with
increased chromatin accessibility in IGHV-mutated samples
(‘mCLL regions’, cluster 1 in Fig. 3c) and 764 regions with
increased chromatin accessibility in IGHV-unmutated samples
(‘uCLL regions’, cluster 2 in Fig. 3c). More than half (51%) of
these machine learning-based signature regions overlapped with
statistically significant differential ATAC-seq peaks between
IGHV-mutated and IGHV-unmutated samples (Supplementary
Fig. 9a and Supplementary Data 4, see Methods for details). The
remaining regions contributed to accurate prediction of CLL
subtypes as part of a broader signature, even though they did not
by themselves reach the stringent thresholds of the differential
peak analysis (Supplementary Fig. 9b).

To test whether these subtype-specific chromatin signatures
reflected more general differences in the gene regulatory
landscape of CLL, we compared RNA-seq profiles and
ChIPmentation maps for three histone marks (H3Kdmel,
H3K27ac and H3K27me3) between five IGHV-mutated and five
IGHV-unmutated samples. We found that the genes in the
vicinity of the signature regions were on average more highly
expressed in the cell type showing higher chromatin accessibility

(Fig. 3d and Supplementary Fig. 10), although only a small
percentage of these genes were significantly differentially
expressed between mCLL and uCLL samples based on our
RNA-seq data (0.8% and 6.3%, respectively). Moreover, the
ChIPmentation profiles were consistently associated with the
differences in chromatin accessibility. Higher levels of the active
H3K27ac mark as compared with repressive H3K27me3 were
found in mCLL samples and mCLL-specific regions, and vice
versa for uCLL (Fig. 3e). This observation is illustrated by the
ZNFe667 promoter and an enhancer at the ZBTB20 locus (Fig. 31),
two genes that have been identified as predictors of time to
treatment and overall survival in CLL3233,

Between individual samples we observed both qualitative
(that is, the presence or absence of a peak) and quantitative
(that 1is, different peak height) differences in chromatin
accessibility, as illustrated by several genes with a known role
in CLL (Supplementary Figs 11 and 12). For example, the
expression ratio between ADAM29 and LPL has been shown to
have prognostic value in CLL3 and our data set identifies an
mCLL-specific chromatin-accessible region within the ADAM29
locus (Supplementary Fig. 11) as well as a uCLL-specific
chromatin-accessible region overlapping with the LPL promoter
(Supplementary Fig. 12), which may provide a regulatory basis for
the previously described association. CD83, which has been
associated with treatment-free survival’®, is another example of a
gene locus containing an mCLL-specific chromatin-accessible
region (Supplementary Fig. 11). In contrast, uCLL-specific
regions were identified in the gene loci encoding the
CLI-linked transcription factor CREBBP'® and the surface
protein CD38, which has been extensively validated as a
prognostic factor in CLL* (Supplementary Fig. 12).

To gain insight into the more general biological characteristics
of the mCLL and uCLL signature regions, we performed genomic
region set analysis using LOLA®! (Fig. 3g), and we observed that
the mCLL regions were enriched for active promoter and
enhancer regions (marked by H3Kd4mel and H3K27ac) in
lymphocyte-derived cell lines (SU-DHL-5, JVM-2, GM12878
and KARPAS-422), as well as binding sites of relevant
transcription factors (BATF, BCL6 and BLC3). In contrast, the
uCLL regions were enriched for H3K4mel-marked promoter/
enhancer regions in CD38-negative naive B cells, reflecting the
postulated naive B-cell origin of these CLL cells*’. The uCLL
regions were also enriched for transcribed regions (H3K36me3)
in naive B cells and in B-cell-derived cell lines such as the BL-2
cell line, which has not undergone class-switch recombination.

We also performed motif enrichment analysis for the mCLL
and uCLL signature region sets and, we observed significant
enrichment relative to a random background model but
no clear-cut differences when comparing the two region sets
directly with each other (which is expected given the low
statistical power of such an analysis). Nevertheless, when
we linked chromatin-accessible regions to co-localized genes,
we observed strong differences in the enrichment for cellular
signalling pathways (Fig. 3h). The mCLL regions were
associated with pathways having an established role in normal
lymphocytes (CTLA4 inhibitory signaling, high-affinity IgE
receptor signalling, Fc epsilon signalling and Fc gamma receptor
signalling), whereas the uCLL regions were associated with
cancer-associated pathways such as NOTCH signalling and
fibroblast growth factor receptor signalling. All of these
enrichment analyses were validated based on the statistically
significant differential ATAC-seq peaks between IGHV-mutated
and IGHV-unmutated samples, which gave rise to highly similar
results (Supplementary Fig. 13).

Finally, we investigated whether a third CLL subtype—termed
IGHYV intermediate (iCLL)—could be detected in our data set,
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Figure 3 | Disease subtype-specific p of ct in ibility. (a) Methodology for deriving disease subtype-specific patterns of chromatin

accessibility: a machine learning algorithm is trained to distinguish between different sample sets (here IGHV-mutated versus /{GHV-unmutated), the
prediction performance is evaluated by cross-validation, and the most predictive features are obtained by feature extraction from the trained classifiers.
(b) ROC curve summarizing the test set prediction performance (estimated by leave-one-out cross-validation) of a random forest classifier that uses the
ATAC-seq data set to distinguish between {GHV-mutated and IGHV-unmutated samples. ‘AUC’ refers to the ROC area under curve as a measure of
prediction performance, and sensitivity/specificity values are shown for the point on the ROC curve that is closest to the top left corner. The grey lines
indicate the performance of 1,000 classifiers trained and evaluated in the same way but based on randomly shuffled class labels. (€) Clustered heatmap
based on the most predictive regions extracted from the cross-validated classifiers. (d) Ratio of expression levels for genes linked to mCLL-accessible
regions versus genes linked to uCLL-accessible regions. (@) Ratio between ChIPmentation signal for active chromatin (H3K27ac) and repressive chromatin
(H3K27me3) at mCLL-linked and uCLL-linked regions. (f) Genome browser plots showing ATAC-seq and ChlIPmentation profiles for gene loci with a known
role in CLL (ZNF567 and ZBTB20). (g) Most highly enriched region sets for mCLL (blue) and uCLL (green) associated regions. (h) Most highly enriched
pathways among genes linked to mCLL (blue) and uCLL (green) regions.
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as it was recently proposed based on DNA methylation data®?3,
Clustering all samples based on the IGHV mutation signature
regions, we indeed observed two intermediate clusters, the larger
one comprising 20 samples from 14 patients (Fig. 4a, green) and
the smaller one comprising 3 samples from 2 patients (Fig. 4a,
brown). Most but not all of these iCLL samples were classified as
IGHV-mutated based on the available molecular diagnostics data
(Supplementary Fig. 14). Principal component analysis provided
further evidence that the iCLL samples fall between mCLL and
uCLL samples based on their ATAC-seq profiles (Fig. 4b). Their
intermediate character was also supported by the RNA-seq and
ChIPmentation data, where the iCLL group showed patterns that
consistently ranged between those of the mCLL and uCLL groups
(Supplementary Fig. 15).

Gene regulatory networks in mCLL and uCLL disease subtypes.
In addition to providing chromatin accessibility maps, ATAC-seq
can also detect transcription factor binding based on character-
istic chromatin footprints®®. Using this property of our data, we
inferred chromatin-based gene regulatory networks for CLL and
its two major disease subtypes (Fig. 5a). To that end, we pooled all
ATAC-seq data across the analysed samples, identified footprints
for 366 transcription factors with high-quality motifs in the
JASPAR database®® and linked these regulatory elements to their
putative target genes (see Methods for details). The quality of the
observed footprints was comparable to those in publicly available
DNase-seq data for CD19+ B cells (Supplementary Fig. 16),
although we observed some deviations between the two assays
that are likely due to the different sequence specificity of the Tn5
enzyme as opposed to the DNase I enzyme.

We first inferred a pan-CLL gene regulatory network using
ATAC-seq data from all samples (Supplementary Fig. 17).
The resulting network was dominated by highly connected
transcription factors, including broadly activating factors
(SP1/2/3), the insulator protein CTCF and regulators of biological
processes such as cell proliferation (EGR), cell cycle (E2F) and
B-cell maturation (SPI1 and PAXS). This pan-CLL network was
structurally similar to a network for CD19+ B cells that we
inferred from publicly available DNase-seq data using the same
bioinformatic method (Supplementary Fig. 18), and in the
absence of a large chromatin accessibility data set of B cells from
healthy individuals it is not possible to conclusively identify the
CLL-specific parts of our network.

Second, to investigate regulatory differences between CLL
subtypes, we inferred gene regulatory networks separately for
mCLL and uCLL samples (Supplementary Fig. 19) and identified
the most differentially connected genes between the two (Fig. 5b).

Genes that were more highly connected in the mCLL network
coded for the transcription factors ZNF354C and ELF5, the
metallopeptidase ADAM29 and the membrane protein CD22.
In contrast, the BMP receptor CRIM1, the transcription factors
MECOM and PAX9, the fibroblast growth factor signalling
receptor FGFR1 and the membrane protein CD9 were more
highly connected in the uCLL network (Fig. 5¢). The more highly
connected genes in either subtype also showed higher levels of
H3K4mel and H3K27ac in their regulatory elements in samples
of the corresponding subtype (Supplementary Fig. 20a,b).

When we restricted our analysis to genes with a known role in
B-cell biology and/or CLL pathogenesis (Fig. 5d), we observed a
highly specific association of CD22 (which codes for an inhibitory
receptor involved in B-cell receptor signalling) with mCLL,
whereas CD38 and ZAP7(t were preferentially associated with
uCLL. Focusing on CD22 and PAX9 as two high-ranking genes
in our analysis, we plotted the sub-networks of their direct
neighbours and observed characteristic differences between the
gene regulatory networks for mCLL and uCLL (Supplementary
Fig. 20c). Many of the subtype-specific genes identified by the
regulatory network also showed locus-specific differences in their
ChIPmentation profiles (Supplementary Fig. 20d). Altogether,
our results confirm that ATAC-seq profiles are useful for
identifying epigenome differences in clinical samples, and they
illustrate how this data set can be used for deriving testable
hypotheses about the regulatory basis of CLL.

Discussion

By ATAC-seq profiling on a large set of primary CLL samples, we
have established a detailed map of the chromatin accessibility
landscape in CLL. The ATAC-seq data were complemented by
RNA-seq profiles and ChIPmentation for three histone marks,
performed in ten representative samples covering three disease
subtypes (mCLL, uCLL and iCLL). To our knowledge, this data
set is currently the largest catalogue of chromatin accessibility
maps for any cancer type, demonstrating the feasibility of
chromatin profiling in large cohorts of primary cancer samples
and validating a broadly applicable bioinformatics workflow for
analysing such data.

The large number of patient samples included in this study
allowed us to dissect the role of epigenome variability as a
potential contributor to cancer heterogeneity*®. We found that
variability between samples was common in our data set, both in
the form of qualitative (that is, the presence or absence of a peak)
and quantitative (that is, different peak height) differences
between individual samples. In the absence of a reference data
set with chromatin accessibility maps for normal B cells from a
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Figure 5 | Gene regulatory networks underlying the mCLL and uCLL disease subtypes. (a) Methodology for deriving gene regulatory networks from
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inference. (b) CLL gene regulatory network derived from the data of all 88 samples, showing the most differentially connected genes between uCLL and
mCLL (the full network is shown in Supplementary Fig. 17). Node size reflects the total number of connections of each node, and colours denote the
subtype-specific network in which the nodes are more highly connected (mCLL: blue; uCLL: orange}. (c) Relative change in the number of connections
between the mCLL and uCLL networks, showing all genes. (d) Relative change in the number of connections between the mCLL and uCLL networks,
focusing on genes with a known role in B-cell biology and/or CLL pathogenesis.

large number of healthy donors, it remains unclear whether or
not the observed heterogeneity in CLL constitutes a major
increase over the expected heterogeneity in a genetically diverse
cohort. Nevertheless, significantly reduced heterogeneity at the
promoters of genes involved in B-cell biology and/or CLL
pathogenesis suggest a functional role of the observed inter-
individual differences. Overall, our data support the existence of a
core regulatory landscape shared by most or all CLL samples,
which is complemented by sample-specific subsets of a
substantially larger number of CLL-associated regulatory regions.

IGHV mutation status was the single biggest contributor to
sample-specific differences in chromatin accessibility, although it
explained only 5-10% of the observed variance in our data set.
Based on the ATAC-seq profiles we were able to distinguish
with excellent accuracy between IGHV-mutated mCLL and
IGHV-unmutated uCLL. Our analysis also suggested the existence
of one (or possibly two) intermediate type (iCLL), consistent with
a recent report that nused DNA methylation analysis of a large
CLL cohort to identify novel CLL subtypes’’. Chromatin
accessibility and DNA methylation both appear to separate
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better between these disease subtypes than gene expression data,
suggesting that the biological differences between the major
subtypes of CLL are primarily encoded in the epigenome
and possibly reflect patterns retained from a subtype-specific
cell-of-origin.

Combining data across samples provided sufficient sequencing
depth for footprinting analysis of transcription factor binding,
allowing us to infer gene regulatory networks from the data and
to compare them between mCLL and uCLL. Although genomic
footprinting has its limitations*”, the resulting network models
give rise to predictions that can provide a starting point for
further experimental dissection of the transcription regulatory
landscape of CLL. For example, mCLL-associated regions were
enriched for transcription factors that are active in mature B cells
and involved in memory B-cell differentiation (BATF and BCL6),
whereas the uCLL group was enriched for regulatory regions that
are active in other haematopoietic cell types, indicative of a less
differentiated cell state. Moreover, pathways that may boost
proliferation, such as NOTCH signﬂ]_ling‘ll and interferon
signalling®?, were specifically observed in the more aggressive
subtype (uCLL), whereas enrichment of inhibitory signalling by
CTLA4 may contribute to the more indolent character of
mCLL*®, Beyond a small number of specific differences, the
inferred gene regulatory networks were highly similar between
mCLL and uCLL, consistent with the low number of differentially
expressed genes that were previously observed between CLL
subtypes!&4445,

From a technological perspective, our study describes broadly
applicable methods for dissecting chromatin profiles in large
cohorts of primary patient samples. The differential chromatin
analysis outlined in Fig. 3 starts from clinical and/or diagnostic
data and uses supervised learning techniques to identify and
cross-validate discriminatory chromatin signatures. We focused
specifically on IGHV mutation status, but the method can be
applied to any type of patient grouping, for example, based on
disease progression or therapy response. Moreover, the described
method for ATAC-seq-based inference of gene regulatory
networks (Fig. 5) establishes a data-driven approach for dissecting
regulatory cell states—including their differences between disease
subtypes—that is highly complementary to previous work aimed
at inferring regulatory networks from transcriptome data®o-%5,
Finally, the ‘chromatin accessibility corridor’ (Fig. 2) adapts a
related concept*? to provide intuitive browser-based visualization
of chromatin data across large cohorts, while accounting for
regulatory heterogeneity.

Relevant limitations of our study include the following: (i) lack
of a clearly defined and experimentally accessible cell-of-origin
for uCLL and mCLL, making it difficult to distinguish with
certainty between chromatin patterns that are CLL specific and
those that are derived from the disease’s cell-of-origin; (ii) clonal
heterogeneity of CLL within patients, which would be
experimenta]ég addressable only with single-cell sequencing
technologies®>! that are currently limited in their genome-
wide coverage; (iii) lack of scalable methods for distinguishing
between functional and non-functional transcription factor
binding; and (iv) ambiguities in the assignment of transcription
factor binding sites to the genes that they regulate. In the light of
these limitations, the inferred gene regulatory networks constitute
an initial model that will require future refinement as additional
data and validations become available.

In summary, our study establishes a chromatin accessibility
landscape of CLL, which identifies shared gene regulatory
networks as well as widespread heterogeneity between individual
patients and between disease subtypes. It also provides a resource
that can act as a starting point for deeper dissection of chromatin
regulation in CLL, identification of therapeutically relevant

mechanisms and eventual translation of relevant discoveries into
clinical practice. Given that the chromatin profiling assays used
here (ATAC-seq and ChIPmentation) are sufficiently fast and
straightforward for use in a clinical sequencing laboratory,
chromatin deregulation is becoming increasingly tractable as a
promising source of biomarkers for stratified cancer therapy.

Methods

Sample acquisition and clinical data. All patients were diagnosed and treated
at the Royal Bournemouth Hospital (UK) according to the revised guidelines

of the International Workshop Chronic Lymphocytic Leukemia/National Cancer
Institute. Patients were selected to reflect the clinical and biclogical heterogeneity of
the disease. Sequential samples were included for a total of 24 patients. All samples
contained more than 80% leukaemic cells. Established chromosomal rearrange-
ments were diagnosed by fluorescence in situ hybridization (Abbott Diagnostics;
DakoCytomation) or multiple ligation-dependent probe amplification using

the MLPA P037 CLL-1 probemix (MRC Holland SALSA) according to the
manufacturers’ instructions. Chromosome analysis was performed and reported
according to the International System for Human Cytogenetic Nomenclature. IGHV
was sequenced as previously described?, and a threshold of > 98% germline
homology was taken to define the unmutated subset?. The study was approved by the
ethics committees of the contributing institutions (Royal Bournemouth Hospital and
Medical University of Vienna). Informed consent was obtained from all participants.

ATAC sequencing. Accessible chromatin mapping was performed using the
ATAC-seq method as previously described®®, with minor adaptations. In each
experiment, 10° cells were washed once in 50 ul PBS, resuspended in 50 ul
ATAC-seq lysis buffer (10 mM Tris-HCI pH 7.4, 10mM NaCl, 3mM MgCl, and
0.1% IGEPAL CA-630) and centrifuged for 10 min at 4 °C. On centrifugation, the
pellet was washed briefly in 50 ul MgCl, buffer (10mM Tris pH 8.0 and 5mM
MgCl,) before incubating in the transposase reaction mix (12,5 ul 2 TD buffer,
2 ul transposase ([llumina) and 10.5 pl nuclease-free water) for 30 min at 37 °C.
After DNA purification with the MinElute kit, 1 pl of the eluted DNA was used
in a quantitative PCR (qPCR) reaction to estimate the optimum number of
amplification cycles. Library amplification was followed by SPRI size selection to
exclude fragments larger than 1,200bp. DNA concentration was measured with a
Qubit fluorometer (Life Technologies). Library amplification was performed using
custom Nextera primers®. The libraries were sequenced by the Biomedical
Sequencing Facility at CeMM using the [llumina HiSeq3000/4000 platform

and the 25-bp paired-end configuration.

RNA sequencing. Total RNA was isolated using the AllPrep DNA/RNA Mini Kit
(Qiagen). RNA amount was measured using Qubit 2.0 Fluorometric Quantitation (Life
Technologies), and the RNA integrity number was determined using Experion
Automated Electrophoresis System (Bio-Rad). RNA-seq libraries were prepared using
a Sciclone NGS Workstation (PerkinElmer) and a Zepyhr NGS Workstation (Perki-
nElmer) with the TruSeq Stranded mRNA LT sample preparation kit (I[llumina).
Library amount and quality were determined using Qubit 2.0 Fluorometric Quanti-
tation (Life Technologies) and Experion Automated Electrophoresis System (Bio-Rad).
The libraries were sequenced by the Biomedical Sequencing Facility at CeMM using
the [llumina HiSeq 3000/4000 platform and the 50-bp single-read configuration.

ChIPmentation. ChIPmentation was carried out as previously described®®, with
minor adaptions. Briefly, cells were washed once with PBS and fixed with 1%
paraformaldehyde in up to 1 ml PBS for 10 min at room temperature. Glycine was
added to stop the reaction. Cells were collected at 500 ¢ for 10 min at 4 °C
(subsequent work was performed on ice and used cool buffers and solutions unless
otherwise specified) and washed twice with up to 0.5 mlice-cold PBS supplemented
with 1 uM phenylmethyl sulfonyl flucride (PMSF). The pellet was lysed in
sonication buffer (10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0, 0.25% SDS,

1 % protease inhibitors (Sigma) and 1 uM PMSF) and sonicated with a Covaris
§220 sonicator for 20-30 min in a milliTUBE or microTUBE until the size of most
fragments was in the range of 200-700 bp. Lysates were centrifuged at full speed for
5min at 4°C, and the supernatant containing the sonicated chromatin was
transferred to a new tube. The lysate was then brought to RIPA buffer conditions
(final concentration: 10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0, 140 mM Nacl,
1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate, 1 % protease inhibitors
(Sigma) and 1 M PMSF) to a volume of 200 pl per immunoprecipitation. For each
immunoprecipitation, 10 ul magnetic Protein A (Life Technologies) were washed
twice and resuspended in PBS supplemented with 0.1% BSA. The antibody was
added and bound to the beads by rotating 2h at 4 °C. Used antibodies were
H3K4mel (0.5 ug per immunoprecipitation, Diagenode pAb-194-050), H3K27ac
(1 pg per immunoprecipitation, Diagenode pAB-196-050) and H3K27me3

(1 ug per immunoprecipitation, Millipore 07-499). For control libraries, an
immunoprecipitation with 2.5 ug of a nonspecific IgG rabbit antibody was used.
Blocked antibody-conjugated beads were then placed on a magnet, supernatant was
removed and the sonicated lysate was added to the beads followed by incubation
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for 3-4h at 4°C on a rotator. Beads were washed subsequently with RIPA (twice),
RIPA-500 (10mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 500 mM NacCl, 1%
Triton X-100, 0.1% SDS and 0.1% DOC) (twice) and RIPA-LIiCl {10 mM Tris-HCl
pH 8.0, 1mM EDTA pH 8.0, 250 mM LiCl, 1% Triton X-100, 05% DOC and 0.5%
NP40) (twice).

Beads were washed once with cold Tris-Cl pH 8.0, to remove detergent, salts
and EDTA. Beads were washed once more with cold Tris-Cl pH 8.0 but the
reaction was not placed on a magnet to discard supernatant immediately. Instead,
the whole reaction including beads was transferred to a new tube and then placed
on a magnet to remove supernatant to decrease background. Beads were then
carefully resuspended in 25l of the tagmentation reaction mix (10mM Tris pH
8.0, 5mM MgCl,, 10% v/v dimethylformamide) containing 1 ul Tagment DNA
Enzyme from the Nextera DNA Sample Prep Kit (Illumina) and incubated at 37 °C
for 1-3 min in a thermocydler. The beads were washed with RIPA (twice) and once
with cold Tris-Cl pH 8. Beads were washed once more with cold Tris-Cl pH 8.0 but
the reaction was not placed on a magnet to discard supernatant immediately.
Instead, the whole reaction including beads was again transferred to a new tube and
then placed on a magnet to remove supernatant. Beads were then incubated with
70 pl elution buffer (0.5% SDS, 300 mM NaCl, 5mM EDTA and 10mM Tris-HCI
pH 8.0) containing 2 ul of Proteinase K (NEB) for 1 h at 55°C and 8 hat 65°C, to
revert formaldehyde cross-linking, and supernatant was transferred to a new tube.
Finally, DNA was purified with SPRI AMPure XP beads (sample-to-beads ratio
1:2) or Qiagen MinElute columns.

One microlitre of each library was amplified in a 10-ul qQPCR reaction
containing 0.15 puM primers, 1 x SYBR Green and 5 pl Kapa HiFi HotStart
ReadyMix (Kapa Biosystems), to estimate the optimum number of enrichment
cycles with the following programme: 72 °C for 5 min, 98 °C for 305, 24 cycles of
98 °C for 10's, 63 °C for 30s and 72°C for 30, and a final elongation at 72 °C for
1 min. Kapa HiFi HotStart ReadyMix was incubated at 98 °C for 455 before
preparation of all PCR reactions (qPCR and final enrichment PCR), to activate the
hot-start enzyme for successful nick translation at 72 “C in the first PCR step. Final
enrichment of the libraries was performed in a 50-ul reaction using 0.75 uM
primers and 25 pl Kapa HiFi HotStart ReadyMix. Libraries were amplified for
N+ 1 cycles, where N is equal to the rounded-up Cq value determined in the
qPCR reaction. Enriched libraries were purified using SPRI AMPure XP beads at a
beads-to-sample ratio of 1:1, followed by a size selection using AMPure XP beads
to recover libraries with a fragment length of 200-400 bp. Library pregaralicm was
performed using custom Nextera primers as described for ATAC-seq?”. The
libraries were sequenced by the Biomedical Sequencing Facility at CeMM using
the Illumina HiSeq3000/4000 platform and the 25-bp paired-end configuration.

Preprocessing of the ATAC-seq data. Reads were trimmed using Skewer 2.
Trimmed reads were aligned to the GRCh37/hgl9 assembly of the human genome
using Bowtie2 (ref. 53) with the “-very-sensitive’ parameter. Duplicate reads were
removed using sambamba markdup™, and only properly paired reads with
mapping quality > 30 and alignment to the nuclear genome were kept. All
downstream analyses were performed on the filtered reads. Genome browser tracks
were created with the genomeCoverageBed command in BEDToals®® and
normalized such that each value represents the read count per base pair per
million mapped and filtered reads. Finally, the UCSC Genome Browser's
bedGraphToBigWig tool was used to produce a bigWig file. Combined tracks with
percentile signal across the cohort were created by quantifying ATAC-seq read
coverage at every reference genome position using BEDTools coverage and
normalizing it between samples. Normalization was done by dividing each value by
the total number of filtered reads and multiplying it with ten million, to obtain
numbers that are comparable and easy to visualize. Next, the mean as well as the
5th, 25th, 75th and 95th percentiles of signal across the whole cohort were
calculated with Numpy, converted into bedgraph files and subsequently to bigwig
format using bedGraphToBigWig. Peak calling was performed with MACS2

(ref. 56) using the -nomadel’ and "-extsize 147" parameters, and peaks overlapping
blacklisted features as defined by the ENCODE project” were discarded.

Preprocessing of the RNA-seq data. Reads were trimmed with Trimmomatic™®
and aligned to the GRCh37/hgl9 assembly of the human genome using Bowtiel
(ref. 59) with the following parameters: -q -p 6 -a -m 100—minins 0—maxins
5000 —fr—sam—chunkmbs 200. Duplicate reads were removed with Picard’s
MarkDuplicates utility with standard parameters before transcript quantification
with BitSeq® using the Markov chain Monte Carlo method and standard
parameters. To obtain gene-level quantifications, we assigned the expression values
of its highest expressed transcript to each gene. Differential gene-level expression
between the three IGHV mutation status groups was performed using DESeq2
(ref. 61) from the raw count data with a significance threshold of 0.05. To produce
genome browser tracks, we mapped the reads to the genomic sequence of the
GRCh37/hgl9 assembly of the human genome using Bowtie2 (ref. 53) with the
“very-sensitive’ parameter, removed duplicates using sambamba markdup® and
used the genomeCoverageBed command in BEDTools™ to produce a bedgraph file.
This file was normalized such that each value represents the read count

per base pair per million filtered reads, and the UCSC Genome Browser's
bedGraphToBigWig tool was used to convert it into a bigWig file.
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Prepi ing of the ChiPi ion data. Reads were trimmed using Skewer™2,
Trimmed reads were aligned to the GRCh37/hgl9 assembly of the human genome
using Bowtie2 (ref. 53) with the “-very-sensitive’ parameter. Duplicate reads were
removed using sambamba markdup™, and only properly paired reads with
mapping quality > 30 and alignment to the nuclear genome were kept. All
downstream analyses were performed on the filtered reads. Genome browser tracks
were created with the genomeCoverageBed command in BEDTools®® and
normalized such that each value represents the read count per base pair per million
filtered reads. Finally, the UCSC Genome Browser's bedGraphToBigWig tool was
used to produce a bigWig file.

Bioinformatic analysis of ch accessibility. The CLL consensus map was
created by merging the ATAC-seq peaks from all samples using the BEDTools™
merge command. To produce Fig. 1b, we counted the number of unique
chromatin-accessible regions after merging peaks for each sample in an iterative
manner, randomizing the sample order 1,000 times and computing 95% confidence
intervals across all iterations. The chromatin accessibility of each region in each
sample was quantified using Pysam, counting the number of reads from the filtered
BAM file that overlapped each region. To normalize read counts across samples, we
performed quantile normalization using the normalize.quantiles function from the
preprocessCore package in R. For each genomic region we calculated the support as
the percentage of samples with a called peak in the region, and we calculated four
measures of ATAC-seq signal variation across the cohort: mean signal, s.d.,
variance-to-mean ratio and the squared coefficient of variation (the square of the
s.d. over the mean). In addition, we used BEDTools intersect to annotate each
region with the identity of and distance to the nearest transcription start site
and the overlap with Ensembl gene annotations (promoters were defined as the
2,500-bp region upstream of the transcription start site). Annotation with
chromatin states was based on the 15-state genome segmentation for CD19 + B
cells from the Roadmap Epigenomics Project? (identifier: E032).

To summarize the chromatin accessibility signals into one value per gene
(Fig. 2b and Supplementary Fig. 5), we used the accessibility values of the closest
region (but no further than 1,000bp from the transcription start site) to represent
the promoter and the mean values of all distal regions (located more than 2,500 bp
from the transcription start site) of each gene to represent distal regulatory
elements. To test for overrepresentation of CpG islands in the promoters of genes
with a known role in B-cell biology and/or CLL pathogenesis, we downloaded the
position of CpG islands in the GRCh37/hgl9 assembly from the UCSC Genome
Browser®, counted the number of promoters (as defined above) that overlapped by
at least 1 bp with CpG islands in the gene set of interest and in all other genes with
accessible elements in CLL, and used Fisher's exact test to assess the significance of
the association. Unsupervised principal component analysis was performed with
the scikit-learn® library (sklearn.decomposition.PCA) applied to the chromatin
accessibility values of all chromatin-accessible regions across the CLL cohort.

To investigate variability within the mCLL and uCLL sample groups, we divided
the samples in two groups based on their IGHV mutation status (samples below a
98% homology threshold were considered mutated, and samples with missing
values for the JIGHV mutation status were excluded from the analysis) and we used
the F test from the var.test function in R on the chromatin accessibility values of all
CLL cohort regions. Significantly variable regions were defined as having a
Bonferroni-corrected P-value below 0.05 and mean accessibility above 1. Region
set-enrichment an.al?'sis was performed on the significantly variable regions of each
group us“;% LOLAM with its core databases: transcription factor binding sites from
ENCODE™, tissue clustered DNase hypersensitive sites®, the CODEX database®,
UCSC Genome Browser annotation tracks®, the Cistrome database® and data
from the BLUEPRINT project®. Motif enrichment analysis was performed with
the AME tool from the MEME suite® using 250bp sequences centred on the
chromatin-accessible regions and randomly generated sequences of the same
length and set size from a distribution of zeroth- and first-order Markov order
(single nucleotides and dinucleotide) frequencies as background.

learning lysis of di: subtypes. Random forest classifiers from
the scikit-learn® Python library (sklearn.ensemble.RandomForestClassifier) were
trained with the samples’ IGHV mutation status as class label and the chromatin
accessibility values for each sample at each of the 112,298 consensus regions as
input features (prediction attributes). All samples with known IGHV mutation
status were used for class prediction, the performance was evaluated by leave-one-
out cross-validation, and the results were plotted as ROC curves using scikit-learn.
Given that several patients contributed more than one sample to the cohort, in each
iteration of the cross-validation we removed any samples from the training set that
belonged to the same patient as the sample in the test set, to eliminate a potential
risk of overtraining. Furthermore, we repeated the cross-validation 1,000 times
based on randomly shuffled class labels to confirm that no overtraining occurred in
our analysis. The most predictive regions for IGHV mutation status were selected
by averaging the feature importance of the random forest classifiers over all
iterations of the cross-validation and selecting those features with Gini importance
higher than 10~ * Region set enrichment was performed using LOLA®!

as described above. Pathway enrichment analysis was performed using
seq2pathway”®. The sample clustering in Fig. 4a was based on the pairwise
correlation of ATAC-seq signal in the predictive regions between samples, and the
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Supplementary Figure 1
The cohort reflects the spectrum of CLL phenotypes commonly encountered in clinical care.

Visualization of clinical annotations for the patient samples included in this study.
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Supplementary Figure 2
Observed ATAC-seq fragment length distributions indicate high data quality.

Distribution of ATAC-seq fragment lengths for published GM12878 data (Buenrostro et al. 2013 Nature Methods) and for four
randomly selected CLL samples from this study. Fragment lengths were inferred based on paired-end sequencing data. The
characteristic patterns of nucleosome-associated fragment length are observed in all samples.
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Supplementary Figure 3
The chosen sequencing depth recovers the majority of ATAC peaks per sample.

André F. Rendeiro

Relationship of the number of sequenced reads (x-axis) and the number of detected chromatin-accessible regions (y-axis), showing the
average pattern across all 88 samples (blue line). The corridor indicated in green corresponds to a 95% confidence interval for random

subsampling across samples.
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Supplementary Figure 4
Chromatin-accessible regions in CLL are enviched for promoters and enhancers.

a) Histogram showing the number of samples in which a given chromatin-accessible region from the CLL consensus map was detected
as a significant ATAC-seq peak. b) Frequency of overlap and enrichment of Ensembl gene annotation for regions in the CLL
consensus map, compared to region sets of identical size and lengths that were randomized 1,000 times across the genome. c)
Frequency of overlap and enrichment of chromatin state segmentations for CD19+ B cells (data from the Roadmap Epigenomics
project), compared to region sets of identical size and lengths that were randomized 1,000 times across the genome.
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Supplementary Figure 5

Heterogeneity in chromatin accessibility affects genes related to B cells and CLL.

André F. Rendeiro

a) Histogram showing the percentage of chromatin-accessible regions that are shared between any two CLL samples. b) Distribution of

variance in chromatin accessibility for promoter regions and putative distal regulatory regions across all genes (grey) and for a set of
genes with a known role in B cell biology and/or CLL pathogenesis (blue/green). Chromatin accessibility scores were averaged across
all regulatory regions assigned to a given gene. c) Violin plots of normalized chromatin accessibility values for gene promoters
(regions located within 2,500 basepairs of the transcription start site) and distal regulatory elements (regions located at least 2,500
basepairs away from the nearest transcription start site) for the same genes as in panel b.
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Supplementary Figure 6

Unsupervised analysis identifies IGHV mutation status as a key source of variation.

Principal component analysis based on the chromatin accessibility for all 88 samples at each of the 112,298 chromatin-accessible
regions in the CLL cohort. The first five principal components are plotted, and samples are colored according to clinical annotations
and molecular diagnostics data (top four rows) as well as the sample processing batch for the ATAC-seq experiments (bottom row).
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Chromatin accessibility is linked to differences in gene expression and DNA methylation.

a) Hexbin scatterplot visualizing the weak correlation (Pearson’s » = 0.33) between gene expression levels and the chromatin
accessibility at associated regulatory regions. Shown are averages across ten samples with matched ATAC-seq and RNA-seq data. The
color gradient is on a logarithmic scale. b) Pearson correlation (top) and significance of the association (bottom) between gene
expression levels and chromatin accessibility values at associated regulatory regions, plotted over the distance of the accessible region
to the gene’s transcription start site. ¢) Mean chromatin accessibility across CLL-accessible regions associated with genes that were
upregulated in JGHV-mutated or in JGHV-unmutated CLL. d) Mean chromatin accessibility in CLL-accessible regions that overlap
with regions described as hypermethylated in JGHF-mutated or in /GHV-unmutated CLL (Kulis et al. 2012 Nature Genetics).
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Supplementary Figure 8

Subtype-specific variable regions show characteristic envichment patterns.

a) Differential variability between the mCLL and uCLL sample groups illustrated by each region’s change in variance-to-mean ratio
between groups (x-axis) and the p-value for variability within each group (y-axis). Blue and orange dots indicate significantly variable
regions. b) Scatterplots of mean accessibility (left) and variance-to-mean ratio within each sample group (right). The plot on the left
illustrates how significantly variable regions are dispersed across the accessibility range, rather than being strongly associated with
differences in mean accessibility between the groups. The color coding is the same as in panel a. c) Most highly enriched region sets
that significantly overlap with the differentially variable regions for mCLL (blue) and for uCLL (orange), based on LOLA analysis.
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Supplementary Figure 10
Subtype-specific signature regions are weakly associated with differentially expressed genes.

Volcano plot (top) and histogram (bottom) showing gene expression differences between mCLL and uCLL samples for genes that are
co-localized with subtype-specific signature regions. Percentage values are based on the number of genes that were significantly
differentially expressed in the RNA-seq analysis.
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Supplementary Figure 11

André F. Rendeiro

Signature regions specific to mCLL show strong differences between disease subtypes but also heterogeneity within each subtype.

Genome browser plots for six gene loci that contain mCLL-specific signature regions (indicated by the green arrows). All ATAC-seq

tracks were normalized by read depth to improve comparability between samples.
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Supplementary Figure 12

Signature regions specific to uCLL show strong differences between disease subtypes but also heterogeneity within each subtype.

Genome browser plots for six gene loci that contain uCLL-specific signature regions (indicated by the green arrows). All ATAC-seq
tracks were normalized by read depth to improve comparability between samples.
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Supplementary Figure 13

Enrichment analysis for differential ATAC-seq peaks yields similar results as for the subtype-specific signature regions.

Complementing and validating the enrichment analysis shown in Figure 3g, this diagram lists the most highly enriched LOLA region
sets for mCLL-specific (blue) and uCLL-specific (orange) differential peaks identified using DESeq2.
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Supplementary Figure 14
Clustering based on CLL subtype-specific signature regions reflects IGHV mutation status.

Hierarchical clustering of all CLL samples based on sample-wise correlation of chromatin accessibility for the most discriminatory
regions that were identified between the JGHV-mutated and the JGHV-unmutated disease subtype. The clustering tree is annotated with
clinical data, and samples from the same patient are connected by curved black lines.
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Supplementary Figure 15
Histone marks and gene expression confirm the intermediate character of the iCLL sample cluster.

a) Hierarchical clustering and heatmap visualizing the ChIPmentation signal for three histone marks (H3K4mel, H3K27ac,
H3K27me3) in ten CLL samples comprising three disease subtypes (mCLL, iCLL, uCLL). Regulatory regions were selected and
sorted in the same way as in Figure 3c. b) Violin plots showing the distribution of ChIPmentation levels for each histone mark in the
same regulatory regions as in panel a, grouped by disease subtype. In all panels, significance was assessed using the Mann-Whitney U/
test, and comparisons with p-values above 0.05 were labeled as not significant (n.s.). ¢) Mean gene expression values for genes
associated with the regulatory regions from panel a, grouped by disease subtype. d) Barplot showing the mean fold change of genes
associated with regulatory elements in cluster 1 (nCLL regions) over genes associated with cluster 2 (uCLL regions) across all genes,
grouped by disease subtypes. Significance was assessed using the Mann-Whitney U test, and comparisons with p-values above 0.05
were labeled as not significant (n.s.).
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Supplementary Figure 16
Transcription factor footprints for ATAC-seq and DNase-seq are similar.

Footprinting diagrams showing the frequency of Tn35 transposase insertion events (for ATAC-seq) and DNase I cutting sites (for
DNase-seq, based on data for CD19+ B cells from the Roadmap Epigenomics project) across a 500 basepair window around DNA
binding motifs of transcription factors involved in B cell development.
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Supplementary Figure 17

Cohort-level gene regulatory network identifies transcription factors relevant to CLL.

Gene regulatory network of CLL inferred from footprint predictions of transcription factor binding, based on the ATAC-seq data of all
CLL samples. Only nodes with more than 200 connections are shown.
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Supplementary Figure 18
Footprinting-based gene regulatory networks for ATAC-seq in CLL and DNase-seq in B cells show similar properties.

a) Structural properties of gene regulatory networks inferred from ATAC-seq data for the CLL cohort and from DNase-seq data for

CD19+ B cells. b) Number of connections for all genes in the two gene regulatory networks (transcription factors are shown in red).

44/115



Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

Node degree Node degree
(number of connections) (number of connections)
200 I 11,000 200 Il 5000

Supplementary Figure 19
Gene regulatory networks for mCLL and wCLL samples are globally similar.

Gene regulatory networks inferred based on the JGHV-unmutated samples (uCLL, left) and based on the JGHV-mutated samples
(mCLL, right). Only nodes with more than 200 connections are shown.
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Supplementary Figure 20

Disease subtype-specific networks detect differentially regulated genes and genomic regions.

André F. Rendeiro

a) Violin plots showing the distribution of ChIPmentation levels for each histone mark in regulatory regions associated with genes that
are differentially connected between the subtype-specific networks. b) Violin plots showing the ratio between the ChIPmentation
signal for histone marks associated with active (HI3K4mel, H3K27ac) over repressed (H3K27me3) chromatin. c) Subnetworks with
the neighbors of PAX9 and CD22, shown separately for the mCLL and uCLL networks. Edge width indicates the strength of the
connection as measured by the calculated interaction score. d) ATAC-seq and ChIPmentation signal for three histone marks at
representative differentially connected genes between the mCLL and uCLL networks. In panel a and b, significance was assessed

using the Mann-Whitney U test, and comparisons with p-values above 0.05 were labeled as not significant (n.s.).

46/115



Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

Manuscript #2

The following section contains the manuscript entitled “Chromatin mapping and single-cell immune
profiling define the temporal dynamics of ibrutinib drug response in chronic lymphocytic leukemia”
which is available as a preprint in bioRxiv:

André F. Rendeiro, Thomas Krausgruber, Nikolaus Fortelny, Fangwen Zhao, Thomas Penz,
Matthias Farlik, Linda C. Schuster, Amelie Nemc, Szabolcs Tasnady, Marienn Réti, Zoltan Matrai,
Donat Alpar, Csaba Bodor, Christian Schmidl, Christoph Bock. Chromatin mapping and single-cell
immune profiling define the temporal dynamics of ibrutinib drug response in chronic lymphocytic
leukemia. Nature Communications (2020). doi:10.1038/s41467-019-14081-6

47/115


https://doi.org/10.1038/s41467-019-14081-6
https://doi.org/10.1038/ncomms11938

Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

bioRxiv preprint first posted online Apr. 3, 2019; doi: hitp:/dx.doi.org/10.1101/597005. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Allrights reserved. No reuse allowed without permission.

Chromatin mapping and single-cell immune profiling define the temporal dynam-
ics of ibrutinib drug response in chronic lymphocytic leukemia

André F. Rendeiro!’, Thomas Krausgruber'”, Nikolaus Fortelny!, Fangwen Zhao?, Thomas Penz!, Matthias Farlik',
Linda C. Schuster!, Amelie Nemc!, Szabolcs Tasnady?, Marienn Réti®, Zoltdan Matrai®, Donat Alpar'“!, Csaba
Bodor*!, Christian Schmidl™"!, Christoph Bock!2561

! CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria

? Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria

 Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute
of Hematology and Infectious Diseases, Budapest, Hungary

4 MTA-SE Lendilet Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental
Cancer Research, Semmelweis University, Budapest, Hungary

5 Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria

¢ Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken, Germany

7 Current address: Regensburg Centre for Interventional Immunology (RCI) and University Medical Center of
Regensburg, Regensburg, Germany

* These authors contributed equally to this work
T Co-last author / These authors jointly directed this work
Correspondence: Christoph Bock (cbock@cemm.oeaw.ac.at)

Keywords: Chronic lymphocytic leukemia, drug response profiling, ibrutinib therapy, chromatin mapping, single-
cell RNA sequencing, time series analysis, machine learning, translational bioinformatics

Abstract

Chronic lymphocytic leukemia (CLL)is a genetically, epigenetically, and clinically heterogeneous disease. Despite
this heterogeneity, the Bruton tyrosine kinase (BTK) inhibitor ibrutinib provides effective treatment for the vast
majority of CLL patients. To define the underlining regulatory program, we analyzed high-resolution time courses
of ibrutinib treatment in closely monitored patients, combining cellular phenotyping (flow cytometry), single-cell
transcriptome profiling (scRNA-seq), and chromatin mapping (AT AC-seq). We identified a consistent regulatory
program shared across all patients, which was fiuther validated by an independent CLL cohort. In CLL cells, this
program starts with a sharp decrease of NF-«xB binding, followed by reduced regulatory activity of lineage-defining
transcription factors (including PAX 5 and IRF4) and erosion of CLL cell identity, finally leading to the acquisition
of a quiescence-like gene signature which was shared across several immune cell types. Nevertheless, we observed
patient-to-patient variation in the speed of its execution, which we exploited to predict patient-specific dynamics
in the response to ibrutinib based on pre-treatment samples. In aggregate, our study describes the cellular, molec-
ular, and regulatory effects of therapeutic B cell receptor inhibition in CLL at high temporal resolution, and it
establishes a broadly applicable method for epigenome/transcriptome-based treatment monitoring.
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Introduction

Chronic lymphocytic leukemia (CLL) is among the most frequent blood cancers'. It is characterized by clonal
proliferation and accumulation of malignant B lymphocytes in the blood, bone marrow, spleen, and lymph nodes.
On a cellular level, this process is driven by constitutively activated B cell receptor (BCR) signaling, which can be
caused by erroneous (auto)antigen recognition and/or cell-autonomous mechanisms?. CL L shows remarkable clin-
ical heterogeneity, with some patients pursuing an indolent course, while others progress rapidly and require early
treatment. Extensive heterogeneity exists also at the genetic, epigenetic, and transcriptional level and has led to the
identification of genetically defined CLL subtypes*® and patient-specific transcriptional programs™. Moreover,
characteristic DN A methylation pattems appear to reflect differencesin the CLL s cell-of-origin'®'2, and chromatin
profiles predict the BCR immunoglobulin heavy-chain variable (IGHV) gene mutation status'®.

Despite widespread clinical and molecular heterogeneity, therapeutic inhibition of BCR signaling has shown re-
markable efficacy for CLL therapy in essentially all patients, with low rates of primary and secondary resistance.
Most notably, treatment with the Bruton tyrosine kinase (BTK ) inhibitor ibrutinib achieves high clinical tesponse
rates even in patients carrying genetic markers predictive of fast disease progression such as TP53 aberrations!*!6.
As the result, ibrutinib is becoming the standard of care for a large percentage of patients with high-risk CLL.

The mechanism of action of ibrutinib is rooted in its inhibition of BTK, which leads to downregulation of BCR
signaling. Previous studies have investigated specific aspects of the molecular response to ibrutinib, for example
investigating immunosuppressive mechanisms'” and identifying decreased NF-xB signaling as a cause of reduced
cellular proliferation'$2° but they did not map the genome-scale, time-resolved regulatory response to ibrutinib in
primary patient samples. A detailed understanding of these temporal dynamics is particularly relevant given that
successful ibrutinib therapy often induces an initial increase (rather than decrease) of CLL cells in peripheral blood,
which can take months to resolve?!-* This observation has been explained by the drug’s effect on cell-cell con-
tacts?**, which triggers relocation of CLL cells from a protective microenvironment to the peripheral blood. The
fact that ibrutinib induces lymphocytosis also contributes to the low correlation between the CLL cell count in the
blood and the clinical response to ibrutinib therapy®?, and there is an unmet need for early molecular markers of
Tesponse to ibrutinib therapy.

To dissect the precise cellular and molecular changes induced by ibrutinib therapy, and to identify candidate mo-
lecular markers of therapy response, we followed individual CLL patients (n=7) at high temporal resolution (eight
time points) over a standardized 240-day time course of ibrutinib treatment. Peripheral blood samples were ana-
lyzed for cell composition by flow cytometry, for epigenetic/regulatory cell state by ATAC-seq”® on six different
FACS-purified immune cell populations (158 ATAC-seq profiles in total), and for cell type specific transcriptional
changes by single-cell RNA-seq*® applied to a subset of time points (>43,000 single-cell transcriptomes in total).

Integrative bioinformatic analysis of the resulting dataset identified a consistent regulatory program of ibrutinib-
induced changes that was shared across all patients: Within the fitst days after the start of ibrutinib treatment, CLL
cells displayed reduced NF-kB binding, followed by reduced activity of lineage-defining transcription factors, and
erosion of CLL cell identity. Finally, after an extended period of ibrutinib treatment, a quiescence-like gene signa-
ture was acquired by CLL cells — and unexpectedly also by CD8" T cells and other immune cell populations. This
drug-induced regulatory program was present in all patients, and we were able to validate it in an independent CLL
cohort. However, we observed substantial patient-to-patient variation in the speed with which these events unfold.
Taking advantage of our time series data, we idenfified patient-specific predictors of the time to acquire an ibru-
tinib-induced molecular response, and we found predictive regulatory patterns already in pre-treatment samples.

In aggregate, our study provides a comprehensive, time-resolved analysis of the molecular and cellular dynamics
upon ibrutinib treatment in CLL. It constitutes one of the first high-resolution, multi-omics time series of the mo-
lecular response to targeted therapy in cancer patients. The study also establishes a broadly applicable approach
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for analyzing drug-induced regulatory programs and identifying molecular response markers for targeted therapy.
Importantly, the study’s high temporal resolution and its use of three complementary assays provided robust and
informative results based on a small number of samples. The presented approach may be particulaily relevant for
obtaining maximum insight from eaily-stage clinical trials and off-label drug use involving few individual patients.

Results
Ibrutinib therapy induces global changes in inmumne cell composition and single-cell transcription profiles

To investigate the cellular dynamics and regulatory program induced by the inhibition of BCR signaling in CLL
patients, we followed seven individuals from the start of ibrutinib therapy over a standardized time course of 240
days (Figure 1a). All patients received the same treatment regimen with daily doses of ibrutinib and underwent
extensive clinical monitoring. The patients covered a range of different demographic, clinical, and genetic param-
eters, representative of the spectrum of refractory CLL encountered in clinical practice (Supplementary Table1).

For all patients and up to eight time points (0, 1, 2, 3, 8, 30, 120/150, 240 days after the stait of ibrutinib therapy),
we performed immunophenotyping by flow cytometric analysis of peripheral blood mononuclear cells (PBMCs),
systematically quantifying changes in cell composition in response to ibrutinib therapy (Supplementary Figure
1a and Supplementary Table 2). A gradual decrease in the percentage of CLL cells was observed over time
(Figure 1b), but with extensive temporal heterogeneity across patients (Supplementary Figure 1b,c). The pro-
gressive reduction in the percentage of CLL cells coincided with an increase in the percentage of non-malignant
natural killer (NK) and T cell populations, consistent with a recent report®®. This trend was most visible for CD8*
T cells (Figure 1b,c and Supplementary Table 2), while CD4" T cells remained largely unaffected. Although
these differences were not statistically significant due to small coho1t size, they were consistent with published
data and thus provided validation and cellular characterization of our cohort and time course of ibrutinib therapy.

Based on flow cytometry, we also observed a statistically significant loss of CLL-associated swrface receptors
(CD5, CD38), which was specific to CLL cells (Figure 1d, Supplementary Figure 2, and Supplementary Table
3). To investigate the ibrutinib-induced changes in gene expression more systematically — and simultaneously in
CLL cells as well as in matched non-malignant immune cells, we performed droplet-based single-cell RN A-seq*
on the total PBMC population for a subset of patients and time points (Supplementary Table 4). Overall, ~43,000
single-cell transcriptomes passed quality control (Supplementary Figure 3a,b) and were integrated into a two-
dimensional map using the UM AP method for unsupervised dimensionality reduction (Figure 1e).

Cell type specific marker genes (e.g., CD79A, CD3D, CD14, and NKG7) were readily detectable in the single-cell
RNA-seq data and were largely unaffected by ibrutinib treatment (Supplementary Figure 3¢), thus allowing for
robust marker-based assignment of cell types. Cell counts inferred from single-cell RN A-seq were almost perfectly
cowrelated with those obtained by flow cytometry (Spearman’s p = 0.95, Supplementary Figure 3d), which pro-
vided independent validation of our single-cell RNA-seq dataset. We were also able to infer patient-specific copy
number aberrations from the single-cell RNA-seq data (Figure 1f), which identified characteristic CLL-specific
chromosomal aberrations including the deletion of chromosome 11q and 17p, and trisomy of chromosome 12.

Comparing the single-cell transcriptomes for each sample and cell type to the patient’s corresponding pre-treatment
(day 0) sample (Supplementary Figure 3e-j and Supplementary Table 5), we found cell type specific trends in
the molecular response to ibrutinib therapy (Figure 1g-h and Supplementary Figure 4). In CLL cells, we ob-
served reduced expression of the ibrutinib target BTK, of CD52 (a CLL disease activity marker?”), and of CD27 (a
regulator of B cell activation®®). Among the non-malignant immune cell types, CD8" T cells were most strongly
affected, which included downregulation of genes important for immune cell activation such as CD28, JUN, and
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ZAP70. This pattern was shared to alesser extent by CD4" T cells, while CD 14" cells were characterized by strong
upregulation of the NF-KB regulator NFKBIA.

Looking beyond individual genes, we fiuther characterized the molecular response to ibrutinib by quantifying the
transcriptome dynamics of predefined gene sets and transcriptional modules relevant to CLL and immunity (Figure
1li and Supplementary Figure 5, 6). We observed robust downregulation of B cell specific genes in CLL cells,
including target gene sets of NF-kB subunits REL A and NF-xB 1, as well as target gene sets of the well-established
NF-kB associated transcription factors ATF2 and SPI1/PU.1. Genes involved in oxidative phosphorylation were
also downregulated, consistent with widespread dampening of cellular activities in CLL cells under ibrutinib ther-
apy. Among the non-malignant immune cell types, CD8" T cells showed broad downregulation that was less pro-
nounced but similar to the response observed in CLL cells, and CD 14" monocytes/macrophages showed specific
upregulation of inflammatory response signatures including interferon gamma, TNF, and NF-kB signaling.

In summary, immunophenotyping and single-cell RNA sequencing over a dense time course of ibrutinib therapy
uncovered widespread changes not only in CLL cells, but also in non-malignant immune cells. Most notably, we
observed downregulation of NF-xB signaling and loss of B-cell surface markers in CLL, suggesting these are key
contributors to the progressive reduction of the CLL cell fraction over time, and we observed a surprising degree
of transcriptional change in non-CLL immune cells concomitant with an increase in the CD8" T cell fraction.

Chromatin mapping in CLL cells defines an ibrutinib-induc ed regulatory program leading to loss of B cell identity

To dissect the regulatory basis of the ibrutinib-induced changes in the CLL cell transcriptomes and immunophe-
notypes, we performed ATAC-seq on the FACS-purified CD19°CD5" cell compartment over the ibrutinib time
cowse (Figure 2a, Supplementary Figure 7, and Supplementary Table 6). We modeled the temporal progres-
sion as Gaussian processes (a statistical method for handling time series data®) and identified 6,797 genomic re-
gions that underwent significant changes in chromatin accessibility in response to ibrutinib treatment (Supplemen-
tary Table 7). Four major clusters were detected among these genomic regions (Figure 2b): (i) regions that grad-
ually lost chromatin accessibility (n=3,412); (ii) regions that gradually gained chromatin accessibility (n = 2,199);
(ii1) regions that followed a bimodal, oscillating pattern (n = 369); and (iv) regions characterized by a peak in
chromatin accessibility around 30 days after the start of ibrutinib treatment (n =354).

‘We inferred the putative regulatory roles of these four clusters by region set enrichment analysis using the LOLA
software*®. LOLA identified those region sets out of alarge reference dataset that showed significant overlap with
the regions of the respective cluster (Figure 2c¢). Cluster 1 (decrease in chromatin accessibility) was strongly en-
riched for binding sites of transcription factors with a role in lymphoid differentiation and gene regulation, and also
for enhancers specific to CLL cells and/or B cells. Cluster 2 (increase in chromatin accessibility) was enriched for
B cell as well as T cell specific enhancers. Cluster 3 (bimodal, oscillating chromatin accessibility) was enriched
for NF-xB binding sites. Lastly, Cluster 4 (peak in chromatin accessibility around day 30) was enriched for intra-
genic, transcribed regions marked by histone H3K36me3 in a range of hematopoietic cell types.

To identify potential regulators of the ibrutinib-induced modulation of CLL cell state, we focused on the enriched
transcription factors (from Figure 2¢) and estimated their dynamic changes in global binding activity over the
ibrutinib time course, aggregating the AT AC-seq signal across each factor’s putative binding sites (as defined by
publicly available ChIP-seq data). As expected, several key transcription factors involved in B cell development
(including NF-xB and PAXS5) and B cell proliferation (including MEF2C and FOXM 1) showed marked reduction
of chromatin accessibility at their binding sites (Figure 2d and Supplementary Figure 8a). This effect was shared
by CLL cells and non-malignant B cells but not observed in other immune cell types.
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Integrative analysis of chromatin accessibility and cell type specific transcription further refined this picture. When
we performed parallel entrichment analysis for transcription factors and their putative binding sites (Figure 2e), we
observed concerted changes for key regulators of B cell development such as BCL11A, EBF1, IKZF1, IRF4,
MEF2A, NFATC1, PAXS, and POU2F2, indicating that BTK inhibition may trigger loss of B cell identity in CLL
cells. In support of this interpretation, we found global B cell specific gene expression signatures consistently
downregulated upon ibrutinib treatment in CLL cells (Figure 2f and Supplementary Figure 8b).

Taken together, these results define a characteristic temporal order in which the ibrutinib-induced changes in CLL
cells unfold. Already after one day of ibrutinib treatment, CLL cells showed a reduction in chromatin accessibility
at NF-kB binding sites. This was followed by a gradual decrease in chromatin accessibility at binding sites of
transcription factors that are regulated by NF-xB (PU.1%!, IRF4*%%) or interact with NF-kB (ATF2*). Moreover,
we observed widespread reduction in B cell specific regulatory activity including decreased chromatin accessibility
at B cell specific elements and at the binding sites of B cell transcription factors such BCL11A, NFATCI, and
RUNX3, which was also reflected at the transcriptional level. These results highlight NF-xB mediated loss of B
cell identity as the central cell-intrinsic change in CLL cells from patients under ibrutinib therapy.

Analysis of five immune cell types identifies ibrutinib-induced acquisition of a shaved quiescence gene signature

To characterize the effect of ibrutinib therapy on gene regulation in non-malignant immune cells, we performed
ATAC-seq on FACS-purified CD19°CD5" B cells, CD3"CD4" T helper cells, CD3"CD8" cytotoxic T cells, CD56*
NK cells, and CD 14" monocytes/macrophages from the same patients and time points (Supplementary Table 8).
‘We identified a total of 12,574 temporally dynamic regulatory regions in these five cell types (Figure 3a,b; Sup-
plementary Figure 9; Supplementary Table 9). Unsupervised clustering detected shared temporal dynamics
across these cell types, with sets of regions showing gradually decreased or increased chromatin accessibility over
the time course, and a bimodal, wave-like cluster that was characterized by an initial decrease followed by a sub-
sequent increase in chromatin accessibility (Figure 3¢ and Supplementary Figure 9a-c). Despite the shared tem-
poral dynamics, the affected regions were highly cell type specific (Supplementary Figure 9d), suggesting that
the different immune cell types react in characteristic ways to the direct and indirect effects of ibrutinib treatment.

Of the five non-malignant immune cell types, CD19*CD5" B cells were most strongly affected by ibrutinib therapy,
consistent with the majorrole of BCR signaling and the ibrutinib target BTK that non-malignant B cells share with
CD19°CD5" CLL cells. Regions with decreasing chromatin accessibility in the non-malignant B cells were en-
riched for the same set of transcription factor binding sites as the CLL cells, and also, to a lesser extent, for NF-xB
binding sites (Figure 3d). In contrast, we detected fewer regions with increasing chromatin accessibility upon
ibrutinib treatment, and those regions lacked distinctive patterns of functional entichment, suggesting that they are
indirect effects downstream of the cells® direct respongse to ibrutinib treatment (Supplementary Table 9).

Biologically interesting changes were not restricted to B cells. For example, regions with decreasing chromatin
accessibility in CD4" T cells upon ibrutinib treatment were enriched for binding sites of CTCF and RAD2, which
are involved in three-dimensional chromatin organization; and regions with decreasing chromatin accessibility in
CD8" T cells were enriched for histone marks associated with repressed chromatin in other cell types (Figure 3d).
Conversely, regions with increased chromatin accessibility in CD4" T cells over the ibrutinib time course were
enriched for inferferon signaling and open, promoter-associated chromatin in T cells, while the enrichment ob-
served for CD8" T cells included CpG islands and H3K4me 1-marked regulatory regions (Figure 3d).

Despite the cell type specific effects of ibrutinib therapy on CLL cells and non-malignant immune cells, we also
identified a characteristic set of genes that underwent consistent changes across all of the investigated cell types
(Figure 3e and Supplementary Figure 9¢). This shared ibrutinib response signature was enriched for genes in-
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volved in ribosomal functions, mRNA processing, oxidative phosphorylation/metabolism, translation factors, se-
nescence, and autophagy (Figure 3f). For example, the shared ibrutinib response signature included CD44, a pan-
lymphocyte cell adhesion molecule; CD99, a regulator of leukocyte migration, T cell adhesion, and cell death;
CD37, which mediates the interaction of B and T cells; various surface proteins involved in cell adhesion (CD52,
CD164, ICAMS3, ITGB7); the protein tyrosine kinase FGR, which is a negative regulator of cell migration; TPT1
(aregulator of cellular growth and proliferation); and several factors involved in protein translation (EEF2, EID1,
EIF1, EIF3E) as well as ribosomal proteins (Supplementary Figure 10a).

Interestingly, we also found genes involved in senescence and/or quiescence, namely CXCR4, a chemokine recep-
tor required for hematopoietic stem cell quiescence®-% ZFP36L2, an RNA binding protein that promotes quies-
cence in developing B cells*”; and HMGB2, a chromatin protein involved in the regulation of gene expression in
senescent cells*® (Supplementary Figure 10). Together, these results suggest that CLL cells and non-malignant
immune cells respond to ibrutinib therapy with shared transcriptional changes that include downregulation of genes
involved in leukocyte function and cell-cell interactions, as well as upregulation of genes involved in quiescence
and cellular senescence.

To assess the reproducibility of this shared ibrutinib response signature in an independent validation cohort, we
utilized recently published bulk RNA-seq data for PBMCs from CLL patients (n=19)that underwent single-agent
ibrutinib treatment at a different medical center”. We indeed observed consistent changes in the expression of our
gene signature for the vast majority of patients from the validation cohort (Figure 3g). The difference was statis-
tically significant at both time points compared to day 0 (month 1: p =7.6e-6; month 6: p = 1.0e-7; paired #test),
and an accurate distinction was possible between patient samples collected before and during ibrutinib therapy
(receiver operating characteristic area under curve values of 0.89 and 0.79, respectively) (Figure 3h).

In summary, our data show that ibrutinib therapy induces time-dependent regulatory changes not only in CLL cells
but also in other immune cell types. Changes in non-malignant B cells mitrored those in CLL cells (albeit with a
weaker NF-B signature), while CD4" T cells, CD8" T cells, NK cells, and myeloid cells responded in cell type
specific ways. We furtheridentified and validated a gene expression signature that captures broad ibrutinib-induced
downregulation of immune cell functions and acquisition a quiescent-like state in response to ibrutinib therapy.

Prediction of patient-to-patient variability over the time course provides a molecular marker of ibrutinib response

Our data and analyses strongly support the existence of a consistent, ibrutinib-induced regulatory program that is
shared across all patients. Nevertheless, we also observed substantial patient-to-patient variability at the genetic
(Figure 1f), transcriptional (Figure 3g), chromatin-regulatory (Figure 2d), and cellular level (Supplementary
Figure 1b). This heterogeneity in the presence of a shared regulatory program could be explained by patient-to-
patient differences inthe speed of progression along the regulatory program. Analyzing the molecular progression
may therefore provide us with an opportunity to monitor or even predict, based on molecular profiles, which pa-
tients pursue a faster or slower time course toward a sustained cellular response under ibrutinib therapy.

Along these lines, we first investigated whether there were changes in the subclonal composition of CLL cells
under ibrutinib treatment. To that end, we analyzed the copy number profiles inferred fiom the single-cell RNA-
seq data and indeed observed subclonal genetic differences within patients over the time course (Supplementary
Figure 10a-d). We also inferred the molecular response to ibrutinib therapy for each individual CLL cell, based
on the expression intensity of our validated ibrutinib response signature (Figure 3e) in the single-cell transcrip-
tomes. When we correlated this “ibrutinib molecular response score” with the single-cell copy number profiles, we
did not observe a clear association between individual copy number aberrations and the strength of the molecular
response to ibrutinib in single cells (Supplementary Figure 10e-h). However, we did observe an increase of sub-
clonal genetic diversity of the time course of ibrutinib response, based on a quantitative measure that we validated
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on simulated data and on the changing ratio of CLL cells versus non-malignant cells in our time course (Figure 4a
and Supplementary Figure 10i-1). This change of subclonal genetic heterogeneity within patients was indeed
positively associated with a strong cellular response to ibrutinib treatment as measured the flow cytometry data
(Figure 4b).

Second, we investigated the association of chromatin accessibility in CLL cells at day 0 with a range of patient-
specific characteristics. To that end, we performed principal component analysis on the chromatin profiles for all
patients and cell types, and we tested for statistical associations with the clinical annotation data (Supplementary
Figure 11a). We observed a strong association between the second principal component of the chromatin profiles
in CLL cells at day 0 and the cellular response to ibrutinib treatment at day 120, suggesting that this chromatin
signature provides an epigenomic marker for the subsequent cellular response to ibrutinib treatment (Figure 4c,d).
This chromatin signature separated patients into fast versus slow responders to ibrutinib treatment independently
of other clinical annotations (Supplementary Figure 11b). Genomic regions associated with a slow response to
ibrutinib treatment showed essentially the same enrichment as those that were downregulated in CLL cells (Figure
2¢), including preferential overlap with a broadly active state of cellular activity (Supplementary Figure 11c).

Third, we employed owur single-cell RN A-seq dataset to derive and evaluate gene expression signatures that capture
the molecular response to ibrutinib treatment in individual cells. Using machine learning, we predicted the time of
sample collection (day 0, 30, or 120/150) for each of the ~19,000 single-cell transcriptomes for CLL cells from
four donors. Both support vector machines and elastic net classifiers achieved excellent prediction performance
with cross-validated test-set ROC area under curve (AUC) values in the range of 0.975 to 0.999, and these results
were robust to differences in the number of detected genes among, the single-cell transcriptome profiles (Supple-
mentary Figure 12a). Owr observations indicate that the transcriptome profiles of single CLL cells undergo
changes that precisely reflect the duration of ibrutinib therapy — which we can exploit for molecular staging of the
patient-specific ibrutinib response. Using a classifier that was trained and evaluated by patient-stratified cross-
validation, we observed that cells from specific patients were consistently predicted to have progressed faster
(CLL5) or slower (CLL6) along the trajectory of the transcriptional response to ibrutinib treatment (Figure 4e),
indicating that individual patients indeed follow their own timelines in the molecular response to ibrutinib therapy.

Finally, for amore quantitative assessment of these temporal dynamics, we trained and evaluated regression models
that predict the precise time (i.e., number of days) after the start of ibrutinib therapy for each individual CLL cell
transcriptome. We observed excellent test set prediction performance for three patients (CLL1, CLL6, and CLL8),
with1? values (i.e., percent variance explained) of 92.3%, 84.2%6, and 78.1%, respectively (Supplementary Figure
12b-c¢). Lower performarnce was observed for CLL5 (1?= 36.6%), where the day-0 time point already showed a
signature reminiscent of ibrutinib treatment (Figure 4f). Consistent with the results of the classification analysis
(Figure 4e), the regression models predicted individual patients progressing faster (CLLS) or slower (CLL6) along
the trajectory of transcriptional response, while the two remaining samples (CLL 1, CLL8) followed similar time-
lines (Figure 4f). When we compared predictions based on CLL cell transcriptomes at day 0 across patients, we
found that the observed molecular signature prior to the start of ibrutinib treatment indeed anticipated the subse-
quent cellular response (i.e., reduction of CLL cells on day 120/150 compared to day 0) (Figure 4g).

These results indicate that genetic, epigenetic, and transcriptional variation between patients capture inter-individ-
ual differences in the response to ibrutinib treatment and may provide molecular markers that predict the time to a
strong cellular response for individual patients.
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Discussion

Multi-omics analysis of clinical time courses provides an effective approach for dissecting the molecular response
to targeted therapy, allowing us to define the temporal order of events and to unravel relevant regulatory programs.
Here, we applied flow cytometry, single-cell RNA-seq, and chromatin mapping in six FACS-purified cell types to
a dense time course of CLL patients starting ibrutinib therapy. These three assays provide comprehensive and
complementary information comprising the cellular response (flow cytometry), transcriptional changes across all
major immune cell populations (single-cell RN A-seq), and the underlying chromatin dynamics that may explain
and predict the observed changes in transcription regulation and epigenetic cell state (ATAC-seq).

Integrative bioinformatic analysis identified a characteristic regulatory program that was shared across all patients.
Among the eailiest changes following the start of ibrutinib therapy, we observed a decrease of NF-«B binding in
CLL cells, which was followed by a rapid reduction in the regulatory activity of transcription factors involved in
B cell development and function (such as EBF1, FOXM 1, IRF4, PAXS, and PU.1). This decrease was accompanied
by (and it likely caused) downregulation of CLL-specific gene signatures and a decrease in surface marker levels
(including CD5 and CD19), which together indicate a broad erosion of CLL cell identity.

Ibrutinib-induced changes were not exclusive to CLL cells but shared by several other immune cell types. Non-
malignant B cells largely mitrored the changes observed in CLL cells — which was expected given the role of the
ibrutinib target BTK in BCR signaling. We also observed a dampening effect of ibrutinib on immune pathway
regulation in CD8" T cells, while there was an increase of inflammatory gene signatures in monocytes/macro-
phages. The changes in immune cell types that do not express BTK could be due to a combination of direct effects
via ibrutinib’s promiscuous inhibition of kinases other than BTK (including BLK, BMX, ITK, TEC, TXK, and
EGFR*) and indirect effects arising from the ibrutinib-induced relocation of CLL cells from the protective micro-
enviromment into the peripheral blood.

Interestingly, for both CLL cells and for non-malignant immune cell populations, sustained ibrutinib therapy even-
tually resulted in the acquisition of a shared, quiescence-like gene signature. We validated this gene signature in
an independent clinical cohort and confirmed its reproducibility. Closer inspection of the contributing genes may
help explain certain cellular and clinical phenotypes observed in CLL patients under ibrutinib therapy, including
changes in the immune microenvironment* and increased susceptibility to infections**. For example, CD99
downregulation indicates that Fas-mediated T-cell death may be impaired***, which has been proposed as a cause
of CD8" T cell accumulation in peripheral blood*. Moreover, two genes in the signature (CXCR4 and ZNF36L.2)
have established biological functions in senescence and quiescence of hematopoietic stem cells and lymphocytes.
Ibrutinib is known to inhibit CX CR4-mediated expression of CD20 in CLL cells*¢, which could have implications
for ongoing trials combining ibrutinib and anti-CD20 antibodies in CLL (e.g., NCT02007044).

Our comprehensive, time-resolved, multi-omics analysis of ibrutinib therapy thus provides integration and context
for previous studies that have focused on specific aspects of the response to ibrutinib, including reduced prolifera-
tion'", decreased cell-cell contacts™*!, and downregulation of NF-xB'#2". Moreover, the identification of a regula-
tory program that was shared across all patients allowed us to explore patient-to-patient heterogeneity in the speed
with which this program is executed, suggesting that it may be feasible to define predictive molecular maikers for
the cellular response to ibrutinib therapy. Most notably, our chromatin analysis identified a patient-specific signa-
ture present prior to treatment that correlated with the speed of CLL clearance, and our single-cell RN A-seq data
predicted the cellular response measured 120/150 days after the start of ibrutinib therapy. While these results re-
main exploratory due to the small number of patients in our study, they raise the future perspective of molecular
response monitoring and prediction for a growing class of targeted cancer therapies that are not primarily cytotoxic
and for which simple cell-based biomarkers (such as leukemic cell count or minimal residual disease) are poor
predictors of the eventual clinical response.
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‘While we consider our approach broadly applicable in the context of targeted therapies and precision oncology,
the following limitations apply: First, such comprehensive profiling (up to 8 time points, dozens of genome-wide
AT AC-geq profiles, and thousands of single-cell transcriptomes per patient) is currently feasible only for a rela-
tively small number of patients. This precludes systematic interaction analysis with genetic risk markers for CLL.
(However, recent studies have shown that established prognostic markers have lost much of their predictive power
with ibrutinib therapy*™*, and the same may apply to other emerging treatments such as CAR T cell therapy*.)
Second, while we found evidence of subclonal heterogeneity in our single-cell transcriptome data, the curent
throughput of single-cell RNA-seq does not (yet) enable deep characterization of the subclonal architecture. Third,
most patients that start ibrutinib treatment have previously been treated with other drugs or drug combinations (our
cohort: 1 to 5 prior treatments), which may explain some of the differences in the speed of the molecular response
to ibrutinib in the individual patients. Fourth, time series data supports only a weak form of causal inference
(Granger causality®®!), where earlier events may cause later events but not vice versa (e.g., the observed decrease
in NF-xB binding was followed by a downregulation of B cell transcription factors and an erosion of B cell identity
among the CLL cells). The results should therefore be considered causal in a strict biological sense only after
mechanistic experimental validation in suitable disease models. With these limitations taken into account, we ex-
pect that the presented approach will readily generalize to other targeted therapies, defining shared regulatory pro-
grams and idenfifying molecular markers of the temporal dynamics and response to targeted therapy.

In conclusion, our study demonstrates the power of high-throughput assays combined with integrative bioinfor-
matic analysis for dissecting the regulatory impact of targeted therapies. A strength of this approach is the level of
detail and biological insight that can be obtained from a small number of patients, which makes it well-suited for
applications in personalized medicine, where each patient may behave differently. Moreover, the approach appears
promising for early-stage clinical trials of new targeted therapies, where it is critical to obtain a robust assessment
of the induced molecular and cellular dynamics, in order to inform dose finding and to provide biomarker candi-
dates for molecular response monitoring.

Methods
Sample acquisition and clinical data

All patients were treated at the Department of Haematology and Stem Cell Transplantation, Central Hospital of
Southem Pest, Budapest, Hungary, according to the revised guidelines of the Intemational Workshop Chronic
Lymphocytic Leukemia/National Cancer Institute®?, The study was approved by the ethical committees of the con-
tributing institutions (Dél-Pesti Centrumkorhaz, Semmelweis University, and Medical University of Vienna). In-
formed consent was obtained from all participants.

Flow cytometry and fluovescence activated cell sorting (FACS)

Patient PBMCs were thawed and washed twice with PBS containing 0.1% BSA and 5 mM EDTA (PBS + BSA +
EDTA). Cells were then incubated with anfi-CD16/CD32 (clone 93, Biolegend) to prevent nonspecific binding.
Single-cell suspensions were stained with combinations of antibodies against CD3 (FITC, clone UCHT1), CD4
(PE-TxRed, clone OKT4), CD5 (PE-Cy7, clone UCHT2), CD8 (APC-Cy7, clone SK1), CD 14 (PerCp-Cy5.5, clone
MS5E2), CD19 (APC, clone HIB19), CD25 (PE-Cy7, clone BC96), CD38 (PE, clone HB-7), CD45RA (PerCp-
Cy5.5, clone HI100), CD45RO (AF700, clone 304218), CD56 (AF700, clone NCAM16.2), CD127 (APC, clone
A019D5), CD197 (CCR7, PE, clone G043H7), and DAPI viability dye (all from Biolegend) for 30 min at 4 °C
followed by two washes with PBS + BSA + EDTA. For flow cytometry, cells were acquired with an LSRFoitessa
Cell Analyzer (BD). For FACS, cells were sort-purified with a MoFlo Astrois (Beckman Coulter) using the gating
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strategy depicted in Supplementary Figure 1a. Data analysis was performed with the FlowJo (Tree Star) software.
In Figure 1d, control cells in CD5-PE-Cy7 channel are CD 14+ myeloid cells, and control cells in CD38-PE channel
are CD3+CD4-CD8- cells; these are cell populations which are known to not express the respective markers and
based on which the background levels can be estimated.

Droplet-based single-cell RNA-seq

Single-cell libraries were generated using the Chromium Controller and Single Cell 3° Library & Gel Bead Kit v2
(10x Genomics) according to the manufacturer’s protocol. Briefly, an aliquot of patient PBMCs was stained with
DAPI for discrimination between live and dead cells, and a maximum of 100,000 live, doublet-excluded cells were
gorted into 1.5 ml tubes. Cells were pelleted by centrifuging for 5 min at 4 °C at 300 x g and resuspended in PBS
with 0.04% B SA. Up to 17,000 cells suspended in reverse transcription reagents, along with gel beads, were seg-
regated into aqueous nanoliter-scale gel bead-in-emulsions (GEMs). The GEMs were then reverse-transcribed in
a C1000 Thermal Cycler (Bio-Rad) programmed at 53 °C for 45 min, 85 °C for 5 min, and hold at 4 °C. After
reverse transcription, single-cell droplets were broken, and the single-strand cDNA was isolated and cleaned with
Cleanup Mix containing Dynabeads MyOne SILANE (Thermo Fisher Scientific). cDNA was then amplified with
a C1000 Thermal Cycler programed at 98 °C for 3 min, 10 cycles of (98 °C for 15 s, 67 °C for 20 s, 72 °C for 1
min), 72 °C for 1 min, and hold at 4 °C. Subsequently, the amplified cDNA was fragmented, end-repaired, A-tailed,
and index adaptor ligated, with cleanup in-between steps using SPRIselect Reagent Kit (Beckman Coulter). Post-
ligation product was amplified with a T1000 Thermal Cycler programed at 98 °C for 45 s, 10 cycles of (98 °C for
20 s, 34 °C for 30 s, 72 °C for 20 s), 72 °C for 1 min, and hold at 4 °C. The sequencing-ready library was cleaned
up with SPRIselect and sequenced by the Biomedical Sequencing Facility at CeMM using the Hlumina HiSeq
3000/4000 platform and the 75 bp paired-end configuration.

Assay for transposable-accessible chromatin with sequencing (ATAC-seq)

Chromatin accessibility mapping was performed using the ATAC-seq method as previously described?®, with

minor adaptations. In each experiment, a maximum of 50,000 sorted cells were pelleted by centrifuging for 5 min
at 4 °C at 300 x g. After centrifugation, the pellet was carefully resuspended in the transposase reaction mix (12.5
1l 2xTD buffer, 2 pl TDE1 (Illumina), and 10.25 pl nuclease-free water, 0.25 pl 5% Digitonin (Sigma)) for 30 min
at 37 °C. Following DNA purification with the MinElute kit eluting in 11 pl, 1 pl of the eluted DNA was used in
a quantitative PCR reaction to estimate the optimum number of amplification cycles. Library amplification was
followed by SPRI size selection to exclude fragments larger than 1,200 bp. DNA concentration was measured with
a Qubit fluorometer (Life Technologies). Library amplification was performed using custom Nextera primers®.
The libraries were sequenced by the Biomedical Sequencing Facility at CeMM using the Illumina HiSeq 3000/4000
platform and the 50 bp single-read configuration.

Preprocessing and analysis of single-cell RNA-seq data

Preprocessing of the single-cell RNA-seq data was performed using Cell Ranger version 2.0.0 (10x Genomics).
Raw sequencing files were demultiplexed using the Cell Ranger command ‘mkfastq’. Each sample was aligned to
the human reference genome assembly ‘refdata-cellranger-GRCh38-1.2.0° using the Cell Ranger command
‘count’, and all samples were aggregated using the Cell Ranger command ‘aggr’ without depth normalization. Raw
expression data were then loaded into R version 3.4.0 and analyzed using the Seurat package version 2.0.1 with
the parameters suggested by the developers™. Specifically, single-cell profiles with less than 200 detected genes
(indicative of no cell in the droplet), more than 3,000 detected genes (indicative of cell duplicates), or more than
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15% of UMIs stemming from mitochondrial genes were discarded. Read counts were normalized dividing by the
total UMI count in each cell, multiplied by a factor of 10,000, and log transformed. The number of UMIs per cell
and the percent of mitochondrial reads per cell were then regressed out using Seurat’s standard analysis pipeline.

Dimensionality reduction and supervised analysis of gene expression

Principal component analysis, t-SNE analysis, hierarchical clustering, and differential expression analyses were
carried out in R, using the respective functions of the Seurat package. t-SNE and cluster analyses were based on
the first ten principal components. A negative binomial distribution test was used for differential analysis on genes
expressed in at least 10% of cells in one group. Results were aggregated across patients by taking the mean for log
fold changes and by Fisher’s method for p-values. Enrichment analyses were done using Enrichr API*® against the
following databases: Transcription Factor PPIs, ENCODE, ChEA Consensus TFs from ChIP-X, NCI-Nature 2016,
WikiPathways 2016, Human Gene Atlas, and Chromosome Location. Aggregate gene expression values for gene
sets (signatures) were quantified as follows: Log-normalized transcript per 10* UMI counts were scaled between 0
and 1. The values for all genes of a given set were then summed to obtain a raw value for each gene set and cell.
To remove cell specific effects such as differences in UMI distributions due to sequencing depth, raw values were
transformed to Z-scores using a distribution of raw values of 500 randomly picked gene sets of the same size.
Differences in signatures between time points were assessed using ‘t.test’ in R. Results were aggregated across
patients by taking the mean for log fold changes and by Fisher's method for p-values. Multiple testing correction
of differentially expressed genes, enriched terms, and differences in signatures was carried out using the Benjamini-
Hochberg procedure as implemented by the “p.adjust” function in R. The selected gene sets included 50 ‘hallmark
signatures” from MSigDB, as well as ATF2, BATF, NFIC, NFKB1, RELA, RUNX3, and SPI target genes, and
B cell signatures from Human Gene Atlas, NCI Nature 2016, and WikiPathways 2016, all obtained from Enrichr.
For data representation, we denoised the dataset with the deep count autoencoder (DCA) in Python’, using raw
UMI counts as input and the ‘Zero-Inflated Negative Binomial’ model (which explained the relationship between
mean expression and observed dropout rates significantly better than the ‘Negative Binomial” model). The DC A-
denoised data were then normalized per cell, log-transformed, and scaled. Dimensional reduction was performed
by principal component analysis, and the resulting dimensions were used for neighbor graph construction followed
by Uniform Manifold Approximation and Projection (UMAP) with Scanpy’s default parameters™®.

Preprocessing and analysis of ATAC-seq data

AT AC-seq reads were trimmed using Skewer™ and aligned to the GRCh37/hg19 assembly of the human genome
using Bowtie2 with the ‘-very-sensitive’ parameter. Duplicate reads were removed using the sambamba® ‘mark-
dup’ command, and reads with mapping quality >30 and alignment to the nuclear genome were kept. All down-
stream analyses were performed on these filtered reads. Peak calling was performed with MACS2% using the ‘-
nomodel’ and ‘-extsize 147" parameters, and peaks overlapping blacklisted features as defined by the ENCODE
project® were discarded. We created a consensus region set by merging the called peaks from all samples across
patients and cell types, and we quantified the accessibility of each region in each sample by counting the number
of reads from the filtered BAM file that overlapped each region. To normalize the chromatin accessibility signal
actoss samples, we first performed quantile normalization using the R implementation in the preprocessCore pack-
age (‘normalize quantiles’ function). We then performed principal component analysis (scikit-learn, sklearn de-
composition. PCA implementation) on the nommalized chromatin accessibility values of all chromatin-accessible
regions across all samples. Upon inspection of the sample distribution along principal components, we noticed an
association of several (but not all) samples from one processing batch with a specific principal component, while
we did not observe any association of these samples with any known biological factor. To remove the effect of this
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latent variable while retaining variation from other (biological) sources, we performed principal component anal-
ysis on the matrix of raw counts on a per cell type basis (except myeloid cells, which contained no such samples)
and removed the latent variable (first principal component) by subtracting the outer product of the transformed
values of each sample in this component and the loadings of each regulatory element in the same component from
the original matrix. We then again performed normmalization of the corrected count matrix and component analysis
jointly for all cell types as before.

Time series modelling of chromatin accessibility dynamics

‘We modeled the temporal effect of ibrutinib in each cell type as a function of time by alatent process. To that end,
we used the Python library GPy to fit Ganssian process regression models (GPy.models.GPRegression) on the log2
transformed sampling time on ibrutinib therapy (independent variable) and the normalized chromatin accessibility
values for each regulatory element (dependent variable) for each cell type separately. We fitted a variable radial
basis finction (RBF) kemel as well as a constant kernel (both with an added noise kernel), and we compared the
log-likelihood and standard deviation of the posterior probability of the two as previously described®¢°. Dynamic
regulatory elements were defined as those for which the survival function of the chi-square of the D statistic (twice
the difference between the log-likelihood of the variable fit minus the log-likelihood ofthe constant fit) was smaller
than 0.05 and the standard deviation of the posterior was higher than 0.05 (as described previously®). We then
used the “mixture of hierarchical Gaussian process’ (MOHGP) method to cluster regulatory elements according to
their temporal pattern. The MOHGP class from the GPclust library (GPclust. MOHGP) was fitted with the same
data as before, this time with a Matem52 kernel (GPy.kern Matem52) and an initial guess of four region clusters.
Regions with posterior probability higher to 0.8 were selected as dynamic and included in the downstream analysis.

Region set enrichment analysis

We performed region set enrichment analysis on the clusters of dynamic genomic regions using LOL A and its
core database, which comprises transcription factor binding sites from ENCODE®, tissue-specific DNase liyper-
sensitive sites®”, the CODEX database®®, UCSC Genome Browser annotation tracks®®, the Cistrome database’, and
data from the BLUEPRINT project™. Motif enrichment analysis was performed with the HOMER? * findMotifsGe-
nome’ command using the following parameters: ‘-mask -zize 150 -length 8,10,12,14,16 -S 12’. Enrichment of
genes associated with regulatory elements (annotated with the nearest transcription start site from Ensembl) was
performed through the Enrichr APT*® for the following databases of gene sets: BioCarta 2016, ChEA 2016, Drug
Perturbations from GEO down, Drug Perturbations from GEO up, ENCODE and ChEA Consensus TFs from ChIP-
X, ENCODE TF ChIP-geq 2015, ESCAPE, GO Biological Process 2017b, GO Molecular Function 2017b, KEGG
2016, NCI-Nature 2016, Reactome 2016, Single Gene Perturbations from GEO down, Single Gene Perturbations
from GEO up, and WikiPathways 2016.

Inference of global transcription factor activity

Global transcription factor accessibility was assessed by aggregating the normalized chromatin accessibility values
of regulatory elements that overlap a consensus of regions (union of all sites) from ENCODE ChIP-seq peaks of
the same factor across all cell types profiled. The mean accessibility of each sample in the sites overlapping binding
sites of each factor was computed and subtracted by the mean accessibility of each sample across all measured
regulatory elements. For visualization, we aggregated samples by cell type and sampling time point, displaying
either the mean or a Z-score of chromatin accessibility. For all gene-level measures of chromatin accessibility, we
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used the mean of all regulatory elements associated with a gene, defined as the gene with the closest transcription
start site as annotated by the RefSeq gene models for the hg19 genome assembly.

Integrative analysis of ATAC-seq and single-cell RNA-seq data

To assess the agreement between the two analyses at the enrichment level, we performed enrichment analysis with
Enrichr for genes differentially expressed across patients in the same cell type, and we compared the significance
of terms for transcription factors in the ‘ENCODE TF ChIP-seq 2015 gene set library with the significance of
transcription factors enriched in the LOL A analysis for each AT AC-seq cluster. To identify a common transciip-
tional signature associated with ibrutinib treatment across cell types, we selected all genes that were differentially
expressed with the same direction in at least 10 combinations of cell type and time point. These genes were split
according to the direction of change with time and used for enrichment analysis with Enrichr as described above.
The same genes were used to derive a score calculated as the mean expression of the upregulated genes over the
mean expression of downregulated genes. An independent cohort of RNA-seq on bulk PBMCs from CLL patients®
was used to assess the reproducibility of the signature by observing the significance of the difference between
scores upon ibrutinib treatment with a paired-samples t-test. To assess the performance of the score as a classifier,
we generafed a ROC curve by counting true positive and negative rates with a sliding score threshold, and we
calculated the area under the curve with scikit-learn’s function ‘sklearn.metrics.auc’.

Inference of DNA copy number variation from single-cell RNA-seq data

To infer DNA copy numnber profiles at the single-cell level, we started with DCA-denoised, normalized, and scaled
single RNA-seq data of all cells. We removed per-cell differences by subtracting the median expression of each
cell from all genes and per-gene differences by subtracting the median and dividing by the standard deviation. We
then calculated arolling mean of expression across genes ordered by their chromosomal position for each chromo-
some individually. To improve the representation of DNA copy number profiles, we centered the resulting matrix
by subtracting the mean of all values in the matrix and applied smoothing by cubing the matrix values (which
shrinks small changes relative to all cells) and multiplying them by 3 (which scales values back to usual copy
number variation bounds). To discover clusters of genetically distinct cells within patients, we performed dimen-
sion reduction using principal component analysis on the smoothed matrix, computed a neighbor graph between
cells, and fitted a UM AP manifold for the CLL cells of each sample (i.e. per patient and time point). This was
overlaid with the response to ibrutinib of each single cell based on ibrutinib response signature described above.
To assess global changes in genetic diversity within cells of a patient over time, we developed a global metric of
genetic diversity based on inferred copy number profiles from single-cell RN A-seq data. We calculated pairwise
Pearson correlation coefficients between all cells and used the square of the mean of this distribution as a measure
of genetic diversity. To benchmark this approach, we first established simulated copy number profiles with the
same dimensions are the inferred one but for varying total numbers of cells. We created two populations where we
simulated gain or loss of chromosome 12 (log change: -1 or 1) whereas the remainder of the genome was Gaussian
noise of mean zero and standard deviation 0.1. We assessed performance by mixing the two populations together
in different ratios and computing Pearson correlation between the population fraction (ground truth) and the pre-
dicted global diversity. An additional benchmark was performed by taking advantage of natural, known mixtures
of cell types in the data. For these data, the inferred change in genetic diversity is simply the difference between
global diversity measures between time points of ibrutinib treatment for each patient.
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Prediction of sample collection and patient-specific response time from single-cell RNA-seq data

The time point of sample collection (day 0, 30, or 120/150) for each CLL single-cell transciiptome was predicted
using the glmnet package in R with a multinomial response variable (for classification) and the ‘alpha’ parameter
(lasso penalty) set to 1. Prediction performance was assessed by 3-fold cross-validation for each patient, where
optimal ‘lambda’ parameters were obtained separately for each (outer) fold in a 5-fold inner cross-validation using
the function cv.glmnet. Parameter ‘lambda’ for the final prediction across patients were obtained by 5-fold cross-
validation on all data for each patient using cv.glmnet. Predictions were aggregated for each patient by taking the
mean of dummy variables (1: early, 2: mid, 3: late) across the three other patients. Classification performance for
support vector machines was assessed using the LiblineaR package in R. Classifiers were trained with ‘type’ pa-
rameter O and ‘cost” parameters estimated by the heuristicC method on the training data, where cells were split ten
times into 70% for training and 30% for testing. Quantitative prediction of the precise time (number of days) after
the start of ibrutinib therapy was performed using the glmnet package in R with a Gaussian response variable (for
regression) and the ‘alpha’ parameter (lasso penalty) set to 1. Prediction performance was assessed using the
‘lambda’ parameter that provided the highest R? in the training data of each fold. The regularization parameter
‘lambda’ for the final prediction was obtained based on the mean squared error in a 3-fold cross-validation repeated
five times on all data from each patient. Predictions were aggregated by taking the mean across three patients. For
all Python analysis, we set the pseudo-random number generation seed state to 1142101101 in both the standard
library ‘random’ and in ‘numpy’.

Data availability

All data are available through the Supplementary Website (http://cll-timecourse.computational-epigenetics.org/).
Single-cell RNA-seq and ATAC-seq data (sequencing reads, intensity values) have been deposited at NCBI GEO
and are publicly available under accession number GSE111015.

Code availability

The analysis source code undeilying the final version of the paper will be provided onthe Supplementary Website
http://cll-timecourse.computational-epigenetics.org/).
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Figure 1: Time series analysis of the cellular and transcriptional response to ibrutinib in CLL patients iden-
tifies widespread changes in several immune cell types

a) Schematic representation of the study design. Peripheral blood from CLL patients undergoing single-agent ib-
rutinib therapy was collected at defined time points and assayed by flow cytometry (immunophenotype), single-
cell RNA-seq (gene expression), and ATAC-seq (chromatin regulation). b) Cell type abundance over the ibrutinib
time cowrse, measured by flow cytometry. Triangles represent the mean for each time point. c) Flow cytometry
scatterplots showing the abundance of T cell subsets for one representative patient at three time points (day 0:
before the initiation of ibrutinib therapy, day 30 (120): 30 (120) days after the initiation of ibrutinib therapy). Cells
positive for CD3 or CD8 were gated as indicated by the black rectangles and quantified as percentages of live
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PBMCs. d) Flow cytometry histograms showing CDS5 and CD38 expression on CLL cells (pre-gated for live, single
CD19"CD35" cells) for a representative patient and three time points. ) Two-dimensional similarity map (UM AP
projection) showing all single-cell transcriptome profiles that passed quality control. Cells are color-coded accord-
ing to their assigned cell types based on the expression of known marker genes. f) DNA copy number profiles for
CLL cells inferred from single-cell RNA-seq data, which detect three genetic aberrations common in CLL (anno-
tated in the pane). For illustration, 2,500 randomly selected CLL cells are shown for each patient. g) Clustered
single-cell transcriptome heatmap for the most differentially expressed genes between time points. For illustration,
20,000 cells are shown. h) Violin plots showing the distribution of gene expression levels for selected differentially
expressed genes over the time course. i) Differential gene expression signatures in four cell types, comparing each
sample to the matched pre-treatment sample and averaging across patients. Patient-individual data are shown in
Supplementary Figure 6.
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Figure 2: Integrated analysis of chromatin accessibility and gene expression in CLL cells uncovers a con-
sistent regulatory program induced by ibrutinib therapy

a) Heatmap showing changes in chromatin accessibility for CLL cells over the time course of ibrutinib treatment.
b) Mean chromatin accessibility across patients plotted over the ibrutinib time course in dynamically changing
regulatory regions, highlighting the non-linear aspect of the ibrutinib effect on the chromatin. Crosses represent
samples from a single patient at a specific time point, and 95% confidence intervals are shown as colored shapes.
¢) Region set enrichments for the clusters of dynamic regions, calculated using the LOL A software. Enrichment p-
values were Z-score transformed per column. d) Heatmaps showing mean chromatin accessibility of regulatory
regions overlapping with putative binding sites, expression of the corresponding transcription factor, and total
number of its binding sites. Clustering was performed on the mean chromatin accessibility values. ) Scatterplot
showing differential regulation of transcription factors upon ibrutinib treatment. The x-axis displays the enrichment
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of transcription factors enriched in the LOL A analysis, and the y-axis displays the enrichment of their target genes
among the differentially expressed genes. f) Gene expression histogram across CLL cells in one patient, demon-
strating the decline of a B cell-specific expression signature over the time course of ibrutinib treatment. For illus-
tration, the patient with most time points in the single-cell RNA-seq analysis (CLL5) is displayed.
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Figure 3: Integrated analysis of chromatin accessibility and gene expression for five immune cell types iden-
tifies regulatory changes in response to ibrutinib that converge on a shared quiescence-like gene signature

a) Mean chromatin accessibility across patients plotted over the ibrutinib time course for clusters of dynamically
changing regulatory regions in five immume cell types. b) Heatmap of chromatin accessibility of CD4+ cells, illus-
trating dynamic regulation over the ibrutinib time course. ¢) Stacked bar plots indicating the percentage of dynam-
ically changing regions in each cluster. d) Region set enrichments for the clusters of dynamically changing regions,
calculated using the LOLA software and publicly available region sets as reference (mainly based on ChIP-seq
data). Enrichment p-values were Z-score transformed per column. ) Heatmap showing mean expression levels for
genes that were differentially expressed over the ibrutinib time course when combining the data for CLL cells and
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for the five non-malignant immune cell types. Values represent column Z-scores of gene expression. f) Gene set
enrichments for genes downregulated across cell types, using WikiPathways as reference (Fisher’s exact test, left:
FDR-comrected p-value, right: odds ratio as a measure of effect size). g) Expression score forthe gene signature (as
shown in panel e) in an independent cohoit, calculated from bulk RNA-seq data for PBMCs collected before the
start of ibrufinib therapy and at two subsequent time points. Significance was assessed using a paired t-test. h)
ROC curve illustrating the prediction performance of the gene signature (from panel e) for classifying samples in
the independent validation cohort into those collected before ibrutinib treatment and those collected during ibru-
tinib treatment. As negative controls, the prediction was repeated 100 times with permuted class labels for each
combination of time points, and the mean ROC curves across iterations are shown as dotted lines.
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Figure 4: Analysis of copy number profiles, chromatin accessibility, and single-cell transcriptomes identified
patient-specific associations with the speed of the cellular response to ibrutinib therapy

a) Computational approach to quantify changes in genetic diversity based on copy number profiles inferred from
the single-cell RNA-seq data. Shifts in the distribution of pairwise distance similarities between time points indi-
cate changes in the genetic diversity of the cell population. b) Scatterplot comparing across patients the change in
genetic diversity between day 0 and 120/150 of ibrutinib treatment (x-axis) with the change in the CLL cell per-
centage on day 120 /150 of ibrutinib treatment compared to day 0 as measured by flow cytometry (y-axis). c)
Clustered heatmap showing chromatin accessibility profiles for CLL cells at day 0 for the top 1000 genomic regions
associated with the second principal component for these profiles (from Supplementary Figure 11a), annotated
on the left with the change in CLL cell fraction (as in panel b). d) Scatterplot comparing across patients the average
chromatin accessibility across regions linked to the second principal component (as in panel ¢, x-axis) with the
change in CLL cell fraction (as in panel b, y-axis). €) Stacked bar charts showing the number and direction of
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deviations from the actual collection time point when predicting time points in each patient after training the clas-
sifier in all other patients. f) Violin plots showing the predicted (x-axis) and actual (y-axis) number of days under
ibrutinib therapy in each patient. Predictions are derived from regression models trained on all other patients. g)
Scatterplot comparing the predicted time under ibrutinib therapy (from panel f, x-axis) with the change in CLL cell
fraction (as in panel b, y-axis).
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Supplementary Figure 1: Temporal dynamics of cell composition in CLL patients upon ibrutinib treatment

a) Schematic representation of the FACS approach for purifying CLL cells and five non-malignant immune cell
types from PBMCs of CLL patients. b-¢) Flow cytometry based quantification of the relative (b) or absolute (c)
abundance of CLL cells and several non-malignant immune cell types in patients undergoing ibrutinib therapy.
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Supplementary Figure 2: Temporal dynamics of T cell subsets and surface marker expression

a) Mean expression of surface marker proteins in CD19°CD5" CLL cells during ibrutimib treatment. The left panel
displays absolute (log scale) expression, while the right panel displays column-wise Z-transformed values. Stars
mark significant changes compared to time 0 (paired t-test, p < 0.05). b) Expression of surface marker proteins in
immune cell subsets of CLL patients as measured by flow cytometry.
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a) Bar plot displaying the number of single-cell transcriptome profiles that passed quality control, shown separately
for each patient, cell type, and time point. b) Box plot displaying the number of unique molecular identifiers (UM Is)
detected per single cell, shown separately for each patient, cell type, and time point. ¢) Heatmap showing mean
expression levels of the marker genes that were used to assign the single-cell transcriptomes to defined cell types.
Values represent expression levels (normalized UMI counts) scaled from minimum to maximum in each row. d)
Scatterplot comparing the fraction of cells of each type based on single-cell RN A-seq versus flow cytometry across
all patients and time points. ) Number of differentially expressed genes for each cell type, patient, and time point.
1-j) Heatmaps of differentially expressed genes over the ibrutinib time course separately for each cell type.
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Supplementary Figure 4: Transcriptional changes of differentially expressed genes upon ibrutinib treatment

Differential gene expression for those genes that were significantly differentially expressed (absolute log fold
change >1 in more than two patients) over the course of ibrutinib therapy, shown separately for each cell type and
comparing each sample to the pre-treatment (day 0) sample from the same patient.
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Supplementary Figure 5: Gene set enrichments for single-cell RNA-seq over the ibrutinib time course

Enrichment of differenfially expressed genes over the course of ibrutinib therapy for gene sets and biological pro-
cesses involved in immune regulation, calculated separately for each cell type.
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Supplementary Figure 6: Transcriptional changes of selected gene signatures upon ibrutinib treatment

Aggregate gene expression of selected gene signatures plotted over the ibrutinib time course. The list of gene
signatures includes the hallmark signatures from M SigDB>¢ (indicated by HM prefix) as well as sets of target genes
for selected transcription factors (obtained from various sources).
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Supplementary Figure 7: Unsupervised analysis of chromatin accessibility over the ibrutinib time course

Principal component analysis of all chromatin accessibility profiles, highlighting biological and technical annota-
tions of potential relevance. Samples are shown as circles, color-coded according to the shown annotations, and
the centroid for each annotation is shown as a color-coded square.
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Supplementary Figure 8: Changes in transcription regulation and cell state over the ibrutinib time course

a) Line plots showing mean chromatin accessibility of regulatory regions overlapping putative binding sites of the
respective transcription factors (based on publicly available ChIP-seq data) for each cell type and time point.
Colored areas indicate 95 percent confidence intervals calculated over 1,000 bootstrap runs. b) Gene expression
histogram across CLL cells in one patient, demonstrating the decline of B cell-specific expression signature (three
alternative signatures are shown) over the time course of ibrutinib treatment. For illustration, the patient with most

time points in the single-cell RNA-seq analysis (CLL35) is displayed.

33

80/115



Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

bioRxiv preprint first posted online Apr. 3, 2019; doi: hitp://dx.doi.org/10.1101/597005. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Rl CD19+ CD5- B cells CD8+ T cells
a

e et .
J‘H;"h;a..‘iml fl\l' ’ A

f L WL
i \f Mlﬁ fl
CD4+;T!‘9|J

,‘ 'aﬁ*“.."“fl_."'% it “‘T‘.....ﬁ“ﬂm-‘}"‘ it
[ el
Bl ”"M' r||',= i i.'

ﬂ,‘.}‘{“ i ||| H‘m” ! miH ‘

A
e R

<
2

‘\ i ‘I *!IM I' ’II\I m;\ | rlumlnrr

) 1l i oy |11 {

Hw A3 r |l|. N

i
CD"—nﬁ-v- NK CEIIS

er

A
Il | !
“,” :JJ. ol J' ‘

i

Chromatn ascessiaility

L 3
-202

b i B B cell,
E call, "wave-|
o =600 Be Percentage overlap
=1 3000 =
o e
% 2500 0 5 10
& £ zooo
+ Q
o i Q 1500
E o
% % 1000
3 500
= &
: &
E omg;gggé%aﬁ
= [m] = w B
5 té elcf g 8% ox
£ Cell type
12 Cluster pattern:
£8
8% E decrease E "wave-like"
E increase E other
e I
1 by L,
il il
cstiype (IR (0 O A e,
T 1 I- F _-.I mm Pl T
Eoln : T et "5 ] 3
Pl - 3 s o

iz2sonzss o

Time pant, patient

Signatum genes (n = 165)

Celltype: - coig- clLcals  Expression (eolumn Z-score)
CheTeals

% R o

fiytioid ool P

34

81/115



Stratification and monitoring of chronic lymphocytic leukemia André F. Rendeiro
with high-dimensional molecular data and computational methods

bioRxiv preprint first posted online Apr. 3, 2019; doi: http://dx.doi.org/10.1101/537005. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Supplementary Figure 9: Cluster analysis of regulatory regions in non-malignant immune cell types

a) Heatmaps showing chromatin accessibility at dynamically changing regulatory regions for five FACS-purified
non-malignant immune cell types collected over the ibrutinib time course. Values represent column Z-scores of
normalized ATAC-gseq signal strength. b) Mean chromatin accessibility across patients plotted over the ibrutinib
time course for each cluster of dynamically changing regulatory regions in each cell type. Each cross represents a
single sample from a single patient at a specific time point, and 95% confidence intervals are shown as colored
shapes. ¢) Absolute number of dynamic regulatory regions for each cell type and cluster. d) Pairwise overlap of
dynamic regulatory regions between cell types and clusters. €) Clustered heatmap showing patient-specific gene
expression levels for the quiescence-like gene expression signature (Figure 3e), based on the single-cell RNA-seq
data over the ibrutinib time course. Values represent column Z-scores of gene expression.
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Supplementary Figure 10: Analysis of copy number and genetic diversity over the ibrutinib time course

a-d) Two-dimensional similarity map (UMAP projection) based on DNA copy number profiles for single cells
inferred from the single-cell RNA-seq data. These maps were calculated separately for each patient and time point.
Color-coding indicates the relative copy number change for three chromosomal aberrations common in CLL (left)
and for the ibrutinib molecular response score (right), i.e., the change in the CLL cell percentage on day 120/150
of ibrutinib treatment compared to day 0 as measured by flow cytometry. Genetically distinct subclones are
highlighted by dashed circles. e-h) Scatterplots comparing selected subclonal copy number aberrations (x-axis and
UMAP plots on the bottom left) with the ibrutinib molecular response score (y-axis and UMAP plots on the top
left) across single cells in individual patients and time points. i) Accuracy of the computational approach for
quantifying, genetic diversity benchmarked on simulated copy number profiles that were combined at defined
percentages (x-axis). Dashed lines indicate expected values (based on the simulation’s known ground truth), blue
lines indicate inferved values, and yellow areas represents 95" confidence intervals for the inferred values.
Correlation coefficients quantify the overall agreement between expected and inferred values. j) Histograms
showing the change in genetic diversity across all cells (i.e., CLL cells and immune cells) in the single-cell RNA-
seq dataset. k) Scatterplot showing the correlation between the change in genetic diversity across all cells (x-axis)
between time points and the cellular response to ibrutinib treatment (y-axis). 1) Histograms showing the change in
genetic diversity specifically for CLL cells. m) Scatterplot showing the correlation between changes in genetic
diversity specifically in CLL cells (x-axis) and the cellular response to ibrutinib treatment (y-axis). Panel mis a
reproduction of Figure 4b for consistency with panels j-k.
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Supplementary Figure 11: Analysis of chromatin profiles and their association with the response toibrutinib

a) Heatmaps showing the association of various clinical annotations with the principal components of the cell type
specific chromatin accessibility profiles of different cell types prior to the start of ibrutinib treatment. The blue
circle highlights the association between the second principal component for CLL cells and the change in the CLL
cell percentage on day 120/150 of ibrutinib treatment compared to day 0, as measured by flow cytometry (y-axis).
b) Clustered heatmap showing patient-specific chromatin profiles for genomic regions associated with the second
principal component (from panel a). ¢) Enrichment analysis for genomic regions associated with the second prin-
cipal component, separately for regions associated with a slow versus a fast response to ibrutinib treatment.
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Supplementary Figure 12: Prediction of the time point of sample collection from single-cell transcriptomes

a) ROC curves showing the cross-validated test set performance of classifiers predicting the time point of sample
collection based on single-cell transcriptome profiles, using two different machine learning methods (logistic re-
gression with elastic net regularization and support vector machines) and two different thresholds for single-cell
RNA-seq data quality (all cells vs. only cells with 500 to 1,000 UMIs). b) Optimization of the regularization pa-
rameter (lambda) for predicting the time since the start of ibrutinib treatment using elastic net regularized linear
regression. Red dots indicate the chosen parameter for each patient. ¢) Cross-validated test set performance of the
regression models (coefficient of determination) for predicting the time since the start of ibrufinib treatment for
each patient.
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Supplementary table legends

Supplementary Table 1: Clinical annotation of the CLL patients included in the time course analysis
Supplementary Table 2: Cell type composition over the time course as measured by flow cytometry
Supplementary Table 3: Expression of cell surface marker proteins as measured by flow cytometry
Supplementary Table 4: Gene expression of individual cell types (single-cell RNA-seq) over the time course
Supplementary Table 5: Differentially expressed genes for individual cell types over the time course
Supplementary Table 6: Summary statistics for ATAC-seq chromatin mapping in CLL cells
Supplementary Table 7: Dynamic chromatin regions over the time course in CLL cells

Supplementary Table 8: Summary statistics for ATAC-seq chromatin mapping in immune cell types

Supplementary Table 9: Dynamic chromatin regions over the time course in immune cell type
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Discussion

General discussion of results

A landscape of chromatin accessibility for the stratification of CLL

The large map of chromatin accessibility produced allowed us to uncover a previously unknown
dynamic layer of regulation in cancer cells between different patient samples. The observation that
distal regulatory elements of genes related to B cell functions tend to have higher variance in
chromatin accessibility than their promoters highlights the high complexity of the human genome
and reveals a layer of genetic regulation that warrants further investigation. In that view, the
inference of gene regulatory networks specific to disease subtypes differing on IGHV mutation
status has brought to light an intricate layer of the regulatory landscape mediated by the binding of
transcription factors to DNA. While we uncovered a tight core network active across CLL
lymphocytes, the comparison of the subtypes of the network highlighted differential transcription
factor activity and its downstream effects for many genes with functions in cellular proliferation,

signaling and immune processes, related to specific differences between the two IGHV groups.

The observation that the IGHV mutation status dominated the landscape of variation of CLL comes
in agreement with previous observations in other individual layers of gene regulation such as DNA
methylation (Kulis et al, 2012, 2015; Oakes et al, 2016) and transcription (Klein et al, 2001;
Rosenwald et al, 2001; Ferreira et al, 2014), and more recently across layers of the regulatory
landscape such as chromosomal conformation (Beekman et al, 2018) or profiles of drug sensitivity
(Argelaguet et al, 2018). The impact of IGHV mutation and the likely differentiation state of CLL
cells has not only a strong impact from the regulatory perspective but also clinically, as it is an
independent prognostic marker for CLL (Hallek et al, 2018) affecting progression-free and overall

survival even in the context of modern targeted treatment (Farooqui et al, 2015).

The importance of IGHV for prognostication of CLL, the fact that it had such a clear effect on the
chromatin of CLL lymphocytes, along with being a routinely collected clinical variable of tangible
importance made IGHV status an ideal case for the application of machine learning. Our Random
Forest classifier approach was successful in learning highly predictive feature weights that could
both immediately reveal insights into the underlying biological wiring of the two CLL subtypes while
also providing proof-of-principle of the use of chromatin accessibility in the classification of patient

samples for differential diagnosis and prognostication through patient stratification.

Taking together, our analytical framework revealed itself a promising and generalizable approach to

balance discovery and interpretation of high dimensional data in precision medicine. While the
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unsupervised learning of a reduced chromatin space jointly for all patient samples seeks to identify
all important factors governing variation between samples, the supervised learning of clinical
variables lends itself to biological interpretation and generates a model capable of classifying

unseen samples in the future.

Our study of the chromatin landscape in CLL therefore demonstrates the technical feasibility of
profiling large numbers of primary patient samples previously cryopreserved and biobanked
thereby opening the prospect of using chromatin profiling assays for clinical tasks such as

diagnosis, patient stratification, treatment recommendation and disease monitoring.

Deriving markers and models for the monitoring of CLL treatment

The goal of our analysis of immunological, regulatory and transcriptional changes of six immune
cell types of patients undergoing ibrutinib therapy, was to understand the effects of this targeted
treatment on the immune system and to derive computational models to predict and monitor the
response to therapy over time. For this reason, we employed unprecedented depth (provided by
the multiple orthogonal assays, particularly the single cell transcriptome) and breadth (in the
number of profiled cell types and timepoints) in the characterization of the dynamic response to

therapy.

The transcriptional landscape of ibrutinib treated CLL was characterized by large changes in
transcription of genes related with pro-proliferative signaling pathways. In addition to bioinformatic
gene expression analysis for single cells, we used the dataset to infer copy number variants in
single cells. While we discovered interesting changes in the abundance of cells carrying specific
chromosomal aberrations within patients along time, these did not always display a transcriptional
profile that showed evidence of adaptation to ibrutinib treatment. This is likely related to the fact
that the diversity of cells under analysis is rather low compared with the number of cells in the
patients and likely to suffer from grave undersampling, which highlights the need for assays that

can capture even higher number of single cells per sampling point per patient.

The analysis of chromatin accessibility changes during ibrutinib treatment of CLL revealed early
reduction of inferred NFKB binding to chromatin, consistent with its established role in activating
gene expression following BCR stimulation. The dense temporal profiling along the course of
treatment allowed us to uncover of changes over the course of treatment, where we observed
massive downregulation of regulatory elements usually bound by transcription factors that have
important functions in establishing and maintaining B cell identify. The fact that inhibition of BCR
leads to erosion of cellular identity in primary human lymphocytes, speaks to the tight connection

between cellular signaling and maintenance of cellular identity through genetic regulation,
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something that we also found reinforced by analyzing the expression of B cell and CLL-specific

surface protein markers.

Our comprehensive analysis of transcriptional and regulatory changes across multiple cell types
showed specific changes as well as shared patterns. In particular, a quiescence-like signature
comprising 165 genes was upregulated over time in CLL cells, but also in other cell types, with
CD8 T cells being the second-most affected. While the cause of such general cross-cell type effect
are likely due to off-target effect of ibrutinib on other TEK-family kinases, the biological and clinical
implications remain to be explored. For example, ibrutinib may be contributing to the impairment of
the cytotoxic action of CD8 T cells on the CLL cells, particularly at a point where the
immunosupressive phenotype of CLL cells is lowered. While the discovered signature was
validated in an external cohort of CLL patients undergoing ibrutinib treatment, further investigation
on the functional consequences of potential ibrutinib off-target effect healthy immune cell

compartments is needed.

The discovery of a signature capable of quantifying the patients progression through the spectrum
of molecular response to treatment, encouraged us to develop a regression model powered by
robust regularization techniques in machine learning that leverages on the high dimensionality of
the single cell dataset. While the model largely captured the global trend of response to ibrutinib
across patients, it was also capable of positioning each patient in light of the other’s position in the
response spectrum, thus quantifying the relative difference between responses at a given sampled
time. This difference corresponded to observed values of CLL cells reduction at day 120 of

treatment, in an internal validation of the model.

This study highlights the power of high-dimensional assays to characterize changes in cancer cells
and the immune system at a regulatory and transcriptional level but also the importance of
longitudinal profiling particularly in chronic disease. The development of adequate computational
methods to monitor and predict the response of each patient to treatment is probably its most
direct contribution towards the development of multivariate markers and models for the monitoring
of CLL.

Conclusions and future prospects
Our work establishes the use of large-scale high-dimensional assays in primary human samples of

leukemia patients in a clear path towards the genome-aware, data-driven, personalized treatment

and understanding of chronic disease.

In the future, for CLL as well as other chronic diseases, the availability of dense high-dimensional

longitudinal data for high numbers of patients will enable the positioning of the patient as the unit
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for learning as opposed to the contemporary situation where a specific sample at a given time is
the unit. In that situation, the goal shifts towards learning the full trajectory of the patients based on
longitudinal sampling as early as the time of diagnosis, through the disease progression, and
treatment. Examples of similar approaches that leverage on large amounts of dense longitudinal
data are rare but a few examples are appearing, albeit in the context of clinical trials (Zhou et al,

2019; Schussler-Fiorenza Rose et al, 2019), and not routine clinical sampling.

Equally important for the success of such data gathering endeavors will be the aggregation of
clinical metadata and the combination of orthogonal assays that profile for example several
modalities of gene regulation and expression that characterize the current cellular states, but jointly

rich phenotypes such as sensitivity to an array of drugs (Dietrich et al, 2018; Schmidl et al, 2019).

Pairing this wealth of dense longitudinal and high-dimensional data with computational models that
have high predictive power at the same time being readily interpretable, while not unprecedented
(Argelaguet et al, 2018), is however a challenge. If done in a generative and probabilistic
framework (unsupervised or explicitly modeled), such models could generate potential outcomes
for a future of a new patient with the intent of helping physicians have a genome-aware decision
process that can reveal the reasoning of its decision based on tangible biological and clinically

interpretable factors.

While this vision may take time to materialize, | consider the work of this thesis a step towards

genome-centric, data-driven, personalized treatment and understanding of chronic disease.
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