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Abstract 
 
Inborn errors of immunity (IEI) are a heterogeneous group of rare diseases that affect the immune 

system. All IEI in total affect a considerable fraction of the population and pose a significant 

demand on the healthcare system. Although individual components of these diseases have been 

studied in detail, the available clinical, phenotypic and molecular data is sparse, and large-scale 

comparative studies that reveal general properties of these diseases are still lacking. This has 

resulted in a considerable diagnostic delay for IEI patients, as well as an incomplete 

understanding of core genes and pathways that lead to the observed disease pathobiology. In 

order to bridge the diagnostic gap of IEI, and to get a better understanding of the core genes and 

pathways of the immune system, accurate disease-associated knowledge bases and tailored 

approaches are required. 

 

To this end, this thesis introduces three manuscripts, including a review of a specific rare disease 

to illustrate the genetic and molecular diversity of the condition, and two research manuscripts for 

i) creating accurate phenotyping data for rare diseases in an expert-driven, machine-learning 

aided approach, and ii) applying network medicine to elucidate the genetic and molecular 

heterogeneity behind Mendelian autoimmune and autoinflammatory diseases. 

 

The manuscript in the introduction focuses on early-onset monogenic IBD, and details the genetic 

lesions and pathobiological changes that lead to the bowel inflammation phenotype. The 

subsequent research manuscripts presented in the results section focus on specific applications 

of systems-methods for IEI. Research manuscript one details our effort to revise and expand the 

available phenotyping data to accurately describe IEI. We have initiated an international and 

interdisciplinary collaboration of IEI experts. Within this collaboration, we have developed a 

framework for the revision and expansion of the phenotypic representation of IEI using the Human 

Phenotype Ontology (HPO). Four major branches of the HPO tree were revised, focusing on four 

separate subgroups of IEI as a proof of concept. As a result of this revision, over 206 changes in 

the ontology structure were requested including 137 new, IEI-relevant phenotypic terms. We have 

developed an expert-reviewed ontology-guided machine learning method to reannotate IEI with 

HPO terms. With this method, we achieved a significant, 4.7-fold increase in the available 

phenotypic terms per disease which has translated into a significant improvement in HPO-based 

diagnostic accuracy and disease-similarity. Our directed expansion of the HPO corpus has 
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enhanced the precision of phenotypic annotation of IEI, which will enable the characterization of 

these diseases in the community, and benefit both IEI diagnostics and research. 

 

The overarching ambition of the second research manuscript was to develop a systems-level view 

for IEI with autoimmunity and autoinflammation, and showcase its utility for addressing a wide 

range of important biomedical questions. We started by building a state-of-the-art interactome 

combining several relevant interactome resources from the literature. Using rare IEI that present 

with autoimmunity/autoinflammation, we identified the AutoCore, a tightly connected subnetwork 

as the set of core genes and their interaction essential for the homeostasis of immune function. 

We showed that within the AutoCore, autoimmunity and autoinflammation do not separate but are 

molecularly linked, and that the monogenic AutoCore is at the topological center of complex, 

polygenic autoimmune and autoinflammatory diseases. Furthermore, we used the topology of the 

AutoCore to identify 19 distinct molecular subclusters of monogenic autoimmune and 

autoinflammatory diseases. Finally, we used the AutoCore and network distance to pinpoint 

potential novel therapeutically targetable pathways.  

 

Overall, this thesis illustrates how to use tailored systems-based methods to both expand the 

available phenotypic knowledge-base of IEI, and to develop a network-based framework for 

unraveling the molecular landscape of autoimmunity and autoinflammation to quantify previously 

only descriptive clinical phenomena. Both of these applications of different systems-methods 

significantly increase the current available knowledge on rare diseases of the immune system, 

contribute to bridging the diagnostic gap, and offer lasting novel platforms to systematically 

describe and explore the molecular and phenotypic origins of immune homeostasis and 

dysregulation. 
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Zusammenfassung 
 
Angeborene Fehler des Immunsystems (English: Inborn errors of immunity (IEI)) sind eine 

heterogene Gruppe seltener Erkrankungen des Immunsystems. In ihrer Gesamtheit betreffen IEI 

einen erheblichen Teil der Bevölkerung und stellen eine beträchtliche Belastung des 

Gesundheitssystems dar. Obwohl einzelne Komponenten dieser Erkrankungen detailliert 

untersucht wurden, sind vergleichsweise wenig klinische, phänotypische und molekulare Daten 

verfügbar. Große Vergleichsstudien, die allgemeingültige Eigenschaften dieser Erkrankungen 

aufzeigen, liegen nicht vor. Dies führt einerseits zu einer erheblichen Verzögerung der Diagnose 

von IEI-Patienten und äußert sich zudem in einem unvollständigen Verständnis von 

Schlüsselgenen und Signalwegen der jeweiligen Erkrankung. Um diese diagnostische Lücke bei 

IEI zu überbrücken und die zentralen Gene und Signalwege des Immunsystems besser zu 

verstehen, sind präzisere Datenbanken und maßgeschneiderte wissenschaftliche Ansätze 

erforderlich. 

 

Dazu werden in dieser Arbeit drei Manuskripte vorgestellt. In einem Review zu einer spezifischen 

seltenen Erkrankung, wird die genetische und molekulare Vielfalt der Erkrankung 

veranschaulicht. Zudem behandeln die zwei Forschungsmanuskripte zwei neuartige Methoden 

um i) in einem von Experten gesteuerten und durch maschinelles Lernen unterstützten Ansatzes 

genaue phänotypische Daten für seltene Erkrankungen zu kategorisieren und ii) mittels 

systembasierter Netzwerkansätze in der Medizin zur Aufklärung der genetischen und 

molekularen Heterogenität hinter Mendelschen Autoimmunerkrankungen und 

autoinflammatorischen Erkrankungen beizutragen. 

 

Die Forschungsmanuskripte im Ergebnisteil konzentrieren sich auf spezifische Anwendungen von 

Systemansätzen für IEI. Das erste Forschungsmanuskript beschreibt detailliert unsere 

Bemühungen, die verfügbaren Daten zur Phänotypisierung zu überarbeiten und zu erweitern, um 

IEI genauer beschreiben zu können. Zur Umsetzung haben wir eine internationale und 

interdisziplinäre Zusammenarbeit von IEI-Experten initiiert. Im Rahmen dieser Zusammenarbeit 

haben wir ein Konzept für die Überarbeitung und Erweiterung der phänotypischen Darstellung 

von IEI unter Verwendung der Human Phenotype Ontology (HPO) entwickelt. Vier Hauptzweige 

des HPO-Baumes wurden überarbeitet, wobei vier separate Untergruppen der IEI als 

Machbarkeitsnachweis im Mittelpunkt standen. Infolge dieser Überarbeitung wurden über 206 

Änderungen in der Ontologiestruktur angefordert, darunter 137 neue, IEI-relevante 
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phänotypische Begriffe. Zusammengefasst, haben wir eine von Experten überprüfte Ontologie-

gesteuerte Methode für maschinelles Lernen entwickelt, um IEI mit HPO-Begriffen neu zu 

annotieren. Mit dieser Methode haben wir eine signifikante, 4,7-fache Erhöhung der verfügbaren 

phänotypischen Begriffe pro Krankheit erreicht, was zu einer signifikanten Verbesserung der 

HPO-basierten diagnostischen Genauigkeit und Krankheitsähnlichkeit geführt hat. Unsere 

gezielte Erweiterung der HPO Begriffe  hat die Präzision der phänotypischen Annotation von IEI 

verbessert. Dies ermöglichte eine präzise  Charakterisierung dieser Krankheiten in der 

Bevölkerung und kommt sowohl der IEI-Diagnostik als auch der Forschung zugute. 

  

Das übergeordnete Ziel des zweiten Forschungsmanuskripts bestand darin, eine systembasierte 

Analyse von IEI, die sich durch Autoimmunität oder Autoinflammation manifestieren, zu 

entwickeln und ihren Nutzen für die Beantwortung einer Vielzahl wichtiger biomedizinischer 

Fragen zu demonstrieren. 

  

Wir begannen mit der Konstruktion eines neuartigen Interaktom-Netzwerks, das relevante und 

anerkannte Interaktome kombiniert. Innerhalb des kombinierten Interaktoms mit seltenen IEI, bei 

denen Autoimmunität/Autoinflammation auftritt, identifizierten wir eine Unterguppe von 

Schlüsselgenen und deren Interaktionspartner, die für die Aufrechterhaltung der Homoöstase 

unerlässlich sind, und daher als „AutoCore“ bezeichnet werden. Wir zeigten hier, dass innerhalb 

des AutoCores, Autoimmunität und Autoinflammation eng miteinander verknüpft sind, und dass 

sich das monogene AutoCore im Zentrum des Netzwerkes komplexer polygener Autoimmun- und 

Autoinflammationserkrankungen befindet. Darüber hinaus verwenden wir die Topologie des 

Autocores, um 19 unterschiedliche molekulare Untergruppen monogener Autoimmun- und 

Autoinflammationserkrankungen zu identifizieren. Schließlich verwenden wir die Autocore- und 

Netzwerkentfernung, um neue potenzielle Signalwege für therapeutische Interventionen zu 

ermitteln. 

  

Insgesamt zeigt diese Arbeit, wie man maßgeschneiderte systembasierte Methoden verwendet, 

um die Charakterisierung klinischer Phänotypen von IEI zu erweitern und einen 

netzwerkbasierten Rahmen für die Entdeckung molekularer Zusammenhänge von Autoimmun- 

und Autoinflammationserkrankungen schafft. Dieser Systemansatz ermöglicht daher die 

Quantifizierung von zuvor nur beschriebenen klinischen Phänomenen. Beide Methoden erhöhen 

das aktuell verfügbare Wissen über seltene Erkrankungen des Immunsystems erheblich und 

tragen dazu bei die diagnostische Lücke zu schließen. Sie etablieren zudem neuartige 
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Plattformen, um systematisch die molekularen und phänotypischen Ursprünge von Homoöstase 

und Dysregulierung des Immunsystems zu beschreiben und zu erkunden. 
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Overview 
 
This thesis has been written in a cumulative form. It includes a review article on inflammatory 

bowel diseases “Early-Onset Inflammatory Bowel Disease as a Model Disease to Identify Key 

Regulators of Immune Homeostasis Mechanisms.” in the introduction, and two research articles, 

“Curation and Expansion of Human Phenotype Ontology for Defined Groups of Inborn Errors of 

Immunity” and “AutoCore: network-based identification of a core module defining human 

autoimmunity and autoinflammation”, that are the main results of this thesis and presented in 

chapter 3. 

  

The first part of the thesis contains the introduction (1) starting from a chapter on rare diseases 

of the immune system (1.1), including a general introduction (1.1.1) and a more detailed 

discussion on rare diseases of the immune system (1.1.2). This is followed by an introduction to 

the databases, registries, nomenclatures and data structures available for rare diseases of the 

immune system (1.1.3 and 1.1.4), the human phenotype ontology (1.1.5), and the assessment of 

ontological similarity (1.1.6). The next section introduces the different elements of the immune 

system, focusing on innate (1.2.1) and adaptive immunity (1.2.2) and autoimmune and 

autoinflammatory diseases (1.2.3) in particular. Then, gene and molecular defects leading to 

early-onset inflammatory bowel disease, a prototypic autoimmune/autoinflammatory condition are 

introduced in detail (1.2.4), with a review. In the third part of the introduction, network medicine 

(1.3) and network-based methods are discussed in detail, covering topics such as types of 

biological networks (1.3.1.1), interactomes as maps of cellular function (1.3.2) and basic network 

properties (1.3.2.1-1.3.2.4). Special emphasis is given to how network medicine is used for 

different types of diseases (1.3.3), including disease gene identification (1.3.3.1), methods for the 

investigation of disease-disease relationships (1.3.3.2) and applications to assess drug efficacy 

(1.3.3.3). 

 

The second chapter introduces the detailed aims of the thesis (2), by formulating the research 

question and the objectives of this work.  

 

The main results (3) of this doctoral thesis are detailed in chapter three, with two research articles 

in chapter (3.1) and (3.2), respectively. Each article is preceded by a short summary of the work. 

The research articles are followed by their respective supplementary material which provide 

details on the applied methodology. 
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Finally, the fourth chapter of the doctoral thesis contains a detailed discussion (4) and future 

outlook of the results presented in the two research articles. The discussion begins with a general 

introduction and discussion (4), followed by a separate discussion and outlook on each research 

article in sections (4.1) and (4.2).  



1 

1 Introduction 

1.1 Rare diseases of the immune system 
 

1.1.1 Introduction to rare diseases 
 
It is estimated that there are between 6000-8000 rare diseases (McKusick 2007; Pavan et al. 

2017), that taken together affect about 3.5 – 5.9% of the global population, about 263-446 million 

persons (Wakap et al. 2019). There is no official, unifying definition of rare diseases to date. In 

Europe, a disease is considered rare if it affects less than 1 in 2000 people (Nugent and Rhinard 

2015; Eurodis), while in the United States a disease is defined as rare if it affects fewer than 1 in 

1500 people (Reaves 2003). Rare diseases are often chronic, progressive, degenerative and life 

threatening diseases that represent a challenge on healthcare systems. Many of these diseases 

lack effective treatments today (Braun et al. 2010). About 80% of rare diseases are considered to 

be of genetic origin, many of them following the inheritance pattern proposed by Georg Mendel 

in 1865, therefore termed Mendelian diseases (Wakap et al. 2019; MENDEL G 1865). In contrast 

to common diseases that are usually brought on by a combination of factors including 

environmental factors such as lifestyle, exposures to environmental agents and genetic 

susceptibility, rare diseases tend to be the results of single detrimental and deleterious lesions in 

the genome. These lesions often affect the functions of proteins, and the function of cellular 

processes severely enough to elicit a strong phenotype (Figure 1). These function-affecting, 

deleterious genetic lesions are rare, and can be found in less than 1% of the population (minor 

allele frequency, MAF < 1 %), as opposed to the common polymorphisms in the genome (MAF 

>= 1%) (McCarthy et al. 2008). The genetic lesions that cause rare disease can present as biallelic 

mutations, whereby both alleles of an affected gene carry a variation from the reference genome, 

or they can be heterozygous with only one affected allele. Because of their genetic origin, rare 

diseases tend to be severe and present at an early age, illustrated by the fact that the majority of 

affected are children (Wakap et al. 2019).  
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Figure 1. Genetic architecture of common, polygenic and rare, monogenic diseases. Reprinted 

by permission and adapted from Springer Nature: Nature, “Finding the missing heritability of 

complex diseases” (McCarthy et al. 2008). 
 
The strong genetic component displayed by rare diseases has prompted research elucidating the 

genetic lesions underlying the phenotypes. Since the rapid expansion of next-generation 

sequencing techniques (NGS), NGS has become one of the gold standard tools of investigation 

and diagnosis of rare diseases (Vinkšel et al. 2021; Z. Liu et al. 2019). Although approaches to 

identify the pathogenic variants may vary, they often consist of sequencing a panel of genes 

previously identified to be causal for a specific phenotype, then moving onto whole exome (WES) 

or whole genome sequencing (WGS) if the causal genetic link remains elusive (Z. Liu et al. 2019).  

The NGS result of a single patient often contains hundreds of variants of unknown significance, 

which have to be validated and investigated. The subsequent prioritization and contextualization 

of these variants and genes is time and cost intensive. Therefore, although NGS-based diagnostic 

tools have accelerated the rate of disease gene discovery and diagnosis, they still only yield a 

clear genetic diagnosis for about 30% of rare disease patients, and the majority of rare disease 

patients do not receive a genetic diagnosis, despite being referred to expert centers (Gahl et al. 

2012; Ramoni et al. 2017).  
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1.1.2 Rare diseases of the immune system 

 
There are more than 400 rare diseases that affect the immune system, linked to over 430 different 

gene defects (A. Bousfiha et al. 2020; A. A. Bousfiha et al. 2013). These diseases, collectively 

termed IEI, have great social and economic impact, as they affect the very young and often 

present with a serious clinical course (Cannizzo et al. 2018). Due to their monogenic nature, the 

genotype to phenotype relationship displayed by IEI provides vital insights into immune 

homeostasis and the lack thereof. IEI usually manifest as increased susceptibility to infections, 

autoinflammation and/or autoimmunity, allergy and malignancy. As most rare diseases, IEI are 

caused by deleterious genetic lesions that often result in a loss-of-function (LOF) or gain-of-

function (GOF) of the encoded protein (A. Bousfiha et al. 2020). Although most mutations 

underlying IEI are LOF biallelic mutations that impair the function of the encoded proteins, there 

is also evidence of heterozygous lesions that are inherited in an autosomal dominant manner. 

These heterogeneous mutations can be GOF, or deleterious lesions causing haploinsufficiency 

or a dominant negative effect. 

 

The classification of IEI is a difficult task, as no two patients are the same and even in the same 

disease category there is ample heterogeneity (Vinkšel et al. 2021). To date, the International 

Union of Immunological Societies (IUIS) disease classification (A. Bousfiha et al. 2020), updated 

every two years, is one of the de facto ways to classify IEI disease in a phenotypic manner. This 

classification divides diseases based on an expert consensus on a phenotypic basis, and 

diseases are often re-classified. The IUIS clinical and phenotypical classification of IEI currently 

groups them into 10 categories (Figure 2). 

 

Immunodeficiencies affecting cellular and humoral immunity (Table I) present with severe 

combined immunodeficiency (SCID) or combined immunodeficiency (CID). Combined 

immunodeficiencies with associated or syndromic features (Table II) include CIDs that present 

with thrombocytopenia and hyper IgE syndrome. Predominantly antibody deficiencies (Table III) 

contain B cell and immunoglobulin defects that usually present as common variable 

immunodeficiencies (CVIDs). Diseases of immune dysregulation (Table IV) represent most 

autoimmune diseases, as well as autoinflammatory diseases with susceptibilities to infection. 

Congenital defects of phagocyte number or function (Table V) group together diseases of 

phagocytic cells. Defects in intrinsic and innate immunity (Table VI) include diseases that present 

with susceptibility to bacterial, fungal and viral infection. Autoinflammatory disorders (Table VII) 
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group together classical autoinflammatory disorders. Complement deficiencies (Table VIII) 

contain defects of the complement system. The bone marrow failure (Table IX) group lists 

diseases such as those that cause Fanconi anemia, dyskeratosis congenita and others. Finally, 

phenocopies of IEI (Table X), a group of disorders presenting with similar phenotypes to IEI, but 

instead of germline mutations are results of somatic mutations in certain subsets of cells. 

 

 
Figure 2. Rate of discovery, and types of IEI according to the International Union of Immunological 

Societies (IUIS). a) Number of IEI from 1983-2019. b) Number of diseases in each IUIS clinical 

group in 2017 and 2019. Reprinted by permission and adapted from Springer Nature: Journal of 

Clinical Immunology, “Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical 

Classification” (A. Bousfiha et al. 2020). 

 

1.1.3 Databases and registries for inborn errors of immunity 
 
In order to address the need to improve the level of diagnosis and care of rare diseases across 

the globe, multiple programmes and databases have been established in the past years. These 

include The NIH Undiagnosed Disease Program and Network (UDP and UDN) (Gahl et al. 2016), 

the Undiagnosed Diseases Network International (Taruscio et al. 2020), the RD-connect project 

to create a global infrastructure for rare diseases in the EU and beyond (Gainotti et al. 2018) and 

SOLVE-RD (Ferlini 2017), a research project dedicated to provide diagnosis for unsolved rare 

disease patients. 

 

Finding a second patient with similar phenotype, or phenotypic matching to a cohort of rare 

disease patients is key to accelerate the diagnostic process for IEI. To facilitate this, registries 

and data sharing platforms have emerged in recent years. Registries such as the European 
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Societies of Immunodeficiency (ESID) registry (Grimbacher and ESID Registry Working Party 

2014), or US-based registries such as the Rare Diseases Registry Program (RaDaR) developed 

by the NIH (“Rare Diseases Registry Program (RaDaR)” 2017), or the IAMRARE registry 

organised by the National Organization for Rare Disorders (NORD) (“IAMRARE® Registry 

Program” 2017) aim to provide a more centralized way of storing and accessing patient-related 

information. Data sharing platforms further facilitate the identification of patients with similar 

genetic makeup and phenotypes. These include GeneMatcher (N. Sobreira et al. 2015), a 

platform that matches researchers together based on interests in the same genotypes, and 

Matchmaker Exchange (N. L. M. Sobreira et al. 2017), a platform developed to pair up centers 

and research groups with patients with similar phenotypes.  

 

1.1.4 Nomenclatures and data structures for inborn errors of immunity 
  
As the available data on IEI patients increased, so did the need for objective disease classification 

systems and data nomenclatures. Alongside the clinical IUIS classification of diseases that is 

most often referred to by clinical experts, Online Mendelian Inheritance in Man (OMIM) (Amberger 

et al. 2018) emerged as a database on Mendelian (and non-Mendelian) diseases, and is also 

widely used in the IEI community. In parallel, nomenclatures have emerged that order disease 

classification into ontologies that provide a hierarchical structure to organize diseases. Disease 

ontologies such as ORDO (Vasant et al. 2014), developed by OrphaNet, as well as Disease 

Ontology (DO) (Schriml et al. 2012) aim to provide an ontological structure to classify and group 

rare diseases. Both of these ontologies have developed their own identifier systems to refer to 

diseases. Unfortunately, the representation of IEI in both ORDO and DO is sparse. 

 

The ideal operation of registries and databases that aim to centralize patients relies on common 

standardized terminologies to refer to the highly multidimensional data that represents 

phenotypes and clinical identifiers. To meet this demand, nomenclatures that refer to both clinical 

and phenotypical data have emerged in recent years (Gkoutos, Schofield, and Hoehndorf 2018). 

Systematized Nomenclature Of Medicine Clinical Terms (SNOMED CT) (Bhattacharyya 2016) is 

a systematically organized collection of medical terms developed for clinical documentation and 

reporting. To date, SNOMED CT provides the core general terminology for electronic health 

records (EHR). SNOMED CT includes clinical findings, symptoms, diagnoses, procedures, body 

structures, organisms, etiologies, substances, pharmaceuticals, devices and specimens. Along 
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with SNOMED CT, Unified Medical Language System (UMLS) aims to provide a standardized 

biomedical terminology (Bodenreider 2004). The International Statistical Classification of 

Diseases and Related Health Problems (ICD) defines the universe of diseases, disorders, injuries 

and other related health conditions developed by the World Health Organization (WHO) (Kreutzer, 

DeLuca, and Caplan 2011). Although to some extent all these terminologies are in use for IEI 

especially in clinical care and EHR, many of the specific needs to represent phenotypes and their 

relationships in IEI are not depicted. 

 

Along with the aforementioned terminologies, in recent years ontologies were developed 

specifically to represent disease phenotypes and the logical relationships between them. 

Ontologies are data structures to describe taxonomies and classification networks, 

simultaneously providing a vocabulary and defining the structure of knowledge among the data. 

The Mammalian Phenotype Ontology (MPO) (Smith, Goldsmith, and Eppig 2005), was the first 

entity of its kind that aimed to capture phenotypic aberrations to the entire phenome of an 

organism. Similar to the MPO, The Human Phenotype ontology (HPO) was more recently 

developed to provide description of abnormal phenotypes in humans. The approach of HPO 

assumes the presence of a reference organism (humans) and abnormal phenotypes represent a 

deviation from the reference norm. 

 

1.1.5 Human phenotype ontology 
  
The HPO phenotype vocabulary and ontology initially published in 2008 (Robinson et al. 2008; 

Köhler, Kindle, and Robinson 2021) was created to enable accurate phenotyping for diseases. 

HPO currently contains over 13,000 terms, describes phenotypic information regarding over 7000 

diseases, and is currently the de facto standard for deep phenotyping of rare diseases. Each term 

in HPO describes a distinct phenotypic feature (e. g. abnormality of body height), and these terms 

are ordered in an ontology. This means that phenotype terms are ordered and linked in a 

hierarchical manner, with more general terms close to the root, followed by terms with increasing 

specificity below (Figure 3). The disease-based information content (IC) of each term in HPO can 

be estimated through its frequency among the entire OMIM annotation corpus. 
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Figure 3. An example of an HPO branch. More general terms are located closer to the root, while 

more specific terms are further below. Information content and specificity increases further from 

the root. 

 
Similar to most modern ontologies, HPO utilizes the Web Ontology Language (OWL) (Grau et al. 

2008) format to store content. HPO is a community based tool and increasingly adapted into 

everyday use as the standard to describe phenotypic abnormalities (Köhler, Kindle, and Robinson 

2021). Crowd-sourcing initiatives exist that aim to translate the original English HPO terms to 

other languages. In addition, a translation of HPO terms into common, everyday language exists 

to facilitate the use of HPO outside of strict clinical and research bounds (Vasilevsky et al. 2018). 

As a result, to date HPO provides the most comprehensive resource for deep phenotyping of 

diseases for researchers, clinicians, bioinformaticians and EHR systems.  

 

HPO has also emerged as a go-to vocabulary for bioinformatics-based phenotype and disease-

analysis. Specific tools and resources have been developed for gene prioritization such as 

Exomiser (Smedley et al. 2015) and Lirical (Robinson et al. 2020), or PhenoRank (Cornish, David, 

and Sternberg 2018) that use HPO to annotate and filter potentially causal variants from NGS 

sequencing files. Tools have been developed that use HPO to analyze genome-wide association 

(GWAS) data (Sveinbjornsson et al. 2016; Beck, Shorter, and Brookes 2020), and to understand 

genomic variation (Posey et al. 2017). 
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The wide use of HPO has enabled ample improvements in diagnostic accuracy and variant 

prioritization. Usage of HPO is customary for the analysis of WES and WGS data. This is often 

achieved through tools and platforms such as Exomiser and Lirical, or by using in-house, cohort-

specific approaches (Taylor et al. 2017; Fang et al. 2017; Posey et al. 2016; Retterer et al. 2016; 

Zhu et al. 2015; T. Fujiwara et al. 2018; Thiffault et al. 2019; Stokman et al. 2018; Trujillano et al. 

2017). In addition to clinical care and diagnosis, HPO is also increasingly used in commercial 

applications and data sharing platforms (Segal et al. 2017). Phenotips is a free and open source 

software for collecting and analyzing phenotypic information of patients with genetic disorders 

that is widely used in the rare disease community (Girdea et al. 2013). Data sharing platforms 

such as GeneMatcher and Matchmaker exchange benefit from the use of HPO and its  

standardized nomenclature which facilitates accurate patient matching. 

 

1.1.6 Assessment of the ontological similarity of phenotypic terms 
 
For each term in the HPO ontology, its information content (IC) can be calculated as a function of 

its frequency among OMIM annotations. Therefore, for each t term of HPO, the IC can be 

determined as the negative logarithm of the probability of finding term t in the whole OMIM 

annotation corpus: −logp(t).  

Multiple IC-based methods exist for assessing the semantic similarity of two ontological terms, or 

sets of ontological terms. Node based measures such as the Resnik similarity measure (Resnik 

1995) only considered the IC of the most specific concept which is an ancestor of both terms t1 

and t2 terms, which is also termed the lowest common subsumer (lcs). The Resnik similarity of 

two terms is given by: 

𝑆𝑖𝑚!"#(𝑡1, 𝑡2) = 𝐼𝐶(𝑙𝑐𝑠(𝑡1, 𝑡2)) 

 
where lcs(t1,t2) is the lcs of concepts t1 and t2, and IC returns the IC of a term. 
 

The Lin semantic similarity measure (Lin and Others 1998) is a variation of the Resnik measure 

and defined by:  

𝑆𝑖𝑚$%&(𝑡1, 𝑡2) =
2𝑥𝐼𝐶1𝑙𝑐𝑠(𝑡1, 𝑡2)2
𝐼𝐶(𝑡1) + 𝐼𝐶(𝑡2)  
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After a general introduction to rare diseases and rare diseases of the immune system, the next 

part of the introduction expands on immune processes diseases in detail that are particularly 

relevant for autoimmune and autoinflammatory diseases, as they constitute the topic of the 

research article included in Results 3.2.   

 

1.2 The immune system, diseases of autoimmunity and 
autoinflammation 
 
Our immune system has developed as our main defense system against foreign invaders. It is a 

multi-leveled and complex system, with two main lines of response to infectious and other threats, 

called innate and adaptive immunity (C. A. Janeway et al. 2005). Both of these components of 

immunity work together to identify and eliminate threats. The innate immune system constitutes 

the first line, non-specific response to threats and foreign invaders. Adaptive immune system 

constitutes the second line of defense against non-self invaders. It is only found in vertebrates, 

and is specific to the pathogen presented. In both adaptive and innate immunity, the immune 

response is mounted against foreign proteins and polysaccharide molecules that are non-self, 

called foreign antigens (C. A. Janeway et al. 2005). The ability of our immune system to recognize 

and differentiate non-self from self, and mount an effective immune response is the basis of 

immune homeostasis. In case this homeostasis is compromised, and an immune response is 

mounted against self-antigens, autoimmunity and autoinflammation can arise (Delves 1998; 

Theofilopoulos, Kono, and Baccala 2017; Kastner, Aksentijevich, and Goldbach-Mansky 2010). 

The following subchapters of the introduction introduce the basic elements of innate and adaptive 

immunity, in particular focusing on those mechanisms and cell types that are crucial in the context 

of autoimmunity and autoinflammation. 

 

1.2.1. The innate immune system 

 
The first line of this defense system against non-self-invaders is the innate immune system (Monie 

2017), and is constituted of physical, chemical and cellular defenses against pathogens. The main 

functions of the innate immune system include i) serving as a physical and chemical barrier, ii) 

the recruitment of more immune cells to the infection site through the production of chemicals 
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such as cytokines, iii) the activation of the complement cascade, iv) to identify and remove foreign 

substances and v) the activation of the adaptive immune response (Paulsen, Garreis, and Bräuer 

2013). The various epithelial surfaces that constitute the barriers of our body and organ systems 

are impermeable to most infectious agents, acting as the first defense system against invaders. 

These surfaces provide an unsuitable environment for the survival of most microbes (Koyama et 

al. 2008). One of the first acute responses to infection or irritation is inflammation initiated by 

chemical agents released by injured cells (Stvrtinová, Jakubovsk\`y, and Hulín 1995). 

Inflammation is initiated by various cells residing in the tissues, and mainly include white blood 

cells (or leukocytes) such as phagocytes, histiocytes (tissue macrophages or dendritic cells), 

Kupffer cells and mast cells. Leukocytes are able to move freely within the body and are able to 

interact and capture debris, foreign particles and microorganisms. Although different types of cells 

are specialized for various functions, all of these cell types present receptors on their cell surface 

that are able to recognize foreign molecules that are distinguishable from self and shared by 

pathogens. These receptors, collectively termed pattern recognition receptors (PRRs), are 

therefore able to recognize pathogen-associated molecular patterns (PAMPs) (Takeuchi and 

Akira 2010).  

 

1.2.1.1. Innate immune cell types  

 
Innate immune cells are the products of multipotent hematopoietic stem cells present in the bone 

marrow, and unlike many other cells in the body are unable to divide and reproduce on their own 

(Blackstone 2003). The innate leukocytes include mast cells, natural killer (NK) cells, eosinophils 

and basophils, and phagocytes. Phagocytes are leukocytes that are capable of engulfing or 

“phagocytosing” particles and pathogens. They include macrophages, neutrophils and dendritic 

cells. Macrophages are efficient phagocytes that are able to move through capillaries to pursue 

invading pathogens.  The binding of a PAMP to the PRR on the surface of a macrophage triggers 

a mechanism whereby the macrophage engulfs and destroys the agent through the generation of 

respiratory burst, causing the release of reactive oxygen species (ROS) (N. Fujiwara and 

Kobayashi 2005). Specialized macrophages include Kupffer cells (stellate macrophages) (Decker 

1990) that are localized in the liver sinusoids, and histiocytes that are tissue-specific (Cline 1994). 

Neutrophils are granulocytes for the granules present in their cytoplasms. These granules contain 

various chemicals designed to neutralize or inhibit growth of bacteria and fungi. Similarly to 

macrophages, neutrophils rely on respiratory burst and oxidizing agents to eliminate foreign 
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agents. Neutrophils are the most abundant phagocytes and represent about 50-60% of total 

circulating leukocytes (Nauseef and Borregaard 2014). Dendritic cells (DCs) are specialized 

phagocytes that are in contact with the external environment, mainly the skin (where they are 

called Langerhans cells), inner mucosal lining of the nose, stomach and intestines. Dendritic cells, 

as well as being able to phagocytose and eliminate foreign molecules, are essential links between 

the innate and adaptive immune system, as they are prevalent players in antigen presentation - 

a process whereby foreign molecules are presented on the surface of antigen presenting cells for 

the engagement and activation of other cell types, mainly T cells (Banchereau and Schmitt 2012; 

Guermonprez et al. 2002).  

Mast cells reside in connective tissues and mucous membranes. When activated by PAMPs, mast 

cells release histamine and heparin rich granules, along with chemokines and cytokines for the 

recruitment of other immune cells (Metcalfe, Baram, and Mekori 1997). Histamine, an organic 

nitrogenous compound is responsible for dilation of local blood vessels, and recruits neutrophils 

and macrophages to the place of infection or inflammation (Advances in Experimental Medicine 

and Biology 1967).   

Basophils and eosinophils are granulocytes related to neutrophils. When activated through their 

PRRs, basophils release histamine and are important players in the defense against parasites 

(Galli, Chatterjea, and Tsai 2014). Basophils also play a role in allergic reactions and asthma 

(Marone et al. 2005). Eosinophils secrete highly toxic chemicals as a result of activation that are 

effective in killing parasites (Hogan et al. 2008).  

In contrast to other innate cell types specialized in attacking and eliminating microbes and foreign 

agents, NK cells destroy host cells that have been compromised, such as tumor or virus infected 

cells. On healthy host cells, the surface expression of major histocompatibility complex (MHC) I 

molecule is abundant, whereas compromised cells have low levels of MHC-I. NK cells harbor their 

killer cell immunoglobulin receptors (KIR) (Raulet 2004) on their surface, and are able to 

recognize and get activated if a cell has low-levels of MHC-I.  

 

1.2.1.2. The complement system  

 
The complement system or complement cascade is designed to enhance the ability of phagocytic 

cells and antibodies to eliminate microbes and damaged host cells, promote inflammation and 

attack the cell membrane of pathogens (Charles A. Janeway). Although part of the innate immune 

system, the complement cascade can be activated by antibodies generated during the adaptive 
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immune response (Carroll 2004). The complement system triggers the attack of the membranes 

of pathogens by phagocytic cells, phagocytosis by opsonization of the antigens, and inflammation 

by attracting macrophages and neutrophils. The complement system is made up of  over 30 

proteins and protein fragments. The majority of these proteins are synthesized in the liver by 

hepatocytes, but some of them are also produced by macrophages, genitourinary epithelial cells 

and epithelial cells of the gastrointestinal tract. These proteins circulate in the bloodstream as 

inactive precursors. When activated through one of the triggers (discussed below) proteases in 

the complement system cleave specific complement proteins to initiate the release of cytokines 

and the cleavage of further protein complexes. The complement system can be activated through 

three different biochemical ways (Sarma and Ward 2011).  

In the classical pathway, the complement is activated by the C1-complex consisting of C1q 

binding to IgM or IgG antibodies. The majority of complement activation happens through the 

alternative pathway, without the presence of specific antibodies. The activation through the 

alternative pathway is a result of spontaneous hydrolysis of C3, or can be brought on by foreign 

material, pathogens, or damaged cells. Finally, the complement can be also activated through the 

lectin pathway, which is similar to the classical pathway, but instead of C1q and antibodies, 

mannose-binding lectin and ficolins acting as the opsonins. All these three pathways converge in 

the activation of homologous variants of the protease C3-convertase, which initiates the 

opsonization of particles, the release of inflammatory molecules and C5 convertase formation and 

cell lysis (Ricklin, Reis, and Lambris 2016; Charles A. Janeway, n.d.). The end result of the 

complement activation is the stimulation of phagocytes to clear and eliminate foreign and 

damaged material, inflammation and the attraction of more phagocytes, and the activation of the 

membrane attack complex (MAC), a protein complex designed to kill cells. The MAC forms on the 

surface of pathogen cell membranes, and places pores on the membranes which leads to cell 

lysis and death of pathogens (Charles A. Janeway, n.d.). 

 

1.2.1.3. Inflammation  

 
Upon the onset of an infection or injury, leukocytes are activated when the PRRs recognize 

PAMPs and release various inflammatory mediators such as histamines, bradykinin or serotonin 

(C. A. Janeway et al. 2005). These chemicals kickstart inflammation, and sensitize pain receptors 

and cause dilation of local blood vessels, and attract more cells such as neutrophils and 

macrophages. The neutrophils and macrophages recruited release chemicals that attract more 
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cells including further innate immune cells and lymphocytes. These chemicals include cytokines, 

which are small proteins specialized in cell-to-cell signaling and immunomodulation. Cytokines 

act through cell surface receptors, and induce various changes such as the maturation, growth, 

and responsiveness of particular cells (Paul and Seder 1994). The most prevalent cytokines 

secreted in the inflammatory response are interleukin-1 (IL-1), IL- 12, IL-18, tumor necrosis factor 

alpha (TNF-a), interferon gamma (IFN-gamma) and granulocyte-macrophage colony stimulating 

factor (GM-CSF) (Glauser 1996). As a result of the physiological, cellular and chemical changes 

in the local environment, the inflammatory response is characterized by a cascade of symptoms, 

including skin redness, increased local temperature or systemic fever, swelling of the affected 

tissues, increased mucus production and the sensation of local or global pain. 

 

1.2.2. The adaptive immune system 

 
The adaptive immune system, also referred to as the acquired immune system, is composed of 

specialized white blood cells that are designed to eliminate pathogens. In contrast to the general 

immune response elicited by the activation of the innate immune system, the adaptive immune 

response is highly specific to the pathogen encountered by the organism (Davies 1997). The 

adaptive immune system can be triggered by a pathogen that evades the innate immune 

response, and danger signals are generated and activate DCs. The major tasks of the adaptive 

immune system include recognition of non-self-antigens in the presence of self-antigens in the 

process of antigen presentation, the generation of pathogen specific responses and responses to 

pathogen infected cells, and the development of immunological memory (Klenerman 2017). The 

adaptive immune response is carried out by specialized white blood cells, or lymphocytes, 

discussed in more detail below.  

 

1.2.2.1. Antigen presentation 

 
The acquired immune response relies on the capacity of the immune cells involved to distinguish 

between the body’s own cells and foreign invaders. Antigen presentation is the immune process 

by which cellular molecules are displayed on cell surfaces bound to the MHC (Lindsay Whitton 

2013). At all times, the host’s cells express self-antigens (endogenous molecules) on their surface 

in their MHC-I molecules. These self-antigens are different from antigens from foreign invaders 
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such as bacteria or virus infected host cells. Antigens that are from the extracellular space 

(extracellular antigens) are presented on the surface of specific antigen presenting cells in MHC-

II molecules (Neefjes et al. 2011). Specialized antigen presenting cells include DCs, macrophages 

and B cells. These extracellular antigens within the MHC-II are presented to specialized 

lymphocytes (T helper cells, discussed below) and activate them to kickstart the adaptive immune 

response (Guermonprez et al. 2002).  

 

1.2.2.2. Adaptive immune cell types 

 

The cells involved in the adaptive immune response are commonly known as lymphocytes. 

Lymphocytes, as innate immune cells are derived from multipotent hematopoietic stem cells. T 

and B cells are the two main types of lymphocytes that carry out the cell-mediated immune 

response and antibody response (M. D. Cooper and Alder 2006).  

T cells contain a protein complex on their surface called the T-cell receptor (TCR), which is 

designed to recognize fragments of antigens bound to MHC molecules. Cytotoxic T cells (or CD8 

T cells, or CTL) are a subtype of T cells that are specialized in eliminating host cells that are 

infected with viruses, or which are damaged or dysfunctional. Cytotoxic T cells are activated when 

their TCR interacts with an MHC-I molecule that is presenting an antigen (Andersen et al. 2006). 

Once activated, cytotoxic T cells undergo clonal selection, a process whereby activated by a 

specific antigen, a specific type of T cell rapidly multiplies and produces identical clones of itself 

(Burnet 2015). When in contact with those cells expressing the favorable antigen, CTLs release 

perforin and granulysin, chemicals that form pores on the plasma membrane, and granzyme that 

induces apoptosis (Andersen et al. 2006). In contrast to cytotoxic T cells, CD4 T cells do not have 

cytotoxic activity, but are specialized to manage and direct other types of immune cells. CD4 T 

cells also express TCR on their surface, and are activated through contact  with an APC that is 

presenting with an antigen in their MHC-II. Th1 CD4 T cells are involved in immune response 

against bacteria and viruses. They are characterized by INF-gamma production, which 

subsequently activates macrophages and B cells (Mosmann and Coffman 1989). Th2 Cd4 T cells 

orchestrate the response against extracellular bacteria and parasites. Th2 CD4 T cells release 

IL-5, which induces eosinophils and IL-4 that facilitates B cell isotype switching (Mosmann and 

Coffman 1989). Regulatory T cells (Tregs) regulate adaptive immunity by limiting and suppressing 
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the immune system's response to self-antigens. Tregs are immunosuppressive, and 

downregulate the expansion of other T cell types (Weinberg 2006), and have a major role in 

preventing immunity against self – otherwise known as autoimmune disease (La Cava 2009).  

These cells express biomarkers such as FOXP3 on their surface. Th17 T cells are pro-

inflammatory T cells that are characterized by their production of IL-17. The triggers that signal to 

cause Th17 activation and differentiation inhibit the differentiation of Tregs. Th17 cells are 

involved in pathogen clearance and maintaining the homeostasis in mucosal barriers (Weinberg 

2006; Korn et al. 2009). Follicular helper T cells (Tfh cells) help B-cell dependent humoral 

immunity. Tfh cells are able to migrate to follicular B cells and provide them signals to enable the 

generation of antibodies (Fazilleau et al. 2009).  

Gamma delta T cells (or γδ T cells) house an alternative TCR on their surface. They share the 

traits of helper T cells, NK cells and CTLs. γδ T cells do not require a presentation of an antigen 

by an APC for activation, and are considered to be at the border of innate and adaptive immunity 

(Girardi et al. 2001).  

B lymphocytes are the other major group of lymphocytes involved in the adaptive immune 

response. B cells are able to produce antibodies, Y shaped proteins that can attach to antigens, 

and circulate in blood plasma and lymph. There are five types of antibodies in mammals: IgA, 

IgD, IgE, IgG and IgM that possess different biological properties and are designed to bind to and 

handle different types of antigens (Hoffman, Lakkis, and Chalasani 2016). The type of immunity 

that is mediated by these peptides is called antibody-mediated or humoral immunity (Elgueta, de 

Vries, and Noelle 2010). B cells express an unique receptor on their surface, called the B cell 

receptor (BCR), which is a membrane-bound antibody. All the BCRs on the surface of a B cell 

only recognize one particular antigen. In contrast to T cells, B cells can recognize antigens in their 

native, non MHC-bound form. B cells are activated when encountering a matching antigen. 

Activated B cells produce antibodies that recognize unique antigens. The binding of antibodies to 

antigens triggers different immune mechanism: i) agglutination, that reduces the number of 

infectious elements, ii) complement activation, iii) opsonization - the antibody coating of antigens 

to facilitate phagocytosis, iv) the recruitment of macrophages, eosinophils, and NK cells to the 

antibody coated elements - also called antibody dependent cell-mediated cytotoxicity, and v) 

neutralization, or blocking adhesin of bacteria and viruses to mucosa (Elgueta, de Vries, and 

Noelle 2010).  Once encountering a specific antigen, and receiving activation signaling from Th2 
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cells, B cells differentiate into effector B cells, also called plasma cells. Plasma cells have a short 

life span and their main function is to secrete antibodies  (Kölmel 1977; Bernasconi, Traggiai, and 

Lanzavecchia 2002). During affinity maturation, Tfh cells stimulate B cells to produce antibodies 

with increased affinity for the antigen during the immune response. Affinity maturation involves 

two processes that both occur in the germinal centers of lymphoid organs. Somatic hypermutation 

(SHM) diversifies BCRs to recognize foreign elements, by a programmed process of mutation of 

the variable regions of immunoglobulin encoding genes (Di Noia and Neuberger 2007). Those B 

cells that have undergone SHM compete for growth resources in the lymph node. The B cells 

which are highly competitive and are able to conjugate Tfh cells in a stable manner receive T  cell-

dependent survival signals, while those B cells that are unable to stably bind and engage Tfh cells 

are deleted. Through this process, only those B cells remain that are able to produce highly 

effective antibodies to eliminate the foreign threat (Burnet 2015). 

 

1.2.2.3. Immunological diversity 

 
Most antigens contain multiple different epitopes, which are antigenic determinants that interact 

with an antibody of a receptor of a lymphocyte. Only a small percentage of lymphocytes can 

recognize and bind to a particular antigen (C. A. Janeway et al. 2005). Immune cells have to be 

able to differentiate between a multitude of different antigens. For this, the cell surface receptors 

that recognize antigens have to be produced in a large variety of configurations.  Countless 

receptors are produced through a process called clonal selection. The clonal selection theory 

states that an animal is born with a diversity of randomly generated lymphocytes that each bear 

a unique antigen receptor (Burnet 2015). In order to generate each of these unique antigen 

receptors, the genes encoding different parts of the receptors undergo a process termed V(D)J 

recombination, that happens in the bone marrow (B cells) and thymus (for T cells). During this 

process, one gene segment recombines with other gene segments to produce unique genes 

(Ferrier 2009). V(D)J recombination and the translation of these unique receptor encoding genes 

generates a large diversity of receptors and antibodies and enables the immune system to 

respond to an almost unlimited diversity of antigens (C. A. Janeway et al. 2005).  
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1.2.2.4. Immunological tolerance 

 
Immunological tolerance is defined as a state of unresponsiveness of the immune system to 

elements that are able to elicit an immune response in the organism. This tolerance is classified 

into central or peripheral tolerance. Central tolerance is originally induced in the thymus and bone 

marrow, while peripheral tolerance is induced in lymph nodes (Medawar 1961). Central tolerance 

is an essential process by which the immune system learns to discriminate self from non-self. 

Peripheral tolerance on the other hand is vital to preventing over-reactivity of the immune system 

to environmental entities such as allergens or gut microbes. Defects in either of the tolerance 

mechanisms can cause autoimmune or autoinflammatory diseases (Anderson and Kuchroo 

2007).  

 

1.2.2.4.1. Central tolerance  

 
Central tolerance is the tolerance achieved by the elimination of autoreactive T and B lymphocytes 

before they become fully developed and immunocompetent. This process of negative selection 

enables the elimination of those T and B cells which are able to initiate a strong immune response 

to the hosts own cells and tissues, while preserving the ability to recognize foreign antigens.  

 

This process of elimination  is carried out in the thymus and bone marrow, where the developing 

lymphocytes are presented with self-antigens by thymic epithelial cells and thymic DCs, or bone 

marrow cells. T cell tolerance mechanisms are carried out in the thymus, where the cells first 

undergo a positive then a negative selection (Romagnani 2006). First, during positive selection T 

cells are tested for their ability to bind to MHC-antigen complexes. Those T cells which are unable 

to bind MHC-I or MHC-II undergo apoptosis from not receiving survival signals. Next, during 

negative selection, T cells are probed for their affinity to elicit an immune response to self. The 

transcription factor AIRE is a major orchestrator of the self-antigen presentation process (Perniola 

2018). The lymphocytes that are able to strongly bind to self-antigens are eliminated by the 

induction of apoptosis or anergy (Fleit 2012). Those T cells that recognize the MHC-peptide 

complexes but do not bind to self are either CD4 or CD8 positive T cells and migrate to secondary 

lymphoid organs. Treg selection is carried out in the thymus as well, accompanied by the 

expression of the transcription factor FOXP3. Some T cells that are able to recognize self-
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antigens in a weak manner are differentiated to Treg cells that circulate and act as sentinel cells 

in the periphery to identify cells with potential of T cell autoreactivity (Sakaguchi et al. 2008).  

 
While in development, immature B cells undergo negative selection in the bone marrow if they 

are able to bind to self-peptides. In case a B cell becomes reactive upon binding a self-antigen, it 

will either undergo apoptosis, anergy, or receptor editing. During receptor editing, the B cell 

rearranges the genes encoding their BCR that does not respond to self (Meffre and Wardemann 

2008). B cells that present weak autoreactivity might be ignored, as they don't respond to the 

stimulation of their BCR (Fleit 2012). Compared to T cells, the deletion threshold is less strict for 

B cells as they are unable to cause tissue damage directly.  

 

1.2.2.4.2. Peripheral tolerance  

 
The main purpose of peripheral tolerance is to eliminate the autoreactive T and B cells that have 

escaped the filtering mechanisms of central tolerance. Peripherial tolerance mechanisms take 

place in peripheral lymphoid organs. As T cell activation has to occur to elicit an adequate immune 

response, antigens that are presented in low numbers are generally ignored by the immune 

system. Immune-privileged organs - organs that can tolerate the presence of antigens without 

immune response, such as the eyes, the testis, the central nervous system or the placenta and 

fetus - have special mechanisms to ensure ignorance (Benhar, London, and Schwartz 2012). 

These mechanisms include the presence of physical barriers where lymphocytes cannot get 

through, or low levels of antigen presentation. Expression of apoptotic markers such as FAS 

ligand and the expression and presence of anti-inflammatory cytokines such as TGF-beta and IL-

10 ensure that lymphocyte activation does not occur (Mueller 2010). 

 
Most of the self-reactive T cells are deleted during central tolerance mechanisms, but low affinity 

self-reactive T cells are able to escape (Malhotra et al. 2016). During peripheral tolerance 

mechanisms, T cells that present with low affinity can be either deleted or converted to Treg cells 

when recognizing an antigen presented by an immature DC in secondary lymphoid organs 

(Steinman, Hawiger, and Nussenzweig 2003). In addition to DCs, other cell populations have 

been identified that are able to induce antigen-specific tolerance in T cells. These include lymph 

node stromal cells, which are able to present endogenous antigens on MHC-I, and peptide MHC-

II complexes, and thereby have the capacity to induce CD4 and  CD8 T cell  tolerance (Fletcher 
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et al. 2010). Tregs, both the ones generated in the thymus and ones in the periphery are able to 

suppress autoreactive T cells by mechanisms such as depletion of IL-2 from the environment, 

and the expression of immunosuppressive and tolerogenic cytokines such as TGF-beta and IL-

10 (La Cava 2009). Finally, T cells can be rendered non-responsive if the antigen is presented 

without further co-stimulatory signals such as the engagement of co-stimulatory molecules that 

are upregulated by pro-inflammatory cytokines (Mueller 2010).  

 

1.2.2.5. Immunological memory 

 
Our immune system encounters a variety of different threats presented by different antigens 

throughout our lifetime. Immunological memory is the ability of the immune system to swiftly 

recognize an antigen that it has encountered before, and quickly initiate a specific immune 

response to eliminate the threat (Ahmed and Gray 1996). During the immune response to an 

antigen, specific adaptive immune cells are created whose purpose is to serve as “memory” cells 

in the next immune response to the same pathogen. These cells are called memory T cells and 

memory B cells.  

 

Memory T cells can both be CD4 positive, or CD8 positive T cells. In comparison to non-memory 

T cells, these memory T cells do not need a signal via their MHC to proliferate. Based on the 

surface expression of marker CCR7, a chemokine receptor, memory T cells can be grouped into 

two subsets. Effector memory T cells do not express CCR7 are able to migrate to the site of 

infection and represent a population of cells that is able to immediately participate in the immune 

response, and produce IFN-gamma, IL-4 and IL-5. Central memory T cells express CCR7 on their 

surface and lack proinflammatory and cytotoxic function, These cells are able to migrate to the 

lymph node and stimulate DCs, then differentiate into effective memory T cells.  

A small fraction, about 10% of plasma cells survive and become memory B cells that are already 

primed to produce those specific antibodies designed for the antigen that their progenitors have 

encountered (Kölmel 1977; Bernasconi, Traggiai, and Lanzavecchia 2002). These memory cells 

have already undergone affinity maturation and are able to produce specific antigens.  Both T and 

B memory cells can persist for decades in the body (Sallusto et al. 1999; Bernasconi, Traggiai, 

and Lanzavecchia 2002), enabling a swift and effective immune response.  
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1.2.3 Autoimmune and autoinflammatory diseases 
 
Autoimmunity and autoinflammation arise when either the adaptive or innate immune processes 

are over-reactive or chronically activated, leading to an attack on self instead of external invaders. 

Autoimmunity is defined as the system of immune responses that an organism elicits against its 

own healthy cells and tissues (Delves 1998; Theofilopoulos, Kono, and Baccala 2017). 

Autoimmunity is usually characterized by the break of self-tolerance of adaptive immune cells that 

leads to phenotypes such as fatigue, fever, malaise, muscle and joint aches and rashes (L. Wang, 

Wang, and Eric Gershwin 2015). Traditionally, autoimmune phenotypes that affect different organ 

systems have been classified as separate diseases. These diseases include inflammatory bowel 

disease (IBD) that presents with chronic inflammation of the intestines (Denmark and Mayer 2014; 

Abraham and Cho 2009), coeliac disease that presents with intestinal inflammation as a result of 

exposure of gluten (Meresse et al. 2009), multiple sclerosis, a neurodegenerative disorder where 

T cells attack the myelin sheath of brain neurons (Frohman, Racke, and Raine 2006), rheumatoid 

arthritis, a chronic inflammation of joints (Turesson and Matteson 2009), systemic lupus 

erythematosus (SLE) that is associated with a wide-loss of immune tolerance and chronic 

inflammation (Tsokos 2011) and autoimmune anemia, a failure of the body to produce adequate 

number of lymphocytes.  

 

Autoinflammation arises when innate immune cells become over-activated, as a result of 

dysregulated secretion of pro-inflammatory cytokines (Kastner, Aksentijevich, and Goldbach-

Mansky 2010). Autoinflammatory diseases are marked by fevers, rashes, joint and muscle pain 

and systemic inflammation (Moreira et al. 2017). Most autoimmune and autoinflammatory 

diseases are classically considered complex heterogeneous diseases, brought on by the 

combination of various genetic and environmental risk factors (Eyre, Orozco, and Worthington 

2017). The majority of these diseases display a heterogeneous combination and penetrance of 

autoimmune and autoinflammatory phenotypes, and are frequent in Western countries (G. S. 

Cooper, Bynum, and Somers 2009). The genetic architecture of common autoimmune and 

autoinflammatory diseases is usually investigated with GWAS, which have revealed thousands 

of genomic loci associated with different common autoimmune and autoinflammatory diseases 

(Caliskan, Brown, and Maranville 2021).  

 

Intriguingly, as immune dysregulation is a permanent feature of IEI, autoimmune and 

autoinflammatory phenotypes have been documented in rare diseases of the immune system 
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(Köstel Bal et al. 2020; A. Bousfiha et al. 2020; Fischer et al. 2017). Indeed, it has been recently 

shown that autoimmune and autoinflammatory manifestations are increasingly common 

complications seen in IEI patients, especially for CVID and CID patients (Fischer et al. 2017). The 

next chapter introduces the genetics of rare autoimmune and autoinflammatory diseases in more 

detail. 

 

1.2.3.1. Mechanisms of rare autoimmunity and autoinflammation 

 
A considerable fraction of IEI have been documented to present with either autoimmune or 

autoinflammatory phenotypes (Figure 4). The overall survival of IEI patients with autoimmune and 

autoinflammatory phenotypes is generally less favorable as compared to IEI without these 

manifestations (Fischer et al. 2017). The gene defects and affected molecular mechanisms 

leading to autoimmune and autoinflammatory phenotypes can generally be grouped into six 

categories: 

 

I. Defects of lymphocyte development, differentiation, activation and selection. These 

usually constitute defects in VDJ recombination and T cell receptor (TCR) signaling. 

II. Diseases of immune dysregulation and loss of tolerance. In these diseases, loss of central 

tolerance or defect in regulatory T cells are observed, but also signal transducer activator 

of transcription (STAT) defects are common.  

III. Antibody disorders that are often genetically undiagnosed and affect various B cell 

functions.  

IV. Phagocytic disorders that arise as a defect of oxidative burst due to mutations in the 

NADPH genes. 

V. Complement defects that affect elements of the complement cascade. 

VI. Autoinflammatory diseases that arise due to defects in IL-1, IFN-alpha or NFkB signaling, 

or the inflammasome. 

 

The next chapter introduces the gene defects and molecular pathomechanisms underlying early-

onset IBD, a prototypic autoimmune and autoinflammatory disease.   

  



22 

 

 
Figure 4. Genetics and phenotypes of monogenic autoimmune and autoinflammatory diseases. 

a,b) Percentage of autoimmune and autoinflammatory phenotypes in IEI. c) Phenotypic 

presentation of autoimmunity and autoinflammation in IEI. Reprinted by permission from Springer 

Nature: Pediatr. Res., “Rheumatological manifestations in inborn errors of immunity” (Köstel Bal 

et al. 2020).  
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1.2.4. Early-onset inflammatory bowel disease as a model disease to 
identify key regulators of immune homeostasis mechanisms 
 
Julia Pazmandi, Artem Kalinichenko, Rico Chandra Ardy, Kaan Boztug. 2019. Immunological 
Reviews 287 (1): 162-85. DOI: 10.1111/imr.12726 

 
This review article introduces the gene defects and affected mechanisms of early-onset IBD, one 

of the model diseases of autoimmunity and autoinflammation. In order to fully appreciate the 

heterogeneity of rare diseases of the immune system on the genetic, molecular and phenotypic 

level, it is crucial to get a detailed account of the genetic perturbations that lead to specific rare 

diseases. The manuscript gives a general overview of monogenic, Mendelian IBD, and the 

postulated disease pathomechanisms that lead to the observed bowel inflammation phenotype. 

The article discusses the cell types and molecular mechanisms known to be involved underlying 

monogenic IBD, as well as introduces how recent advances in genomic technologies have 

influenced therapeutic guidelines and clinical care. In addition, bowel inflammation in the context 

of the microbiome and organoid technologies are discussed. Next, the review gives an overview 

of the future of genetics in IBD, on topics such as NGS technologies and variant prioritization and 

interpretation. The manuscript further details the available data sharing platforms including a 

chapter on nomenclatures and ontologies. Finally, systems-biology and other more integrative 

methods are discussed that show promise in elucidating research questions in connection with 

early-onset IBD. 
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1  | BACKGROUND

1.1 | Inflammatory bowel disease (IBD)

The gastrointestinal (GI) tract is the largest lymphoid organ in the 
body and contains a multitude of diverse cell types including en-
terocytes, Goblet cells, enteroendocrine cells, Paneth cells, but also 
T and B cells, macrophages, dendritic cells, and innate lymphoid 
cells.1-3 Despite the fact that these cells are constantly confronted 
with antigens, primarily in the form of food and bacteria, immune 

responses in the gut are tightly regulated to maintain homeosta-
sis. IBD refers to a heterogeneous group of diseases that present 
with bowel inflammation and intractable diarrhea4 as a result of 
an inappropriate inflammatory response and unbalanced crosstalk 
between the gut lumen and mucosal immune system. IBD is often 
classified according to histopathological features as Crohn’s dis-
ease, ulcerative colitis, or indeterminate colitis.5 Adult- onset IBD is 
common and generally considered a complex, multifactorial disease 
where a combination of factors, including host genetics and en-
vironmental factors (including the microbiome), influence disease 
onset.6,7 Due to the complex nature of adult IBD, research unrave-
ling the genetic aberrations behind this phenotype has focused 
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on identifying genetic risk factors using genome- wide associa-
tion studies (GWAS). In the last decade, intensive research using 
GWAS has identified over 230 IBD- associated loci comprising ap-
proximately 300 potentially associated genes,8-11 including NOD2, 
ATG16L1, IRGM, IL23R, CARD9, RNF186, and PRDM1. Although there 
are only a few GWAS SNPs with evidence of biological involvement 
in IBD, such as missense SNPs in NOD212 and ATG16L1,13 identifica-
tion of such associations pinpointed crucial mechanisms such as au-
tophagy, pattern- recognition, Th17 involvement, and maintenance 
of the epithelial barrier in IBD pathogenesis.11 Recent efforts have 
focused on meta- analysis and fine mapping of existing GWAS data-
sets using innovative approaches such as Bayesian analysis,14 as 
well as adding novel, valuable cohorts to identify new loci. Among 
newly identified loci are SNPs pointing to integrin genes10 ITGA4 
and ITGB8. Integrins are transmembrane receptors that facilitate 
extracellular matrix adhesion, thereby are important in the homeo-
stasis of the epithelial barriers.

Interest in the potential common component of immune- 
mediated diseases has lead to inter- disease comparisons and iden-
tification of shared loci between IBD and other autoimmune or 
inflammatory conditions such as juvenile idiopathic arthritis, primary 
sclerosing cholangitis, psoriasis, multiple sclerosis, and ankylosing 
spondylitis.15-17 These pleiotropic loci point to shared pathways 
and molecular mechanisms underlying the heterogeneous immune- 
mediated diseases.

Despite current advances in data collection and analysis, our un-
derstanding of SNPs outside the coding regions is still elusive. It has 
been shown that SNPs for autoimmune disease tend to be enriched 
in regulatory regions, and in differentially expressed genes, and that 
risk variants for autoimmune diseases show particular enrichment in 
active chromatin regions of immune cells.18-20 In addition, several ef-
forts have been made to unravel how SNPs at a locus affect mRNA 
expression of genes. These efforts combining GWAS with transcrip-
tome analysis have revealed that pinpointing the causal SNP in a hap-
lotype block is a non- trivial task and that many of the SNPs have a 
detectable effect only in a cell type- dependent or stimulus dependent 
context.21-23

As our knowledge for non-coding regions of the genome is 
growing relating SNPs to regulatory regions, as well as assaying 
the cell type specificity of loci, will be important goals for the fu-
ture. Notably, it is unclear how the identified susceptibility loci and 
associated genes identified in these GWAS studies relate to the 
early- onset, Mendelian form of IBD. Identification of high impact 
SNPs in NOD2 that are associated with adult Crohn’s disease with 
clear involvement in IBD pathogenesis has illustrated a genetic 
continuum between adult and early- onset IBD, in contrast to the 
classical view of two genetically independent diseases.24 In this 
context, we can hypothesize that adult and Mendelian IBD arise 
as a result of a spectrum of varyingly pathogenic genetic lesions 
that impact common key pathways in IBD. Despite these advances, 
the exact relationship between adult and Mendelian IBD is still 
poorly understood. The lack of understanding of (adult) IBD is also 
reflected in the fact that there are currently only a few stratified/

personalized treatment strategies despite the recent expansion of 
therapies based on immune modulation, mostly using monoclo-
nal antibodies.25 Given these challenges, the precise mechanisms 
of IBD disease pathogenesis, the relationship between adult and 
early- onset IBD, and the complex interplay between host genet-
ics and environmental factors have remained partially elusive with 
major gaps in our understanding in the genetic processes governing 
IBD pathology.8

1.2 | Monogenic and Mendelian IBD

Very early-onset IBD (VEO-IBD) denotes a subgroup of IBD patients 
with a disease onset before the age of 6 years.27 In contrast to adult 
IBD, VEO- IBD is a rare disease where mutations in causal genes may 
be inherited in a Mendelian fashion, as illustrated by our discovery 
of IL10R deficiency.26 VEO- IBD patients usually present with a se-
vere clinical course including (often bloody) diarrhea and abdominal 
pain.27 Most patients with VEO- IBD receive immunosuppressive 
treatment, and many patients require surgical intervention during 
the course of their disease.28 To date, there are only a handful of 
monogenic defects that result in a predominant IBD phenotype, in-
cluding ADAM17, IL10, IL10RA, IL10RB, GUCY2C, IL21, LRBA, TTC7A, 
and XIAP.26,29-34 Identification of these gene defects have provided 
proof of concept for genetic diagnosis and stratified therapeutic 
choices, shaping our understanding of the immune system and il-
lustrating molecular mechanisms underlying the delicate balance in 
keeping the homeostasis in the gut.

Intriguingly, a spectrum of inborn errors of immunity (IEI) can 
present with an IBD- like phenotype, sometimes as the initial dis-
ease manifestation. IEIs are a heterogeneous group of more than 
330 different disorders with around 300 genes currently identified 
to be associated with monogenic, Mendelian forms.35 The main 
characteristics of IEIs are increased susceptibility to infections due 
to improper function or dysregulation of key players of the immune 
system. These observations highlight the interesting fact that a 
spectrum of different immunopathological processes can underlie 
GI inflammation and point to the GI tract as an exceptionally sensi-
tive site to immune disturbances. Current consensus estimates that 
about 20% of genetic defects underlying IEIs can develop bowel 
inflammation (Figure 1A). The International Union of Immunological 
Societies (IUIS) recognizes 9 phenotypic groups of IEIs.35 Among 
the functional groups of IEIs, diseases of immune dysregulation 
present most often with an IBD- like phenotype in up to 40% of the 
different genetic defects. On the other hand, complement deficien-
cies tend to present without bowel inflammation (95% of known 
gene defects do not cause IBD, Figure 1A). To date, considerably 
accelerated by the advent of next- generation sequencing, >60 
monogenic diseases that present with IBD have been described27,36 
(Figure 1A). Between the year 2015 and 2018 alone, several new 
gene defects have been identified that underlie some type of bowel 
inflammation (Figure 1B).

Interestingly, some gene defects in subgroups of IEI do pres-
ent with bowel inflammation, while other gene defects in the same 
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group do not. While currently, there is no comprehensive and satis-
factory explanation for the varying frequency of the IBD phenotype 
in individual gene defects, one can speculate that (a) due to the few 
patients and therefore small sample size in rare diseases, it is possi-
ble that certain phenotypes of inborn errors of immunity have not 
yet been captured, especially when it comes to disease with only 
one patient described at present, (b) our knowledge of the explicit 
effects of genetic aberrations is incomplete; therefore, it is plausi-
ble that in some gene defects counter- mechanism are in place and 
can maintain a pseudo- homeostatic state in the gut, therefore not 
inducing an IBD- like phenotype, and (c) since our understanding of 
the influence of factors extrinsic to genetic triggers is incompletely 
studied and understood in EO- IBD, it is likely that (similarly to adult 
IBD) in some cases the EO- IBD phenotype only emerges as a result 
of strong non- genetic triggers on a genetically susceptibly host.

Investigating the consequences of genetic aberrations in patients 
with monogenic defects causing IBD allows for a precise dissection 
of genotype- phenotype relationship. Moreover, through under-
standing of the mechanistic effect of pathogenic mutations on gene 
regulation, we have widened our knowledge on principal immune 
processes. Therefore identification of monogenic defects under-
lying IBD has not only provided genetic diagnosis to patients, but 
also proven to yield invaluable insights into how the immune system 
works. We here review monogenic defects underlying IBD and how 
dissection of their molecular pathophysiology has contributed to 
our understanding of immune homeostasis in the gut in health and 
disease.

2  | MONOGENIC FORMS OF 
INFL AMMATORY BOWEL DISE A SE

2.1 | Epithelial barrier defects

The intestinal epithelium forms both a physical and biochemical bar-
rier between gut microbiota and the immune cells within the mucosa. 
Therefore, dysregulation of the gut epithelium can result in immune 
overactivation that culminates in bowel inflammation. The onset 
of IBD can arise through the following mechanisms: (a) defects of 
epithelial organization, (b) defects leading to epithelial apoptosis and 
necroptosis, and (c) defects of epithelial- intrinsic cellular function.

TTC7A, a member of TPR domain- containing proteins is thought 
to have diverse functions in cell cycle control, protein transport, 
phosphate turnover, and protein trafficking and secretion. Patients 
with TTC7A deficiency typically present with features of severe 
combined immunodeficiency (SCID), along with severe exfoliative 
apoptotic enterocolitis.30,37,38 In previous studies, mutations in 
TTC7A were reported to have multiple intestinal atresias (MIA) pos-
sibly due to the constant inflammation and apoptosis of the epithe-
lium. It appears that patients with complete loss- of- function typically 
present with MIA- SCID phenotype, whereas milder (hypomorphic) 
mutations may present with EO- IBD as a predominant pheno-
type.37,38 TTC7A- deficient patient- derived organoids show defec-
tive apicobasal polarity and have increased apoptosis that may cause 
a physical breach of the epithelium therefore aggravating the bowel 
inflammation.37 However, the involvement thymic stromal- intrinsic 

F IGURE  1 Advances in identification of genetic etiologies underlying inflammatory bowel disease and inborn errors of immunity. (A) The 
percentage of inborn errors of immunity with IBD. Classification according to the 2017 International Union of Immunological Societies (IUIS) 
phenotypic classification of inborn errors of immunity.35 (B) Discoveries of inborn errors of immunity with IBD and VEO- IBD genes through 
the years. Gene defects that were described between 2015 to 2018 are highlighted in bold

(A)

(B)
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TTC7A deficiency in the context of T- cell maturation and TTC7A in 
T- cell intrinsic defect of activation has to be considered as potential 
cause for bowel inflammation in TTC7A deficiency.

In Kindler syndrome, mutations in FERMT1 lead to lack of Kindlin 
1 and an induction of inflammatory response in keratinocytes via 

paracrine communication. Kindlin 1 is involved in integrin signaling 
and the linkage of the actin cytoskeleton to the extracellular matrix. 
Patients with Kindler syndrome have been reported to have ulcer-
ative colitis,39-41 and Fermt1−/− mouse model shows gut epithelial 
detachment due to a lack of epithelial integrin activation.42 This was 

F IGURE  2 Cell types and molecular mechanisms involved in the pathogenesis of inflammatory bowel disease. The inner circle represents 
cell types and cell components involved in IBD pathogenesis, as detailed in the text. The middle circle depicts the molecular mechanisms 
affected by mutations in genes presenting with an IBD phenotype. The outer circle represents the molecular pathomechanisms leading to 
IBD. Treg IL10: T- cell immunodeficiencies with bowel inflammation and Defects in Tregs or IL10 signaling. Phagocytes: Congenital defects 
of phagocyte number or function. Complement: Complement deficiencies. Bacterial recognition: Defects in host- microbiota interactions, 
bacterial sensing. Epithelial barrier: Epithelial barrier defects. B cells and antibodies: Predominantly antibody deficiencies with IBD. Innate 
immune cells: Systemic autoinflammatory diseases and IBD. PRR: pattern-recognition receptor
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hypothesized to cause epithelial barrier breach, which culminated 
in bowel inflammation in this model. Mutations in the COL7A1 gene 
elicit an autoimmune response and autoantibodies to type VII col-
lagen and cause epidermolysis bullosa dystrophica.43 The mutated 
COL7A1 leads to a deficiency in anchoring fibrils, which in turn im-
pairs the adherence between the epidermis and the underlying der-
mis similarly resulting in an impaired gut epithelial barrier.

Mutations in guanylate cyclase 2C (GUCY2C), an intestinal recep-
tor for bacterial heat- stable enterotoxins cause relatively mild early- 
onset chronic diarrhea and is associated with increased susceptibility 
to IBD, small- bowel obstruction, and esophagitis.44 Although the 
exact molecular mechanism behind the familial diarrhea is yet to 
be determined, it has been shown that the expression of mutant 
GUCY2C results in increased production of cGMP, possibly under-
lying the hyperactivation of CFTR, leading to increased chloride and 
water secretion from enterocytes. Missense, splicing, and truncation 
mutations in SLC9A3, identified in nine patients from eight families 
lead to congenital sodium diarrhea (CSD).45 Two of these nine pa-
tients developed IBD at 4 and 16 years of age.45 SLC9A3 is an ep-
ithelial brush- border Na/H exchanger that uses an inward sodium 
ion gradient to expel acids from the cell. Several members of the 
SLC9A family of Na+/H+ exchangers are expressed in the gut, with 
varying expression patterns and cellular localization. They partici-
pate in the regulation of basic epithelial cell functions, including con-
trol of transepithelial Na+ absorption, intracellular pH, cell volume, 
and nutrient absorption, and also in cellular proliferation, migration, 
and apoptosis. In addition, these proteins modulate the extracellular 
milieu to facilitate other nutrient absorption and to regulate the in-
testinal microbial microenvironment.46 The functional consequence 
of loss- of- function SLC9A3 gene variants (ie, reduced sodium uptake 
and proton exchange at the luminal surface) appears similar to that 
of gain- of- function (GOF) variants in the GUCY2C gene, showcasing 
a potential overlapping molecular mechanism. However, the under-
lying mechanism of bowel inflammation in these patients is unclear. 
One potential hypothesis includes physical epithelial damage due to 
distended bowel resulting in microbiota- mediated immune activa-
tion and bowel inflammation.

Loss- of- function (LOF) mutations in the SLCO2A1 gene, en-
coding a prostaglandin transporter have been described to cause 
pediatric- onset chronic nonspecific multiple ulcers of the small in-
testine, accompanied with persistent blood and protein- losing en-
teropathy47,48 in the Japanese population. Mutations in SLCO2A1 
have been previously reported as the cause of primary hypertrophic 
osteoarthropathy (PHO).49,50 Three out of five male patients with 
chronic enteropathy associated with SLCO2A1 had all of the major 
clinical features of PHO as well, such as digital clubbing, periosto-
sis, and pachydermia. SLCO2A1, naturally expressed on the cellular 
membrane of vascular endothelial cells in the small intestinal mu-
cosa, was absent from the patients’ epithelium, pointing to a poten-
tial epithelial- intrinsic cell defect. Similarly, a LOF mutation in the 
PLA2G4A gene, encoding for cytosolic phospholipase 2- α, has been 
identified in patients with cryptogenic multifocal ulcerating ste-
nosing enteritis (CMUSE).51 It was shown that these patients lack 

protein expression in their gut epithelium. Phospholipase 2- α is an 
enzyme important in the formation of prostaglandin. Together, these 
gene defects point toward the role of prostaglandin in gut epithelial 
homeostasis, specifically in the context of epithelium- intrinsic de-
fects. However, the exact molecular mechanism of prostaglandin- 
associated enteropathy is still unclear.

Familial hemophagocytic lymphohistiocytosis (FHL) is caused 
by recessive mutations that impair cytotoxic function and is charac-
terized by fever, splenomegaly, bicytopenia, high triglycerides/low 
fibrinogen, hemophagocytosis, high ferritin, low natural killer (NK) 
cell cytotoxicity, and high soluble CD25.52 FHL type 5 is initiated 
by mutations in the STXBP2 (Munc18- 2) gene, encoding a protein 
involved in intracellular trafficking, the control of soluble NSF at-
tachment protein receptor (SNARE) assembly, and the release of 
cytotoxic granules by NK cells.53 Notably, MUNC18- 2 deficiency 
(unlike other FHL) is often accompanied by colitis,53 although GI 
symptoms are not a common feature of FHL type 2, FHL type 3, or 
Griscelli Syndrome type 2 patients, suggesting that the pathology 
of FHL does not necessarily lead to GI disease, even in the more se-
vere FHL subtypes. Munc18- 2 proteins have been described to have 
widespread expression in epithelial tissues, such as the kidney and 
intestines, with localization to the apical surface of the plasma mem-
brane.54,55 Thereby, Munc18- 2 might be essential for maintaining 
epithelial integrity in GI epithelial cells, but more mechanistic stud-
ies are required to determine the how Munc18- 2 deficiency lead to 
bowel inflammation.

2.2 | Congenital defects of phagocyte 
number or function

Emerging evidence suggests that neutrophil function plays an im-
portant role in intestinal integrity, as highlighted by IBD in patients 
with either quantitative or qualitative neutrophil deficiencies. 
Neutrophil function in the gut is not restricted to the killing of bac-
teria that have translocated across mucosal epithelium. During the 
inflammatory response, neutrophils also contribute to the recruit-
ment of other immune cells and facilitate mucosal healing by releas-
ing mediators necessary for the resolution of inflammation.56 Even 
though our understanding of neutrophils’ role in intestinal homeo-
stasis and their complex interactions with intestinal epithelial cells is 
still incomplete, gut pathologies in patients with neutrophil defects 
has revealed several important mechanisms.

Neutrophil nicotinamide adenine dinucleotide phosphate oxidase 
(NOX) is the enzyme complex responsible for generation of super-
oxide and other reactive oxygen species (ROS) in phagocytic cells. 
Mutations in the CYBB and CYBA, NCF1, NFC2, and NCF4 genes, en-
coding for the cytosolic subunits of NOX, abrogate its activity and 
compromise host immunity against certain bacteria and fungi. These 
defects cause chronic granulomatous disease which are characterized 
by immunodeficiency and can cause IBD- like intestinal inflamma-
tion.57 Inflammatory reactions in CGD patients (namely colitis) might 
be a result of impaired anti- bacterial protection due to impaired NOX 
activity, resembling defects in ephithelial- specific NADPH Oxidase 1 
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(NOX1) and Dual Oxidase 2 (DUOX2) in patients with severe EO- IBD. 
Both NOX1 and DOUX2 are epithelial NADPH oxidases involved in 
the generation of ROS in the gut epithelium.58 Mutations in NOX1 
and DUOX2 result in reduced ROS production and cause a 10- fold 
increase in bacterial invasion.59 Impaired mucosal defense may rep-
resent a key pathomechanism that results in intestinal inflammation 
and development of IBD. Another possible pathomechanism lead-
ing to colitis in CGD patients is inflammmasome hyperactivation. 
Intriguingly, NOX- deficient mice exhibited a skewed Th17 phenotype 
suggesting a possible role of pathogenic Th17 cells in development 
of inflammatory reactions.60 These data indicate that while reactive 
oxygen species are used by the immune system to eliminate infec-
tions they may also serve as signaling intermediates to coordinate the 
efforts of the innate and adaptive immune systems resulting in a com-
plex etiology underlying phagocyte defects.

Although the exact molecular link has not been established yet, 
it has been shown that mononuclear phagocytes from CGD pa-
tients have increased secretion of IL- 1β that could be controlled by 
IL- 1 receptor antagonist (IL- 1RA) ex vivo and during treatment with 
anakinra.61

Impaired mucosal defense underlying colitis might be one of the 
pathomechanisms in the other types of neutropenias that result in im-
paired function or recruitment of neutrophils. Mutations in G6PC3, 
encoding the catalytic subunit of glucose- 6- phosphatase (G6Pase) 
cause severe congenital neutropenia type IV (SCN IV) and predispose 
patients to IBD.62-64 SCN IV has been linked to glycogen storage dis-
ease type 1b as both disorders involve disruption of the glucose- 6- 
phosphatase/glucose- 6- phosphate transporter complex, leading to 
developmental or functional defects in neutrophils. The function of 
NADPH oxidase in phagocytes from patients with G6PC3 was dimin-
ished, abrogating normal ROS production.65 These defects suggest 
loss of protective function perhaps may be the main pathomecha-
nism underlying predisposition to IBD in a subset of G6PC3- mutant 
patients.

Leukocyte adhesion deficiency type 1 (LAD1) is caused by muta-
tions in the ITGB2 gene, an integrin participating in cell adhesion and 
cell surface- mediated signaling. The disease is characterized clini-
cally by delayed umbilical cord separation, recurrent life- threatening 
infections, impaired pus formation, poor wound healing, and per-
sistent leukocytosis. These clinical features are consequences of 
defective leukocyte adhesion to endothelial cells, the absence of 
transmigration into inflamed tissues as well as deficient phagocy-
tosis and chemotaxis of granulocytes, monocytes, and lymphoid 
cells.66 Some patients develop an IBD-like phenotype, most likely 
due to the complex pathology caused by dysregulated recruitment 
of leukocytes into the intestine that abrogates mucosal defense and 
regulation of immune response.67,68

2.3 | Defects in host- microbiota interactions, 
bacterial sensing

Nucleotide- binding and oligomerization domain (NOD)- like recep-
tors act as a first line of defense against invading bacteria. Within 

the NOD family, NOD2 functions as an intracellular sensor for pep-
tidoglycans from the bacterial cell wall. NOD2 has long been studied 
and is recognized as a critical player in Crohn’s disease pathogen-
esis, where it was shown to regulate innate immunity through NF- 
κB- induced proinflammatory responses.12 Intriguingly, single gene 
defects involving NOD2 cause Blau syndrome, an inflammatory dis-
order phenotypically characterized by the triad of granulomatous 
polyarthritis, dermatitis and uveitis, however without bowel inflam-
mation.69 In this context, it is postulated, that gene defects that do 
not directly disrupt NOD2 function, but rather de- regulate proper 
NOD2 signaling, do present with IBD, whereas at least the Blau 
syndrome-associated mutations in NOD2 do not. The very first of 
discovery relating IBD to defective NOD2 signaling without NOD2 
mutations was XIAP deficiency.29,70

X-linked lymphoproliferative (XLP) disease is a rare immunode-
ficiency caused by mutations in the SH2D1A/SAP or XIAP genes, re-
spectively. XLP is characterized by severe immune dysregulation that 
presents with susceptibility to EBV-triggered lymphoproliferative 
disease (EBV-LPD) or hemophagocytic lymphohistiocytosis (HLH), 
lymphoma, and dysgammaglobulinemia.71,72 SH2D1A encodes the 
signaling lymphocyte activation molecule (SLAM)-associated protein 
(SAP). SAP is involved in the function of cytotoxic lymphocytes and 
is a key regulator of normal immune function in T and NK cells, as 
well as the of NK-cell apoptosis.73-75 Mutations that disrupt the SAP 
protein impair proper signalling to induce immune response toward 
viral (EBV) infection and led  to the development of lymphomas due 
to defective lymphocytes apoptosis. Large gene deletions in the 
SH2D1A gene (up to 11 Mb) including those involving the whole gene 
were identified in 5 families. Three of these larger deletions were 
associated with GI symptoms of colitis and gastritis.71 XIAP plays an 
essential role in the regulation of apoptotic cell death induced by viral 
infection or an over-production of caspases. In addition to this role, 
XIAP is also responsible of the regulation of RIPK2, a protein vital 
in NOD2 signaling. Mutations in XIAP cause a unique IEI, similar to 
X-linked familial hemophagocytic lymphohistiocytosis and X-linked 
Lymphoproliferative syndromes. Patients with XIAP mutations can 
also develop very early-onset IBD.71,76 The IBD phenotype in XLP2 is 
hypothesized to be brought on by abrogated NOD2-mediated signal-
ling and result in innate and adaptive immune defects including gran-
ulomatous colitis and perianal disease. Therefore, it is postulated hat 
colitis may be clinically and pathologically different between XLP1 
and XLP2.77

Two additional novel gene defects that influence NOD2 sig-
naling and present with bowel inflammation have been described 
recently. Mutations in the NPC1 gene, encoding a protein that 
mediates intracellular cholesterol trafficking of endosomes and 
lysosomes, cause a neurodegenerative lysosomal storage disease, 
coupled with fistuling colitis with granuloma formation.70 The 
pathogenic mutations in NPC1 is thought to elicit impaired auto-
phagy due to defective autophagosome function. Similar to XIAP 
deficiency, mutations in NPC1 abolishes NOD2- mediated bacterial 
handling. However, NPC1 mutations do not impair RIPK2- XIAP de-
pendent cytokine production.
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Identification of patients with homozygous TRIM22 muta-
tions provided additional links of NOD2 to VEO- IBD. TRIM22 
is a ubiquitin ligase that influences NOD2 activity by ubiquitina-
tion.78 Mutations in TRIM22 disrupt the ability of TRIM22 to reg-
ulate NOD2- dependent activation of IFN- β signaling and NFkβ. 
Intriguingly, LOF variants in NOD2 have been shown to result in the 
loss of NF- κB- induced proinflammatory cytokine response to mur-
amyl dipeptide (MDP),12 mirroring the defects observed in patients 
with TRIM22 mutation.

Expanding the spectrum of disorders of bacterial sensing un-
derlying bowel inflammation are novel biallelic- inherited LOF mu-
tations in ALPI. ALPI is an intestinal alkaline phosphatase that is 
thought to function in the detoxification of lipopolysaccharide (LPS) 
and prevention of bacterial translocation in the gut. Mutations in 
ALPI abrogate the regulation of host- microbiota interactions and 
restrain host inflammatory responses causing early- onset severe 
diarrhea, weight loss, and severe ulcerations from transverse colon 
to the rectum.79

2.4 | Predominantly antibody deficiencies with IBD

The molecular mechanisms of IBD in patients with defects in hu-
moral immunity are not yet completely understood. Impaired 
antibody production, especially low IgA, may contribute to the de-
velopment of gut dysbiosis, but the defects in antibody deficiency 
alone do not result in intestinal disease. The pathomechanism in this 
case is most likely due to combined T-  and B- cell defects.80 Some of 
the predominantly antibody deficiencies that can present with IBD 
include: (a) selective IgA deficiency with unknown gene defect re-
sulting in defective B- cell maturation into IgA- secreting plasma cells, 
(b) agammaglobulinemia due to BTK or PIK3R1 deficiency leading 
to the lack of mature B cells and absent IgM, IgG, and IgA,80,81 (c) 
X- linked hyper IgM syndrome due to CD40LG deficiency resulting 
in defective co- stimulation signaling vital for B- cell proliferation and 
class- switch,80 (d) activation- induced cytidine deaminase (AICDA) 
deficiency with abrogated somatic hypermutation, gene conversion, 
and class- switch recombination of immunoglobulin genes in B cells. 
Additionally, mutations in PIK3CD causing Hyper IgM syndrome 
(HIGM) result in intrinsic defects in both B and T cells. Clinical heter-
ogeneity in patients with PIK3CD GOF mutations correlates with dif-
ferences in immunological findings and suggests that development 
of bowel inflammation correlates with more pronounced T-  and B- 
cell defects.82

Three novel gene defects associated with impaired humoral im-
munity and gut abnormalities have recently been described. These 
gene defects, although all affecting humoral immunity, most likely 
have distinct mechanisms underlying the observed phenotypes.

Patients with PTEN Hamartoma Tumor Syndrome (PHTS) 
develop autoimmunity, extensive adenoid lymphoid hyperplasia 
requiring steroid treatment and adenotomy, thymic hyperpla-
sia, and indeterminate colitis.83 PTEN is a multifunctional dual 
phosphatase targeting both lipid and protein targets. It mainly 
dephosphorylate phosphatidyl inositol- 3,4,5- triphosphate 

(PIP3), an activator of PKB/Akt kinase. Therefore, PTEN is a 
negative regulator of the PI3K/Akt signaling. Reduced PTEN 
activity in PHTS affects the homeostasis of germinal centers in 
B cells by aberrant PI3K/Akt/mTOR pathway thereby disturb-
ing antiapoptotic signals. Patients with heterozygous germline 
mutations in PTEN have been reported to present with B- cells 
defects, including impaired class- switching, decreased somatic 
hypermutation frequency and hypogammaglobulinemia.84 
These patients show similarities to patients with GOF muta-
tions in PIK3CD where B- cell defects and increased Akt activity 
can be observed. Differences in clinical presentation such as 
hemartomas, GI polyps and lipomas not seen in PIK3CD-mutant 
patients, might be explained by the broader expression pattern 
of PTEN.

Tricho- hepato- enteric syndrome (THES), also known as 
syndromic or phenotypic diarrhea, is a congenital enteropathy 
due to mutations in the TTC37 gene. Patients with THES pres-
ent with diarrhea, growth retardation, hair and facial abnor-
malities, and immunodeficiency. The associated malabsorption 
leads to malnutrition and failure to thrive. While the exact func-
tion of the TTC37 protein is not known, some studies reported 
TTC37 as a component of the Ski complex which is crucial for 
the accurate processing of nuclear RNA precursors and deg-
radation of both cytoplasmic and nuclear RNA.85 Preliminary 
studies of brush- border ion transporters in enterocytes from 
5 patients demonstrated their reduced expression or mislo-
calization.86 While this study suggests that the diarrhea in 
THES patients might be a result of intrinsic defects in entero-
cytes, most of the patients also develop humoral immune de-
fects with low protective immunoglobulin (Ig) levels or poor 
vaccination response. A recent discovery identified a patient 
with TTC37 mutation, presenting with immunodeficiency but 
without diarrhea.87 While quantitative Ig concentrations were 
normal, response to pneumococcal vaccination was abnormal 
with rapid loss of protective titers, pointing to a B- cell defect 
characteristic for this deficiency. It is unclear why this patient 
did not develop defects in GI and diarrhea, but these findings 
may indicate an unexpected genotype- phenotype spectrum in 
this disease.

TRNT1 enzyme deficiency is a novel metabolic disease caused 
by defective post- transcriptional modification of mitochondrial and 
cytosolic transfer RNAs. TRNT1 functions as a CCA- adding enzyme 
by catalyzing the addition of the conserved nucleotide triplet CCA 
to the 3′ terminus of tRNA molecules. Mutations in TRNT1 cause 
a complex multisystem disease, including B lymphocyte immuno-
deficiency and infantile- onset cyclical aseptic febrile episodes with 
vomiting and diarrhea, characterized by global electrolyte imbalance 
during these episodes.88 Although the IBD phenotype is currently 
attributed to intrinsic defects of the gut tissues, whether defects 
in humoral immunity may contribute to GI inflammation is still to 
be investigated. Bone marrow transplantation in two patients led to 
encouraging results, although more long- term data are needed to 
clarify the disease etiology.
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Inducible T- cell costimulatory (ICOS) is an activation- induced 
member of the CD28 family on T cells. Mutations in the ICOS gene 
cause ICOS deficiency, presenting with common variable immuno-
deficiency (CVID) including splenomegaly, autoimmune manifesta-
tions, recurrent bacterial infections, and IBD.89 Absence of ICOS 
results in abrogation of germinal center formation leading to se-
vere reduction of class- switched memory B cells, as well as reduc-
tion in naïve B cells. The presumed cause of the IBD phenotype in 
ICOS deficiency is insufficient IL- 10 production by ICOS- deficient 
T cells.89

2.5 | T- cell immunodeficiencies with bowel 
inflammation

Gene defects that disturb adaptive immune cell selection, ac-
tivation, and differentiation can all manifest in complex immune 
signaling disturbances, which can result in immunodeficiency, au-
toimmunity, and intestinal inflammation. Monogenic gene defects 
underlying IEI and IBD have been essential in improving our under-
standing of the complex machinery of immune regulatory cascades 
and identified novel players in immune processes. SCID denotes a 
group of disorders of genetic defects that abrogate T- cell develop-
ment. Mutations in any of the genes that underlie SCID can cause 
an IBD- like pathology. In particular, hypomorphic mutations where 
the proteins and/or molecular functions are impaired but residual 
activity can be observed often lead to IBD. Hypomorphic muta-
tions in SCID- causing genes that affect development of TCR reper-
toire may allow development of oligoclonal and poorly functioning 
T cells and are associated with a broad clinical phenotype that may 
include inflammatory and autoimmune manifestations, including 
intestinal inflammation.90,91 Therefore, all partial T- cell defects can 
potentially be associated with (severe) immune dysregulation and 
IBD. Here, we discuss a few examples of genetic defects in this 
group.

Ommen syndrome, namely impaired V(D)J recombination due to 
mutations in RAG1 and RAG2,92-94 and defective DNA repair after 
V(D)J recombination by mutations in DCLRE1C/ARTEMIS95 cause 
SCID characterized by erythroderma, desquamation, alopecia, eo-
sinophilia, hepatosplenomegaly, elevated serum IgE levels, and 
often, colitis.96 Moreover, defects in DNA ligase 4 (LIG4) encoding an 
ATP- dependent DNA ligase that joins double stranded breaks during 
non- homologous end joining pathway, and is essential for V(D)J re-
combination, can cause SCID, and can develop IBD.92

Impaired V(D)J recombination results in an emergence of an oli-
goclonal T- cell repertoire, which indicates that the thymic selection 
in patients with Omenn syndrome is restricted to the T cell in which 
recombinase activity is sufficient to generate a functional TCR.97

Adenosine deaminase (ADA) deficiency leads to an accumulation 
of toxic purine degradation by- products, most potently affecting 
lymphocytes, but other manifestations include skeletal abnormal-
ities, neurodevelopmental affects, and pulmonary manifestations 
associated with pulmonary- alveolar proteinosis.98 The major con-
sequences of ADA mutations are severe depletion of T and B 

lymphocytes and NK cells. The underlying mechanisms of this dele-
terious effect are the increased apoptosis due to the buildup of dATP 
in cells especially in developing thymocytes and T cells.99 Although 
patients present with severe B- lymphocytopaenia and hypogamma-
globulinaemia, B- cell development seems to be unaffected.100

Interleukin receptor common gamma chain (IL2RG), is a cytokine 
receptor subunit that is common to the receptor complexes of at 
least six different interleukin receptors: IL- 2, IL- 7, IL- 9, IL-15, and IL- 
21.101 Lack of IL2RG function results in the near- complete absence 
of T and NK lymphocytes and nonfunctional B lymphocytes, al-
though abrogated γc cytokine- dependent lymphocyte survival. The 
phenotype presents as SCID with often chronic diarrhea, a pheno-
type very similar to Omenn syndrome.102,103

Combined immunodeficiency due to mutations in DOCK2, an ac-
tivator of Rho GTPases such as RAC1 and RAC2, lead to early- onset 
invasive bacterial and viral infections, lymphopenia, and various de-
fective T- cell, B- cell, and NK-cell responses. In a large international 
cohort, we and others showed that one of five unrelated children 
with defective DOCK2 developed diarrhea. DOCK2 mutations im-
paired RAC1 activation in T cells and chemokine- induced migration 
and actin polymerization in the T cells, B cells, and NK cells. Adding 
to the cellular phenotype, IFN- α and IFN- λ production by peripheral- 
blood mononuclear cells was diminished after viral infection.104 
Impaired T- cell activation may account for the immune dysregulation 
in DOCK2 deficiency, leading to bowel inflammation.

ZAP70 is a membrane protein found on the surface of T and NK 
cells. It is part of the T- cell receptor signaling cascade, crucial in the 
context of TCR signaling. ZAP70 deficiency, characterized by CD4 
and CD8 T- cell deficiency due to defective T- cell receptor signaling, 
can present with IBD as well,105 potentially due to the dysregulation 
of T cell- mediated immune processes.105

ORAI1 and STIM1 form a complex that is vital to maintain 
cytoplasmic- endoplasmic reticulum calcium homeostasis of cells 
and is particularly important in the context of Ca2+- dependent T- 
cell activation.106 Patients with deficiency in ORAI1 or STIM1 pres-
ent with variable expression of CID that is characterized by severe 
T- cell activation defects, with GI manifestations previously re-
ported in ORAI1 deficiency. These findings illustrate that impaired 
calcium signaling can result in gut inflammation through reduced 
number of Treg cells and/or aberrant T- cell thymic selection.107

Patients suffering from DNA repair defects have been sporadi-
cally reported to present with IBD. This is an interesting observation 
as a previously reported mouse model of IBD arising in knockout 
of DNA repair genes has been published.108 However, there is cur-
rently insufficient reports of the prevalence of IBD in DNA repair 
defects. Among these are reports on a patient suffering from Bloom 
syndrome with ulcerative colitis109 and VEO- IBD patient with muta-
tion in ZBTB24.110 To date, both these report lack direct conclusion 
about the molecular mechanism, but highlighted chromosomal sta-
bility as one of the influential factors of IBD pathogenesis. One could 
hypothesize that as DNA repair is important in the context of T-  and 
B- cell maturation through V(D)J recombination, the development of 
IBD may be pinpointed toward lack of immune regulation.
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Defects of telomere maintenance, exemplified by mutation in 
DKC1 and RTEL1 underlie dyskeratosis congenital myelodysplasia 
which can present with IBD.111-114 In these cases, manifestation of 
GI inflammation can be one of the first presenting symptoms as re-
viewed by Jonassaint et al.115 They proposed that the onset of GI 
inflammation is due to defective epithelial barrier function as they 
found that these patients present with extensive apoptosis in the in-
testinal mucosa, potentially resulting in the breach of the epithelium 
and unprecedented activation of the gut immune system. However, 
it is likely that the T- cell deficiency has an additional pathogenic role 
in the onset of bowel inflammation in these diseases.

The underlying causes of the systemic autoimmune disease in 
ITCH deficiency caused by defects in the ITCH gene are still elusive. 
ITCH deficiency is characterized by dysmorphic features, failure to 
thrive, hepatomegaly, splenomegaly, and delayed motor develop-
ment,116 similar to the phenotype of Itch−/− mice.117 To date, two 
out of ten patients with ITCH deficiency have been described as 
developing autoimmune enteropathy and chronic diarrhea, with 
lymphocytic inflammation of the lamina propria.116 As a ubiquitin li-
gase, ITCH attaches ubiquitin to substrate proteins and marks them 
for lysosomal degradation.118 Ubiquitination is a key component of 
multiple signaling cascades of the immune system, including TCR 
downregulation. The exact molecular mechanism behind the sys-
temic autoimmune disease in ITCH deficiency are unclear; however, 
it might be due to similar mechanics as dysfunction of other E3 li-
gases Cbl- b and GRAIL, which catalyze the final step of ubiquitin 
attachment, that can lead to indiscriminate T- cell activation and loss 
of tolerance to self- antigens.119,120

2.6 | Defects in Tregs or IL10 signaling

The discovery of biallelic LOF mutations in the IL-10 receptor genes 
presenting with bowel inflammation as the main phenotype have 
highlighted the pivotal role of IL- 10, and IL- 10 in Treg cell function 
especially in the gut. Defects in the IL- 10 receptor genes IL10RA 
and IL10RB and IL- 10 itself lead to early- onset enterocolitis involv-
ing hyperinflammatory immune responses in the intestine due to 
abrogated interleukin- 10- induced signaling and therefore improper 
function of regulatory T cells.26 Similarly, immune defects abrogat-
ing proper Treg function can lead to bowel inflammation as well. 
Immune dysregulation, polyendocrinopathy, and enteropathy (IPEX) 
is caused by mutations in the FOXP3 gene, a master regulator of the 
development and function of Tregs. In IPEX, the lack of or mutant 
FOXP3 protein causes abnormal Treg function, which causes systemic 
autoimmunity and severe enteropathy associated with eosinophilic 
inflammation.121 Mutations in CD25 encoding IL2RA, a protein con-
stituting the high affinity IL- 2 receptor results in an IPEX- like syn-
drome. The patients exhibited defective IL- 10 expression from CD4 
lymphocytes, highlighting the importance of IL- 2 in IL- 10 production, 
and the priming of Treg for immunosuppressive functions.122

CTLA- 4 is an essential effector component of Treg cells that is 
required for their suppressive function.123 Therefore, CTLA- 4 is a 
critical inhibitory checkpoint of immune responses. The crucial role 

of the negative regulation by CLTA- 4 is illustrated by the lethal au-
toimmunity developed by Ctla4- deficient mice.124 CTLA- 4 resides 
in intracellular vesicles on Treg and is released and mobilized to the 
cell surface after TCR stimulation, where it works as an “off” switch 
when bound to either CD80 or CD86 on the surface of antigen- 
presenting cells.125,126 CTLA- 4 haploinsufficiency or impaired ligand 
binding results in a complex syndrome presenting with features of 
both autoimmunity and immunodeficiency.127

Patients with CTLA- 4 haploinsufficiency develop autoimmune 
thrombocytopenias and abnormal lymphocytic infiltration of non- 
lymphoid organs, including the lungs, brain, and GI tract, resulting 
in enteropathy.128 CTLA- 4 haploinsufficiency has been observed 
to have incomplete penetrance. However, as the age of studied 
patients ranges from 7 to 40, currently healthy mutation carriers 
may develop disease later on in life. Indeed, autoimmune features 
(psoriasis, type 1 diabetes, and prolonged episodes of diarrhea) are 
evident in carriers previously classified as healthy. Patients with bial-
lelic mutations in the LRBA gene present with a phenotype clinically 
resembling CHAI disease, but with recessive inheritance.129 LRBA 
plays an immunoregulatory role in the expression, function, and traf-
ficking of CTLA- 4 from the intracellular vesicles to the cell surface. 
In fact, patients with LRBA mutations show CTLA- 4 loss and immune 
dysregulation125 and can present with VEO- IBD.32,130

A considerable fraction of patients with Wiskott- Aldrich syn-
drome (WAS) can develop IBD or IBD- like gastroenterocolitis. WASP 
is expressed in hematopoietic cells and plays essential roles in signal 
transduction, cell- cell interactions, cell movement, and cell division. 
The mechanisms driving gut abnormalities in patients with WAS mu-
tations most likely have a broader etiology and, like for LAD1 pa-
tients, are not restricted to neutrophil defects. Wasp- deficient mice 
develop chronic colitis associated with colon crypt hyperplasia and 
the presence of mixed lymphocytic and neutrophilic infiltrate within 
the lamina propria.131 Defects in Tregs and expansion of autoreactive 
B cells are likely the main drivers of IBD/IBD- like colitis in WAS pa-
tients. Impaired regulatory T cells may also affect the microbiota, 
leading to dysbiosis that may contribute to colitis development.132

The STAT family of transcription factors plays a critical role in 
mediating responses to cytokines, thereby influencing and initiat-
ing cell activation, survival, and proliferation.133 Autosomal domi-
nant GOF mutations in STAT3 result in infantile- onset multisystem 
autoimmune disease. Common manifestations include insulin- 
dependent diabetes mellitus and autoimmune enteropathy, or celiac 
disease, and autoimmune hematologic disorders.134 It is postulated 
that GOF mutations in STAT3 lead to autoimmunity, and thereby 
autoimmune enterocolitis through impairing the development of 
regulatory T- cells and promoting the expansion and activation of 
Th17 cells.135,136

Lack of Tregs in a combined immunodeficiency due to MALT1 mu-
tations (compound heterozygous splice acceptor and de novo dele-
tion) has been recently described in a male infant who developed 
generalized rash, intestinal inflammation, and severe infections in-
cluding persistent cytomegalovirus.137 MALT1 is a paracaspase with 
a central role in the activation of lymphocytes and other immune 
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cells including myeloid cells, mast cells, and NK cells. MALT1 activ-
ity is required not only for the immune response, but also for the 
development of natural Treg cells that keep the immune response in 
check and is an essential regulator for NF- κB activation.138 Its inhibi-
tion attenuated symptoms of dextran sodium sulfate- induced colitis 
in mice reducing activation of NF- κB and NLRP3 inflammasome in 
macrophages.139 MALT1- deficient patients fail to generate memory 
and Treg cells and develop hypogammaglobulinemia, due to impaired 
NF- κB signaling in lymphocytes resulting in immune dysregulation.

Integrity of the TCR/CD3 complex is vital for proper T- cell mat-
uration and function. Mutations in T- cell surface glycoprotein CD3 
gamma chain (CD3γ) abrogate the integrity of the complex and result 
in autoimmunity, accompanied by IBD, due to T- cell phenotypic and 
functional defects, especially in Treg.

140 Therefore, it is postulated 
that the pathomechanism of IBD in CD3G deficiency stems from the 
dysregulation due to reduced Treg function.140

Mutations in the IL21 gene, a critical regulator of STAT1, STAT3, 
and STAT5 signaling141 cause early- onset IBD and common vari-
able immunodeficiency- like disease.31 In the context of IL- 21 
deficiency, the IBD phenotype could be explained by the lack of anti- 
inflammatory action of I- L21 in inducing IL- 10 production through a 
STAT3- mediated signaling axis. However, this might not be the only 
mechanism as IL- 21R deficient patients have not been reported to 
develop IBD. More patients need to be identified prior to a conclu-
sive genotype- phenotype correlation.141

2.7 | Systemic autoinflammatory diseases and IBD

Systemic autoinflammatory diseases denote a group of immune dys-
regulatory conditions that usually present in early childhood with 
fever and disease- specific patterns of inflammation. Studying the 
gene defects underlying the recurrent inflammatory episodes has 
revealed key immune pathways underlying persistent inflammation 
such as excessive IL- 1 signaling, constitutive NF- κB activation, and 
chronic type I IFN signaling.142 VEO- IBD has been described as an 
accompanying phenotype in a number of systemic autoinflammatory 
diseases. Many of the exact causal mechanisms are still postulated, 
but it is likely that molecular defects underlying IBD in these autoin-
flammatory conditions disrupt the delicate homeostasis of immune 
cells, epithelial cells, and the microbiota in the gut by chronically ac-
tivating proinflammatory pathways and cell types. The importance 
of such intrinsic innate signaling systems such as IL- 1β signaling in 
the pathogenesis of IBD is illustrated by the fact that inhibiting IL- 1β 
signaling can induce complete or partial elevation of symptoms in 
patients, including the remission of the VEO- IBD phenotype.143,144

Mevalonate kinase deficiency due to pathogenic mutations in 
the MVK gene presents with hyper IgD syndrome (HIDS), as well as 
polyarthralgia or nonerosive arthritis of large joints, cervical lymph-
adenopathy, abdominal pain, vomiting, diarrhea, and variable skin 
lesions, including maculopapular, urticarial, nodular, and purpuric 
rashes.143 LOF mutations in MVK, encoding a key enzyme in the 
cholesterol synthesis pathway, impair the enzymatic activity and 
lead to a shortage of farnesyl pyrophosphate and geranylgeranyl 

pyrophosphate, intermediates for isoprenoid synthesis and sub-
strates used for protein prenylation.145,146 Flares in HIDS are thought 
to be the result of uncontrolled release of IL- 1β as a consequence of 
insufficient geranylgeranyl pyrophosphate generation.147

PLCG2 encodes phospholipase Cγ2 (PLCγ2), an enzyme respon-
sible for ligand- mediated signaling in cells of the hematopoietic sys-
tem through IP3 and DAG, and plays a key role in the regulation of 
immune responses. Patients with GOF mutations in PLCG2 develop 
autoinflammation and PLCγ2- associated antibody deficiency and 
immune dysregulation (APLAID). APLAID presents with recurrent 
blistering skin lesions, bronchiolitis, arthralgia, ocular inflammation, 
enterocolitis, absence of autoantibodies, and mild immunodefi-
ciency, with a decrease in circulating IgM and IgA antibodies, de-
creased numbers of class- switched memory B cells, and decreased 
numbers of Natural Killer T (NKT) cells.148 The phenotype in APLAID 
is thought to be the consequence of the GOF mutations that create 
an extra phosphorylation site which enhances activation PLCG2 by 
compromised (although not completely abrogated) autoinhibition 
of PLCG2 activity. Intriguingly, PLCG2 genomic deletions in indi-
viduals present with a distinct inflammatory disease manifested 
by cold- induced urticaria and immune dysregulation including fea-
tures of both immunodeficiency and autoimmunity, called PLAID. 
The PLAID- associated genomic deletions disrupt the cSH2 domain 
of PLCγ2, resulting in constitutive phospholipase activity. Despite 
the constitutively active enzymatic activity, PLAID patients have 
reduced PLCγ2- mediated signal transduction at physiologic tem-
peratures most likely as a result of a negative feedback caused by 
constitutive activation.

Mutations in two of the genes encoding for the inflammasome 
components NLRC4 and MEFV can cause monogenic autoinflamma-
tory diseases that can present with IBD. Recessive and postulated 
autosomal dominant mutations in MEFV, a gene encoding the intra-
cellular sensor pyrin/marenostrin, cause familial Mediterranean fever 
(FMF). FMF flares include fever, generalized peritonitis, and less fre-
quently nonerosive oligoarthritis, and can include colitis.149,150 MEFV 
has been implicated in multiple cellular and vital immune functions 
such as the assembly, intracellular danger sensing and induction of 
inflammation by the inflammasome, intracellular danger signal sens-
ing, apoptosis, and autophagy in granulocytes and monocytes.151 
Although the concrete link between the FMF phenotype with coli-
tis and MEFV is still to be understood, it is clear that mutations in 
MEFV result in the enhanced and extended inflammatory response 
to some of the innocuous factors that are tolerated well and handled 
efficiently by the normal immune system. Activating heterozygous 
mutations in NLRC4 have been reported to cause recurrent fevers 
and severe systemic inflammation, similar to macrophage activation 
syndrome (MAS). To date, three of 4 reported patients developed 
enterocolitis.152,153 NLRC4, a member of cytoplasmic NOD- like re-
ceptors, is involved in detection of pathogen- associated molecu-
lar patterns and initiate inflammatory responses by recruiting and 
proteolytically activating caspase- 1 within the inflammasome upon 
stimulation. Mutant NLRC4 causes constitutive IL- 1 and IL- 18 fam-
ily cytokine production, macrophage activation, and increased cell 
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death. Patient macrophages are polarized toward pyroptosis and ex-
hibit abnormal staining for inflammasome components.

Heterozygous germline mutations in TNFAIP3 cause a Behçet’s- 
like disease, characterized by early- onset systemic inflammation, 
arthralgia/arthritis, oral/genital ulcers, and ocular inflammation 
described in six unrelated families.154 TNFAIP3 encodes the NF- κB 
regulatory protein A20 which is a potent inhibitor of the NF- κB 
signaling pathway via its deubiquitinase activity. TNFAIP3 mutant 
patient- derived lymphocytes show increased degradation of IκBα 
and nuclear translocation of the NF- κB p65 subunit, together with 
increased expression of NF- κB- mediated proinflammatory cyto-
kines. In these lymphocytes, TNF stimulation leads to defective re-
moval of Lys63- linked ubiquitin from TRAF6, NEMO, and RIP1.154

LOF mutations in the gene encoding CASP8, a protease that 
initiates apoptosis and regulates immune responses have been 
described very recently to cause infant- onset IBD.155 Previously, 
patients with CASP8 mutations have been shown to present with 
autoimmune lymphoproliferative syndrome- like (ALPS) like disor-
der.156 In contrast, the novel report shows patients with previously 
undocumented mutations in CASP8 presenting with severe VEO- 
IBD as the main clinical manifestation. The patient lymphocytes 
exhibited defective T-  and B- cell maturation proliferation and acti-
vation, as well as impaired inflammasome activation and defective 
epithelial cell death responses. These findings highlight the critical 
role of CASP8 in non- apoptotic functions, especially in maintaining 
intestinal immune homeostasis.

Abnormal nucleic acids generated during viral replication is one 
of the main triggers for antiviral immunity. Concomitantly, mutations 
disrupting nucleic acid metabolism can lead to autoinflammatory dis-
orders. SKIV2L is an RNA helicase and is an important negative reg-
ulator of the RIG- I- like receptor (RLR)- mediated antiviral response. 
Mutations in SKIV2L cause THES, characterized by chronic diarrhea, 
liver disease, hair abnormalities, and high mortality in early childhood 
due to severe infection or liver cirrhosis.157,158 It has been shown 
that the unfolded protein response (UPR), which generates endog-
enous RLR ligands through IRE- 1 endonuclease cleavage of cellular 
RNAs, triggers type I interferon (IFN) production in SKIV2L- depleted 
cells.159 Intriguingly, THES can be caused by mutations in TTC3786,87 
where, in contrast to SKIV2L, in vitro assays do not propose a role in 
interferon signaling. This suggests that most of the features of THES 
are most likely the consequence of a loss of cytosolic RNA exosome 
function in RNA turnover, instead of aberrant interferon response 
that is apparently specific to SKIV2L deficiency.

Intronic mutations in DNA Polymerase Alpha 1 (POLA1) cause 
X- linker reticulate pigmentary disorder including early- onset IBD. 
POLA1 encodes the catalytic subunit of DNA polymerase and is vital 
component of the DNA replication machinery. The polymerase A 
complex synthesizes RNA:DNA primers which initiate the produc-
tion of Okazaki fragments. Mutations in POLA1 affect the expression 
of DNA polymerase- α, leading to aberrant synthesis of RNA:DNA 
primers in cells, thereby inducing type 1 IFN.160,161

Patients with mutations in ADAM17 present with early- onset 
pustular dermatitis, short and broken hair, paronychia, frequent 

cutaneous bacterial infections, cardiomyopathy, and early- onset di-
arrhea.162 In a study of two related patients, patient- derived PBMCs 
showed high levels of lipopolysaccharide- induced production of 
interleukin- 1β and interleukin- 6 but impaired release of TNF- α.162 
ADAM17 plays a role in the processing of other cell surface proteins, 
including a TNF receptor, the L- selectin adhesion molecule, and 
transforming growth factor- alpha (TGF-α).163 Although direct links 
between the patient’s phenotype and ADAM17 defects is still elu-
sive, lack of TNF- α is considered partly responsible for the increased 
susceptibility to infection and development of cardiomyopathy, and 
as Adam17 knockout mice present with impaired epithelial cell mat-
uration in multiple organs, the lack of proper epithelial barrier could 
be postulated to stem the IBD phenotype.

2.8 | Complement deficiencies

The complement system is made up of a large number of distinct 
plasma proteins and autologous cell surface proteins that react with 
one another to mainly opsonize pathogens and induce a series of 
inflammatory responses, initiating the adaptive inflammatory re-
sponse. Deficiencies in complement proteins mostly manifest as 
recurrent bacterial infections due to defective bacterial clearance 
and autoimmunity such as systemic lupus erythematosus. However, 
multiple cases of complement deficiency presenting with IBD or 
IBD- like symptoms have been sporadically reported,164 pointing to 
a possible role of complement pathway in IBD pathogenesis. The 
potential pathomechanism of IBD pathogenesis in complement defi-
ciencies has been hypothetically directed toward defective bacterial 
clearance and potential defective epithelial defense against comple-
ment attack. In this case, the interplay between the microbiota and 
immune system is further highlighted as the manifestation of bowel 
inflammation is present in all patients.

The identification of MASP2 deficiency highlighted the poten-
tially vital role of proper activation of the complement system in 
colitis.165 In one patient, homozygous mutation in the MASP2 gene 
caused defective activation of the complement system through the 
mannan- binding lectin (MBL) pathway, and resulted in a presenta-
tion of ulcerative colitis and later on erythema multiforme bullosum. 
Numerous polymorphisms in MASP2 that causes lack of MBL path-
way activation have been identified,166 but no further reports of IBD 
have been described. Therefore, MASP2 might be a modulator of 
IBD pathogenesis and that requires further triggers to result in an 
IBD presentation.

Ficolin 3 deficiency was first reported in a patient with immuno-
deficiency and recurrent infections, clinical manifestations that are 
in line with complementopathies. In a report by Shlapbach et al167, 
2 patients with congenital FCN3 deficiency suffered from severe, 
potentially fatal necrotizing enterocolitis that they postulate was 
due to defective control of intestinal microbiota leading to local 
inflammation.

In 2017, we and others have identified biallelic LOF mutations in 
CD55 encoding for the protein decay accelerating factor (DAF) in pa-
tients with severe early- onset protein- losing enteropathy.168 CD55 
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is a complement regulatory binding protein present on autologous 
cells that acts to prevent the activation of the complement cascade 
on cell surfaces. It does so by binding to C3b and C4b, two comple-
ment convertases and silences their activity. To date, a total of 18 
patients have been described in the literature to have mutations in 
CD55 affected with protein- losing enteropathy and of these, 6 de-
velop bowel inflammation with histologically proven lymphocytic 
infiltrates in the mucosa or mucosal ulcers. However, the extent of 
the inflammation is not as severe as in other EO- IBD patients. The 
origin of the inflammation is still unclear, but we propose 2 potential 
pathomechanisms: dysregulation of immunoregulatory T cells, sim-
ilar to observation made in mouse models on the role of CD55 on 
Treg homeostasis,169 and epithelial and/or endothelial barrier damage 
due to complement activation. Interestingly, some patients develop 
thrombotic events, a clinical manifestation of many complementop-
athies. Patients responded well to the eculizumab treatment,170 with 
immediate effects seen in the GI protein loss clinical manifestation. 
However, more data need to be obtained to see if eculizumab proves 
to be efficacious in relieving bowel inflammation in CD55- deficient 
patients.

2.9 | Other gene defects

IBD or an IBD- like phenotype have been described in diseases with 
no well- defined plausible mechanisms, or in diseases where well- 
defined molecular mechanisms exist but the underlying cause of IBD 
is still elusive.

Defects in HPS1, HPS4, HPS6 genes that underlie Hermansky- 
Pudlak syndrome (HPS), can present with colitis.171,172 Patients 
presents with the triad of oculocutaneous tyrosinase-positive al-
binism, prolonged bleeding time secondary to platelet storage pool 
defect and ceroid depositions within the reticuloendothelial sys-
tem. Reportedly, some patients develop GI complications related to 
chronic granulomatous colitis, enterocolitis, and extensive granulo-
matous perianal disease. Although some evidence suggests that an 
abnormality of lysosomal function may be responsible for the de-
velopment of the disease, the underlying molecular mechanisms are 
still unclear. More intriguingly, mutations in HPS3, HPS5, and HPS7 
cause HPS that do not present with IBD.

PEPD encodes a member of the peptidase family with an im-
portant role in recycling of proline and might be rate limiting for 
the production of collagen.173 Individuals with mutations in PEPD 
develop prolidase deficiency, characterized by lack of peptidase 
activity, skin ulcers, mental retardation, and recurrent infections. 
Patients may have splenomegaly, and in some cases, hepatospleno-
megaly. Diarrhea, vomiting, and dehydration may also occur.174,175 
Pathogenic mutations in PEPD lead to reduction or loss of prolidase 
activity which may contribute to the multifactorial clinical presen-
tation. Since phenotype, age of onset, and clinical course of proli-
dase deficiency are very variable even within the same family, and 
the number of molecularly characterized patients is very small, it is 
still difficult to define a genotype- phenotype relationship for this 
disease.173

Complex dysregulation of transforming growth factor beta as 
a result of autosomal dominant mutations in TGFBR1 and TGFBR2 
(Loeys- Dietz syndrome) cause a syndrome with a variety of phe-
notypes including skeletal involvement, arterial abnormalities and 
immunological abnormalities, IBD, and encelopathy.176 Recently, bi-
allelic LOF mutations in the TGFB1 gene encoding TGF- β1 have been 
described in patients with central nervous system disease including 
epilepsy, brain atrophy, and posterior leukoencephalopathy, and se-
vere VEO- IBD.177 The mutations in TGFB1 seemingly impaired the 
bioavailability of TGF- β1. Although the exact mechanisms of how 
impaired TGF- β signaling leads to IBD is yet to be determined, these 
findings suggest a pivotal role in of TGF- β immune function, espe-
cially in intestinal immune homeostasis.

Defective adaptation to hyperosmotic stress in lymphocytes re-
cently emerged as one of the novel mechanisms underlying IEI and 
IBD. A single male with de novo Nuclear Factor of Activated T Cells 
5 (NFAT5) haploinsufficiency presented with autoimmune entero-
colopathy, unexplained infections, and bowel inflammation. Further 
examination revealed IgG subclass deficiency, impaired antigen- 
induced lymphocyte proliferation, reduced cytokine production by 
CD8+ T lymphocytes, and decreased numbers of NK cells.178 NFAT5 
is a transcription factor protein that is activated in response to os-
motic stress. In NFAT5- deficient patients, regulation of immune cell 
function and cellular adaptation to hyperosmotic stress is abrogated, 
leading to the phenotype.

Dysregulation of mitochondrial integrity and increase in cellu-
lar stress have been recently identified as a cause of severe T- , B- , 
and NK- cell lymphopenia presenting with VEO- IBD. Two patients, 
one with homozygous and one with compound heterozygous 
mutations in ankyrin repeat and zinc- finger domain- containing 1 
(ANKZF1) developed severe bowel inflammation, severe ulcerative 
skin lesions, and T- , B- , and NK- cell lymphopenia. The suspected 
causal gene, ANKZF1 has a role in mitochondrial response to cel-
lular stress. As a consequence of mutations in ANKZF1, mitochon-
drial respiration is impaired resulting in increased apoptosis in 
patient lymphocytes.179

3  | GENOMIC S AND ITS INFLUENCE ON 
THER APEUTIC GUIDELINES FOR VEO -  IBD 
PATIENTS

VEO- IBD patients make interesting clinical cases as this group of rare 
diseases often comes without a clear- cut clinical decision- making 
scheme as they often present with multi-organ involvement that re-
quires intervention from different clinicians. Treatment of VEO- IBD 
patients does not differ from adult- onset IBD patients in principle, 
in that the end result is to induce and maintain remission. These pa-
tients receive a standard care therapy, which frequently involves a 
combination aminosalicylates, corticosteroids, immunomodulators, 
antibiotics, and/or biologics. These medications aim to control in-
testinal inflammation by dampening the immune system. However, 
due to the heterogeneous clinical response of VEO- IBD patients to 
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immunomodulatory drugs, it is often difficult to prescribe a clinical 
guideline for treatment.

In the more severe cases, bowel resections may be performed to 
reduce inflammatory regions in the GI tract.

The identification of underlying genetic causes of the disease 
can highly influence the clinical decision making for patients with a 
mutation in known disease- causing genes. For instance, hematopo-
etic stem cell transplantation is currently the only curative therapy 
for patients with IL-10R deficiency26 and has been shown to result in 
a positive clinical outcome in some patients with LRBA deficiency.180 
Treatment of CTLA- 4 haploinsufficiency and LRBA are prime exam-
ples of genome- informed precision medicine, where treatment with 
Abatacept (CTLA- 4- Ig) has proved to be successful in alleviating the 
infiltrative and autoimmune disease.125,181

In the case of a genetic mutation in a gene that affects both 
the immune and epithelial barrier (for example TTC7A deficiency), 
HSCT did not correct for the epithelial- intrinsic defect and enteral 
tolerance.182 This further highlights the importance of identifying 
underlying genetic cause of VEO- IBD to reduce treatment- related 
mortality. More research needs to be performed in order to eluci-
date the roles of gene defects in cell types in which they were not 
implicated before.

4  | BOWEL INFL AMMATION AND THE 
MICROBIOME

While the link between gut inflammation and gut dysbiosis is not a 
novel concept, the development of culture- independent techniques 
like next- generation sequencing and metagenomics exploded the 
field of microbiome- related studies. These techniques enabled the 
global assessment of the gut microbiota more accurately and in a 
more sophisticated manner.183,184 The largest and perhaps the most 
ambitious initiative that has emerged in the last decade to study the 
changes of the human microbiome in health and disease is the NIH 
sponsored Human Microbiome Project (HMP).185 It has resulted in the 
publication of 5177 microbial taxonomic profiles from a population 
of 242 healthy adults and serves as a comprehensive database for 
research in this field.186 This project was followed up by the second 
phase that, in addition to phylogenic composition, aimed to analyze 
functional omic data including transcriptome, proteome, and metabo-
lome. Such multi- omic approaches with simultaneous analysis of host 
and microbiome proteins and metabolites aimed to better our under-
standing of the biology of the microbiome and sophisticated molecu-
lar mechanisms of host- microbiota interaction.187 Such integrative 
analysis is the key feature of the future microbiome research.188,189

While microbiota from some body sites (for example skin) is 
easily accessible, the GI tract is much more challenging to sample 
and describe. The complex structural and functional features of the 
human GI tract is reflected by the differences in abundance and 
composition of bacteria and their dynamic variations along the intes-
tine make human microbiome studies complex.190 The excitement 
in studying the gut microbiome is not only driven by the fact that it 

is perhaps the most abundant and complex microbial community of 
the human body, but that it has also been associated with the devel-
opment of wide spectrum of diseases. Indeed, numerous studies, in-
cluding those that use integrative analysis of human gut microbiome 
and metabolome, have associated the gut microbiota with the pro-
motion of health and development of IBD, obesity- related inflamma-
tory disorders, allergic diseases, and infectious diseases.191 Although 
the correlation between gut dysbiosis and IBD is well appreciated, 
the role of microbiome perturbations in disease development is not 
yet clearly defined.192

The role of the immune system in the preservation of healthy gut 
microflora is highlighted by the studies of IEI, showing that diverse 
pathomechanisms may underlie development of gut inflammation 
in immunocompromised patients. Studies of both adult and pedi-
atric IBD showed decreased diversity of microflora in patients with 
CD and UC, increased numbers of mucosa- associated aerobic and 
facultative- anaerobic bacteria in colonic biopsies and perturbations 
in two most abundant fila—Firmicutes and Bacteroidetes.187,193-196 
While microbiome perturbations in IBD can have a complex etiol-
ogy, dysbiosis in patients with VEO- IBD or IEI is driven primarily 
by the gene defects. A study of the gut microbiome in CVID pa-
tients showed significant differences in bacterial composition with 
dysbiosis and low alpha diversity characteristic of the patients with 
IBD.197 Interestingly, while elevated dysbiosis index was a charac-
teristic of patients “with infections only” and “with complications” 
subgroups, the latter had also reduced alpha diversity of the gut mi-
crobiota. Patients with enteropathy within the “with complications” 
subgroup did not show any significant differences in gut microbiota. 
The lack of obvious differences in microbiomes between patients 
with or without gut pathologies in this study is difficult to explain. 
No systematic studies to date involving genetically characterized 
VEO- IBD and IEI in patients have been conducted, and it is not clear 
whether these patients might develop gene defect- specific pertur-
bations in the gut microbiome. Given the diversity of molecular 
pathomechanisms underlying IBD in patients with immune defects, 
one could speculate that their effect on the microflora might be 
quite different.

To date, a variety of mechanisms explaining how changes in gut 
microflora may impact host immune system have been described. 
This topic has had substantial advancements, highlighting some ex-
citing examples of bacteria- derived metabolite involvement. Playing 
a pivotal role in maintaining organismal homeostasis and stable 
physiology, microbiota produce, degrade, and modulate a large 
number of small molecules—metabolites, complementing the host 
metabolic capacities. Another important function of this bacteria- 
modified metabolic network is communication with the host.198 
Even in a healthy state of intact gut epithelial integrity, many bac-
terial metabolites are absorbed, drain into the portal vein and can 
be detected in the periphery if they are not metabolized in the liver. 
Three main mechanisms of how bacterial metabolites impact the im-
mune system have been described: (a) through binding to the spe-
cific cell surface receptors, (b) inflammasome- forming intracellular 
receptors, and (c) antigen presentation.
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Short- chain fatty acids (SCFAs), tryptophan metabolites, and 
retinoic acid (RA) are the most illustrious examples of metabolites 
that are involved in various aspects of immune cell regulation, de-
velopment, and differentiation of activation- specific G- protein- 
coupled- receptors. Downstream signaling through these receptors 
is responsible for Treg expansion and differentiation, decrease of 
proinflammatory Th17 cells, changes in neutrophil, and lymphocytes 
chemotaxis, and hematopoiesis of dendritic cells from bone marrow. 
SCFA such as butyrate and propionate are known to act as histone 
deacetylase (HDAC) inhibitors. Butyrate suppresses proinflamma-
tory effectors in lamina propria macrophages and differentiation of 
dendritic cells from bone marrow stem cells via HDAC inhibition, re-
sulting in hyporesponsivness to commensals. In addition, SCFAs also 
regulate cytokine expression in T cells and generation of regulatory 
Treg through HDAC inhibition.199

Some commensal microorganisms like Lactobacilli use trypto-
phan as an energy source to produce ligands of the aryl hydrocar-
bon receptor (AhR), such as the metabolite indole- 3- aldehyde. AhR 
is a ligand- activated transcription factor critically important to the 
organogenesis of intestinal lymphoid follicles (ILFs). AhR is also ex-
pressed by immune cells, including RORγt+ group 3 innate lymphoid 
cells (ILC3s) that are involved in ILF genesis, and AhR expression on 
ILC3s is functionally required for their expansion. AhR- induced IL- 22 
production by ILCs drives the secretion of the anti- microbial pep-
tides lipocalin- 2, S100A8, and S100A9, which protect from patho-
genic infection by Candida albicans. In addition to its role in the 
function of ILCs, AhR was also found to be necessary for the mainte-
nance of the epithelial barrier and the homeostasis of intraepithelial 
lymphocytes (IELs).198

Retinoic acid (RA) signaling has been shown to be important in 
the myeloid compartment. Specific subsets of intestinal DCs and 
macrophages constitutively produce RA and induce Treg develop-
ment through RA receptors. In addition, signaling downstream RA 
receptors induce expression of gut homing receptors on activated 
T and B cells and enhanced induction of immunoglobulin A (IgA) by 
B cells.200

The role of vitamins in maintaining Tregs, as well as a number of 
lymphocytes and NK- cell activity, has also been established.198 In 
this case, the effect is mediated through specific receptors broadly 
expressed on various subsets of immune cells.

The modulation of inflammasome signaling by bacteria- derived 
metabolites is another distinct mechanism involved in modulation 
of host immunity. Recent studies implicated several low- molecular- 
weight compounds associated with metabolism, not immunity, in 
regulation of NLRP3 and NLRP6 activation.201 In a recent study, it 
has been shown that microbial metabolites taurine, histamine, and 
spermine modulate NLRP6 inflammasome signaling, secretion of 
IL- 18, and production of anti- microbial peptides shaping the host- 
microbiome interface.202

The discovery of bacteria- specific vitamin B metabolites rec-
ognized as antigens by mucosa- associated invariant T (MAIT) cells 
revealed yet another mechanism of host- microbiome interaction 
and provides an important hint as to how our immune system may 

sense and control the microbiome.203 Protective role of MAIT cells 
upon bacterial infection and their role in autoimmune diseases such 
as multiple sclerosis and IBD makes these cell attractive targets for 
clinical interventions. Despite a huge interest in these unique T- cell 
subsets, their role in disease pathogenesis is still not clear complicat-
ing their therapeutic implementation. In addition, only few bacteria- 
derived molecules have been identified to date with agonistic or 
antagonistic effect on MAIT cells. Interestingly, a novel heteroge-
neous population of T cells has been recently identified. These cells 
recognize endogenous metabolites of unknown structure presented 
by MHC class I- related molecule 1 (MR1) the same molecule that 
present bacterial metabolites to MAIT cells.204 The spectrum of 
stimulatory antigens and molecular mechanism of antigen presen-
tation to MAIT and other MR1- restricted T cells are still the subject 
of active research.

Increasing numbers of studies with mouse models of colitis show 
protective effect of microbiota transfer. Fecal microbiota transplan-
tation has been described as safe and promising treatment for IBD, 
with unexplained variable efficacy.205

Studies have shown that colitis in Nlrp12- deficient mice can be 
reversed equally by treatment with antibodies targeting inflamma-
tory cytokines and by the administration of beneficial commensal 
isolates. Such contributions of the microbiome to the development 
of gut inflammation reveal a feed- forward loop in which a genetic 
defect promotes dysbiosis that further contributes to the devel-
opment of gut inflammation.206 Studies in Il10 and Nlrp6- deficient 
mice show that adaptive and innate immunity defects may have 
different contributions to the development of spontaneous colitis, 
inflammation, and colonization by a specific pathobionts.207 Overall, 
studies of gut microbiome in respect to metabolite composition and 
dynamics provide a basis for the targeted metabolomic interven-
tion and treatment or prevention of dysbiosis- driven diseases. This 
approach is exemplified by the well- documented beneficial effects 
of short- chain fatty acid butyrate, synthesized from non- absorbed 
carbohydrate by gut microbiota. A variety of approaches, including 
high- fiber diet, butyrate- producing bacteria, or coated tablets are 
currently in use for the butyrate- based treatment of IBD. Classical 
pro-  and prebiotic- based therapies exhibit limited efficacy due to 
certain caveats such as colonization resistance and inter- individual 
variation in microbial composition. Recently, a novel personalized 
therapeutic approach based on supplementation of the host with 
metabolites downstream of the microbiome which can act directly 
on host- related metabolic pathways has been suggested.208 The 
nature and efficacy of such potentially bioactive metabolites to be 
used for the therapy require further exploration.

5  | ORGANOIDS

Although single gene defects affecting major immune pathways 
have been investigated in detail, little is known about how mutations 
of VEO- IBD- associated genes are involved in epithelial barrier func-
tion or the homeostasis of the host and microbiome. As the interplay 
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between immune cells, gut epithelial barriers, and the gut microbiota 
represents a central axis in the onset of VEO- IBD, it is necessary to 
study the diverse genetic influences of EO- IBD- associated genes in 
these three players. Gut- derived organoid technology has been at 
the forefront of advancing our understanding of gut homeostasis, 
in particular in studying the elusive biology of the gut epithelium. 
This technology has allowed us to take a reductionist approach in 
studying specifically gut epithelial derived from any area of the 
gut and has been shown to be crucial to further our understand-
ing of the biology of some VEO- IBD genes. For example, the role 
of TTC7A in controlling the polarity of the gut epithelium has been 
shown in organoids derived from patients with TTC7A deficiency.37 
Patient- derived organoids provide a potential wealth of resources 
for personalized medicine as it allows us to perform drug screens in 
the context of patients’ genetic background. This was shown in the 
case of patients with different mutations in the CFTR gene, where 
different genetic backgrounds show varying responses to clinically 
available drugs, and that the phenotype seen in the organoids corre-
lates with patients’ clinical course on various drugs.209 In the future, 
generation of biobanks with patient- derived gut organoids with ge-
netically defined backgrounds will allow us to advance personalized 
medicine for this heterogenous group of rare diseases.

6  | THE FUTURE OF IBD GENETIC S

Next- generation sequencing (NGS) has become widely used since 
2008 to investigate the genetics of IBD. Most studies that aim to 
elucidate the genetic component of adult IBD focus on GWAS. 
However, despite all efforts and recent advances, the genotype- 
molecular mechanism- phenotype link is still missing for many of 
the significant GWAS loci. It has been observed that although one 
expects GWAS signals to cluster in disease relevant pathways and 
genes, association signals for complex traits tend to be spread across 
most of the genome including in the vicinity of numerous genes 
without a clear connection to disease. An “omnigenic” view of dis-
eases proposes that in contrast to Mendelian diseases, which are 
often caused by high impact mutations in protein- coding regions in 
a few genes, complex traits and diseases are mainly driven by lower 
impact variants that affect a multitude of genes and pathways often 
outside of the primary pathways and genes involved in the respec-
tive diseases. Given the interconnected nature of cellular systems, 
these lower impact variations in diverse pathways converge and cre-
ate the disease phenotype.210 The assessment of such combinatorial 
effect requires complex models of molecular networks and integra-
tion of multiple datasets.

7  | WES, PANEL S,  AND WGS

High- coverage exome or targeted exome (also known as panel) se-
quencing are routinely used to identify genetic aberrations caus-
ing early- onset bowel inflammation. Due to its high accuracy and 

moderate costs, panel sequencing is preferentially used as a screen-
ing method in many institutes. A combinatorial method is to use 
exome or genome sequencing, but prioritize “virtual panels”—a 
selected list of genes—for an initial screening and later extend the 
scope of the analysis to novel genes. When relying on a targeted 
panel approach, the design of the targeted panel is a crucial step 
toward appropriate gene discovery and diagnosis. On one hand, by 
building the panel by using only genes whose link to the disease phe-
notype is clear, one might miss important new genes and diagnosis. 
Conversely, by including candidate genes (whose association to the 
phenotype is yet unknown), there is an increased chance of identify-
ing variants of unknown significance. While WES conveys an advan-
tage of looking at all known coding sequence and can be combined 
with a panel approach, incidental findings and variants of unknown 
significance are much higher.

The percentage of patients with genetically diagnosed VEO- IBD 
varies between centers and cohorts and ranges from 5%- 31% de-
pending the composition of the cohort.211-216 The reasons behind 
the missing heritability are multifactorial. Firstly, we can hypothesize 
that not all VEO- IBD patients have a monogenic defect, but rather 
develop bowel inflammation a result of multiple genetic aberrations. 
In these cases, proving causality is a challenge. Secondly, inherent 
technical difficulties of exome sequencing, namely the challenge 
to detect structural variants such as insertions and deletions, copy 
number variations, inversions, and deletions could result in missing 
crucial genetic diagnoses. Naturally, as exome sequencing excludes 
all but coding sequences from the scope of analysis, genetic aberra-
tions in critical regulatory regions are not detected.

Whole genome sequencing promises an unprecedented depth 
of study, including non- coding regions and the analysis of copy 
number variations, including deletions.217,218 Moreover, there is in-
creasing evidence that genome sequencing might be more powerful 
at detecting exonic variants than whole exome sequencing.219 An 
example of applying low coverage exome sequencing to find an as-
sociative gene is the identification of ADC7Y220 in a study of 4280 
patients at low coverage.

RNA sequencing can be used to complement genomic technol-
ogies and is routinely used for muscular disorders where it has sig-
nificantly improved the rate of successful genetic diagnosis.221 RNA 
sequencing can be used to investigate transcriptomic differences 
between IBD and the general population, investigating alternate 
transcripts arising from alternative splicing and variants affecting 
mRNA abundance.222

8  | VARIANT PRIORITIZ ATION AND 
INTERPRETATION

Along with the advent of WES and WGS, accurate variant prioritiza-
tion has become even more critical to successful genetic diagnosis. 
WES and WGS can unravel multiple potentially causal variants and 
variants of unknown significance. An average exome typically con-
tains around 30 000 variants compared to the reference genome 
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and around 20 genes that are completely inactivated.223 In line with 
this observation, analysis of WES data focusing on rare, missense 
variants, and frameshift insertions and deletions often yields several 
(typically 20- 50) rare variants of unknown significance in a single 
patient. This poses a tremendous challenge to uniquely identify the 
causative gene variant. In the quest for the causative variants, vari-
ant interpretation, a process of connecting individual variants to dis-
ease phenotypes is essential to both reporting results to clinicians 
and patients and is also crucial to novel variant discovery and down-
stream functional research. When working under the hypothesis of 
a Mendelian disease, the expected causal mutations are both rare 
in the healthy population and severe enough to abrogate protein 
expression, function, or hinder initiation of vital signaling cascades.

Population- scale variant resources such as Exome Aggregation 
Consortium (ExAC),224 the genome Aggregation Database (gno-
MAD),224 and the 1000 Genomes project225 allow for filtering 
against population allele frequencies. Some caution should be used 
when relying these resources as they can contain data from yet un-
known patients with various symptoms, potentially with symptoms 
similar to the disease of interest.

Pathogenicity prediction tools are increasingly used to assess 
the deleteriousness of protein- coding variants. Some examples in-
clude protein- based metrics such as Polymorphism Phenotyping 
2 (PolyPhen2),226 Sorting Intolerant From Tolerant (SIFT),227 
conservation- based tools like Genomic Evolutionary Rate Profiling 
(GEPR),228 and integrative methods such as Combined Annotation 
Dependent Depletion (CADD).229 These tools aim to decipher the 
consequence of genetic variants on protein structure and function. 
However, these algorithms tend to exploit a single information type 
(conservation for example) or are restricted in scope (focusing only 
on missense changes, disregarding deletions and insertions). Even 
when different information types are used in combination (like in 
CADD), a lack of information is available to assess the widespread 
signaling and cellular perturbations of genetic aberrations and these 
tools are often unable to assess the effect of non- coding, regulatory 
variants. Resources such as the ENCODE have facilitated the un-
derstanding of the functional and regulatory elements in the human 
genome, but the interpretation of non- coding variants remains a 
challenge.230

Although filtering according to allele frequency and patho-
genicity prediction provides valuable information on potential 
causal variants, it has become clear that the detailed charac-
terization of the individual molecular components alone (genes, 
proteins, metabolites, etc.) does not suffice to truly understand 
the nature of (patho- ) physiological states and how to modulate 
them. Biomolecules do not act in isolation, but rather within an 
intricate and tightly coordinated machinery of complex interac-
tions, such as protein- protein, gene regulatory, or signaling in-
teractions. Drawing parallels, disease phenotypes are results of 
a complex interplay between multiple factors. Systems biology- 
based approaches have been increasingly developed and used to 
combine diverse types of information to assess potential causal 
variants and prioritize candidate variants and candidate genes. 

Currently, many prioritization methods and online interpretation 
tools exist with different approaches to data interpretation and 
analysis. These approaches include algorithms that use protein- 
protein interactions (PPI) networks,231,232 functional similarity 
networks built utilizing pathway involvement,233 structural vari-
ation data,234 exploit thorough functional annotation,235 or a 
combination of PPI based approach and phenotype similarity.236 
In addition to available web applications and open- source tools, 
professional organizations offer data interpretation and variant 
prioritization services.

While these algorithms have been developed to exploit diverse 
principles in order to prioritize variants or predict novel disease 
genes, there is currently no published example showcasing their 
validity. Algorithms and tools often fall short due to the lack of 
specificity or overlook important factors in a particular disease. In 
cases such as IBD, where the phenotype is a result of the complex 
interplay of multiple factors, a more tailor- made solution could be 
more powerful to predict novel disease genes. An attractive ave-
nue of prediction tools is to converge toward a contextualization- 
heavy, integrative, disease- specific variant annotation tool. In 
contrast to clear- cut prioritization, this approach emphasizes an-
notating all potential candidates with various types of informa-
tion and combines information to relate individual gene defects to 
known pathways and phenotypes. This approach is exemplified by 
the identification of causal variants in TRIM22, a protein which is 
linked to NOD2 signaling by multiple molecular networks.71

9  | DATA SHARING , UNIFIED 
NOMENCL ATURE , ONTOLOGIES

9.1 | Toward efficient data sharing and facilitating 
collaborations

Research on rare diseases such as VEO- IBD often relies on a few small 
pedigrees presenting with heterogeneous phenotypes. The small 
number of available patients and material coupled with the sheer 
number of potentially causal variants from NGS makes identification 
of causative gene defects a classical hunt for the “needle in a hay-
stack.” In the quest for the “needle,” finding an additional patient car-
rying the same mutation strengthens the case of causality immensely.

Unfortunately, current variant and patient matching is hindered 
by the existence of small, independent datasets within the individ-
ual research groups and organizations. With no clear communication 
and channel for exchange, matching researchers up based on shared 
phenotypes and/or genotypes is simply a case of serendipity. This 
gap in communication and exchange is one of the main determinants 
of the pace of gene discovery. In order to facilitate the pace for iden-
tification of novel key players of IBD, bridging the gap between is-
lands of research needs to be a priority.

Efforts to facilitate data and material exchange promise to 
bridge gaps between hospitals, specialized centers, and labora-
tories. Matchmaker Exchange, a project launched in 2013 ad-
dresses this crucial challenge, to facilitate the matching of cases 
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with similar phenotypic and genotypic profiles, using standard-
ized programming interfaces.237 Similar to Matchmaker Exchange, 
GeneMatcher, a project dedicated to enable connections between 
clinicians and researchers from around the world, to help unsolved 
exomes.238

9.2 | Increasing need of high- quality metadata

In recent years, large- scale computation methods have been initi-
ated to investigate the etiology of IBD. In these projects, researches 
often rely on public databases to provide them with data. Access to 
accurate genetic data is facilitated by resources such as Decipher,239 
HGMD,240 OMIM241and ClinVar242 that aim to aggregate clinical 
data. These resources and public data repositories are still incom-
plete and need to be queried manually or with specifically set- up 
local bioinformatics pipeline. These efforts are welcome steps to-
ward efficient data access, but some issues with redundancy remain 
and variable quality and quantity of data that is still missing from 
these resources. A robust, unified database could be an approach 
worth considering.

It is becoming increasingly clear that beyond efficient access 
to genomic and variant information, there is a need for accurate 
metadata to describe clinical information not only in a genetic man-
ner, but also phenotypically. Annotation of patients with accurate 
phenotype data, as well as the annotation of genes with pathways 
and molecular mechanisms requires standardized and objective lan-
guage. Therefore, it is crucial to have a unified nomenclature and re-
source of disease- causing genes annotated with the corresponding 
physical, molecular, and cellular phenotypes. Along with annotating 
patients and genes with the correct disease and ontology, intra- 
institute and laboratory collaborations would benefit immensely 
from precise and objective descriptions of phenotypic, molecular, 
and genetic abnormalities.

Human Phenotype Ontology (HPO) is a phenotype vocabulary 
initially published in 2008.243,244 It is a tool that enables accurate 
phenotyping which further facilitates efficient data and patient ex-
change. HPO is being increasingly adapted into everyday use as the 
standard to describe phenotypic abnormalities. Gene ontology (GO) 
on the other hand, is a computational representation of the function 
and localization of genes and gene products on the molecular level. 
Currently, the GO project has developed and constantly revised over 
40 000 biological concepts and annotations.245,246 GO provides a 
nomenclature to annotate gene defects with detailed molecular and 
mechanistic information in a unified manner. Disease ontologies aim 
to provide standardized, consistent, and objective descriptions of 
human disease terms, phenotype characteristics, and related med-
ical vocabulary disease concepts, as well as hierarchical relation-
ships between the disease entities themselves. Efforts are currently 
ongoing to translate and include diseases into ontologies such as 
Orphanet,247 Disgenet248, or Disease Ontology.249,250 In addition to 
providing a unified nomenclature that allows clinicians and research-
ers to characterize patients better, the inherent network structure 
of ontologies such as HPO and GO allows for pairwise distance 

(similarity) between two terms. Consequently, pairwise similarity 
measures can be used to carry out complex comparisons such as 
testing the similarity between two patients annotated by different 
terms.251 Current ontologies have been useful in fulfilling current 
gap, but they are not complete. Numerous diseases and disease- 
gene association are not documented, and the ontology structures 
are incomplete.

10  | BE YOND GENETIC S:  IBDOMIC S—
SYSTEMS BIOLOGY AND INTEGR ATIVE 
METHODS

One of the limitations of current approaches toward uncovering the 
key players in IBD pathology is that they are looking at individual con-
tributors separately. In a case of IBD, which arises as a result of the 
combinatorial effect in multiple key players such as genetics, environ-
mental factors, microbial perturbations, epigenetics, and lifestyle fac-
tors, understanding the disease cannot be tackled by studying each 
pathogenic component in isolation, without considering the interac-
tion among the different “omes.” Integration of the different “omes” 
requires intelligently designed data integration and processing. This 
integrative approach, recently introduced as the IBD interactome or 
IBDome, calls for new concepts and tools to implement a systems 
biology approach toward unraveling the processes behind IBD.252 
These tools should rely on unbiased data- driven investigation and in-
clude strategies to reveal key drivers and pinpoint central players of 
inflammation and enable development of targeted therapies.

Querying and integrating multiple “omes” with bioinformatics meth-
ods enables the integration of genomic, epigenomic, transcriptomic, 
proteomic, metabolomics, and microbiomic data to construct a compre-
hensive molecular map of IBD. Although seamless data integration is 
yet to be available, methods to integrate various types of information 
and use it toward identifying key players of IBD are already underway.

Recently, Peters et al253 used individual networks constructed from 
molecular data generated from intestinal samples isolated from three 
populations of patients with IBD at different stages of disease, includ-
ing two adult and pediatric cohorts of IBD. As a result, they developed a 
predictive model of the immune component of IBD that informs causal 
relationships among loci previously linked to IBD through GWAS using 
functional and regulatory annotations that relate to the cells, tissues, 
and pathophysiology of IBD. This network revealed potential key driv-
ers of IBD pathogenesis. Among the key drivers were numerous known 
VEO- IBD genes, but also inborn errors of immunity and new candidates 
that were showed to have a role in inflammatory immune response.253

11  | CONCLUSION AND FUTURE 
PERSPEC TIVES

IBD is a complex, multifactorial condition with an onset brought on by 
a multitude of factors that can also present in rare, Mendelian fash-
ion. While the direct link between the more common, adult version 
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of IBD and rare, Mendelian EO- IBD is still elusive, we have gained 
tremendous understanding of different key players in immune regu-
lation and cellular mechanisms required for immune homeostasis in 
the gut over the last years. The considerable fraction of inborn errors 
of immunity presenting with an IBD- like phenotype highlight that all 
patients presenting with VEO- IBD should be subjected to detailed 
genetic and immunological examination and investigation, as IBD can 
be an early sign of an underlying immunodeficiency. Recent advances 
in genomic technologies, organoid systems, as well as our increasing 
understanding and modeling of the interplay between the gut mi-
crobiota, immune cells, epithelial cells, and the environment promise 
to shed new light on to the complex molecular network behind IBD 
pathology. This novel understanding could allow for more efficiently 
identification of patient subgroups, and therefore increasingly direct 
treatment strategies toward personalized medicine. 
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1.3. Network medicine and network-based methods 
 
Traditionally, scientific investigation has followed a reductionist approach, that analyzed genes, 

proteins, molecules and reactions individually, focusing on their local effects. This approach has 

proven to be valuable, and has culminated in a catalogue of genes, proteins and other molecules 

(Lander et al. 2001; Venter et al. 2001). More recently, technological advances resulted in the 

development of high-throughput technologies and high quality data on our genome, transcriptome 

and epigenome. The increase of available data provides a catalogue of molecular building blocks 

of cells that has never been more complete. The traditionally used single-gene and pathway 

focused approaches, however, are no longer sufficient to delineate and explore the consequences 

of pathobiological processes of diseases and therapeutic approaches in this catalog of vast data. 

  

Indeed, the molecules within the cell do not carry out their function in isolation but through 

interactions with other molecules. The health of an organism is influenced by a multitude of 

intertwined processes and perturbations of these interactions. Similar to social and technological 

systems, biological systems are linked by a multitude of interconnected relationships that are 

organized by basic principles. As outlined in the introduction above, on a cellular level, an 

interaction between an antigen presenting cell and a lymphocyte can elicit a cascade of immune 

responses that send the body into a global inflammation. On a molecular level, single interacting 

receptor and ligand molecules can induce a signaling event that leads to an activation of pathway, 

a cell, and an organ downstream. These biological interactions, chains and links span many 

orders of magnitude in space and time, collectively forming the basis of life. Just like drawing the 

layout of a city in a map, we can map out these biological interactions as different networks within 

networks (Prulj 2019). The molecular interactions and networks that govern our cells have been 

extensively mapped out in the last two decades. Although these networks are still incomplete, 

they have been increasingly used as tools for addressing fundamental questions in health and 

disease. 

  

1.3.1. Introduction to network medicine  
  
The connectivity of molecules and building blocks of cells implies that the impact of a genetic 

lesion is not only restricted to the protein encoded by a specific gene, but that it can spread along 

the interconnected molecular network. Indeed, in contrast to the classical “one-gene, one-
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function, one-phenotype" approach that gained popularity in the 1940s (Beadle and Tatum 1941) 

it is increasingly clear that the effect of a particular genetic malformation does not only impact the 

function of the direct gene product, but also influences a multitude of other interactions between 

other, often less obvious processes (Barabási, Gulbahce, and Loscalzo 2011).  

 

Network medicine, first introduced in 2007 by Albert-Lászlo Barabási (Barabási 2007), applies 

network science to analyze, identify and understand human diseases (Barabási, Gulbahce, and 

Loscalzo 2011a). It aims to give an all-encompassing, systematic view of health and disease 

through the analysis of various biological networks. Diseases can be mapped to biological 

networks by their causal or associated mutations, by transcriptional signatures or other means. 

The interaction partners and the network context therefore determine the phenotypic impact of 

genetic lesions or signatures. This allows us to better understand the complexity of diseases, and 

in turn disease phenotypes can be better mapped out and understood with biological networks. 

Network-based approaches to human disease have numerous biological and clinical applications. 

Our improved understanding of the complexity of the interconnected molecular networks 

underlying disease entities can help us understand disease progression and identify vital disease-

related pathways and genes. This could offer better targets for drug development (Z.-C. Li et al. 

2016; Yildirim et al. 2007), drug repurposing (Cheng et al. 2018; J. Li et al. 2016) and the discovery 

of more accurate biomarkers (J. Zhang et al. 2010; L.-X. Wang, Li, and Chen 2018). Due to their 

ability to integrate large-scale datasets, network-based methods hold the potential to aid with 

disease classification  as well as pave the way to truly personalized therapeutic approaches and 

personalized medicine.   

 

1.3.1.1. Biological networks and their applications 
 
As more and more key players of cellular processes are identified through high-throughput 

studies, our repertoire of available data for building biological networks that model cellular 

systems grows as well. This chapter discusses the main biological network types and their most 

common applications. 
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1.3.1.1.1. Protein-protein interaction networks  

 
Proteins are one of the basic building blocks and acting agents within and around cells. Physical 

interactions between proteins are essential for normal function of the cell, and aberrations in such 

interactions or the proteins within the interactions have particularly strong effects. Physical 

interactions of proteins can be mapped out onto protein interaction networks. The systematic 

charting of these physical protein-protein interactions is an ongoing process, and although the 

mapping is not yet complete, a significant subsection of these interactions have been identified 

already. Two main experimental techniques have been used to establish such networks: yeast 

two-hybrid (Y2H) assays that map out precise binary interactions (Rolland et al. 2014) , and 

binding affinity purification coupled to mass spectrometry, where a bait protein and its interactions 

are captured by beads and large complex protein structures can be identified (Huttlin et al. 2015, 

2017). Additional to these two methods, other protein capturing techniques such as co-

immunoprecipitation, X-ray crystallography or nuclear magnetic resonance (Menche et al. 2015), 

or computational prediction of protein interactions from amino acid sequences (Ofran and Rost 

2003; Gallet et al. 2000; Yan, Dobbs, and Honavar 2004; Deng et al. 2002), gene fusions 

(Marcotte and Marcotte 2002), or phylogenic trees (Pellegrini et al. 1999). Each of these methods 

has advantages and disadvantages in terms of their comprehensiveness, noise and biases 

towards certain interactions (Gillis, Ballouz, and Pavlidis 2014; Rolland et al. 2014). 

 

Various online repositories exist that collect protein-protein interaction data such as the IntAct 

maintained by EMBL-EBI (Kerrien et al. 2012), the Human Integrated Protein Protein Interaction 

rEference (HIPPIE) (Alanis-Lobato, Andrade-Navarro, and Schaefer 2016), or the Search Tool 

for Recurring Instances of Neighboring Genes (STRING) (Snel et al. 2000). Protein interaction 

networks have various applications and have been utilized for research on rare diseases 

specifically. They have been used to investigate basic principles of cellular function (Jeong et al. 

2001), the efficacy of drugs, and in particular  for predicting novel disease genes (Vanunu 2009; 

Oti et al. 2006), a topic that will be discussed in detail below. 

1.3.1.1.2. Metabolic networks 

Metabolism is the collection of chemical processes within a cell, and metabolic networks are one 

of the most extensively studied biological networks. In these maps, metabolites serve as nodes 
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and they are linked by chemical reactions. There are numerous databases of metabolic networks 

and maps such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) (M. Kanehisa and 

Goto 2000; Minoru Kanehisa et al. 2008), the Human Recon 2.2 (Swainston et al. 2016) and the 

Edinburgh human metabolic network (Ma et al. 2007). Metabolic networks are informative to 

investigate diseases that arise as a result of over-amplification of certain metabolic pathways, 

such as in type 2 diabetes mellitus (Zelezniak et al. 2010).  

 

1.3.1.1.3. Gene regulatory networks 

 
Gene expression is a dynamic process that requires tight regulation. The most basic gene 

regulatory network models consist of nodes that represent transcription factors and their target 

DNA regulatory elements (Hecker et al. 2009). These networks are built on experimentally verified 

genetic regulatory interaction data, from databases such as JASPAR (Sandelin et al. 2004) and 

TRANSFAC (Matys et al. 2003). In addition to transcription factors and regulatory elements, gene 

expression is also regulated through interactions between RNAs, or DNA and RNA. Databases 

such as TargetScan (Edris 2011), PicTar (Martín et al. 2018), microRNA, miRWalk (Sticht et al. 

2018) store computationally predicted interactions between these elements, while TarBase 

(Vergoulis et al. 2012) and miRecords (Xiao et al. 2008) contain experimentally verified interaction 

data.  

 

1.3.1.1.4. Non physical interaction networks: coexpression and genetic interaction 

networks, co-perturbation networks 

 
Our understanding of gene regulatory networks remains incomplete as they are highly context-

dependent and involve the interaction of a large number of different molecules. A more straight-

forward quantity that can serve as a proxy to study regulation of genetic material is coexpression. 

Two genes are coexpressed if their expression levels correlate under various conditions, such as 

in a disease, over time, or across certain stimuli. The expression of genes can be assessed 

genome-wide with RNAseq (B. Zhang and Horvath 2005; De Smet and Marchal 2010). The GTEx 

consortium (Aguet et al., n.d.) stores curated expression data across various cell and tissue types. 

Coexpression networks are context specific, and connect two genes if they are coexpressed in a 

certain context. In contrast to gene regulatory networks, they are undirected and do not imply a 
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causal relationship between connected genes. Coexpression networks can be used to pinpoint 

functionally related genes that are controlled by similar transcriptional regulation, or members of 

the same pathway (Weirauch 2011). In a disease context, coexpression networks have been used 

for the analysis of inflammatory bowel disease, autism spectrum disorder, Alzheimer’s disease, 

and cancer (Parikshak et al. 2016; B. Zhang et al. 2013; Peters et al. 2017; S. Zhang et al. 2017; 

J. Zhang et al. 2010; L.-X. Wang, Li, and Chen 2018).  

Genetic interaction networks map out phenotypes that arise from a simultaneous mutation of two 

genes. Specifically, a negative genetic interaction between two genes implies lethality if both 

genes are mutated but no lethality if only one of the genes is mutated. A positive genetic 

interaction arises if a mutation in one of the interacting genes rescues a lethal mutation in the 

other interacting gene (Costanzo et al. 2016). Large yeast-based screens have been used to 

identify such interactions (Costanzo et al. 2016; Tong et al. 2004). Genetic interaction networks 

have been used to investigate genetic therapies such as in FA (Moder et al. 2017), or for cancers 

to identify targets for chemotherapy (Srivas et al. 2016). Co-perturbation networks encapsulate 

information from various perturbation screens such as RNAi screens (Kim and Rossi 2008), 

CRISPR screens (Doench et al. 2016), or drug screens (Kubicek et al. 2012; Bansal et al. 2014; 

Markt et al. 2012). In these networks nodes represent genes and edges stand for correlations of 

two genes in response to the perturbation studies. These networks have also been used to 

investigate molecular mechanisms of drugs (F. Zhang et al. 2013; Noh, Shoemaker, and 

Gunawan 2018), predict drug targets (Isik et al. 2015), or pathway activity (Schubert et al. 2018; 

Dorel et al. 2018; Molinelli et al. 2013).  

 

Disease networks represent linkedness of diseases that can occur on several scales: on the 

molecular level (by linking diseases through shared genetic origin), phenotypic level (by 

connecting diseases if they share phenotypes) or on the population level (by adding edges 

between diseases based on their co-occurrence, or comorbidity). The first published 

comprehensive map of the linkedness of human diseases was termed the “diseaseome” (Goh et 

al. 2007), based on disease-associations from the OMIM (Amberger et al. 2018) database. The 

diseaseome revealed that most diseases are not isolated entities, but fall into highly connected 

clusters with common molecular roots. Disease networks based on phenotypic similarity have 

been published (Zhou et al. 2014), as well as population-level disease networks based on 

comorbidity (Chmiel, Klimek, and Thurner 2014; Hidalgo et al. 2009). 
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1.3.1.1.5. Interactomes 

 
The term “interactome” is loosely defined and usually refers to networks that contain different 

types of interactions, in order to represent the entirety of molecular interactions within and across 

cells. The interactions within interactomes can be generally categorized into direct physical 

interactions, and indirect functional interactions. Sources of these interactions can be: 

 

(1) Literature-curated interactions from small-scale experiments, 

(2) Interactions from large-scale interaction mapping efforts, 

(3) Computationally predicted interactions. 

 

Interactomes are often the go-to network to use for disease analyses. For this, various 

interactomes have been curated and published so far that have shown utility to unravel disease-

related traits (Menche et al. 2015; Luck et al. 2020). 

 

1.3.2. Interactomes as maps, network-based properties 
  
Although built on an array of diverse data, biological networks and interactomes have been shown 

to have certain common features. There are three features of networks that form the basis of 

viewing molecular networks as maps of cellular function (Figure 5). 

 

(1) On an individual node basis, the position of a node is linked to its importance in the specific 

biological system represented in the network. 

(2) On a larger level, the connectivity of a group of nodes in a network can be associated with 

shared biological function.  

(3) Taking a step further back, the distance between individual groups of nodes can indicate 

their functional relatedness.  
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Figure 5. Biological networks as maps of cellular function. Network centrality, disease modules, 

network neighborhoods and their relative positions are showcased. Reprinted by permission from 

Elsevier: Current Opinion in Systems Biology, “Interactome-based approaches to human disease” 

(Caldera et al. 2017). 

 

The next chapter of the introduction discusses some of the most commonly used network 

properties. 

 

1.3.2.1. General network properties 

 
Biological networks can be described as collections of nodes N or vertices, their 

interactions/connections as edges E or links. Networks can be undirected: here, two nodes are 

connected by an undirected link if there is an interaction between them. In directed networks each 

interaction has a source and a target, such as in gene regulatory networks: “gene A inhibits gene 

B”. Protein-protein interaction networks are traditionally undirected. Most often these links are 

unweighted (all links are equal in importance) and indicate a yes or no relationship. In contrast, in 

weighted networks not all links are equal and each link carries an additional property. Examples 

for weighted networks are metabolic networks or coexpression networks. Bipartite networks are 

built from two different types of nodes, such that interactions only occur between nodes of different 

types. Examples of these are disease-gene networks (Goh et al. 2007; Zhou et al. 2014). 

The total number of nodes (N) determines network size, the total number of links is denoted as 

(E). Most networks are sparse, i.e., only a small number of all possible links are present. The 

number of links a node has is termed its degree (k). Hubs in a network are nodes with a high 

number of connections. Hubs have been shown to show particular biological importance as they 

can be essential genes that are vital for the survival of cell lines (Blomen et al. 2015). The degree 

distribution of a network is the frequency distribution of all degrees over the whole network. In 
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scale free networks, the degree distribution follows a power law, that is the fraction of (k) nodes 

in the network having k degrees goes for large values of k as  

 

𝑃(𝑘)~𝑘'( 

 
where y is a parameter with a value typically ranging from 2 < y < 3 (Onnela et al. 2007; 

Choromański, Matuszak, and Miȩkisz 2013). Interactomes are often scale free. Scale free 

networks exhibit the “small world effect” (Cohen and Havlin 2003), a phenomenon whereby hubs 

in the network connect distinct parts of the network, shortening the average distance between 

nodes. A path in the network is a sequence of links that connect two nodes (A and B) in the 

network. The number of steps gives the length of a path. The shortest path length determines the 

network-based distance d as the minimal number of links connecting two nodes A and B. The 

diameter of a network is the longest of all shortest paths between any two nodes in the network. 

 

A subgraph of a network is a subset of particular nodes in a network with all of the edges linking 

the nodes. A connected component of a particular network or subgraph is a subgraph with no 

loose nodes, i.e., there is a path connecting every node to every other node in the connected 

component. The largest connected component is the connected component of a subgraph or 

network with the highest number of nodes. 

 

1.3.2.2. Centralities 
  
The centrality of a node measures its topological importance in the network. There are different 

ways of quantifying centrality, all focusing on different attributes of importance. Here, the four 

main centrality measures are discussed. The conceptually simplest centrality measure is degree 

centrality, that is defined as the number of links or connections of a node in a network. Hubs in 

networks have the highest degree centrality. Closeness centrality of a node is the average length 

of the shortest paths between the node and all other nodes in the graph. A node with high 

closeness centrality is therefore a node that is close to all other nodes (Bavelas 1950; Sabidussi 

1966). Betweenness centrality, first introduced as a measure for quantifying the control of a 

human on the communication between other humans in a social network (Freeman 1977), 

measures the number of shortest paths going through a node in a given network. Eigenvector 

centrality, or eigencentrality is a measure of influence of a particular node over a network. 

Eigenvector centrality assigns centrality scores to all nodes in a network based on their degree, 



56 

and is calculated based on a node’s connections to high-scoring nodes (Newman 2008). The Katz 

(Katz 1953) and PageRank centralities are variations of eigenvector centrality. It has been shown 

that not only do centrality measures pinpoint topologically important nodes in networks, but that 

they can also be used to identify biologically important nodes, as cancer driver genes have been 

shown to be central in various networks (Piñero et al. 2016).  

 

 1.3.2.3. Distance measures 
 
As the relative position of nodes and groups of nodes on a network is of particular importance 

from a biological perspective, the quantification of distance on networks is of interest in a multitude 

of research endeavors. 

Shortest distance, or the shortest path between two nodes on a network is defined as the 

connecting path between the two nodes with the minimum number of edges. The average 

distance between two groups of nodes on a network is calculated by averaging the pairwise 

shortest distances between each node-node pair in the two sets of nodes. The minimum distance 

between two sets of nodes on a network is defined as the shortest of all pairwise shortest 

distances between the two sets.  

Centre distance measure of two sets of nodes is defined as the shortest path between the nodes 

with highest closeness centralities in the two node sets. Network separation calculates the sum 

of mean distances between the two sets of nodes on the network using the average distance 

measure and subtracts it from the average shortest distance within the two sets of nodes (Menche 

et al. 2015).  

 

 1.3.2.4. Connectivity measures, modules 
 
Network modules denote a group of nodes in a network with dense connections among 

themselves. Nodes within a specific module are often functionally related (Spirin and Mirny 2003; 

Hartwell et al. 1999; Barabási and Oltvai 2004), belong to the same pathway, or are coexpressed 

(Huttlin et al. 2017; Rolland et al. 2014).  

 
Disease modules are usually defined as a set of molecular components and their interactions 

associated with a certain disease. Although network modules have been identified in groups of 

disease-related proteins (Feldman, Rzhetsky, and Vitkup 2008), the connectivity pattern of 

disease-associated nodes has unique properties as compared to the dense aggregation of nodes 
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in a network linked to a specific biological function (Ghiassian, Menche, and Barabási 2015). This 

observation led to the hypothesis that dysfunction is usually distributed among loosely connected 

functional modules on the interactome. The identification of disease modules in a network 

therefore requires slightly different approaches than common community detection methods that 

are used to identify functionally related groups of nodes (Fortunato 2010).  

 

The existence of connected disease modules over the past decade served as the basis 

hypothesis of interactome-based approaches to human disease. Commonly, disease modules 

were defined as the connected subgraph of disease-associated proteins within the interactome 

(Barabási, Gulbahce, and Loscalzo 2011a). Since this discovery, several other methods have 

been proposed for the identification of disease-related modules on networks, as well as for the 

analysis of the connectedness and relationships between disease modules (Menche et al. 2015; 

Ghiassian, Menche, and Barabási 2015). The flagship discovery that disease neighborhoods 

associated with complex traits are significantly linked and reside in specific network 

neighborhoods (Menche et al. 2015) has paved the way for a broad application of interactome-

based methods for disease discovery.  

 

1.3.3 Network medicine for diseases 
  
As outlined above, recent years have shown ample evidence that on interactomes, 

connectedness and function are intimately linked. This observation has made interactomes 

attractive models in elucidating fundamental questions in the research on a wide-variety of 

diseases. Interactomes have been applied to predict putative function and disease-relatedness 

of nodes, to elucidate disease-disease relationships and to investigate the efficacy and identify 

novel therapeutic approaches for diseases (Barabási, Gulbahce, and Loscalzo 2011; Caldera et 

al. 2017). This chapter discusses the various applications of network medicine to elucidate various 

questions regarding disease pathobiology.  

 

 1.3.3.1. Disease gene identification 
 
Multiple interactome-based disease-module and disease gene identification methods have been 

proposed in recent years. These methods commonly explore the network neighborhood of 
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previously identified disease-associated genes, so called “seed genes” to identify novel disease-

associated entities (X. Wang, Gulbahce, and Yu 2011).  

 

a) Path-based approaches use shortest path-based measurements to rank the putative 

candidates on the network in relation to known disease genes (George et al. 2006; Dezső 

et al. 2009). 

b) Dynamical approaches pinpoint novel candidate genes using dynamic propagation such 

as diffusion methods around previously identified disease modules. These diffusion 

methods include random walk-based approaches that expand around a set of seed genes 

following their links (Krauthammer et al. 2004; Vanunu 2009; Vandin, Upfal, and Raphael 

2011; Smedley et al. 2014), ranking those nodes higher that have been visited more 

frequently by the walker. 

c) Connectivity-based methods rely on the connectivity of candidate nodes to the already 

identified disease module (Guney and Oliva 2012; X.-D. Wang et al. 2014; Ghiassian, 

Menche, and Barabási 2015).  

 

1.3.3.2. Disease-disease relationships 
 
Much like individual nodes in a network, due to the interconnectedness of biological systems, 

diseases cannot be fully understood as isolated entities. Shedding light on the molecular 

connections that link diseases can help us uncover the molecular links of pathobiological 

phenotypes and disease comorbidity (Hu, Thomas, and Brunak 2016; Zhou et al. 2014). 

Interactomes have been used to identify the shared genetic architecture of diseases, revealing 

that more than 800 diseases have at least one genetic link to another disease (Zhou et al. 2014). 

The relationship between two diseases can be represented as the tendency of their disease-

modules to overlap in an interactome-based framework. A study of 44,551 disease pairs identified 

that the degree of this disease-module overlap is indicative of the pathobiological similarity of 

diseases on a phenotypical, gene expression and comorbidity level (Menche et al. 2015). Disease 

classification, which is historically based on clinicopathological traits of diseases and often 

grouped according to organ system, can also benefit from interactome-based methods that rely 

on the molecular similarity of disease entities (Chan and Loscalzo 2012). In addition to 

interactomes, metabolic pathways (Lee et al. 2008), phenotype similarity (Zhou et al. 2014), 

disease ontologies (van Driel et al. 2006), and comorbidity data (Hidalgo et al. 2009; Klimek, 

Aichberger, and Thurner 2016) have been used to build disease-disease networks.  
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1.3.3.3. Drug efficacy 
 
From an interactome-based perspective, the effect of drugs - similarly to diseases - can be 

understood as local perturbations in the network neighborhood of the drugs and their targets. 

Network pharmacology therefore has applied network-medicine concepts detailed above to 

investigate the effect of drugs (Hopkins 2008; Csermely et al. 2013) on biological systems. 

Through these studies, it has been shown that most drugs have more targets than previously 

though, that these targets are highly connected (Yildirim et al. 2007; Keiser et al. 2009), and that 

most drugs either only target a small subset of a particular disease module, or its adjacent network 

neighborhood (Guney et al. 2016).  

Furthermore it has been shown that drugs whose target network neighborhood is closer to a 

particular disease module have been found to be more effective in the clinic (Z.-C. Li et al. 2016). 

This discovery has prompted the use of interactome based methods for predicting or prioritizing 

novel drugs and drug targets for diseases based on their proximity on the interactome (Z.-C. Li et 

al. 2016; Csermely et al. 2013), as well as drug repurposing by identification of diseases with 

shared molecular background that may be treated by similar therapeutic approaches (J. Li et al. 

2016). 

 

1.3.3.4. Specific interactomes 
 
The majority of interactome-based methods rely on global interactomes that contain an aggregate 

of interactions between molecules that have been identified under different experimental and 

biological conditions. While these interactomes provide informative landscapes for investigating 

general principles of disease pathogenesis and cellular organization, it has also become clear 

that context-specific interactomes that represent certain cellular states, cell types or tissues are 

needed to answer more specific questions, especially for diseases with particular tissue or cell 

specific representations.  

 

Context specific expression data can be overlaid on global interactomes to approximate cell type, 

tissue or disease specificity (Fagerberg et al. 2014; Melé et al. 2015; Yeger-Lotem and Sharan 

2015). These specific interactomes are usually smaller than the global network and contain less 

links. A general observation emerging from the use of specific interactomes is that housekeeping 
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genes - genes that are widely expressed across different tissue types and states - have been 

found to form a core interactome (Bossi and Lehner 2009; W. Liu et al. 2014; Barshir et al. 2014). 

It has been shown that the connectedness of disease modules over different tissue-specific 

networks is indicative of their presentation in the respective tissues (Kitsak et al. 2016). Moreover, 

tissue and cell specific networks have been shown to improve disease-gene prioritisation (Barshir 

et al. 2014; Magger et al. 2012; M. Li et al. 2014). 
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2 Aims of the thesis 
 
Rare diseases of the immune system are a heterogeneous group of diseases that, collectively, 

affect a considerable fraction of the population, pose a significant demand on the healthcare 

system, and require tailored scientific approaches. While systems-biology and network-based 

tools have been applied to various diseases to answer a multitude of questions, e.g., to identify 

key drivers in diseases, a general outline on how to use them to address a specific group of rare 

disorders is still lacking. These systems-based methods are needed to objectively assess 

characteristics of diseases, and are useful not only to describe these diseases in an accurate 

fashion but also to provide a general overview of represented phenotypes, and to quantify the 

relationships between the rare diseases themselves and other diseases beyond. The aim of this 

thesis is to provide a general overview of the challenges in research on rare diseases of the 

immune system and showcase how tools of systems biology, in particular machine learning on 

clinical datasets and network-based methods, can be used to address the gaps regarding the 

available knowledge.  

 

In the first research manuscript, presented in results section 3.1 the thesis introduces our effort 

on expanding and optimizing the available phenotypic representation of IEI using HPO, in the 

manuscript titled “Curation and Expansion of Human Phenotype Ontology for Defined Groups of 

Inborn Errors of Immunity”. We developed a method with the goal to systematically revise and 

expand the IEI-relevant phenotype information, by working on the completion of the HPO ontology 

in an expert-driven framework. In addition, we aimed to assess the efficacy of our approach using 

a real-life based diagnostic challenge.  

 

Finally, in the second research article included in the results section 3.2. titled “AutoCore: network-

based identification of a core module defining human autoimmunity and autoinflammation”, we 

used systems-biology methods to chart the molecular landscape of rare monogenic autoimmune 

and autoinflammatory diseases. Our goal was to construct a novel, network-based framework 

that could be leveraged to unravel objective pathobiological properties of monogenic 

autoimmunity/autoinflammation, to identify molecular subclusters of these diseases and to identify 

novel targetable therapeutic pathways.  
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3 Results 
 

3.1. Curation and Expansion of Human Phenotype Ontology for Defined 
Groups of Inborn Errors of Immunity 
 
Matthias Haimel PhD*, Julia Pazmandi MSc*, Raúl Jiménez Heredia MSc, Jasmin Dmytrus PhD, 

Sevgi Köstel Bal M.D.,PhD, Samaneh Zoghi PhD, Paul van Daele M.D., Tracy A. Briggs PhD, 

Carine Wouters M.D., Brigitte Bader-Meunier M.D., Florence A. Aeschlimann M.D., Roberta 

Caorsi M.D., Despina Eleftheriou M.D., Esther Hoppenreijs M.D., Elisabeth Salzer M.D.,PhD, 

Shahrzad Bakhtiar M.D., Beata Derfalvi M.D., Francesco Saettini M.D., Maaike A. A. Kusters 

M.D.,PhD , Reem Elfeky M.D., Johannes Trück M.D., Jacques G. Rivière M.D., Mirjam van der 

Burg PhD , Marco Gattorno M.D., Markus G. Seidel M.D., Siobhan Burns M.D., Klaus Warnatz 

M.D., Fabian Hauck M.D.,PhD , Paul Brogan M.D., Kimberly C. Gilmour PhD, Catharina Schuetz 

M.D., Anna Simon M.D.,PhD, Christoph Bock PhD , Sophie Hambleton PhD , Esther de Vries PhD 

, Peter Robinson M.D., Marielle van Gijn PhD †#, Kaan Boztug M.D.†#. 2021. The Journal of 

Allergy and Clinical Immunology. Published:May 11,2021. DOI: 

https://doi.org/10.1016/j.jaci.2021.04.033 * and †, these authors contributed equally # to whom 

correspondence should be addressed. 

 

We have initiated an international collaboration of experts on immune mediated disorders in order 

to review, revise and complete the HPO for IEI. This manuscript showcases our results regarding 

the revision of the HPO tree and the reannotation of IEI based on four major disease groups. First, 

we have used a hands-on approach to expand the existing HPO tree with novel terms relevant 

for IEI. Next, we used an ontology-guided machine learning approach, coupled with expert review 

to reannotate IEI with HPO terms. We show that both of these approaches resulted in a significant 

gain in available HPO terms per disease, and a more complete phenotypic annotation of diseases 

that has improved disease-disease and patient-disease similarity matching. 

 

The introduction of our initiative, working structure and methods, as well as our results and their 

validation using a cohort of IEI patients can be found in this publication. In addition, the 

supplementary materials and methods provide further technical details on our methodology on 

the computational side. 
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Abstract  112 

BACKGROUND: Accurate, detailed and standardized phenotypic descriptions are essential 113 

to support diagnostic interpretation of genetic variants and to discover new diseases. The 114 

Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich 115 

collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. 116 

However, to date the use of HPO has not yet been widely implemented in the field of inborn 117 

errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. 118 

OBJECTIVES: We sought to systematically review available terms in HPO for the depiction 119 

of IEIs, to expand HPO yielding more comprehensive sets of terms, and to reannotate IEIs with 120 

HPO terms to provide accurate, standardized phenotypic descriptions. 121 

METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers 122 

working on IEIs and bioinformaticians. Multiple branches of the HPO tree were restructured 123 

and extended based on expert review. Our ontology-guided machine learning coupled with a 124 

two-tier expert review was applied to reannotate defined subgroups of IEIs. 125 

RESULTS: We revised and expanded four main branches of the HPO tree. Here, we 126 

reannotated 73 diseases from four IUIS-defined IEI disease subgroups with HPO terms. We 127 

achieved a 4.7-fold increase in number of phenotypic terms per disease. Given the new HPO 128 

annotations, we demonstrated improved ability to computationally match selected IEI cases to 129 

their known diagnosis, and improved phenotype-driven disease classification. 130 

CONCLUSION: Our targeted expansion and reannotation presents enhanced precision of 131 

disease annotation, will enable superior HPO-based IEI characterization and hence benefit both 132 

IEI diagnostic and research activities. 133 

 134 

Key message 135 

HPO is a robust resource for supporting IEI diagnostics and genetics with adequate ontology 136 

breadth and disease annotation depth. 137 
 138 
Capsule Summary 139 
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Our newly formed expert consortium systematically reviewed and expanded existing HPO 140 

terms of IEIs and reannotated IEIs with HPO terms. This will support diagnostic pipelines and 141 

analysis of variants from next-generation sequencing.  142 

 143 

Key words 144 

HPO; ontology; phenotype; rare diseases; inborn errors of immunity; immune deficiencies; 145 

disease classification; diagnostic support; patient matching; genetic analysis 146 

 147 
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Introduction 170 

 171 

Rare and undiagnosed diseases pose challenges for affected patients, clinicians and researchers 172 

working to improve diagnostic and therapeutic approaches. Because of the rarity, clinicians 173 

often only see a few patients with specific rare phenotypes throughout their careers, leading to 174 

considerable diagnostic delay (1). Genetic research on rare diseases often relies on single 175 

pedigrees or a few patients, leaving many patients undiagnosed (1). Compiling a cohort of 176 

patients - so-called patient matching - is often crucial to gain insight into the phenotypic 177 

spectrum, natural/clinical history of the disease, and adequate monitoring and treatment 178 

strategies. The rare disease community has recognized these challenges and established tools 179 

enabling efficient data sharing across institutions and borders, including genetic data exchange 180 

through the Matchmaker Exchange platform (2) to solve undiagnosed exomes and genomes 181 

(3). These platforms however are highly dependent on accurately phenotyped and categorized 182 

patients and standardized disease classifications.  183 

To date, several nomenclatures and reference systems for diseases have been developed (4,5). 184 

In parallel, ontologies were established to provide a more systematic, hierarchical classification 185 

of diseases (6,7). However, these nomenclatures group patients by disease label and do not 186 

describe the underlying phenotypic features. Consequently, clinical features, laboratory 187 

measurements, anatomical and functional phenotypes of patients are often described with 188 

variable quality and specificity, which hampers patient matching, diagnostic efficiency, genetic 189 

variant prioritization in diagnostic pipelines and global data exchange.  190 

Given these challenges and the need for accurate, standardized phenotyping, the Human 191 

Phenotype Ontology (HPO) system was conceptualized and published with initial terminology 192 

in 2008 (8,9). To date, HPO provides the most comprehensive deep phenotyping resource for 193 

rare diseases for clinicians, researchers, bioinformaticians and electronic health record (EHR) 194 

systems in the world. HPO is used in many projects including the 100,000 Genomes Project, 195 

the NIH Undiagnosed Disease Program and Network (UDP and UDN), the Undiagnosed 196 

Diseases Network International (UDNI), RD-CONNECT, and SOLVE-RD (1,10-13). HPO is 197 

a community-based tool and is increasingly adapted as the standard to describe phenotypic 198 

abnormalities for everyday use (14). Each term in HPO describes a distinct phenotypic feature 199 

(e.g. lymphadenopathy, HP:0002716) and the HPO tree structure allows similarity measures 200 

between patient phenotypes. HPO contains over 200,000 phenotypic annotations for hereditary 201 

diseases, of which 2,120 are considered rare diseases. Inborn errors of immunity (IEIs) form a 202 

subgroup of these rare diseases. Clinical experts in IEI agree that a major barrier to the adoption 203 
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of HPO terminology has not been used widely for IEIs partly due to the lack of disease specific 204 

HPO terms for IEI patients (15). Adequate depiction of the complex clinical and 205 

immunological phenotypes of IEI disease entities with HPO terms would allow discrimination 206 

between heterogeneous groups of IEIs. Illustrating the lack of terms, in 2017 HPO contained 207 

more than 11,000 terms, out of which 5,000 terms have been applied to the musculoskeletal 208 

system, with only 1,000 terms related to IEIs (9,15).  In addition, the phenotypic annotation of 209 

IEIs often includes results of specific immunological assays, which pose a challenge to 210 

accurately reflect in HPO terms (15). Because of the lack of specific HPO terms depicting 211 

results of laboratory assays, often a non-specific broader term is used for the annotation of IEIs. 212 

Therefore, HPOs are currently not specific enough to be used for genetic analysis and 213 

diagnostic aid for IEIs. In a study addressing the clinical efficacy of genetic testing in IEI, 214 

bioinformatics tools using existing HPO terms missed the disease causing gene in 37% of the 215 

patients with known monogenic disorders (16). In this study, we set out to improve HPO 216 

terminology for IEIs by applying established bioinformatic methodologies coupled with expert 217 

review. The aims of this project were therefore to i) systematically review existing HPO terms 218 

for IEIs, ii) revise ontology structures, to iii) add missing terms, as well as iv) reannotate 219 

existing IEIs with HPO terms, to collectively enable systematic use of HPO by the IEI-220 

community.  221 

 222 

Materials and Methods 223 

Spearheaded by the European Reference Network on Rare Primary Immunodeficiency, 224 

Autoinflammatory and Autoimmune diseases (ERN-RITA) and the European Society for 225 

Immunodeficiencies (ESID), we set up working groups comprising members of the 226 

participating immunodeficiency societies to revise and expand HPO terms for IEIs. Three 227 

workshops, numerous teleconferences and joint task forces took place over the span of 2 years, 228 

with over 30 participants including expert clinicians, geneticists, researchers working on IEIs 229 

and bioinformaticians. All participating clinicians and geneticists identified through ERN-230 

RITA, ESID, and the International Society of Systemic Autoinflammatory Diseases (ISSAID) 231 

are established experts in their fields from different European countries and North America. 232 

Additional scientific support provided the indispensable bioinformatics expertise.  233 

 234 
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Establishment of working structure 235 

A remote working structure (detailed in the Supplementary Methods) was launched to address 236 

gaps in the HPO tree and in the annotation of IEI diseases. 237 

 238 

Expansion and restructuring of disease-related branches of the HPO tree 239 

Disease-specific HPO restructuring was discussed within four working groups. Each group 240 

focused on a different HPO branch; the suggested changes were agreed on among all 241 

participants. Differences between centers and countries in the use of terms and definitions were 242 

highlighted during the face-to-face workshops. The results were summarized electronically in 243 

Excel documents or pictures and flipchart drawings by the main coordinators before being 244 

submitted to HPO. The full list of restructured tree elements and new submitted HPO terms is 245 

detailed in the Supplementary Document 1. Additionally, missing terms describing pulmonary 246 

and gastro-intestinal complications of primary antibody deficiency (PAD) were discussed 247 

during teleconferences and thereafter submitted to update the HPO ontology. A list of HPO 248 

resources can be found in Supplementary Materials and Methods. 249 

 250 

Standardized reannotation of rare, genetically diagnosed diseases 251 

A four-step process was developed for a standardized reannotation effort across working 252 

groups and to consistently annotate IEIs (spanning over 300 different diseases in Online 253 

Mendelian Inheritance in Man (OMIM)) with HPO terms (Fig 1). As IEIs represent a large and 254 

heterogenous group of rare diseases, we here decided to selectively focus on defined subgroups 255 

of IEI to test the feasibility and usefulness of such an endeavor. First, publications were 256 

collected by experts for each disease within the subgroups (minimum of two articles per 257 

disease), representing key phenotypic presentation(s) of the specific disease. In the second step, 258 

HPO terms were extracted from the provided publications for each disease using machine 259 

learning ((17), explained in detail in Supplementary Materials and Methods) and summarized 260 

into Excel documents. Third, a two-tier expert review evaluated the text mined terms, 261 

suggested additional terms if required and the responsible working group agreed (defined as at 262 

least 80% agreement amongst group experts) on the final HPO annotations for each disease. 263 

Fourth, the validated terms were submitted to HPO. Supplementary Document 2 contains the 264 

reannotated diseases and the list of reannotated terms for each disease is available in 265 

Supplementary Document 3. 266 

 267 
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Standardized reannotation of genetically undiagnosed diseases 268 

The methods above were specifically designed for application in (very) rare diseases, where 269 

the number of patients and therefore the described phenotypic spectrum and clinical 270 

presentation is sparse. In case of diseases and disease groups where an adequate amount of 271 

patient and phenotype data was available, in addition to a True/False annotation, the frequency 272 

of each phenotypic item was assessed. The frequencies correspond to the following 273 

representation in patients: common = Frequent (79-30%); sometimes = Occasional (29-5%); 274 

rare = Very rare (<4-1%). 275 

 276 

Patient cohort  277 

We randomly selected 30 patients that harbored a genetic diagnosis in one of the reannotated 278 

diseases from a large pediatric referral center research database. Clinical summaries of these 279 

patients prior to genetic diagnosis were retrieved by an expert clinician. The clinical summaries 280 

were parsed and HPO terms were extracted using machine learning as in the Supplementary 281 

Methods. 282 

 283 

HPO information content measures, and disease patient similarity measures   284 

Information content of all HPO terms was assessed with the R package ontologyIndex v2.5 285 

(18). The phenotypic similarity of diseases and patients before and after reannotation was 286 

compared using the R package ontologySimilarity v2.3 (18). The Euclidean distances between 287 

the diseases were computed based on similarity measures, clustered with hierarchical clustering 288 

and visualized with ggtree using the R packages ggtree (19) and ape v5.2 (20). 289 

 290 

A detailed description including the data processing pipeline and tools are available in the 291 

Supplementary Materials and Methods.  292 

 293 

Supplementary Materials 294 

Supplementary Materials and Methods 295 

Supplementary Document 1: HPO tree restructuring and the list of new terms 296 

Supplementary Document 2: Summary of diseases reannotated 297 

Supplementary Document 3: List of all terms per disease after reannotation  298 

Supplementary Document 4: List of cases used for phenotype to diagnosis matching 299 

 300 
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Results  301 

 302 

Systematic evaluation and expansion of the HPO structure and terms relevant to IEIs 303 

Our approach has resulted in the restructuring of four main branches of the HPO tree, namely: 304 

i) abnormality of the immune system (HP:0002715) ii) abnormality of metabolism/homeostasis 305 

(HP:0001939) iii) abnormality of the integument (HP:0001574) and iv) abnormality of the 306 

cardiovascular system. (Fig 2A, Supplementary Document 1). Together, this revision prompted 307 

the replacement/restructuring of 67 terms, and the addition of 57 new terms to the HPO tree, 308 

among them “recurrent fever”, “unusual infections”, “IgG levels in blood” (Fig 2B, 309 

comprehensive list in Supplementary Documents 1 and 2). 310 

 311 

Directed expansion of primary antibody deficiency (PAD) terms 312 

Overall, the PAD working group focused on replacing broad and non-specific terms with terms 313 

that describe phenotypes in more detail and accuracy (example: ‘partially absent total 314 

IgG/IgA/IgM in blood’ and ‘(near) absent total IgG/IgA/IgM in blood’ instead of 315 

‘hypogammaglobulinemia’) Fig 2B. In addition, we proposed that the full detailed spectrum of 316 

specific antibody as well as IgG-subclass deficiencies was described by separate HPO terms. 317 

For example, we described individual terms related to ‘decreased specific antibody response to 318 

vaccination in blood’ divided according to the response to different types of vaccination 319 

(protein, protein-conjugated polysaccharide and unconjugated polysaccharide). 320 

 321 

Standardized reannotation of rare, genetically diagnosed IEIs  322 

We started by a systematic review of four disease categories of the IUIS classification of IEIs, 323 

as proof of concept: diseases affecting cellular and humoral immunity (IUIS Table 1), diseases 324 

of immune dysregulation (IUIS Table 4), autoinflammatory disorders (IUIS Table 7) and 325 

genetically undiagnosed predominantly antibody deficiencies (IUIS Table 3), detailed in Table 326 

1 and Supplementary Document 3. As a first step, we assessed the already available HPO 327 

annotation for each disease in the v2019-06-03 HPO release (see Supplementary Materials and 328 

Methods). We found that 15% of diseases considered (11 of 73 diseases in total) did not have 329 

any associated HPO terms (Fig 3A). Overall, we found that on average 13.3 phenotype terms 330 

were available per disease (Fig 3B), later referred to as “existing terms”. 331 

The text mining and evaluation process was separated into four steps shown in Fig 3C. We 332 

have first focused the reannotation of 72 genetically diagnosed IEIs, and genetically 333 
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undiagnosed PADs. For genetically diagnosed IEIs, text mining was based on 162 expert-334 

curated articles, on average 2.57 articles per disease (Fig 3D). This resulted in 4,517 extracted 335 

phenotype terms, 66.42 terms per disease (Fig 3E). Of these terms, 3,242 - or 71% per disease 336 

(47.67 out of 66.42) - were accepted as correctly attributed terms by the expert reviewers (Fig 337 

3F). Expert suggestions added up to 529 additional HPO terms, in addition to the existing and 338 

text mined terms. 339 

After reannotation, a mean of 63.1 terms were available for each disease, resulting in a 4.7-fold 340 

gain in the number of available annotations (Fig 3G). The mean information content as 341 

measured by the overall frequency of terms in each disease’s annotations has increased from 342 

6.17 to 8.3 (Fig 3H) after reannotation. 343 

 344 

The new annotation of diseases consisted mainly of text mined terms (70.6%) (Fig 3I), 345 

followed by already existing terms (9.3%) and additional suggestions by experts (9.3%, adding 346 

a further 5.2 additional terms per disease) (Supplementary Document 3). 347 

 348 

Standardized reannotation of genetically undiagnosed primary antibody deficiencies (PADs) 349 

PADs form a heterogeneous group, and the majority of PADs do not (as yet) have a genetic 350 

diagnosis. We collected articles describing the heterogeneous PADs related to common 351 

variable immunodeficiency disorders (CVID), agammaglobulinemia, selective IgM deficiency, 352 

selective IgA deficiency, IgG-subclass deficiency, specific antibody deficiency and 353 

unclassified antibody deficiency subgroups. In total, 541 terms were text mined from these 354 

articles, many of these in more than one PAD subgroup, and 245 of these terms (45.2%) were 355 

annotated as correctly associated to the respective PAD subgroup by the expert reviewers (Fig 356 

3J). Of these 245 terms, the experts annotated 16.3% as commonly found in PAD diseases, 357 

48.97% as sometimes associated (albeit less commonly), and 34.7% as rarely associated with 358 

PAD (Fig 3K). 359 

 360 

Patient-disease matching  361 

We set out to showcase the efficacy of our reannotation effort by highlighting the potential 362 

diagnostic impact of optimized disease annotation. To do this, we have selected 30 clinical 363 

cases from a large immunology referral center research database (Supplementary Document 364 

4). HPO terms were matched to patient phenotypes by experts from the clinical synopsis and 365 

the phenotypic similarity to all HPO-annotated diseases was calculated based on these selected 366 
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patient HPO terms (Fig 4A), as illustrated by one concrete clinical example of a patient with 367 

Tumor Necrosis Factor Receptor Associated Periodic Syndrome (TRAPS, Fig 4B). Overall, 368 

we show a significant 47% improvement in the specificity of patient phenotype matching to 369 

correct diagnosis (from 0.49 to 0.72, p value = 1.8e-07, Fig 4C), and a significantly better 370 

ranking of the correct clinical diagnosis across all possible diseases after reannotation: in the 371 

majority of cases, the correct diagnosis was in the top 10 of matched diseases (Fig 4D) after 372 

reannotation, and the rank of the correct diagnosis for individual patients was highly 373 

significantly improved, from a mean of 285 to 19 (14.9 fold improvement, p value = 9.1e-07, 374 

Fig 4E). 375 

 376 

Phenotype-driven disease classification 377 

We tested the efficacy of our approach in selecting biologically and clinically meaningful 378 

phenotypes by assessing the HPO-ontology based phenotypic similarity of diseases before and 379 

after reannotation. In particular, we assessed whether the similarity was greater within or 380 

between IUIS clinically defined groups. We found that the phenotype-driven disease 381 

classification after reannotation has resulted in a clustering more in concordance with the IUIS-382 

based clinical classification (Fig 5A-B). 383 

 384 

Discussion 385 

 386 

Unified data standards, consistent classification and robustly verified clinical data are vital 387 

pillars supporting diagnostic pipelines and data-driven research. Although databases and 388 

vocabularies that aim to provide accurate phenotypic descriptions exist (5-9), there are still 389 

major gaps in the depiction of IEIs in these datasets. Here we used a cross-community 390 

collaboration to review, expand and improve the depiction of IEIs in HPO, and reannotate IEIs 391 

with HPO terms. We reviewed four separate branches of the HPO tree and submitted 57 new 392 

and expanded HPO terms, the majority of which are now included in the official HPO dataset. 393 

We introduced a semi-automated reannotation pipeline, that combines ontology-guided 394 

machine learning and a two-tier expert review to reannotate four main categories of IEIs. The 395 

basis of the ontology-guided machine learning was the expert curated list of articles (162 in 396 

total), that was submitted to the PanelApp (21) to serve as a public resource. The text mined 397 

phenotypes were subjected to expert review to confer face validity or refute the putative new 398 

HPO terms. IEIs and their current HPO terms covered by the working groups were scrutinized 399 
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in-depth, resulting in high-quality annotations. Overall, we have achieved a 4.7-fold gain in 400 

number of HPO terms annotating each disease. These annotations included unspecific 401 

(frequently annotated) as well as specific (less frequently annotated) HPO terms holding less 402 

and more information content respectively. Combined, the mean information content increased 403 

from 6.17 to 8.3.  404 

Each reannotated disease showed an increase in information content and a quantitative gain in 405 

the number of available HPO terms. Through patient-disease matching and disease-similarity 406 

examples we illustrated that these gains and increases translated to significant qualitative 407 

improvement in patient-disease matching in an independent cohort of IEI patients (Figure 4), 408 

and phenotype-driven classification of IEIs that more closely resembles clinical consensus 409 

(Figure 5). Although neither of these measures are systematic assessments of global patient-410 

disease matching and disease similarity comparisons, they highlight that there is considerable 411 

benefit by the revision of specific subclasses of diseases. Once a near complete HPO phenotype 412 

reannotation of almost all IEIs is available, it will be intriguing to assess how well patients with 413 

genetic diagnoses match reannotated OMIM diseases in a clinical setting, how patient matching 414 

to genetic diagnosis is transformed, and if these changes ultimately lead to an earlier diagnosis. 415 

Finally, once a detailed and accurate phenotypic description is available for all IEIs, 416 

identification phenotype-driven patient subgroups will be common practice, and a more 417 

objective entirely phenotype-driven classification and ontology of IEIs can become a reality.  418 

 419 

Accurate phenotypic description of patients holds promise for diagnostic utility and for the 420 

discovery of novel diseases. Phenotype-driven genetic diagnostic tools now exist, but their full 421 

clinical potential is hampered by the lack of complete phenotypic descriptions for most types 422 

of IEIs. Phenotips (22) is a free and open source software for collecting and analyzing 423 

phenotypic information of patients with genetic disorders that is widely used in the rare disease 424 

community. Tools such as Exomiser use HPO terms to annotate and to prioritize potentially 425 

casual variants (23). New integrative ‘omics approaches and the analysis of large-scale data 426 

with artificial intelligence will allow us to go from a one-size-fits-all to a more personalized 427 

medicine, including in IEIs. We see the potential to integrate the richer phenotyping of 428 

previously undiagnosed groups of IEI patients with available sequencing data to accelerate 429 

disease gene discovery and at the same time increase the diagnostic rate in new patients (24).  430 

Novel disease-gene or phenotype associations depends on sufficient numbers of cases as well 431 

as a control cohort of comparable quality. Cross-institute and cross-country collaborations for 432 

cohorts of undiagnosed, but well-phenotyped patients could shed light on novel disease-433 
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causing genes not only of the immune system. Trusted and accepted data and information 434 

sharing platforms are already being developed (13, 22) to provide robust and sufficiently 435 

granular HPO terms as a standardized way of phenotyping patients. Electronic health records 436 

(EHR) (25) could facilitate the transfer of HPO terms by integrating with available sharing 437 

platforms. Capturing HPO annotations of novel rare diseases or cases is an ongoing challenge 438 

for a complete disease representation. Thus it is important that alongside of updating the official 439 

IUIS classification, HPO descriptions of disorders are curated once every several years. We 440 

suggest a community effort for such regular reviews of HPO regarding IEIs, such as a team of 441 

experts, part of big international groups of clinicians such as ESID or ERN RITA, the Clinical 442 

Immunology Society (CIS) or other similar organizations. Publication standards that require 443 

the submission of HPO annotations up-front would greatly improve this process. 444 

 445 

Once phenotyped patients are available, robust and global approaches are accessible (2) to find 446 

phenotypic similar cases. These comparisons are performed by advanced machine learning 447 

algorithms. However, machine learning can also be a very powerful tool to automate the 448 

identification of relevant phenotype information in publications or clinical notes. We applied 449 

an ontology-guided machine learning tool to support the annotation of diseases and explored 450 

the full spectrum of terms – from very relevant to not relevant at all. The same process can be 451 

applied to unstructured clinical notes to accelerate in-depth annotation of patients. For patients 452 

with EHR (25), abnormal clinical values can automatically be translated into HPO codes (26) 453 

for a more precise diagnostic application and integrated with sharing platforms as mentioned 454 

before. The foundation of these comparisons is an ontology with a comprehensive set of term, 455 

which is widely used. 456 

 457 

As there is currently no gold-standard on how to perform an expert-based review of ontologies. 458 

guidance on annotating diseases with HPO phenotypes can vary between diseases, disease 459 

classes and centers. IEIs are rare diseases, and often there are only a few patients described 460 

(sometimes only one kindred in case of ultra-rare diseases). Therefore, the depth of currently 461 

available published phenotypes is at times limited. The low number of patients and insufficient 462 

depth of available phenotypes brings up a question as to which diseases to include in 463 

phenotyping exercises of this nature. On the one hand, focusing on IEIs that are commonly 464 

accepted, with multiple patients diagnosed and well described by multiple researchers can 465 

increase the depth of phenotyping. However, this approach excludes at least 10% of IEIs (the 466 

ultra-rare diseases). On the other hand, an all-inclusive approach including every disease 467 
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systematically means that we rely on sparsely phenotyped patients and perhaps insufficient 468 

data for ultra-rare disorders. A warning of accuracy by indicating the frequency of each 469 

phenotype for diseases could soon be possible, with the addition of phenotype frequency to the 470 

HPO dataset, an expansion that is currently work in progress. This implies the need for a 471 

responsive system, capable of assimilating new phenotypic information as the pool of 472 

confidently diagnosed patients increases.  473 

 474 

Our ongoing approach aims to address these gaps for IEIs and to provide an ontology that is 475 

practical, useful and as complete as possible. However, the existence of a well-built ontology 476 

and the awareness of clinicians and researchers itself does not guarantee a shift in the 477 

community to fully adapt a standardized phenotyping approach. Our approach raised awareness 478 

regarding the concept and importance of HPO amongst the IEI community. Moreover, the 479 

process made the participating clinicians aware of the available terms and highlighted where 480 

these were lacking. Moving forward, it is very important that official entities adopt HPO terms 481 

as the unified means of patient phenotyping. We hypothesize that as soon as the widely used 482 

registries such as the Undiagnosed Disease Network (11) or the IUIS (27) use HPO to refer to 483 

phenotypic annotation, this will propel the IEI field towards adopting HPO as the main 484 

nomenclature for phenotyping IEI patients. One promising move in this direction is the recent 485 

expansion of the ESID registry working definitions for the clinical diagnosis of IEIs (28), which 486 

derives HPO terms from OrphaNet using the ORDO Ontological Module (HOOM) platform 487 

(29), prompted by our HPO initiative.  488 

 489 

In summary, our work reviewed and expanded the phenotypic depiction of multiple subclasses 490 

of IEIs, and to our knowledge, this initiative is the first endeavor of its kind with the aim of 491 

standardizing IEI phenotypes.  Our semi-automated annotation-based approach is scalable to 492 

include all IEIs as illustrated herein. We propose our reannotation approach as a blueprint for 493 

systematic HPO (re)annotation for additional immunological and non-immunological diseases.  494 

 495 
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 496 

Fig 1: Pipeline for of standardized reannotation of IEI diseases. First, scientific 497 

publications were collected by experts for each disease within the subgroups. Second, HPO 498 

terms were extracted from the provided publications for each disease using machine learning 499 

and summarized into Excel documents. Third, a two-tier expert review evaluated the text mined 500 

terms, suggested additional terms if required and the responsible working group agreed on the 501 

final HPO annotations for each disease. Fourth, data were collated, and the agreed terms were 502 

submitted to HPO. 503 
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 505 

Fig 2: Revision and expansion of the HPO tree. A) Schematic representation of the 506 

restructuring of the HPO tree. Main branches of the HPO tree where restructuring was 507 

performed are marked with light green. B) “Abnormality of temperature”, “Abnormality of 508 

immunoglobulin level“ and “Unusual infections“ as examples of revised branches of the HPO 509 

tree. New additions and suggestions are marked with green, repositioned terms are marked with 510 

yellow. 511 
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 513 

Fig 3: Result of disease reannotation. A) HPO annotation availability in the subset of 72 514 

diseases. B) Distribution of number of available HPO terms per disease. C) Distribution of the 515 

number of articles used per disease for the reannotation pipeline. D) Number of mined terms 516 

per disease. Each dot represents a disease. E) All mined vs all accepted terms. F) Number of 517 

available terms per disease before and after reannotation. Each dot represents a disease. G) 518 

Mean information content available per disease before and after reannotation. H) The aggregate 519 

mean annotation per disease after reannotation. I) All text mined terms from PAD publications 520 

J) Frequency distribution of different PAD terms according to the experts. HPO: Human 521 

Phenotype Ontology; PAD: Primary Antibody Deficiencies.  522 
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 524 

Fig 4: Patient-disease matching. A) Schematic overview of the different steps of patient-to-525 

disease matching. First, the phenotypes were identified in a patient’s clinical history. Second, 526 

these phenotypes were translated to HPO terms. Finally, patient phenotype to disease matching 527 

was measured by Lin similarity.  B) Matching patient 1 to a diagnosis. C) Similarity of patients 528 

in patient cohort to genetic diagnosis before and after reannotation. D) The rank of correct 529 

clinical diagnosis more often is in the top 10 of matched diseases after reannotation. E) 530 

Improvement of ranks of clinical diagnosis before and after reannotation. Significance was 531 

assessed by Student t-test. 532 
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 533 

Fig 5: Phenotypic similarity of diseases before and after reannotation. Diseases are 534 

annotated with the IUIS disease group (inner circle), sub-group (outer circle) and OMIM 535 

identifier. A) Clustering of diseases based on phenotypic similarity before reannotation. B) 536 

Clustering of diseases based on phenotypic similarity after reannotation. HPO: Human 537 

Phenotype Ontology; IUIS: International Union of Immunological Societies, OMIM: Online 538 

Mendelian Inheritance in Men; IEI: Inborn Errors of Immunity; EBV: Epstein-Barr Virus  539 
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Disease subgroup

Autoimmune Lymphoproliferative Syndrome (ALPS)

Hemophagocytic Lymphohistiocytosis (HLH)

Immune dysregulation with colitis

Others

Recurrent inflammation 

SCID T−B+

Sterile inflammation (skin / bone / joints) 

Susceptibility to EBV

Syndromes with autoimmunity

Systemic inflammation with urticaria rash

Type 1 Interferonopathies 

IUIS classification

Autoinflammatory disorders

Diseases of immune dysregulation

Immunodeficiencies affecting cellular and humoral immunity

Primary antibody deficiencies

Primary antibody deficiency

A

B
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Curation and Expansion of Human Phenotype Ontology for Defined Groups of Inborn Errors of 1 

Immunity 2 

Materials and Methods 3 

Organization of working groups, working group participants 4 

Working groups were established following the 2017 IUIS classification categories (27). Based on the 5 

participants expertise, the working groups addressed the following IUIS classification categories: diseases 6 

affecting cellular and humoral immunity (IUIS Table 1), predominantly antibody deficiencies (IUIS Table 3), 7 

diseases of immune dysregulation (IUIS Table 4), and autoinflammatory disorders (IUIS Table 7). Headed by 8 

a group lead, themselves an expert in the field of the specific diseases, each working group was accompanied 9 

by an additional member (coordinator) from the Ludwig Boltzmann Institute for Rare and Undiagnosed 10 

Diseases (LBI-RUD) to facilitate coordinated communication and organization. Working groups had between 11 

5 and 9 members with disease-group-specific standard operational procedures in place to facilitate the 12 

workflow. Coordinators initiated and communicated general agendas within each working group, 13 

implemented disease-group-specific tasks, hosted remote meetings and communicated results and subsequent 14 

actions via email. 15 
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Table 1: Organization and working group participants   16 

Organization & coordination  Specific working groups 

Initiative 
leaders 

Main  
coordinators 

Group 
coordinators 

Diseases affecting innate and 
adaptive immunity 

(IUIS Table I) 

Antibody 
deficiencies 

(IUIS Table III) 

Diseases of immune 
dysregulation 

(IUIS Table IV) 

Autoinflammatory 
diseases 

(IUIS Table VII) 
Kaan Boztug1-3,37 Matthias Haimel1-3 Raúl Jiménez Heredia1-3 Sophie Hambleton29 Esther   de Vries33,34 Catharina Schuetz30 Anna Simon31 

Marielle van Gijn36 Julia Pazmandi1-3 Jasmin Dmytrus1-3 Kimberly C. Gilmour13 Siobhan Burns24 Shahrzad Bakhtiar15 Paul Brogan12,13 

Peter Robinson35   Sevgi Köstel Bal1-3 Fabian Hauck27,28 Johannes Trück18 Beata Derfalvi16 Marco Gattorno11 

Christoph Bock1,3,32   Samaneh Zoghi1-3 Francesco Saettini17 Jacques Rivière19,20 Markus G. Seidel23  Paul van Daele4 

    Julia Pazmandi1-3 Mirjam van der Burg21,22  
  Tracy A Briggs5,6 

      Maaike A. A. Kusters12,13     Carine Wouters7,8 

      Reem Elfeky12,13     Brigitte Bader-Meunier9,10 

      Elisabeth Salzer1-3     Florence Aeschliman9,10 

            Roberta Caorsi11 

            Despina Eleftheriou12,13 

            Esther Hoppenreijs14 

17 
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Expansion and restructuring of disease related branches of the HPO tree 18 

OMIM (5) (if unavailable, OrphaNet (6)) identifiers were used as starting points to refer to 19 

Inborn Errors of Immunity (IEI)s. For each disease, available Human Phenotype Ontology 20 

(HPO) terms and the ontology structures were extracted from the v2018-06-13 HPO disease 21 

annotation and ontology release (https://hpo.jax.org), and Excel documents were prepared 22 

summarizing the annotations per disease. Each document contained the currently available 23 

HPO terms associated with one disease, upstream terms of these current HPO terms organized 24 

in a tree structure. Both the correctness of available terms and the ontology structure associated 25 

with the terms was assessed. Disease-specific HPO restructuring was discussed within the 26 

working groups and the results debated among all participants. The suggested changes were 27 

summarized electronically in Excel documents or pictures of flipchart drawings by the main 28 

coordinators before being submitted to HPO. Additionally, missing terms describing 29 

pulmonary and gastro-intestinal complications of Primary Antibody Deficiency (PAD) were 30 

discussed during teleconferences and thereafter submitted to update the HPO ontology. All 31 

results of the restructuring are detailed in Supplementary Document 1&2. 32 

 33 

Standardized re-annotation of rare, genetically diagnosed diseases 34 

A standardized, semi-automated reannotation process was developed in order to consistency 35 

annotate all IEIs (over 300 different diseases in OMIM) with HPO terms across working 36 

groups. 37 

In the first step, working groups collected a minimum of two articles in portable document 38 

format (PDF) that adequately illustrated the phenotypic spectrum of each disease. In the second 39 

step, the text was extracted from the PDF files using the content analysis tool Apache Tika 40 

(https://tika.apache.org/) from the python package tika (version 1.19). Text sections associated 41 

with HPO terms were identified by applying an ontology-guided machine learning tool, the 42 

Neural Concept Recognizer (NCR), with default settings as previously published (17), trained 43 

on the v2019-06-03 HPO ontology release.  The NCR was selected due to the ability to work 44 

with HPO, utilize the hierarchy information and semantic similarity for improved identification 45 

of HPO terms, and the robust performance on a published PubMed article abstracts dataset 46 

with manual HPO annotations (17,30). The identified HPO terms and term frequencies were 47 

collected for each article and further summarized per disease. These disease specific summaries 48 

were prepared as Excel documents, where HPO terms were ranked by frequency across articles. 49 
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Highlighted HPO terms indicated already available annotations in the v2019-06-03 HPO 50 

disease annotation release on the same HPO branch (of this specific or more/less specific HPO 51 

term). These Excel documents were distributed to the working groups and evaluated with two-52 

tier expert review. For the two-tier expert review, each disease was reviewed by at least two 53 

independent experts. The experts were asked to indicate if an HPO term was either a true 54 

phenotype present in the disease, or a false positive association. In addition to evaluating the 55 

HPO terms identified in the articles, the experts evaluated existing HPO terms from the HPO 56 

annotation release as well. Further phenotypes not identified by the previous two steps 57 

(identified in articles or available in the HPO annotation release) were suggested by experts as 58 

additional terms (HPO terms if available or free text) to cover the full phenotypic spectrum of 59 

the diseases.  60 

In case of any disagreement in the evaluation, a consensus discussion between the two experts 61 

for that particular disease was scheduled. If after the second-tier overview between the two 62 

experts there was still no agreement, these were discussed by the whole group for overall 63 

consensus, defined as at least 80% agreement amongst the expert group. The consensus of the 64 

expert evaluations was collected in standardized Excel documents. These consensus Excel 65 

documents per disease were integrated by the main coordinators at LBI-RUD with all diseases 66 

across working groups. The full list of reannotated diseases available in Supplementary 67 

Document 3. The list of reannotated terms for each disease is available in Supplementary 68 

Document 4.   69 

 70 

Standardized re-annotation of genetically undiagnosed diseases 71 

Literature describing the phenotypic characteristics of the various PAD subtypes without a 72 

known monogenetic defect were collected and reviewed by the PAD-subgroup members. The 73 

ontology-guided machine learning tool was run as described above. Each HPO identifier (either 74 

identified in an article or available in the HPO annotation release) was annotated with: 75 

true/false/exclusion criteria. In case of a true phenotype, the observed frequency within patients 76 

was assessed and noted down as well. The frequencies correspond to the following 77 

representation in patients: Common = Frequent (79-30%); sometimes = Occasional (29-5%); 78 

rare = Very rare (<4-1%). 79 

 80 
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Preparation of disease annotation data for similarity measures 81 

The list of existing annotations per disease (later referred as “HPO-disease-annotations”) was 82 

obtained by extracting the HPO terms available per disease from the v2020-03-27 HPO release. 83 

Redundant terms (as defined as terms, where more specific terms are already linked and 84 

available to the disease) were removed from each disease annotation by applying the 85 

minimal_set function, based on the v2020-03-27 HPO release ontology structure. To obtain the 86 

reannotated set of annotations (detailed above, later referred to as “reannotated-disease-87 

annotations”), the list of reviewed and evaluated disease annotations was extracted from the 88 

working groups. Redundant terms were removed with by applying the minimal_set function. 89 

Disease-disease similarity measures 90 

Similarity measures of diseases based on both disease annotations sets - “HPO-disease-91 

annotations” and “reannotated-disease-annotations” - was carried out by the R package 92 

ontologyX (18), with default settings applying the Lin similarity measure. A phenotypic 93 

similarity matrix of disease similarity data was calculated for both sets of annotations using the 94 

get_sim_grid method with default parameters. Diseases were clustered based on this similarity 95 

matrix using euclidean distances. Hierarchical clustering was performed and visualized with 96 

ggtree using the R packages ggtree v1.14.6 (19) and ape v5.2 (20). 97 

 98 

Patient-disease similarity measures  99 

For each patient, HPO terms from clinical synopses were extracted with the Neural Concept 100 

Recognizer (17), then reviewed and expanded by an expert clinician. The semantic similarity 101 

of the extracted HPO terms per patient was compared to all diseases in both disease annotation 102 

sets, “HPO-disease-annotations” and “reannotated-disease-annotations” (see above), using the 103 

R package ontologyX (18), with default settings using the Lin similarity measure, by applying 104 

get_profile_sim. The statistical significance of the difference between cohort-wide similarity 105 

scores to genetic diagnosis using “HPO-disease-annotations” (therefore before reannotation) 106 

and “reannotated-disease-annotations” (therefore after reannotation) was assessed by a Student 107 

T-test using the R package ggpubr v0.2.999. Next, per patient, all diseases were ranked 108 

according to their similarity scores to the list of patient HPO terms. Diseases with the highest 109 

similarity received the lowest rank. The statistical significance of the difference of rank 110 

comparing the two annotations - “HPO-disease-annotations” (therefore before reannotation) 111 

and “reannotated-disease-annotations” (therefore after reannotation) - was assessed by Student 112 
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T-test using the R package ggpubr v 0.2.999. A detailed list of patients and their similarity to 113 

their genetic diagnosis can be found in Supplementary Table 4. 114 

List of Human Phenotype Ontology Resources: 115 

Data Accessible from 
Current version of the HPO ontology https://hpo.jax.org/app/download/ontology 

Current HPO annotation of diseases https://hpo.jax.org/app/download/annotation 

List of HPO ontology versions https://github.com/obophenotype/human-phenotype-ontology/releases  
https://bioportal.bioontology.org/ontologies/HP  

v2018-06-13 HPO ontology release http://purl.obolibrary.org/obo/hp/releases/2018-06-13/hp.owl 

v2019-06-03 HPO ontology release http://purl.obolibrary.org/obo/hp/releases/2019-06-03/hp.owl 

v2020-03-27 HPO ontology release http://purl.obolibrary.org/obo/hp/releases/2020-03-27/hp.owl  

HPO disease annotation archive file https://archive.monarchinitiative.org/hpo-archive/20210126_jenkins_jobs.tar.gz  

v2018-06-13 HPO annotation release jobs/hpo.annotations/builds/1254/archive/misc (in HPO annotation archive file) 

v2019-06-03 HPO annotation release jobs/hpo.annotations/builds/1266/archive/misc (in HPO annotation archive file) 

v2020-03-27 HPO annotation release jobs/hpo.annotations/builds/1271/archive/misc (in HPO annotation archive file) 

Current HPO disease annotations https://ci.monarchinitiative.org/view/hpo/job/hpo.annotations/ 

 116 

List of Supplementary Documents: 117 

Supplementary Materials and Methods  118 

Supplementary Document 1: HPO tree restructuring and the list of new terms 119 

Supplementary Document 2: Summary of diseases reannotated 120 

Supplementary Document 3: List of all terms per disease after reannotation 121 

Supplementary Document 4: List of cases used for phenotype to diagnosis matching 122 
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3.2. AutoCore: network-based identification of a core module defining 
human autoimmunity and autoinflammation.  
 
Julia Pazmandi, Sevgi Köstel Bal, Felix Müller, Celine Sin, Christiane V. R. Hütter, Jörg 

Menche*#, Kaan Boztug*#. * these authors contributed equally, # to whom correspondence 

should be addressed. 

 
The overarching ambition of this project was to develop a systems-level view of rare autoimmune 

and autoinflammatory diseases and showcase its utility for addressing a wide range of important 

biomedical questions. To achieve this, we developed a network-based framework for integrating 

all currently known monogenic immune defects underlying autoimmunity and autoinflammation 

and their molecular interactions. We show that autoimmune and autoinflammatory phenotypes do 

not separate on the interactome, and that gene defects that present with both phenotypes have 

a tendency to have a more diverse molecular outreach in their network neighborhoods. With this 

network-based framework, we identify the AutoCore, a markedly connected subnetwork on the 

interactome that is the functional core of rare monogenic, but also of complex polygenic 

autoimmune/autoinflammatory diseases. We show how the AutoCore connects monogenic and 

polygenic diseases with disease examples of SLE and IBD. We further use the AutoCore to define 

19 phenotypically and therapeutically cohesive molecular disease-subclusters. Finally, we show 

that the disease clusters can relate to known targeted therapies, suggesting that network-based 

measures may, in the future, provide an additional layer of information for physicians when 

choosing novel therapeutic avenues or repurposing strategies.  

 

This manuscript contains a general overview of the genetics of rare autoimmune and 

autoinflammatory diseases, as well as the introduction of our network-based methodology and 

the construction of the AutoCore. Subsequent analysis underpin the functional relevance of the 

AutoCore and interactome-based methods for rare diseases in general.
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Abstract 30 
 31 
Monogenic autoimmune/autoinflammatory diseases have advanced our understanding of core genes and 32 
pathways of the immune system. As they are studied largely in isolation, a unifying view of this important 33 
class of diseases is still lacking. Here, we present a network-based approach for integrating all currently 34 
known monogenic autoimmune/autoinflammatory diseases into a global network map of human immune 35 
dysregulation. We identify the AutoCore, a markedly connected interactome subnetwork as the set of genes 36 
and their molecular interactions essential for immune homeostasis. We show that autoimmunity and 37 
autoinflammation are intimately linked on a molecular level, that the monogenic AutoCore is the topological 38 
core of polygenic autoimmune/autoinflammatory diseases, and define 19 molecularly and phenotypically 39 
cohesive disease subclusters of monogenic autoimmunity/autoinflammation. We use the AutoCore to 40 
pinpoint novel therapeutically targetable pathways, illustrating the relevance of the AutoCore as a resource 41 
to distill the molecular landscape of autoimmunity/autoinflammation and quantify previously only descriptive 42 
clinical observations.  43 
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Introduction 44 

Humans are constantly challenged by exposure to different pathogens. Evolution has installed 45 
sophisticated defense mechanisms to these threats leading to the formation of the human immune system 46 
as we know it today. The main challenge for the immune system therefore is to recognize self and 47 
distinguish it from foreign (in the form of pathogens or other antigens), to neutralize the latter. A considerable 48 
number of human diseases including rheumatoid arthritis1,2, type 1 diabetes3,4 or inflammatory bowel 49 
disease5,6, are the result of misguided immune reactions leading to autoimmunity and/or autoinflammation7. 50 
These conditions are typically thought to be of multi-factorial origin, involving a complex interplay of genetic 51 
and environmental factors that remains poorly understood. Recently, also a number of rare, monogenic 52 
causes of autoimmunity and autoinflammation have been identified8, enabled by deep sequencing and 53 
global efforts of phenotypic and genetic data sharing9,10. In contrast to polygenic 54 
autoimmune/autoinflammatory diseases, monogenic diseases offer much clearer genotype-phenotype 55 
relationships and thus enable mechanistic dissection of key pathways that are required for immune 56 
homeostasis. Their study has markedly enhanced our understanding of self-tolerance and immune 57 
pathways, provided targets for in-depth mechanistic studies and potential therapeutic intervention11,12. 58 
Notably, although individual components of these diseases have been investigated in detail, because of 59 
their rarity, heterogeneity, and the difficulty to efficiently model a considerable fraction of the diseases in 60 
animals13,14, systematic studies that compare and integrate the key players of these phenotypes are still 61 
lacking. A systems-based disease paradigm15, as recently proposed for rare diseases of innate immunity 62 
and some complex autoimmune diseases16,17, could aid in the identification of disease subgroups, 63 
implicated molecular mechanisms, and elucidation of the relationship between monogenic and polygenic 64 
autoimmunity/autoinflammation. Network medicine provides such a paradigm, by integrating all disease-65 
associated proteins and their molecular interactions into a disease module18,19,20. So far, network medicine 66 
methods have predominantly been applied to common, polygenic diseases21–24, with only few applications  67 
for rare monogenic diseases25,26. Here, we use network approaches to identify the AutoCore, a connected, 68 
functionally relevant core of autoimmunity/autoinflammation on the interactome network of molecular 69 
interactions. We navigate the AutoCore to systematically compare polygenic and monogenic 70 
autoimmune/autoinflammatory diseases, to identify molecularly-, phenotypically- and clinically-informative 71 
disease subclusters, and to pinpoint novel targetable pathway candidates for therapeutic manipulation. 72 

73 
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Results 74 

Charting the genetic landscape of inborn errors of immunity with autoimmunity and/or 75 
autoinflammation 76 

To leverage the collective knowledge on single-gene perturbations of autoimmunity/autoinflammation, we 77 
extracted known monogenic defects from the classification of inborn errors  of immunity (IEIs)27 as provided 78 
by the International Union of Immunological Societies (IUIS),  the Online Mendelian Inheritance in Man 79 
(OMIM)28, and OrphaNet29 databases (Figure 1A). In total, we identified 186 gene defects underlying 80 
monogenic autoimmune/autoinflammatory conditions published over the last 50 years, with a marked 81 
acceleration of discovery facilitated by next-generation sequencing-based approaches in the last decade 82 
(Figure 1B, Supplementary Table 1). We found that 43% of IEIs present with autoimmunity, 83 
autoinflammation, or a combination thereof (Figure 1C). The Genetic and Rare Disease Information Center 84 
(GARD)30 contains treatment information for only 38.8% of these diseases (Figure 1D), highlighting the lack 85 
of standardized, publicly accessible data on disease phenotypes, prevalence and treatment options. The 86 
mainstay of treatment for immune dysregulation in the context of IEIs is still unspecific, e.g., using general 87 
immunosuppressants such as corticosteroids, although more recently, molecular pathway-based treatment 88 
strategies have emerged, including monoclonal antibodies targeting CD20, IL1, TNF, IL6, or CD80/CD86 89 
(Figure 1E, Supplementary Table 1).31 Along with IEIs, genes underlying autoimmune/autoinflammatory 90 
conditions are less tolerant to loss of function (LOF) variation than other genes (Figure 1F), pointing to their 91 
central importance in homeostasis. Accordingly, we find that most of the gene defects underlying 92 
autoimmune and autoinflammatory phenotypes (87.6%) are LOF, while 8.1% can present as gain of 93 
function (GOF) (Figure 1G). Compared to IEIs, this constitutes an enrichment of GOF defects in 94 
autoimmune/autoinflammatory diseases32, illustrating that autoimmune/autoinflammatory diseases often 95 
represent over-activation of the immune system. 96 

Causative genetic defects for monogenic autoimmune and autoinflammatory diseases constitute a 97 
seed network 98 

Interactomes represent all molecular interactions within the cell and can therefore be regarded as maps of 99 
cellular organization and function33. To chart the map of human immune dysregulation and to explore the 100 
molecular links between different monogenic autoimmune/autoinflammatory diseases, we started by 101 
compiling a comprehensive interactome from several large-scale protein-protein interaction datasets22,34,35, 102 
resulting in a network consisting of 18,853 nodes representing proteins and 483,037 links representing 103 
physical interactions (Figure 2A and Methods). The structural and functional characteristics of our 104 
interactome are consistent with previously published ones in terms of overall distribution of interaction 105 
partners (Figure 2B) and significant connectivity of known biological pathways (Figure 2C). We first 106 
investigated the network properties of monogenic autoimmune/autoinflammatory genes. It has been shown 107 
that highly central nodes generally correspond to genes with important roles in healthy and disease 108 
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associated processes, such as essential genes or cancer driver genes36–38. We thus considered the 109 
centrality of autoimmune/autoinflammatory genes within the interactome as quantified by their number of 110 
interaction partners (degree), and their betweenness, closeness and eigenvector centralities. We found that 111 
compared to all nodes in the network, monogenic autoimmune/autoinflammatory genes have a 4-fold higher 112 
degree, 1.7-fold higher betweenness centrality, and 2-fold higher eigenvector centrality (Figure 2D-F, 113 
Figure S1A). We next compared these characteristics between autoimmune/autoinflammatory genes and 114 
found that gene defects that can present with both phenotypes are characterized by lower degrees 115 
compared to gene defects that present only with either autoimmunity or autoinflammation, but tend to be 116 
more central (Figure S1B-D). Genes associated with the same complex disease have been shown to form 117 
connected clusters on molecular networks22, so-called ‘disease modules’. We hypothesized that, 118 
collectively, also monogenic autoimmune/autoinflammatory diseases could behave as a joint disease 119 
module. To assess the connectivity among monogenic autoimmune/autoinflammatory genes, we measured 120 
the largest connected component (lcc) of directly connected autoimmune/autoinflammatory genes. The lcc 121 
contained 133 of 186 genes, representing a highly significant cluster compared to random expectation 122 
(Figure 2G-H, z-score=7.6, empirical p-value<0.0001, as obtained from 1,000 simulations with randomly 123 
selected genes). Within the connected cluster of  autoimmune/autoinflammatory genes, we found that IUIS 124 
clinical subgroups27 related to specific cellular mechanisms form more pronounced subclusters compared 125 
to more generic clinical phenotypes, which are more widely spread on the interactome (Figure 2I-K). 126 
Furthermore, the genes underlying autoimmune/autoinflammatory phenotypes are significantly 127 
agglomerated within the same interactome neighborhood (z-score=-27.56, p-value<0.00001, Figure S1E). 128 
A similar pattern of significant connectivity among monogenic autoimmune/autoinflammatory genes was 129 
also observed on tissue-specific co-expression networks built from large-scale transcriptomic data39 130 
(median z-score=5.08, p-value<0.0001; Figure S1F), suggesting transcriptional regulation among these 131 
genes that is shared across various tissues. Overall, these results imply that although 132 
autoimmune/autoinflammatory gene defects underpin a heterogeneous group of diseases, they behave like 133 
a single disease module from a systems perspective. 134 
 135 
Identification of the AutoCore, a significantly dense subnetwork of monogenic autoimmunity and 136 
autoinflammation 137 
We used the significantly connected lcc amongst known monogenic autoimmune/autoinflammatory genes 138 
as a starting point to identify the AutoCore, a cohesive and connected interactome submodule that 139 
represents the mechanistic basis of diseases associated with autoimmunity/autoinflammation. Our analysis 140 
above showed that a considerable proportion (28.5%) of the autoimmune/autoinflammatory gene defects 141 
are only indirectly connected to the lcc. We hypothesized that linker genes that connect the fragmented 142 
autoimmune/autoinflammatory genes are related to the cellular machinery whose perturbation underlies 143 
the different diseases. To identify these linker genes, we implemented a random walk-based propagation 144 
method widely used to uncover vital links between nodes on biological networks40. The method expands 145 
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the subnetwork around the monogenic autoimmune/autoinflammatory genes until all monogenic disease 146 
genes have been incorporated (Figure 3A-C). The resulting AutoCore contains 399 nodes, among them 147 
186 autoimmune/autoinflammatory disease genes and 213 functional linker genes, connected by a total of 148 
5,244 links (Figure 3C-D). Notably, the number of linker genes that are required to connect all fragments 149 
into a single cluster is much smaller compared to previously studied complex diseases41. This is likely a 150 
consequence of the higher centrality of the monogenic autoimmune/autoinflammatory genes and highlights 151 
the cohesiveness of the AutoCore. We hypothesized that the AutoCore not only connects monogenic 152 
autoimmune/autoinflammatory diseases, but represents a functionally relevant interactome submodule 153 
pinning down the core of processes leading to and involved in autoimmunity/autoinflammation. To explore 154 
this hypothesis, we first focused on the linker genes within the AutoCore. We found that linker genes are 155 
enriched in pathways involved in viral infection induced diseases such as Hepatitis B, EBV infection, 156 
Influenza A, CMV infection, NFkB signaling and cytokine signaling, as well as pathways in cancer. We 157 
found further enrichment of linker genes among frequently mutated genes in chronic lymphocytic leukemia 158 
(CLL)42 and in highly expressed genes in lymphomas as per the Human Protein Atlas43,44 (Figure S2A-D), 159 
illustrating their vital roles in particular for hematological malignancies. Linkers therefore represent 160 
hallmarks of autoimmune/autoinflammatory diseases, such as abrogated T-cell immunity and viral 161 
infections45,46, and genes prevalent in hematological malignancies which occur in ~5% of IEIs47,48. 162 
Furthermore, we found that the linker genes are enriched in targets of drugs that are used to treat 163 
autoimmune/autoinflammatory diseases (Figure 3E), and in genes associated with polygenic, common 164 
autoimmune/autoinflammatory diseases (Figure 3F), demonstrating that the linker genes represent vital 165 
building blocks of processes involved in autoimmunity/autoinflammation. To assess the extent to which the 166 
AutoCore is specific to certain tissue or cell types, we considered the lcc of the AutoCore on tissue specific 167 
coexpression networks39. We found that the AutoCore is significantly enriched and connected on various 168 
tissue specific networks, with the whole blood network showing most significant enrichment (odds ratio OR 169 
= 2.33, p-value = 3.3e-16, Figure S2E), and with the connectivity most prominent on the thyroid 170 
coexpression network (z-score 7.8, p-value = 3.1e-13, Figure S2F). This illustrates that the AutoCore is 171 
linked through transcription machinery across various tissue types, but most prominently in immune-cell 172 
related tissues, as thyroid autoimmunities are among the most common endocrine autoimmune features in 173 
the clinic49,50. Within the AutoCore, gene defects that present with both autoimmunity/autoinflammation 174 
have the highest closeness centrality (Figure 3G). Pathway diversity – calculated by the number of 175 
pathways associated with the direct neighborhood of gene defects – showed that gene defects that can 176 
present with both autoimmune/autoinflammatory phenotypes are implicated in more diverse cellular 177 
processes compared to gene defects that only present with either autoimmunity or autoinflammation (Figure 178 
3H-I). The high topological centrality and molecular outreach of genes that present with both phenotypes 179 
suggest that they represent high fragility nodes in the network architecture of 180 
autoimmunity/autoinflammation. 181 
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The monogenic AutoCore is at the core of common, complex autoimmunity/autoinflammation 182 

In contrast to monogenic autoimmune/autoinflammatory diseases, their polygenic counterparts  are highly 183 
prevalent in Western countries51. While these common diseases often present with phenotypes similar to 184 
monogenic diseases, they are generally thought to result from a combination of environmental, genetic and 185 
epigenetic factors52. Genome-wide association studies (GWAS) have been extensively used to investigate 186 
the genetic landscape of these diseases53, however, much of these have remained without direct 187 
mechanistic link between the identified loci and the respective diseases. Most of the heritability of polygenic 188 
autoimmune/autoinflammatory diseases thus remains unexplained54. Elucidating the molecular linkers 189 
between the polygenic and monogenic autoimmune/autoinflammatory diseases could aid in better 190 
understanding the contribution of significantly associated genes from GWAS to the respective pathobiology. 191 
We therefore sought to leverage the AutoCore to investigate and quantify the relationship between complex 192 
polygenic and rare monogenic autoimmunity/autoinflammation. To this end, we considered genes 193 
associated with polygenic diseases that present with a phenotypical overlap with monogenic 194 
autoimmune/autoinflammatory diseases such as rheumatological diseases (rheumatoid arthritis, systemic 195 
lupus erythematosus (SLE), Sjögren’s syndrome), inflammatory bowel disease (IBD), scleroderma, as well 196 
as other well documented polygenic autoimmune/autoinflammatory diseases where significant GWAS 197 
associations have been uncovered, including type 1 diabetes, Graves’ disease and multiple sclerosis (MS). 198 
We first identified the genome-wide significant genetic associations per disease from the GWAS catalog53. 199 
We found that the joint lcc defined by the AutoCore and genes associated with the polygenic 200 
autoimmune/autoinflammatory diseases is significantly larger than the connected component of polygenic 201 
autoimmune/autoinflammatory genes alone (Figure 4A-B). To assess the relative position of the AutoCore 202 
and complex autoimmune/autoinflammatory diseases on the interactome, we first considered the network 203 
paths between genes associated with complex autoimmune/autoinflammatory diseases (Figure 4C). We 204 
found that genes from the AutoCore frequently (359 nodes out of 399) act as connectors between complex 205 
disease genes (Figure 4D-E). These connectors are enriched in pathways such as NFkB signaling, 206 
Hepatitis B, EBV infection, viral infections, osteoclast differentiation, TCR and TNF signaling and cytokine 207 
signaling (Figure 4F-G). Viral infections are often the first triggers of polygenic 208 
autoimmune/autoinflammatory diseases, and the immune response to these heavily relies on TNF-induced 209 
NFkB activation that initiates cytokine and T-cell dependent mechanisms55. Figure 4H shows that the 210 
AutoCore is strongly enriched among the connectors of all considered common 211 
autoimmunity/autoinflammation disorders. We can further quantify this by measuring the network-based 212 
distance between all common diseases and the AutoCore. The results in Figure 4I clearly show that the 213 
AutoCore takes the most central position in this disease-interaction network.  214 
In summary,  we found that the AutoCore, based on rare, monogenic disease genes, serves as a central 215 
connector between common, polygenic autoimmune/autoinflammatory diseases on the interactome. From 216 
a network perspective, the central role of the AutoCore is consistent with the stronger impact of genetic 217 
lesions in this interactome neighborhood, compared to genetic perturbations in the periphery, thus 218 
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explaining the less  detrimental effects that polygenic autoimmune/autoinflammatory genes have on the 219 
same molecular machinery. 220 
 221 
Connectors of common IBD and SLE highlight monogenic genes implicated in the polygenic 222 
phenotypes  223 
To further characterize the molecular links between monogenic and polygenic diseases, we focused on IBD 224 
and SLE, two prototypical diseases for autoinflammation and autoimmunity. To date, 67 monogenic gene 225 
defects have been described to present with an IBD-like phenotype56, and 34 monogenic gene defects have 226 
been linked to pediatric SLE57.  Despite the ample similarities between the common polygenic and rare 227 
monogenic diseases on the clinical level58,59, there is only minimal overlap between monogenic and 228 
polygenic SLE or IBD on the genetic level (17 and 6 overlapping genes, respectively, Figure 5A-B). We 229 
found that the combined monogenic-polygenic disease gene sets formed significantly connected clusters 230 
for both IBD and  SLE (z-scores=6.6 and 4.8, respectively; Figure 5C-D). For both diseases, the monogenic 231 
genes were more central on the interactome than the polygenic ones, however the difference was only 232 
significant in the case of IBD (Figure S3A-H). We next assessed the network paths linking polygenic IBD. 233 
We found that AutoCore genes, specifically those corresponding to monogenic IBD genes, were frequently 234 
connectors between polygenic IBD genes (49 out of 67 monogenic IBD genes, Figure 5E-F). Figure 5G 235 
shows the interactome neighborhood of the combined monogenic and polygenic IBD genes and their 236 
interactions. We found that the monogenic IBD genes acting as connectors were enriched in C-type lectin 237 
receptor signaling, NFkB signaling, toxoplasmosis-related pathways, B-cell activation and cytokine 238 
signaling (Figure S3I-J). We also found strong enrichment  in a high confidence seed IBD network from the 239 
literature60, and the cohort-specific coexpression networks derived from intestinal gene-expression data of 240 
IBD patients61 (Figure 5H). The  lectin pathway is linked to recognition and response to the microbiota in 241 
the gut62, intestinal inflammation, apoptotic cell clearance and intestinal repair63,64. The enrichment in this 242 
pathway, together with the enrichment in patient intestine-derived IBD networks point to the importance of 243 
more polygenic-like, dysbiosis-linked mechanisms to act as links between polygenic and monogenic IBD. 244 
We found similar patterns for SLE, where again, monogenic SLE genes within the AutoCore served as 245 
connectors between polygenic SLE genes (Figure 5I-J). The monogenic SLE connectors (17 out of 34 246 
monogenic SLE genes, Figure 5J-K) were enriched in pathways involved in neurotrophin signaling, DNA 247 
replication, NK-cell-mediated cytotoxicity, cytokine and interferon signaling (Figure S3K-L). Neurological 248 
phenotypes are considerably more common in adult patients than in pediatric SLE58,59. We found that the 249 
SLE connector genes were also enriched in genes differentially expressed in SLE cohorts65 (Figure 5L), 250 
pointing to a central role in adult SLE. Overall, we found that polygenic-monogenic connectors in both IBD 251 
and SLE are enriched in potential phenotype-driver genes, as well as in hallmark polygenic phenotypes.  252 
 253 
  254 
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The AutoCore separates into molecularly and phenotypically cohesive subclusters 255 
Several strategies exist for classifying monogenic autoimmune/autoinflammatory diseases into 256 
subgroups27,28,66, often based on non-standardized clinical terms. Here, we set out to leverage the network 257 
organization of the AutoCore, combined with Gene Ontology (GO) functional annotations to identify 258 
molecularly defined subgroups (see Methods, Figure 6A-B). Our analyses resulted in 25 subclusters, with 259 
19 out of 25 clusters containing disease genes, from here on denoted as “disease clusters” (Figure 6B, 260 
Figure S4A-B). We found that the disease clusters are phenotypically cohesive, i.e., genes within a 261 
particular cluster are significantly more phenotypically similar based on Human Phenotype Ontology (HPO) 262 
terms67 than expected by chance (Figure S4C). Furthermore, we found that autoimmune/autoinflammatory 263 
phenotypes are not clearly separated into distinct clusters - highlighting that autoimmunity and 264 
autoinflammation are intimately linked on the molecular level (Figure S4D-E). Less specific disease 265 
phenotypes and broader clinical subclusters are often spread across several different subclusters, whereas 266 
more specific disease phenotypes and clinical groups tend to reside in only a few, or even a single cluster 267 
(Figure S4F). The correlation between the specificity of a particular  clinical term and the degree of localized 268 
clustering highlights the efficacy of our network-based  approach for pinning down consensus molecular 269 
mechanisms underlying the subclusters. To extend our understanding of the fundamental mechanisms of 270 
autoimmunity/autoinflammation, we sought to identify the molecular mechanisms and pathways 271 
represented by the different clusters within the AutoCore. We found that the subclusters represent distinct 272 
cellular processes and states (Figure S5A-B). The largest AutoCore subclusters pinned down survival and 273 
death receptor signaling (cluster c15), the NFkB pathway, nucleotide and RNA remodeling and repair (c20 274 
and c7), TNF/DNA binding related mechanisms (c8), TCR and BCR signaling (c14), the complement 275 
cascade (c18), steroid resistant inflammation (c11), actin regulation (c10), and immune dysregulation 276 
through interleukin and cytokine signaling (c16), the proteasome complex (c6), as well as vesicular traffic 277 
regulation (c13) (Figure 6C, Figure S5A-B) as major building blocks of autoimmunity/autoinflammation. 278 
 279 
Using the AutoCore to highlight clinically targetable pathways 280 
It has been shown previously that network proximity between drug targets and disease genes may serve 281 
as an effective predictor for a therapeutic effect68,69. This prompted us to investigate if we can leverage the 282 
interactome to identify potentially efficacious novel therapeutic pathways within the AutoCore. We collected 283 
available treatments for rare autoimmune/autoinflammatory diseases and their respective protein targets 284 
and measured the minimal network distance between each drug and the AutoCore  that has previously 285 
been shown to be the most accurate measure of efficacy68 (Figure 7A, Supplementary Table 1). We first 286 
established that targeted treatments already used for autoimmune/autoinflammatory diseases were closer 287 
to the AutoCore than expected by chance (Figure 7B). Next, we sought to identify if the network distance 288 
measure is able to differentiate the different therapeutic approaches used for the different clusters. We 289 
found that the targets of targeted treatments already used for diseases within a certain cluster are 290 
significantly closer to the cluster on the interactome, as compared to other drugs not used for the treatment 291 
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of diseases within a cluster (Figure 7C-D). With this proof of principle for the predictive power of network 292 
distance for treatment-cluster associations, we next aimed to identify novel pathways that are not yet 293 
exploited for the treatment for monogenic autoimmune/autoinflammatory diseases. To this end, we used a 294 
list of all drugs from DrugBank70 and calculated the network-based minimal distance of their respective 295 
targets from the AutoCore (see Methods, Figure 7E). We found ample overlap between the pathways  296 
enriched among the targets of existing treatments of autoimmune/autoinflammatory diseases (87 out of 297 
109, Figure 7F) and the pathways enriched among targets of novel treatment candidates as suggested by 298 
the network-based ranking. The candidate targets  were enriched in several novel pathway associations, 299 
including downstream TCR signaling, platelet activation and Fce receptor signaling (Figure 7G). Unspecific 300 
modulators of downstream TCR signaling through the NFkB pathway such as glucocorticoids and NSAIDs 301 
are already utilized in the treatment of autoimmunity/autoinflammation. More recently, preclinical studies 302 
are investigating more specific manipulation of NFkB signaling, such as targeting the IKK complex or IKb71. 303 
In addition to the use of targeted checkpoint inhibitor for CTLA472–74, the efficacy of other therapies targeting 304 
TCR signaling such as the PD-1 checkpoint in murine models75, ICOS-ICOSL interactions76,77, blocking 305 
CD40-CD40L signaling78 or the OX40-OX40L79,80 costimulatory pathway or the use of multivalent 306 
therapeutics81 are already being investigated82. Strategies of blocking or neutralizing Fc receptors as ways 307 
to treat inflammation are also under review83, and certain monoclonal antibodies have shown efficacy in 308 
treating RA84. Taken these together, the AutoCore highlights those already utilized but so far only indirectly 309 
targeted pathways that show potential in treating autoimmune/autoinflammatory diseases.  310 
  311 
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Discussion 312 

The premise of our work was to construct a core molecular network of human 313 
autoimmunity/autoinflammation. To our knowledge, this work represents the first effort to systematically 314 
explore the relationships among a heterogeneous group of monogenic diseases using a network-based 315 
framework. We showed that high-confidence rare disease genes can be used to identify the AutoCore, a 316 
localized subnetwork of the interactome that can aid in the interpretation of a wide range of previously 317 
disconnected biological and clinical observations. We found that autoinflammation and autoimmunity do 318 
not separate within the AutoCore, corroborating theories that propose an “immunological disease 319 
continuum”85 of such conditions, both on an individual patient and a population level. Genes that present 320 
with both autoimmunity/autoinflammation displayed a high pathway diversity, i.e., a tendency to influence 321 
diverse molecular processes. We further found that the AutoCore lies at the center of common, polygenic 322 
autoimmune/autoinflammatory diseases. This finding is consistent with the recently proposed omnigenic 323 
model of complex diseases that hypothesizes that genes at the core and at the periphery of regulatory 324 
networks contribute differently to the heritability of complex traits86,87. Although the general applicability of 325 
this model to complex traits is debated88, we find good agreement when considering monogenic and 326 
polygenic versions of the autoimmune/autoinflammatory phenotypes, using the SLE and IBD cohorts as 327 
examples. This implies that instead of separate disease entities,  autoimmune/autoinflammatory conditions 328 
may represent genetically determined extreme forms of more common human 329 
autoimmune/autoinflammatory conditions. We found that the pathways that interconnect mono- and 330 
polygenic diseases are strongly enriched in host defense-related mechanisms. These linkers can therefore 331 
be regarded as triggers for autoimmunity/autoinflammation in polygenic diseases, that link them to more 332 
fine-tuned molecular mechanisms resulting in severe monogenic autoimmune/autoinflammatory, such as 333 
viral infections and the subsequent inflammatory response, dysbiosis in IBD, or highly expressed 334 
expression signatures in SLE. Previous efforts to classify autoimmune/autoinflammatory diseases were 335 
based on reclassifications of clinical terms89, grouping diseases based on mostly qualitative criteria90, or 336 
relying on public datasets that are usually not available for rare autoimmune and autoinflammatory 337 
conditions17. Here, we propose a quantitative, network-based approach for subdividing the AutoCore into 338 
25 subclusters, 19 of which disease clusters, that were found to be phenotypically and molecularly 339 
cohesive. Furthermore, we found that the clusters were also cohesive from a therapeutic perspective, such 340 
that drugs that are used to treat diseases within a particular subcluster also target close interactome areas. 341 
We hypothesize that network-distance measures within the AutoCore can thus be used to inform novel 342 
therapeutic avenues or repurposing strategies, in line with similar recent efforts in the context of complex 343 
diseases, where network distance has been shown to be predictive of drug efficacy and synergistic effects 344 
of drug combinations69,91. Indeed, we find multiple novel pathways enriched in the targets of those drugs 345 
close to the AutoCore. Finally, we hope that our work may contribute to establishing a closer connection 346 
between the clinical experts of a heterogeneous, disjointed group of single-gene diseases, and systems-347 
based methods for elucidating similarities and differences between them. Our work represents a versatile 348 
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platform for addressing a wide range of important challenges ranging from the elucidation of disease 349 
relationships to potential novel therapeutic approaches. The platform enables us to quantify and integrate 350 
isolated and often descriptive clinical observations and translate them to machine interpretable data. It can 351 
thus be used to address other diseases/disease groups in the future. Our web tool, located at 352 
https://menchelab.com/autocore allows for an interactive exploration of the AutoCore.  353 



  13 
 

   
 

Materials & Methods 354 

Identification of monogenic gene defects underlying autoimmunity and autoinflammation  355 

We  performed a literature review of IEIs based on the 2017 IUIS classification27 to identify monogenic gene 356 
defects underlying autoimmunity and autoinflammation. We queried for autoimmune/autoinflammatory 357 
phenotypes using the IUIS classification, as well as our recent review of autoimmune manifestations in 358 
monogenic IEIs92 and inflammatory bowel disease56. Only gene defects with evidence of causality were 359 
included. If the disease or gene defect was not part of the IUIS classification of IEIs, we required at least 360 
one case report with autoimmune and/or autoinflammatory phenotypes. First year of publication, 361 
inheritance pattern, and type of mutation were identified through the OMIM database 28. In case OMIM 362 
entries were not available, case reports or review articles were used to access the information. Available 363 
therapeutic strategies were accessed from the Genetic and Rare Disease Information Center (GARD) 364 
database30, as well as manually curated from the literature. The detailed list of gene defects, disease 365 
phenotypes and treatment options is available in Supplementary Table 1. Monogenic gene defects underlying 366 
inflammatory bowel diseases were extracted from56, monogenic SLE gene defects were extracted from57.  367 
 368 
GWAS data 369 
We  used the  GWAS catalog53 to identify  significant SNPs (genome-wide p-value<0.05) associated with 370 
type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Graves diseases, 371 
multiple sclerosis (MS), inflammatory bowel disease (IBD), scleroderma and Sjögren’s syndrome. In case 372 
of duplicate SNPs, we chose the lowest p-value. We  followed the official GWAS catalog guidelines to 373 
obtain SNP-to-gene associations, taking the “reported genes” as genetic associations. The detailed 374 
curation process can be found here: https://www.ebi.ac.uk/gwas/docs/methods/curation. We used GWAS 375 
SNPs coming from multiple studies, with varying cohort sizes and arrays. Although we took only significant 376 
associations from GWAS catalog, as the statistical significance of a particular SNPs could differ based on 377 
what study the SNP was identified in, we opted to take an inclusive, gene-based approach for our network 378 
analysis. This means that we did not differentiate between GWAS genes based on how many SNPs have 379 
been identified in a particular gene, or the magnitude of the p-value (as long as it reached genome-wide 380 
significance). The full list of genes and SNPs used for the genetic analysis is available in Supplementary 381 
Files 7-8. 382 
 383 
Measure of genetic vulnerability 384 
We used the Genome Aggregation Database (gnomAD)31 to extract information on genetic vulnerability. 385 
Intolerance of loss of function (pLoF) scores were extracted on 20.05.2020. The Mann-Whitney U 386 
nonparametric test was used to determine the significance of difference of the set of pLOF scores from 387 
random expectation. 388 
 389 
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Pathway enrichment 390 
Pathway enrichment and comparison was performed by the Enrichr tool93 the reactomePA94 package in R 391 
(R Foundation for Statistical Computing, https://www.R-project.org/) or an in-house Python (Python 392 
Software Foundation, https://www.python.org/) script based on the KEGG95 and reactome96 pathway 393 
datasets from the Molecular Signature Database97. Fisher’s exact test from the SciPy98 stats package in 394 
Python was used to define enrichment odds ratio and p-value. We have used reactomePA94 to determine 395 
the significantly enriched reactome pathways among drug target sets. 396 

Gene-set enrichment  397 

The seed IBD network and IBD-cohort-based coexpression networks were extracted from60,61. The SLE 398 
transcriptomic signature dataset was accessed from65. Frequently mutated genes in cancer were extracted 399 
from42. The cancer expression dataset was downloaded from The Human Protein Atlas44 on the 28.12.2020. 400 
Highly expressed genes were identified as those which had a ‘High’ expression annotator in at least 50% 401 
of all patients in a particular tumor type. Lists of drugs, chemicals and their targets was extracted from the 402 
DrugBank database70 and are available in Supplementary File 14. Odds ratio and p-values were calculated 403 
using Fisher’s exact test as implemented in the SciPy98 Python package. 404 
 405 

Network-based methods  406 

Networks  407 
We combined three widely used interactomes, harnessing their advantages: i) an interactome widely used 408 
for identifying links between diseases22 ii) a large scale dataset from the HIPPIE34 database (v2.2), iii) and 409 
a systematic high-throughput interactome that was previously shown to be able to draw meaningful 410 
connections in Mendelian diseases35. The joint interactome is larger and denser than the individual ones, 411 
but follows the same network characteristics as previously published interactomes, in particular concerning 412 
the close relationship between network distance and biological function. The aggregate network consists 413 
of 18,853 nodes and 483,037 edges. The full list of nodes and edges of the interactome can be found in 414 
Supplementary File 1. To represent different dimensions of the cellular machinery, in addition to the 415 
interactome, we included coexpression networks that represent genes that are linked through 416 
transcriptional and machinery39. We used 16 transcriptome-wide coexpression networks from38,91. The 417 
networks were built by combining total expression and expression of relative isoform levels into single 418 
sparse networks using data from the GTEx database99 (v6), based on 449 human donors with genotype 419 
information and 7310 RNA-seq samples across 50 tissues. Sampled donors were 83.7% European 420 
American and 15.1% African American. The full list of nodes and edges can be found in Supplementary 421 
File 3.  422 
 423 
Network-based characteristics 424 
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The Python package NetwrokX100 was used to compute network-based features of genes and gene sets. 425 
Degree is defined as the number of connections (direct neighbors) a node has on a network. 426 
Closeness centrality measures the inverse of the average distance from a given node in the network to all 427 
others. The more central a node is, the smaller are the shortest path lengths to all other nodes. It is 428 
calculated by 429 

𝐶(𝑥) = 	
𝑁

∑ 𝑑(𝑦, 𝑥)!
 430 

  431 
where N is the number of nodes in the graph, d(x,y) is the distance between nodes x and y on the network. 432 
Localized closeness centrality measures the relative closeness centrality of a group of nodes on a network. 433 
It is calculated by: 434 

𝐶"#$(𝑥) = 	𝑀𝑔𝑟𝑜𝑢𝑝 ÷3𝑑(𝑦, 𝑥)
!

 435 

where 𝑀𝑔𝑟𝑜𝑢𝑝	is the number of nodes in the group, and d(x,y) is the distance between nodes x and y on 436 
the network. Betweenness centrality of a node x measures how many of all shortest paths in the network 437 
are passing through node x. It is given by  438 
 439 

𝑔(𝑥) = 	3
𝛿%&(()
𝜎%&%*(*&

 440 

 441 

where 𝜎%& is the total number of shortest paths from node s to node t and (x) is the number of shortest 442 

paths that pass through x. Eigenvector centrality of a node is a measure of its influence over the network101. 443 
A high eigenvector centrality means that a node is connected to many nodes with high eigenvector scores. 444 
For a graph G=(V,E) with vertices V, let A=(av,t) be the adjacency matrix, i.e. av,t =1 if vertex v is linked to 445 
vertex t and av,t =0 otherwise. The relative centrality, x of a vertex v can then be defined as:  446 

𝑥+ =
1
𝜆 3
&,-(.)

 447 

𝑥& =	
1
𝜆3𝑎.,&
&,0

𝑥& 448 

 449 
where M(v) is a set of the e neighbors of v and lambda is a constant. The eigenvector equation stands as: 450 
Ax = x. 451 
 452 
Connectivity measures 453 
Largest connected component: The largest connected component of a gene set on a network is defined as 454 
the subnetwork formed by the gene set on the network that consist of only gene nodes of the gene set and 455 
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their direct interactions. The size of the largest connected component of random subsets of 𝑁 nodes is 456 
expected to follow a normal distribution, given is larger than the percolation threshold. We can therefore 457 
empirically estimate the significance of a given connected component through its z-score and 458 
corresponding empirical p-value determined from 1,000 randomly selected gene sets of the same size. 459 
 460 
Distance measures 461 
Shortest distance: a shortest distance or path between two nodes is a path with the minimum number of 462 
edges between the two nodes.  463 
Average distance: Distance between two sets of nodes on a network was calculated by averaging the 464 
pairwise shortest distances of each node-node pair in the two node sets. The significance of a measured 465 
average distance was assessed by comparing it to 1,000 random permutations and calculating the z-score, 466 
as well as the empirical p-value. Minimum distance: The minimal distance between two sets of nodes on a 467 
network was calculated by the minimum distance from the pairwise shortest distance measurements in 468 
each gene-gene pair in the two node sets. The significance of minimum distance was assessed by 469 
comparing it to 1,000 random permutations and calculating the z-score, as well as the empirical p-value. 470 
 471 
Pathway diversity 472 
The pathway diversity of a particular gene set quantifies the normalized number of unique KEGG and 473 
reactome pathways annotated to the set of the first neighbors of the gene set on the interactome. The 474 
pathway diversity is calculated by dividing the number of unique pathways by the number of nodes in the 475 
neighborhood. For a particular group of nodes, pathway diversity is thus given by: 476 
 477 

(𝑃𝑎𝑡ℎ𝐷𝑖𝑣)!"#$% = 𝑋 𝑁⁄  478 
Where X is the number of unique pathways among all neighbors of the gene set, and N is the number of 479 
all nodes in its neighborhood. 480 
 481 
Identification of the AutoCore 482 
We used a random walk with restart algorithm102, using the monogenic autoimmune/autoinflammatory 483 
disease genes as seed genes and restart probability r=0.9. This resulted in a list of all genes in the 484 
interactome ranked by decreasing visiting probabilities representing their distance to the seed. From this 485 
list, genes are added to the seed graph of monogenic autoimmune/autoinflammatory genes until the graph 486 
forms a fully connected component. The resulting AutoCore subgraph contains all seed genes and a 487 
minimal set of linker genes according to the performed random walk given its specific restart value. 488 
 489 
Finding molecular subclusters within the AutoCore 490 
In a first step, a random-walk was used to identify neighbors for every gene in the AutoCore. The set of 491 
random-walk neighbors is not necessarily equal to the set of genes given by immediate connections, as it 492 
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takes into account structural network properties such as interconnections among neighbors or their degree. 493 
For all these neighborhoods gene set enrichment analysis for GO annotations (biological process, 494 
molecular function, cellular component) was performed to identify significant annotations according to 495 
Fisher’s exact test. Next, every single gene in the network neighborhood of a particular gene received these 496 
additional annotations to complement the plain database knowledge with information induced by the 497 
network context. Former poorly annotated genes can thus be equipped with function due to their location 498 
in a specific functional network region (deorphanization). Annotated GO functions were used as features to 499 
construct a gene-based multi-dimensional feature space. A gene-gene matrix was calculated from the 500 
feature matrix using cosine similarity. This matrix was clustered using hierarchical  clustering. The optimal 501 
number of clusters was determined by keeping the number of genes in the largest cluster small while 502 
minimizing the number of clusters consisting of only a single gene.  503 
 504 
GO term enrichment within cluster 505 
For the GO annotation and enrichment of nodes within clusters, we consider GO annotations from two 506 
sources. (1) plain annotations of a node as from the GO database. (2) network annotations of a node as 507 
based on its network neighborhood. For this, we calculated the enrichment of specific GO terms among the 508 
nodes within the network neighborhood using Fisher’s exact test. Finally, for a given cluster and GO term 509 
X, we determine the number of genes that GO term X is linked to by plain association and by network 510 
annotation, and compute the combined enrichment level according to: 511 
 512 

𝐸𝑛𝑟𝑖𝑐ℎ(𝑋) = 	
𝐹𝑟𝑒𝑞(𝑋)&'' − 𝐹𝑟𝑒𝑞(𝑋)%'&()

𝐹𝑟𝑒𝑞(𝑋)%'&()
 513 

 514 
Where Freq(X)all is the total frequency of term X in the cluster (plain and network annotation combined) and 515 
Freq(X)plain is the plain annotation frequency of a term in the cluster. 516 
 517 
 518 
Polygenic – monogenic autoimmune/autoinflammatory connector nodes 519 
The connector nodes between polygenic autoimmune/autoinflammatory diseases were defined as those 520 
AutoCore nodes that were among the shortest paths between polygenic disease genes. IBD and SLE 521 
specific polygenic disease connectors were defined as those monogenic IBD or SLE genes that were 522 
among the shortest paths between polygenic IBD or SLE disease genes. Enrichment (odds ratio and p-523 
value) of connector nodes in various datasets was calculated by Fisher’s exact test with the SciPy98 stats 524 
package in Python (Python Software Foundation, https://www.python.org/). 525 
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Phenotype similarity 526 

Phenotype similarity of two genes was based on Human Phenotype Ontology67, release 09.10.2018.  527 
Semantic similarity was is computed for all annotated gene pairs using information content-based Resnik’s 528 
similarity. In general, gene pairs annotated with terms that are deeper in the ontology structure are given 529 
higher similarity scores. Phenotypic similarity of a group of nodes within a cluster was calculated by 530 
comparing the distribution of similarity scored within gene pairs in a cluster to 1,000 random simulations. 531 
The Mann-Whitney U nonparametric test was used to determine the significance p-value. 532 
 533 
Network visualization 534 
The 2D-network layouts in Figure 2, Figure 4 and Figure 5 were visualized in Cytoscape103, using the 535 
Organic layout. Visualization of the AutoCore in Figure 3 and 6 was carried out with UMAP104 dimensionality 536 
reduction, that takes the feature matrix with all AutoCore genes as samples and GO-terms as features to 537 
find an optimal way to project similar genes based on their share features into three-dimensional space.One 538 
of the drawbacks of systems-methods are the challenges in visualizing and interactively exploring large and 539 
complex datasets. To address these challenges, we developed a web-app, and also included the AutoCore 540 
into a virtual reality (VR) application. The web-app allows for browsing through the database that contains 541 
gene and disease-based information we compiled for this publication and for a 2D interactive visualization 542 
of the AutoCore. The VR-based visualization is based on the VRNetzer platform105 and enables an intuitive, 543 
immersive discovery of the complex AutoCore network in 3D.  544 
 545 
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used for this study include OMIM (https://www.omim.org/), OrphaNet (https://www.orpha.net/consor/cgi-554 
bin/index.php), GARD (https://rarediseases.info.nih.gov/about-gard/pages/23/about-gard), MSigDB 555 
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and DrugBank (https://go.drugbank.com/). All other data are available in the main text, supplemental table, 557 
supplementary files, as well as on https://menchelab.com/autocore.  558 
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 562 

Figure 1: Charting the genetics of monogenic autoimmunity and autoinflammation. A) Resources for 563 
data collection on monogenic autoimmune/autoinflammatory (AIM/AIF) gene defects. B) Discovery of 564 
monogenic autoimmune/autoinflammatory diseases through the years. C) Percentage of gene defects with 565 
autoimmunity/autoinflammation within inborn errors of immunity (IEI). D) Treatment information availability 566 
for monogenic autoimmune/autoinflammatory diseases in GARD. E) Types of treatment available for 567 
monogenic autoimmune/autoinflammatory diseases, full list available in Supplementary Table 1.  F) 568 
Tolerance to loss-of-function (LOF) variation of IEIs and autoimmune/autoinflammatory gene defects. G) 569 
Percentage of (LOF), gain-of-function (GOF) gene defects within monogenic autoimmune and 570 
autoinflammatory diseases. Abbreviations: IUIS: International Union of Immunological Societies; OMIM: 571 
Online Mendelian Inheritance in Man; AIM: autoimmunity; AIF: Autoinflammation; IEI: Inborn Errors of 572 
Immunity; avail.: available; GARD: Genetic and Rare Diseases Information Center; HSCT: Hematopoietic 573 
stem-cell transplantation; IVIG: Intravenous Immunoglobulin; NSAID: nonsteroidal anti-inflammatory drugs; 574 
Encap. bact: encapsulated bacteria; LOF: Loss of function; GOF: Gain of function; LOF haploins: LOF 575 
haploinsufficiency. AIM: Autoimmunity; AIF: Autoinflammation; * = p<0.05, ** =  p<0.01, *** =  p<0.001, *** 576 
=  p<0.0001, **** =  p<0.00001.  577 
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Figure 2: Causative genetic defects for monogenic autoimmune and autoinflammatory diseases 579 
constitute a seed network. A) Data sources to build the joint interactome. The interactome encompasses 580 
three protein-protein interaction networks. B) Degree distribution of the joint interactome. C) Connectivity 581 
of KEGG pathways on the interactome. The largest connected component (lcc) of KEGG pathways was 582 
calculated. Significance was determined by z-score based on 1,000 random permutations.  D-F) Median 583 
degree-, betweenness-, and eigenvector centrality of autoimmune/autoinflammatory (AIM/AIF) gene 584 
defects. The Mann-Whitney U nonparametric test was used to determine p-value. G) Defining the largest 585 
connected component (lcc) of monogenic autoimmune/autoinflammatory gene defects. H) Connectivity of 586 
monogenic autoimmune/autoinflammatory disease genes on the interactome, measured by the largest 587 
connected component. Significance was determined by z-score based on 1000 random permutations. I) 588 
Lccs of the major IUIS subgroups of IEIs within the subnetwork of autoimmune/autoinflammatory genes on 589 
the interactome.  J) Lccs of major clinical phenotypes within the subnetwork of autoimmune/autoinflammatory 590 
genes on the interactome. K) The subnetwork of monogenic autoimmune/autoinflammatory on the 591 
interactome. Nodes are colored according to the major IUIS subgroups. Abbreviations: IUIS: International 592 
Union of Immunological Societies; AIM: Autoimmunity; AIF: Autoinflammation; Lcc: Largest connected 593 
component. * = p<0.05, ** =  p<0.01, *** =  p<0.001, *** =  p<0.0001, **** =  p<0.00001. 594 
 595 
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 596 
Figure 3: Identification of the functional AutoCore. A-B-C) Defining the AutoCore using monogenic 597 
autoimmune/autoinflammatory (AIM/AIF) gene defects on the interactome D) The AutoCore, a fully 598 
connected subnetwork of monogenic autoimmunity and autoinflammation on the interactome. D) The 599 
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AutoCore is enriched in targets of those drugs that are currently used to treat autoimmune and 600 
autoinflammatory conditions. E) Enrichment if linker genes in drug targets used in monogenic 601 
autoimmune/autoinflammatory diseases. F) The AutoCore is enriched in genes associated with polygenic, 602 
common autoimmune/autoinflammatory conditions. Odds ratio and p-value were determined by Fisher’s 603 
exact test. G) Closeness centrality of different autoimmune/autoinflammatory phenotypes in the AutoCore. 604 
Significance of the difference between the different groups was calculated by ANOVA. H) Pathway diversity 605 
as a measurement of molecular “outreach” of gene defects. I) Pathway diversity of AIM/AIF gene defects. 606 
Abbreviations: AIM: Autoimmunity; AIF: Autoinflammation; Inflam. Bowel. Dis: Inflammatory bowel disease.  607 
* = p<0.05, ** =  p<0.01, *** =  p<0.001, *** =  p<0.0001, **** =  p<0.00001.  608 
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 609 
Figure 4: The monogenic AutoCore is the core of complex, polygenic autoimmune and 610 
autoinflammatory diseases. A) Finding the connected components of polygenic 611 
autoimmunity/autoinflammation (AIM/AIF) disease and the AutoCore. B) The largest connected component 612 
of polygenic autoimmune/autoinflammatory diseases and the AutoCore is more significantly larger 613 
compared to the polygenic autoimmunity/autoinflammation connected component alone. Significance was 614 
determined by z-score based on 1000 random permutations. C) Assessment of connections of polygenic 615 
autoimmune/autoinflammatory diseases based on shortest paths between polygenic genes. D) Enrichment 616 
of AutoCore nodes between polygenic disease gene shortest paths.  E) Fraction of AutoCore nodes that 617 
serve as connectors between polygenic autoimmune/autoinflammatory diseases. P-value was determined 618 
by Fisher’s exact test. F) Pathway and G) Gene ontology biological process enrichment of polygenic 619 
autoimmunity/autoinflammation connector genes within the AutoCore. H) Enrichment of AutoCore nodes 620 
between disease specific polygenic disease gene shortest paths on the interactome. Odds ratio and p-621 
value was determined by Fisher’s exact test. I) Polygenic autoimmune/autoinflammatory disease and 622 
AutoCore disease network. Each shortest path shorter than 1.5 is visualized. Node size represents 623 
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betweenness centrality in the network. Edge width represents the average shortest distance between 624 
diseases. Abbreviations: AIM: Autoimmunity; AIF: Autoinflammation; Lcc: Largest connected component; 625 
Inflam. Bowel. Dis: Inflammatory bowel disease.  SLE: Systemic lupus erythematosus; IBD: Inflammatory 626 
bowel disease; MS: Multiple sclerosis; RA: Rheumatoid arthritis; T1D: Type 1 diabetes. * = p<0.05, ** =  627 
p<0.01, *** =  p<0.001, *** =  p<0.0001, **** =  p<0.00001. 628 

 629 
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 630 
Figure 5: Disease – specific connections in SLE and IBD. A) Genetic overlap between monogenic and 631 
polygenic IBD. B) Genetic overlap between monogenic and polygenic SLE. C) Assessment of the 632 
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connectivity of monogenic and polygenic IBD and SLE. D) Connectivity of monogenic and polygenic SLE 633 
and IBD on the interactome. Significance was determined by z-score based on 1,000 random permutations. 634 
E) Enrichment of monogenic IBD genes in polygenic IBD shortest paths. Odds ratio and p-value were 635 
determined by Fisher’s exact test. F) Fraction of polygenic connectors among monogenic IBD genes. G) 636 
The polygenic-monogenic IBD network on the interactome. Monogenic IBD genes, monogenic connectors 637 
and their polygenic direct neighbors are visualized. H) Enrichment of monogenic-polygenic IBD connectors 638 
in networks derived from intestinal coexpression networks from IBD patients. Odds ratio and p-value were 639 
determined by Fisher’s exact test. I) Enrichment of monogenic SLE  genes in polygenic SLE shortest paths. 640 
Odds ratio and p-value were determined by Fisher’s exact test. J) Fraction of polygenic connectors among 641 
monogenic SLE genes. K) The polygenic-monogenic SLE network on the interactome. Monogenic SLE 642 
genes, monogenic connectors and their polygenic direct neighbors are visualized. L) Enrichment of 643 
monogenic-polygenic SLE connectors in highly expressed genes in adult SLE patients. Odds ratio and p-644 
value were determined by Fisher’s exact test. Abbreviations: IBD: Inflammatory bowel disease; SLE: 645 
Systemic lupus erythematosus; Lcc: Largest connected component; * = p<0.05, ** =  p<0.01, *** =  p<0.001, 646 
*** =  p<0.0001, **** =  p<0.00001. 647 
  648 
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 649 
 650 

Figure 6: Finding subclusters within the AutoCore. A-B) Identification of molecular subclusters within 651 
the AutoCore. B) The AutoCore separates into 25 molecular subclusters, among them 19 disease clusters.  652 
C) Functional clusters within the AutoCore. The 12 major disease subclusters are highlighted. 653 
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Abbreviations: AIM: Autoimmunity; AIF: Autoinflammation; CID: Combined immunodeficiency; HLH: 654 
Hemophagocytic lymphohistiocytosis; ainfl.dis: Autoinflammatory disease; SCID: Severe combined 655 
immunodeficiency; Complement def.: Complement deficiency; CGD: Chronic granulomatous disease.  656 
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 657 
Figure 7: Exploiting the AutoCore for identification of potential treatment repurposing 658 
opportunities. A) Assessment of treatment-target distance from the AutoCore with minimal distance. B) 659 
Distance of drug targets of drugs that are used for treatment in the AutoCore. Significance of difference in 660 
distance measurements between the AutoCore and 1000 random permutations was determined by Student 661 
t-test. C) Approach to investigate cluster-specific treatment distances using the interactome and minimal 662 
distance. D) Distance of cluster-specific and cluster-non-specific drug targets on the interactome. 663 
Significance of difference in distance measurements between the cluster specific and non-specific 664 
treatments was determined by Student’s t-test. E) Approach to investigate novel pathways pinpointed by 665 
significantly close rugs to the AutoCore. F) Fraction of existing and novel pathways in drug targets 666 

Nucleobase biosynthesis
Purine ribonucleoside monophosphate biosynthesis

GPCR ligand binding
Interleukin-12 signaling

Class A/1 (Rhodopsin-like receptors)
Interleukin-6 signaling

Interleukin-12 family signaling
MAPK3 (ERK1) activation

SUMOylation of intracellular receptors
Signaling by Retinoic Acid

Regulation of Complement cascade
Interleukin-10 signaling

Amine ligand-binding receptors
Complement cascade

Nuclear Receptor transcription pathway
Interleukin-1 family signaling

PI3K/AKT Signaling in Cancer
Interleukin-1 signaling

Interleukin-4 and Interleukin-13 signaling
Transcriptional regulation by RUNX2

Response to metal ions
Interleukin-3, Interleukin-5 and GM-CSF signaling

Metallothioneins bind metals
Signaling by the B Cell Receptor (BCR)

RAF/MAP kinase cascade
Signaling by Receptor Tyrosine Kinases
Formation of Fibrin Clot (Clotting Cascade)

MAPK1/MAPK3 signaling
Costimulation by the CD28 family
MAPK family signaling cascades

Fc epsilon receptor (FCERI) signaling
PIP3 activates AKT signaling

Diseases of signal transduction
Fcgamma receptor (FCGR) dependent phagocytosis

Intracellular signaling by second messengers
TCR signaling

Platelet activation, signaling and aggregation
Downstream TCR signaling

Signaling by Interleukins

Novel targets
(480)

Existing targets
(102)

0.04

0.03

0.02

0.01

P value

Gene Ratio

0.1

0.2

T-test,

****

0.0

0.5

1.0

1.5

2.0

2.5

Distance form
AutoCore

Expected
distance

D
is

ta
nc

e 
on

 n
et

w
or

k

T-test, 

****

-2.5

0.0

2.5

5.0

Drugs not 
used in cluster

Drugs used 
in cluster

- z
-s

co
re

Distances 

dA = 1
dB = 2
dc = 2

Drug C

* novel discovery

100 403020
*etanercept
vaccination

antibiotic prophylaxis
sirolimus
*anakinra

*belimumab
chloroquine

antimicrobial prophylaxis
cyclosporine

glucocorticoids
*rituximab
antibiotics

NSAID
mycophenolate mofetil

azathioprine
methotrexate

corticosteroids
IVIG

HSCT

*targeted
immunosuppressants

Percentage of diseases used for

Targets
(110 proteins)

Drug B

Drug A

10
00

x 
pe

rm
ut

at
io

ns

M
ea

su
re

 o
f s

ig
ni

fic
an

ce

For Cluster:
8 / 10 

For Cluster:
4 / 5 / 18

For Cluster:
7

For Cluster:
10 / 14 / 20 / 21 

AutoCore 
functional atlas

MAPPING OF CLUSTER SPECIFIC TREATMENTS 
TO THE INTERACTOME

DISTANCE MEASURE OF CLUSTER SPECIFIC
AND NON SPECIFIC TREATMENTS

Path to cluster specific treatment

Path to non-cluster specific treatment

d all 
specific

=

d all
unspecific

=

(dmin specific )
N

N
M

Number of specific treatments

Number of non specific treatments

Shared 
pathways

New
pathways

79.8%

20.1%

Pathway enrichment overlap of
existing and novel drug targers

Existing treatment
options

Novel 
treatment 

targets

Treatment 
targets

Pathway
enrichment

Pathway
enrichment

P1 P3 P5

P3 P7 P9

New
pathways

AutoCore

Cluster 10

(dmin non specific)
N

For Cluster:
8 / 10 

For Cluster:
4 / 5 / 18

For Cluster:
7

For Cluster:
2 / 4 / 12 / 20

For Cluster:
10 / 14 / 20 / 21 

For Cluster:
1 / 16

Cluster 10

For Cluster:
2 / 4 / 12 / 20

For Cluster:
1 / 16

AIM/AIF treatment distance
from the AutoCore

Assessing AutoCore - treatment network distance Minimal 
distance measure

Mappint drugs to the interactome
by their targets

Assessing distance-based treatment specificity

Identification of novel targetable pathways Pathway enrichment of existing and novel drug targets

Cluster treatment 

A B

C

GE

D

F

Novel
significantly close
treatment options



  32 
 

   
 

significantly close to the AutoCore. G) Pathways enriched of novel treatment targets significantly close to 667 
the AutoCore, compared to pathway enrichment of already existing treatment strategies. The top 20 668 
enriched pathways for each group (novel and existing targets) are visualized. Novel pathways are 669 
highlighted in bold. Odds ratio and p-value were determined by Fisher’s exact test. * = p<0.05, ** =  p<0.01, 670 
*** =  p<0.001, *** =  p<0.0001, **** =  p<0.00001.  671 
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Figure S1: A) Median closeness centrality of autoimmune/ autoinflammatory gene defects. The Mann-

Whitney U nonparametric test was used to determine p-value. B-D) Median degree, betweenness 

centrality and eigenvector centrality of monogenic autoimmune and autoinflammatory genes on the 

interactome. E) Average distances between autoimmune and autoinflammatory gene defects on the 

interactome. Significance was determined by z-score based on 1000 random permutations. F) Largest 

connected components of monogenic autoimmune and autoinflammatory genes on different tissue 
specific coexpression networks form the GTEx resource. Significance was determined by z-score based 

on 1000 random permutations. Abbreviations: AIM: Autoimmune; AIF: Autoinflammatory; Lcc: Largest 

connected component. Eigenvec. Cent: Eigenvector centrality. 
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Figure S2: A) KEGG pathway enrichment of AutoCore linker nodes. Enrichment analysis was carried 

out using the Enrichr tool. B) Gene Ontology Biological Process enrichment of AutoCore linker nodes. 

Enrichment analysis was carried out using the Enrichr tool. C) Enrichment of AutoCore linker nodes in 
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frequently mutated genes in different cancers. Odds ratio and p-value were determined by Fisher’s 

exact test. D) Enrichment of AutoCore linker nodes in highly expressed genes in lymphoma. Odds ratio 

and p-value were determined by Fisher’s exact test.  E) Enrichment of AutoCore nodes in tissue-specific 

coexpression networks from the GTEx resource. Odds ratio and p-value were determined by Fisher’s 
exact test. F) Largest connected components of AutoCore nodes on different tissue specific 

coexpression networks form the GTEx resource. Significance was determined by z-score based on 

1,000 random permutations. 

 

  



 

 
Figure S3: A-D) Degree, closeness centrality, betweenness centrality, and eigenvector centrality of 
monogenic and polygenic IBD genes on the interactome. Student T-test was used to determine the 

significance of difference between two groups. E-H) Degree, closeness centrality, betweenness 

centrality, and eigenvector centrality of monogenic and polygenic SLE genes on the interactome. 

Student T-test was used to determine the significance of difference between two groups. I-J) KEGG 

and Gene Ontology biological process enrichment of IBD connectors. Enrichment analysis was carried 

out using the Enrichr tool. I-J) KEGG and Gene Ontology biological process enrichment of SLE 

connectors. Enrichment analysis was carried out using the Enrichr tool. 
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Figure S4: A) Different molecular clusters within the AutoCore. Clusters are ordered according to size. 

B) Fraction of AIM and AIF gene defects per molecular cluster. C) HPO phenotype similarity of clusters. 

Fisher’s exact test was used to obtain p-value. D) Fraction of autoimmune, autoinflammatory and mixed 

clusters. E) Distribution of IUIS subgroups within the molecular clusters. F) Distribution of clinical 

phenotypes within the molecular clusters. Abbreviations: AIM: Autoimmunity; AIF: Autoinflammation; 

IUIS: International Union of Immunological Societies; CID: Combined immunodeficiency; CVID: 
Common variable immunodeficiency; SCID: Severe combined immunodeficiency; HLH: 

Hemophagocytic lymphohistiocytosis; ainfl.dis: Autoinflammatory disease; Complement def.: 

Complement deficiency; CGD: Chronic granulomatous disease.; PAD: Primary antibody deficiency.  

A B

D

E

c8 c2
0

c1
5 c6 c7 c1
8

c1
4

c1
1

c1
3

c1
0

c1
6

c1
2 c5 c3 c1
7 c9 c4 c1
9

c2
2 c2 c2
3 c1 c2
4

c2
5

c2
1

0

10

20

30

40

50

c8 c2
0

c1
5 c6 c7 c1
8

c1
4

c1
1

c1
3

c1
0

c1
6

c1
2 c5 c3 c1
7 c9 c4 c1
9

c2
2 c2 c2
3 c1 c2
4

c2
5

c2
1

0

10

20

30

40

50

60

70

80
AIF
AIM
AIM and AIF

mixed AIF
only

AIM
only

AIM&
AIF
only

0

5

10

15

20

N
um

be
r o

f c
lu

st
er

s

P
er

ce
nt

ag
e 

of
 g

en
es

in
 c

lu
st

er

N
um

be
r o

f g
en

es

C
lu

st
er

Percent of IUIS in cluster
c8

c15
c7

c14
c13
c16
c5

c17
c4

c22
c23
c24
c21 0.0

0.15

0.3

0.45

0.6

A
ut

oi
nf

la
m

m
at

or
y 

di
so

rd
er

s
C

ID
s 

w
ith

 s
yn

dr
om

ic
 

fe
at

ur
es

C
om

pl
em

en
t d

ef
ic

ie
nc

ie
s

C
on

ge
ni

ta
l d

ef
ec

ts
 o

f 
ph

ag
oc

yt
e 

nu
m

be
r o

r f
un

ct
io

n
D

ef
ec

ts
 in

 in
tri

ns
ic

 a
nd

 
in

na
te

 im
m

un
ity

D
is

ea
se

s 
of

 im
m

un
e 

dy
sr

eg
ul

at
io

n
Im

m
un

de
f a

ffe
ct

in
g 

ce
llu

la
r 

an
d 

hu
m

or
al

 im
m

un
ity

P
he

no
co

pi
es

 o
f i

nb
or

n
er

ro
rs

 o
f i

m
m

un
ity

P
A

D
s

CGD

CID

CVID

Complement deficiency

HLH (including HLH with CID)

Phenocopies of IEI

SCID/CID

Autoinflammatory disease

Autoinflammator+autoimmuinty

inflammasomopathy

Interferonopathies (w. CANDLE)

Neutrophil disorders

Other

c8
c20
c15c6c7
c18
c14
c11
c13
c10
c16
c12c5c3
c17c9c4
c19
c23

0.0

0.2

0.4

0.6

0.8

1.0

F

c10
c11
c12
c13
c14
c15
c16
c17
c18
c19
c20
c5
c6
c7
c8

1.00 1.25 1.50
Fold change

Number of genes
10

20

30

40

50

0.1

0.2

0.3
pval

C D



 
 

 
 Figure S5: A) Top three enriched reactome pathway terms per molecular cluster. Odds ratio and p-

value were determined by Fisher’s exact test. B) Top five enriched Gene Ontology  terms (biological 

process, molecular function and cellular component combined) per molecular cluster. 

A

ADAPTIVE IMMUNE SYSTEM
ANTIGEN ACTIVATES B CELL RECEPTOR BCR LEADING TO GENERATION OF SECOND MESSENGERS

ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF CLASS I MHC
CELL CYCLE

COMPLEMENT CASCADE
COSTIMULATION BY THE CD28 FAMILY

CROSS PRESENTATION OF PARTICULATE EXOGENOUS ANTIGENS PHAGOSOMES 
CYTOKINE SIGNALING IN IMMUNE SYSTEM

DAP12 INTERACTIONS
DEUBIQUITINATION

DIGESTION
DIGESTION AND ABSORPTION

DNA METHYLATION
DNA REPLICATION PRE INITIATION

EFFECTS OF PIP2 HYDROLYSIS
ELEVATION OF CYTOSOLIC CA2 LEVELS

ENDOSOMAL VACUOLAR PATHWAY
ETHANOL OXIDATION

FASL CD95L SIGNALING
FCGAMMA RECEPTOR FCGR DEPENDENT PHAGOCYTOSIS

FRUCTOSE CATABOLISM
FRUCTOSE METABOLISM

HCMV LATE EVENTS
HDMS DEMETHYLATE HISTONES

HEMOSTASIS
HUR ELAVL1 BINDS AND STABILIZES MRNA

INITIAL TRIGGERING OF COMPLEMENT
INLB MEDIATED ENTRY OF LISTERIA MONOCYTOGENES INTO HOST CELL

INNATE IMMUNE SYSTEM
INTERLEUKIN 4 AND INTERLEUKIN 13 SIGNALING

INTERLEUKIN 7 SIGNALING
KERATINIZATION

LISTERIA MONOCYTOGENES ENTRY INTO HOST CELLS
MAPK6 MAPK4 SIGNALING

MEIOSIS
MEIOTIC SYNAPSIS

METABOLISM OF RNA
MHC CLASS II ANTIGEN PRESENTATION

MITOTIC G1 PHASE AND G1 S TRANSITION
NEUTROPHIL DEGRANULATION

PARASITE INFECTION
PLATELET ACTIVATION SIGNALING AND AGGREGATION

PLATELET CALCIUM HOMEOSTASIS
POST TRANSLATIONAL PROTEIN MODIFICATION
REGULATION OF TLR BY ENDOGENOUS LIGAND

REGULATION OF TNFR1 SIGNALING
RHO GTPASE EFFECTORS

RHO GTPASES ACTIVATE WASPS AND WAVES
SIGNALING BY INTERLEUKINS

SIGNALING BY RECEPTOR TYROSINE KINASES
TNF SIGNALING

TNFR1 INDUCED NFKAPPAB SIGNALING PATHWAY
TNFR2 NON CANONICAL NF KB PATHWAY

TNFS BIND THEIR PHYSIOLOGICAL RECEPTORS
TOLL LIKE RECEPTOR 4 TLR4 CASCADE

TRANSPORT OF MATURE MRNAS DERIVED FROM INTRONLESS TRANSCRIPTS
TRANSPORT OF MATURE TRANSCRIPT TO CYTOPLASM
TRANSPORT OF THE SLBP DEPENDANT MATURE MRNA

UB SPECIFIC PROCESSING PROTEASES

c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c2 c20 c22 c24 c3 c4 c5 c6 c7 c8 c9
cluster

overlap

0.25

0.50

0.75

1.00

0.005

0.010

0.015

0.020
pval

B

antigen processing and presentation
antigen processing and presentation of endogenous antigen

antigen processing and presentation of endogenous peptide antigen via MHC class I
antigen processing and presentation of exogenous antigen

antigen processing and presentation of exogenous peptide antigen
antigen processing and presentation of peptide antigen

cellular response to chemical stimulus
cellular response to endogenous stimulus

cellular response to organic substance
chromatin

entry of bacterium into host cell
epidermal growth factor receptor signaling pathway

ERBB signaling pathway
MHC class II protein complex binding

MHC protein complex binding
mRNA splicing, via spliceosome

negative regulation of epidermal growth factor receptor signaling pathway
negative regulation of extrinsic apoptotic signaling pathway

nuclear chromatin
nucleoplasm part

phosphatidylinositol 3-kinase activity
phosphatidylinositol bisphosphate kinase activity

phosphatidylinositol-4,5-bisphosphate 3-kinase activity
positive regulation of cell-cell adhesion

positive regulation of protein kinase B signaling
protein folding

protein folding in endoplasmic reticulum
protein kinase B signaling

regulation of cellular biosynthetic process
regulation of cellular macromolecule biosynthetic process

regulation of leukocyte cell-cell adhesion
regulation of macromolecule biosynthetic process

regulation of necrotic cell death
regulation of peptidyl-tyrosine phosphorylation

regulation of signal transduction by p53 class mediator
regulation of T cell activation

response to growth factor
response to interleukin-1

response to light stimulus
response to nitrogen compound

response to radiation
response to UV

RNA binding
RNA splicing, via transesterification reactions

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
serine hydrolase activity

serine-type endopeptidase activity
serine-type peptidase activity

signaling adaptor activity
T cell costimulation

TF activity, RNA pol II proximal promoter sequence-specific DNA binding
vesicle fusion

c10 c11 c12 c13 c14 c15 c18 c20 c6 c7 c8
cluster

enrichment

100

200

300

400

500

100

200

300

400

500
enrichment



134 

4 Discussion 
 

Over the last decade, numerous case studies of rare disease patients have shown how severe 

IEI can advance our understanding of core genes and pathways of the immune system. To 

illustrate the diverse gene defects and molecular mechanisms affected by rare diseases of the 

immune system, manuscript one in the introduction showcases the diverse genetic landscape of 

IBD, a prototypic autoinflammatory/autoimmune disorder. IBD presents with both a rare, severe 

early-onset and a more common, less severe, late-onset form. Individual gene defects underlying 

early-onset IBD and their consequences are discussed in detail, shedding light on how 

genetically, phenotypically and molecularly diverse this group of monogenic diseases is. 

Notwithstanding the impressive success of the single-gene mechanistic studies, we are now also 

increasingly recognizing the conceptual and practical limitations of the traditional one-gene, one-

disease paradigm in rare disease research. On the one hand, the decentralized fashion in which 

most of these disease genes have traditionally been investigated has meant that data regarding 

these diseases is scattered throughout various databases and patient cohorts. This has resulted 

in a considerable diagnostic delay with most patients with rare immune mediated diseases 

remaining without genetic diagnosis (Chazal et al., n.d.; Gahl et al. 2016). Indeed, one of the main 

challenges of finding a genetic diagnosis of these diseases is often finding a matching patient 

cohort/diagnosis (N. Sobreira et al. 2015; N. L. M. Sobreira et al. 2017). As sharing of data and 

the subsequent fast and accurate diagnosis heavily relies on standardized data and vocabularies, 

the unavailability of accurate phenotype data for IEI significantly contributes to the diagnostic 

delay. Over the years, various phenotype-nomenclatures emerged that aimed to address specific 

applications of phenotype data, but to date none of these found strong footing for rare diseases. 

HPO was specifically developed as a phenotype ontology with diagnostic application in mind, 

exemplified by the different tools that use them for finding genetic diagnosis such as Exomiser 

and Lirical (Smedley et al. 2015; Robinson et al. 2020). Unfortunately, HPO is currently too 

incomplete to serve IEI in an adequate manner. The second manuscript of this thesis provides a 

proof of principle of how to use ontology-guided machine learning coupled with an expert-based 

review to systematically evaluate the HPO and reannotate IEI with HPO phenotype terms. We 

show that a directed review of distinct branches of the HPO tree and reannotation of specific IEI 

subgroups is able to achieve a significant increase in HPO-phenotype-based similarity matching 
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to genetic diagnosis in a patient cohort, as well as a more clinically accurate phenotype-based 

similarity between subgroups of IEI.  

 

Beyond providing accurate phenotyping data to enable faster diagnosis and disease-matching, 

an objective overview of rare diseases of the immune system is currently lacking. To date, the 

focus on single gene defects makes it difficult to appreciate the intricate molecular network 

through which the individual components of the immune system are orchestrated. Indeed, despite 

over 400 monogenic immune diseases that have been defined to date, a unifying view of this 

important class of diseases is still lacking. The overarching ambition of the project showcased in 

research manuscript number two was to develop such a systems-level view and showcase its 

utility for addressing a wide range of important biomedical questions. To achieve this, we 

developed a network-based framework for integrating all currently known monogenic immune 

defects underlying autoimmunity and autoinflammation and their molecular interactions. We show 

that this framework, and the map of human autoimmunity and autoinflammation termed the 

AutoCore, are powerful tools to quantify previously only anecdotal clinical observations, to identify 

objective molecular subgroups of these diseases and to identify potentially druggable, novel 

therapeutic pathways.  

 

In conclusion, this thesis here provides two examples of the application of systems biology to 

expand the knowledge base regarding rare diseases of the immune system, and to construct a 

systems-based framework for the investigation of a subgroup of IEI. Both of these endeavors 

have resulted in a significant gain of functionally relevant information regarding IEI both on a 

single-disease basis, but also by looking at IEI as a disease group. 
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4.1. Discussion and outlook for “Curation and Expansion of 
Human Phenotype Ontology for Defined Groups of Inborn Errors 
of Immunity” 
 
IEI pose particular challenges for affected patients, as well as for medical doctors and researchers 

working to improve diagnostic and therapeutic approaches. Clinicians often only see a few 

patients with a particular rare phenotype throughout their careers, leading to considerable 

diagnostic delay. Data sharing across institutions and borders is crucial to achieve early 

diagnosis. However, phenotypic data are often described with variable quality and specificity, 

which hampers patient matching, genetic variant prioritization in diagnostic pipelines and global 

data exchange. Although well-known disease databases such as OMIM (McKusick 2007), 

OrphaNet (Weinreich et al. 2008) and GARD (Zhu et al. 2020) store data regarding the phenotypic 

traits of numerous rare diseases, the phenotypic representation of IEI in these resources is not 

complete. In the past decade, HPO emerged as an ontology to objectively describe human 

phenotypes with a diagnostic application in mind (Smedley et al. 2015; Robinson et al. 2020). 

Although incomplete, HPO has been the ontology most frequently adapted by the IEI community 

(Köhler, Kindle, and Robinson 2021). HPO-based phenotypic annotations of IEI exist, however, 

they are not complete enough to represent most diseases within this disease group in an 

adequate manner. In the first version of HPO, automated text mining of the OMIM-clinical 

synopsis corpus was used to identify the phenotypic spectrum and annotate diseases (Robinson 

et al. 2008) in order to get a general annotation of IEI. Over the last years, it was established that 

this initial annotation only captured a subset of relevant phenotypes of IEI, and it has become 

clear that a tailored, expert-lead approach is necessary to expand the current knowledgebase. 

Although a similar, expert-linked effort was recently documented for eye diseases (Sergouniotis 

et al. 2019), our publication is the first comprehensive method published so far with validation of 

the improvement of annotation as a result of our reannotation effort in both a patient-focused and 

disease-specific manner. With our initiative, our goal was to revise and expand the current HPO 

tree, as well as to reannotate IEI with HPO terms. 

 

As proof of concept, we have started from four subgroups of IEI based on the IUIS clinical 

classification: diseases affecting cellular and humoral immunity (IUIS Table I), diseases of 

immune dysregulation (IUIS Table IV), autoinflammatory disorders (IUIS Table VII) and 

genetically undiagnosed predominantly antibody deficiencies (IUIS Table III). We have used an 

expert-lead, hands-on approach to review and expand the HPO tree. Specific, IEI relevant 
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branches of the HPO tree were discussed in detail at in-person workshops by expert groups. 

Based on these expert discussions, suggestions to change the tree structure and to add new 

HPO terms were submitted as a request to HPO, using the GitHub tracking system (Köhler et al. 

2017). To date, we have requested 206 changes in the ontology structure, including 137 new term 

requests. Currently, 81 of the 137 requested new terms (59.12%) have been accepted to be part 

of the official vocabulary of HPO. Updating the HPO ontology with the requested terms is still 

ongoing. The HPO ontology is constantly receiving updates, based on input from initiatives like 

ours and also individual change requests. Therefore, the HPO ontology structure, synonyms and 

term descriptions are subject to change. Furthermore, the inclusion, change or exclusion of 

putative HPO terms is based on a discussion between and with the curators of the HPO website, 

using the GitHub tracker. As a result, as we are not the only decision makers in the structural 

change and term inclusion process, and it is possible that some of our suggestions are either 

added in a modified way, added in a different branch in the HPO, or after longer discussions 

possibly rejected.  

 

Measuring the impact of the above mentioned individual tree structure changes is not a 

straightforward task. The most logical way perhaps is to perform a joint validation of all changes 

requested, taking all the changes relevant for the IEI disease group in consideration. To date we 

have reviewed the HPO tree from the perspective of the four IUIS specified subgroups of IEI we 

have reannotated, therefore our review of the whole HPO body is not yet complete. Once the 

whole HPO tree, that is relevant in the context of IEI has been revised, the assessment of the full 

impact of the modifications will be possible. To do this, the efficacy of the revised/modified trees 

should be tested on the improvement of patient-diseases and disease-disease similarity 

measures, without changing the underlying HPO term annotation of individual diseases.  

 

Along with revising the structure of the HPO tree relevant for IEI, reannotation of IEI with HPO 

terms was our main goal. To achieve this, we have used an ontology-guided effort relying on 

natural language processing (NLP), using a tool trained on the HPO ontology (Arbabi et al. 2019), 

and used on Pubmed abstracts. The tool, termed neural concept recognizer (NCR) performed 

well in robust performance measurements for PubMed article abstracts. We have run the NCR 

tool on a collection of publications that have accurately described the phenotypic presentation of 

the diseases in the four subgroups, collected by experts on the different diseases. We have shown 

that the NCR was a powerful approach for the identification of phenotype terms from our expert-

curated publication corpus, as for the majority of the new terms per disease after reannotation 
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now stem from the text-mining over existing HPO terms or additional suggestions by experts 

(Figure 3I). This text mining effort has resulted in a major quantitative gain in the number of 

available phenotype terms per disease, as well as a significant gain in qualitative information as 

the mean information content accessible per disease increased as well. 

 

We have tested the efficacy of our reannotation approach using a cohort of IEI and performed 

HPO-phenotype-based patient-disease matching. For this analysis, we have used data from a 

real cohort of 30 IEI patients. Together, the 30 patients harbored 24 diverse genetic diagnoses. 

In order to validate the efficacy of the annotated disease set to improve diagnostic analysis, we 

aimed to use a well annotated patient cohort harboring confirmed gene defects in our reannotated 

diseases. With this, our goal was to illustrate the real-life applicability of an HPO-based patient-

disease matching endeavor, with its difficulties, including the quality and quantity of disease 

annotations available, as well as the low number of patients in a specific cohort. As agreed 

throughout Europe according to the European Commission, a rare disease is defined as diseases 

affecting fewer than 1 in 2000 people (Nugent and Rhinard 2015; Eurodis). Thus, a frequent 

hallmark of rare diseases is the small available patient pool, especially when focusing on a diverse 

group of disorders. Current larger cohort studies echo this sentiment. In a recent effort, 

(Thaventhiran et al. 2020) sequenced 1,318 primary immunodeficiency (PID) patients and found 

genetic diagnosis for 135 patients spanning 42 individual diseases. In most instances, only one 

patient was found with a particular disease. In another effort by (Simon et al. 2020) whole exome 

sequencing was applied to a cohort of 106 highly consanguineous PID patients, and found a likely 

genetic diagnosis in 70% of cases spanning 46 gene defects. We have shown that in this real-life 

cohort, the reannotation has achieved a significant improvement in patient-to-diagnosis matching 

based on HPO phenotypic similarity, as well as in the phenotype-based ranking of the correct 

genetic diagnosis. These proof-of-principle results underpin the success of our effort providing a 

more accurate phenotypic description of IEI in HPO that is already improving diagnostic accuracy. 

 

We have now addressed four specific subgroups of IEI. Our ongoing goals and work entail 

recruiting more experts in order to take our initiative further and address all other IEI disease 

groups. Once a fully reannotated set of IEI is available we can make a final assessment of the 

improvement of phenotype-disease matching and improvement in diagnosis, although we already 

show promising results with our focused review of four IUIS subgroups of IEI. A fully reannotated 

set of diseases will most likely spur on an expansion of diagnostic tools relying on HPOs of 

phenotyping such as, as well as popularize the tools available already such as Phenotips (Girdea 
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et al. 2013) Exomiser (Smedley et al. 2015) and Lirical (Robinson et al. 2020). In addition, HPO 

has been successfully applied to predict disease-associated lncRNAs (Le and Dao 2018) and 

disease-related phenotypes (Xue, Peng, and Shang 2019). Furthermore, fine-tuning and 

expanding the current annotation corpus with modifiers such as indicators of frequency of a 

phenotype in a specific disease can improve the accuracy of HPO-based phenotype matching 

(Köhler 2018). It is also likely that more machine-learning based technologies will be developed 

that use HPO for phenotyping. These tools will accelerate the rate of genetic diagnosis as non-

expert centers could perform accurate patient-phenotype matching instead of having to rely on 

the expertise of the few rare disease centers.  

 

A crucial step towards globally standardized phenotyping is the universal adaptation of HPO in 

the community. EHRs and hospitals as well as patient cohorts of individual hospitals and research 

centers are beginning to adapt HPOs so that there is a standardized nomenclature world-wide 

(Gasteiger et al. 2020). Adaptation of HPO in the IEI community can be facilitated by tools such 

as Doc2Hpo, a web application developed for accurate HPO curation from clinical data (C. Liu et 

al. 2019), or the (HPO and ORDO Ontological Module) HOOM that associates clinical entities 

with HPO terms (“HPO - ORDO Ontological Module - Association - Classes” n.d.). A complete 

annotation of IEI and IEI patients with HPO will also enable the seamless use of information and 

patient-exchange portals. Traditionally, IEI research is a slow-paced field in terms of the adoption 

of new technologies. A lot of individual research centers still rely on paper-based data storage for 

their patient cohorts. The implementation of electronic cohort-based information storage will 

naturally improve the adoption of HPO as a way of patient phenotyping for these research centers 

and valuable patient cohorts.  

 

In conclusion, our manuscript demonstrates the utility of HPO and the efficacy of our effort to 

significantly improve the current representation of IEI in HPO which lead to significant 

improvement in the diagnostic accuracy of HPO for IEI. Our approach paves the way to further 

reannotate IEI, and drives the adoption of HPO in genetic diagnosis. Finally, as our repertoire of 

available accurate phenotypic and molecular data regarding diseases and individual patients 

expands, personalized medicine for IEI can potentially become a reality. New methods such as 

ours presented here will be crucial to allow us to go from a one-size-fits-all to a more 

personalized/precision medicine for IEI (Delhalle et al. 2018; Delmonte et al. 2019). 
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4.2. Discussion and outlook on “AutoCore: network-based 
identification of a core module defining human autoimmunity and 
autoinflammation.” 
 
The paradigm that molecules do not act in isolation but elicit their effects through a connected 

cascade of interactions has led to the recognition that systems approaches are vital to enhance 

our understanding of diseases, and of health in general (López-Otín and Kroemer 2021). Since 

the discovery of disease modules on molecular networks and the predictive power of network-

based closeness for pathobiological similarities (Menche et al. 2015), systems-methods and 

network medicine have been of a particular interest in research of immune mediated diseases. 

Indeed, the interplay of different immune cell types has been translated into a network-based view 

(Rieckmann et al. 2017), a systems-based classification of diseases of innate immunity has been 

recently proposed (Savic, Caseley, and McDermott 2020), and a holistic, pathway centered view 

of common, complex autoimmune and autoinflammatory phenotypes was introduced (Arakelyan 

et al. 2017).  

Although systems methods have been applied to different complex diseases so far, they have 

rarely been applied to rare diseases. Therefore, despite the advances in our understanding of 

single-gene defects that perturb the immune system, a systematic overview of the implicated 

genes, molecular mechanisms and pathways is still lacking. We here aimed to provide such an 

overview, by leveraging network-based methods and constructing a systematic map of 

autoimmunity and autoinflammation starting from rare disease genes that present with 

autoimmunity and autoinflammation. Rare autoimmune and autoinflammatory diseases represent 

a high-confidence set of genetic perturbations that are historically poorly documented in open-

source databases. Illustrating this, there is only phenotype and therapy-linked information 

available on 38.8% of these diseases in the official rare diseases data system, GARD (Lewis, 

Snyder, and Hyatt-Knorr 2017). We have therefore started by compiling a comprehensive dataset 

regarding the genetic, phenotypic, clinical presentations of rare autoimmune/autoinflammatory 

diseases, and the available therapeutic options. This dataset is available as a supplementary file 

linked to our manuscript, but also online at https://menchelab.com/autocoreapp/. This valuable 

data set harbors the potential to be translated into a knowledge-graph which could be used to 

reveal further unexpected connections between rare autoimmune/autoinflammatory diseases. 

Indeed, a knowledge graph was recently constructed using data from the GARD resource (Zhu 

et al. 2020) and has shown promise in accelerating the understanding of rare disease by the 

generation of disease mappings and associations through pathogenesis. 
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To construct a state-of-the art map of cellular interactions, we have started by building a novel 

interactome by combining various data sources. These included the interactome used to define 

disease modules of complex phenotypes (Menche et al. 2015), a database storing high-

throughput protein-interaction data (Alanis-Lobato, Andrade-Navarro, and Schaefer 2016), and a 

recently published interactome already used to investigate Mendelian diseases (Luck et al. 2020). 

The combined interactome, although bigger and denser, echoed the properties of previously 

published interactomes in terms of the degree distribution and modularity of functions and 

pathways. As more and more molecular interactions are mapped out, the combined interactome 

can be expanded further to include newly identified connections. We hypothesize that as we have 

seen from the combination of the three networks mentioned above, the combined interactome 

would retain its properties even through multiple rounds of dynamic expansion due to the inherent 

scale-free and small-world feature of interactomes (Cohen and Havlin 2003; Friedel and Zimmer 

2006; Rolland et al. 2014). 

 

We show that the combined interactome can be used to quantify clinical and biologically relevant 

phenomena. These phenomena include the significant inter-linkedness of autoimmunity and 

autoinflammation on a molecular level. Our quantification of this non-separation of autoimmunity 

and autoinflammation on the interactome stresses the challenges of development of a purely 

clinical classification of rare autoimmune/autoinflammatory diseases due to the observed 

interconnectedness, previously termed the “immunological disease continuum” (McGonagle and 

McDermott 2006). Furthermore, we show the tendency of those gene defects that present with 

both autoimmune and autoinflammatory features to have higher centrality and a more diverse 

pathway repertoire in their direct network neighborhoods, as compared to gene defects that 

present with either one of the phenotypes. This confirmation of the increased diversity of affected 

processes can be leveraged for the development of methods that exploit this trait of gene defects 

to predict if a certain gene defect will present with autoimmune or autoinflammatory phenotypes. 

Indeed, network-based phenotype prediction methods are already in place, for example to identify 

genes linked to specific cellular processes such as cell motility (Bern et al. 2019), or to predict 

clinical outcomes across gene expression networks (Kang et al. 2017).  

 

Using the combined interactome and rare disease genes, we identified the AutoCore using 

network propagation (Cowen et al. 2017). Within the AutoCore, 71.5% of disease genes are linked 

through either direct connections to one-another. Those disease genes (28.5% of all disease 
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genes) that do not harbor direct connections to other disease genes connected to the main cluster 

through the 213 linker genes which were identified through random walk with restart. The number 

of linker genes connecting the AutoCore is smaller than expected, and the connectivity of 

individual disease genes within the AutoCore is more significant than previously observed for 

complex diseases (Menche et al. 2015). As diseases within the AutoCore showed marked direct 

connectivity, we hypothesize that the 213 linker genes identified specifically for rare autoimmune 

and autoinflammatory disease might harbor novel rare disease-gene candidates. We have shown 

that the linker genes are enriched in genes identified to be associated with common complex 

autoimmune diseases. Just recently, PTPN2, a gene previously linked to IBD through GWAS 

(Rivas et al. 2011) was identified as a gene defect underlying early-onset autoimmune colitis 

(Parlato et al. 2020). As evidenced by tailored approaches such as those showcased for IBD (Q. 

Li et al. 2016) and corticospinal motor neuron disease (Novarino et al. 2014), rare diseases 

require specific tools for the identification of novel disease gene candidates. Therefore, a disease-

specific analysis and disease-focused prioritization could reveal novel rare-disease gene 

candidates among the linkers genes. 

 

In addition to their disease-gene potential, the 213 linker genes identified show ample evidence 

of clinical relevance by enrichment in abrogated T-cell immunity, viral infections, and 

hematological malignancies. All of these processes constitute clinical hallmarks of autoimmune 

and autoinflammatory diseases (Hussein and Rahal 2019; Dixon-Zegeye and Rutherford 2020; 

Mayor et al. 2018; Hemminki et al. 2020). Because of their high clinical relevance, the exploration 

of individual linker genes could aid in the identification of potentially novel disease mediators in 

autoimmunity and autoinflammation. Indeed, network-based methods have been used to identify 

specific key drivers in diseases such as showcased in type 2 diabetes (Sharma et al. 2018), 

Asthma (Sharma et al. 2015), hypertrophic cardiomyopathy (Maron et al. 2021), and late-onset 

IBD (Peters et al. 2017). The advantage of these network-based approaches is that the network 

neighborhood of candidates provides functional context of the linked cellular processes. This 

functional context can then be used to generate hypotheses on the molecular mechanisms 

affected by perturbation of the key drivers.  
 
Polygenic autoimmune and autoinflammatory diseases, in contrast to rare disorders, are generally 

considered results of an interplay of various disease-predisposing factors, such as environmental 

exposures, genetic and epigenetic factors (Cho and Gregersen 2011). The genetic architecture 

of these diseases, although extensively studied, remains poorly understood, leaving most of the 
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heritability unexplained (Manolio et al. 2009; MacArthur et al. 2017). We showed that the 

AutoCore, built on rare autoimmune/autoinflammatory disease genes, is at the topological center 

of complex autoimmune and autoinflammatory diseases on the interactome. The omnigenic 

disease model (Boyle, Li, and Pritchard 2017; Wray et al. 2018) postulates that there is a relatively 

small number of core genes relevant to any disease, while disease modifiers on the periphery of 

these core genes elicit smaller effects that, taken together, are strong enough to affect cellular 

phenotype. We find that from a network perspective, rare autoimmune and autoinflammatory 

disease genes serve as a core of autoimmune/autoinflammatory processes, while genetic 

associations of complex polygenic autoimmune/autoinflammatory genes reside on the periphery. 

This finding is consistent with the observation that genetic lesions in these core genes are 

associated with larger perturbations in the interactome neighborhood, while variation and 

mutations in the complex polygenic disease genes means less detrimental effects.  

 

We showed that the functional enrichment of specific connector nodes between monogenic and 

polygenic diseases reflects triggers of autoimmune and autoinflammatory phenotypes such as 

viral infections, response to viral infections and T cell-linked immune responses (Hayden, West, 

and Ghosh 2006). We found further enrichment of clinically and functionally relevant pathways 

and mechanisms on a disease-specific level in IBD and SLE, highlighting the AutoCore and the 

specific connectors nodes as potential disease-mediators and hallmark phenotype-genes for 

common polygenic diseases. As it has been shown that diseases that are in the close vicinity to 

one another on the interactome tend to present together (Menche et al. 2015), it will be intriguing 

to explore how the AutoCore connects to different diseases beyond autoimmune and 

autoinflammatory phenotypes. 

 
Although previous efforts to objectively categorize these gene defects exist, they so far have been 

based on incomplete clinical terms (Grateau et al. 2013; Pathak, McDermott, and Savic 2017), or 

remained incomplete, as they relied on high-throughput data that is unavailable for most single-

gene diseases (Arakelyan et al. 2017). Indeed, the unavailability of large-scale molecular 

datasets, together with the rarity of phenotypic patient profiles makes objective classification very 

challenging. We have used the AutoCore to identify molecular defined subclusters of rare 

autoimmune/autoinflammatory diseases. Although the AutoCore embodies a tightly connected 

subnetwork, we have found that the subclusters represent distinct molecular processes and 

cellular states. We found ample clustering of specific disease phenotypes and clinical groups, 

whereas less specific clinical phenotypes tend to be spread out across multiple clusters, 
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underpinning the power of this method to pinpoint clusters that are cohesive from a molecular 

mechanism standpoint. We further showcased that the AutoCore is therapeutically informative. 

We found that cluster-specific therapeutic targets tend to reside closer to the clusters they are 

used for, in comparison to other therapeutic targets used to treat autoimmune/autoinflammatory 

phenotypes. We hypothesize that this property of the AutoCore could be exploited for therapy 

repurposing. Network-based, disease-focused drug repurposing efforts for common, polygenic 

diseases such as for coronary heart disease (Cheng et al. 2018) have been published. Recently, 

a network-based methodology for the prediction of drug combinations that is particularly relevant 

for rare disease patients has been developed (Cheng, Kovács, and Barabási 2019). Most of these 

methods, however, rely on large-scale omics-data that is currently unavailable for rare 

autoimmune/autoinflammatory diseases to validate their findings. We propose that the AutoCore 

could first serve as a framework for network-based investigation for drug closeness, and as a 

framework to be used to generate larger-scale objective data sets regarding rare 

autoimmune/autoinflammatory diseases that can be used for validation.  

 

Taken together, the results presented in our manuscript authenticate the utility of a unifying 

framework for investigating rare autoimmune and autoinflammatory diseases to quantify so far 

only descriptive clinical and phenotypic observations. Our results not only further the fundamental 

understanding of the interplay between autoimmunity, autoinflammation and the interactome, but 

also offer a lasting novel platform to systematically explore the molecular origins of immune 

homeostasis and dysregulation. 
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