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Abstract	

Cancer arises due to mutations in the genome that transform an otherwise healthy cell towards 

malignancy. During the evolutionary process that starts from the single cell, the rising cancer 

needs to break through existing physiological barriers, in place to prevent its growth. The most 

fundamental barriers of cancer are existing mechanisms that prevent mutations and the 

subsequent malignant transformation of cells. Among them, the most important ones are DNA 

synthesis and DNA repair mechanisms. 

 

In this thesis, I give a broad description of the different DNA repair pathways, their key players 

and how changes in their activity can lead to mutagenesis and malignant transformation of 

cells. I also present the results from one of my PhD projects, where we successfully modeled 

different mutagenesis patterns that occur in cancer genomes in a controlled laboratory 

environment. This is important, because cancer genomes accumulate a complex mixture of 

mutation patterns in their genome, which have been well studied. It has however been very 

challenging for researchers to associate the mutation patterns to the biological processes from 

which they originate.  

 

Our work is one of the first two to show that endogenous mutation patterns, that arise through 

DNA repair defects, can be reproduced and studied in a controlled in vitro experiment. This 

opens the window for a variety of applications in the field, including the study of timing and 

sequence of mutation events, which has hitherto been difficult to assess from observational in 

vivo data. We identify in vitro signatures that confirm the known mismatch repair signature, 

but also novel ones that could be used as biomarkers for future characterization and 

therapeutic interventions of rare cancer subtypes with mutations in mismatch repair, Fanconi 

Anemia and BRCA repair pathways. 

  



DNA damage and DNA repair in cancer genomes Michel B.-B. Owusu 

 viii 

Zusammenfassung	

Krebs wird durch Mutationen im Genom verursacht, die eine ansonsten gesunde Zelle in eine 

Kranke verwandeln. Während des evolutionären Prozesses, der von der Einzelzelle ausgeht, 

muss der entstehende Krebs vorhandene physiologische Barrieren überwinden, die existieren 

um sein Wachstum zu verhindern. Die grundlegendste Krebsbarriere sind existierende 

Mechanismen, die Mutationen und die anschließende krankhafte Transformation von Zellen 

verhindern. Zu den wichtigsten zählen DNA-Synthese und DNA-Reparatur Mechanismen. 

In dieser Arbeit beschreibe ich detailliert die verschiedenen DNA-Reparaturwege, ihre 

Schlüsselspieler und wie Veränderungen in ihrer Aktivität zur Mutagenese und krankhafter 

Transformation von Zellen führen können. Ich präsentiere auch die Ergebnisse eines meiner 

Promotionsprojekte, in denen wir erfolgreich verschiedene Mutagenese-Muster modellierten, 

die in echten Krebsgenomen in einer Kontrolllaborumgebung vorkommen. Dies ist wichtig, 

weil Krebsgenome eine komplexe Mischung von Mutationsmustern in ihrem Genom 

akkumulieren, die schon gut beschrieben worden waren. Es war bis jetzt jedoch eine große 

Herausforderung für Forscher, Mutationsmuster mit den biologischen Prozessen zu 

verknüpfen, aus denen sie stammen. Unsere Arbeit ist eine der ersten beiden in der Welt, die 

zeigen, dass endogene Mutationsmuster, die durch DNA-Reparaturdefekte verursacht 

werden, reproduziert und in einem kontrollierten In vitro-Experiment untersucht werden 

können. Dies öffnet die Türe für eine Vielzahl von Anwendungen auf dem Gebiet, 

einschließlich der Untersuchung des Zeitpunkts und der Sequenz von Mutationsereignissen, 

die zuvor schwierig aus der Beobachtung von in vivo Daten zu bewerten war. Wir identifizieren 

In vitro-Signaturen, die die bekannte Fehlpaarungsreparatursignatur bestätigen, sowie neue, 

die als Biomarker für die zukünftige Charakterisierung und therapeutische Intervention von 

seltenen Krebs-Subtypen mit Mutationen in Fehlpaarungsreparatur, Fanconi-Anämie und 

BRCA-Reparaturwegen verwendet werden können.  
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CHAPTER	ONE:	INTRODUCTION	

 

Our	fight	against	cancer	

 

Historic	perspective	

A description of breast cancer, from 3000 BC, found on Egyptian papyrus (Edwin Smith 

Papyrus) is currently the oldest recording of cancer that we know of (Hajdu, 2010). Other 

records dating back to 1500 BC indicate that ancient Egyptians knew of various types of 

cancer and treated them by cautery, with knives, or various sorts of chemicals, including salt 

or arsenic paste (Hajdu, 2010). This knowledge of cancer and its treatment was also present 

in Greek texts: Around 400 BC, Hippocrates, described a cancerous growth, which reminded 

him of a growing crab, henceforth the name cancer (Hajdu, 2010). Superficial cancer (e.g. 

skin) was treated with creams and ointments whereas deep rooted cancer was dissected by 

knife or classified as incurable. Scientists and philosophers hypothesized that there was a 

natural cause of cancer, rejecting many of the superstitious believes and stigmata around 

cancer that was prevalent in their time (Hajdu, 2004). 

Interestingly, since the first recordings of cancer, up to the late 20th century, although much 

had been done, overall, not very much had changed about our knowledge of the fundamental 

causes of cancer, or our therapies for treating cancer. Most cancers are still diagnosed 

according to the organ or tissue of origin and treatment "with knives" (surgery), "chemicals" 

(chemotherapy) are still the most prevalent. Surgical removal of cancer is at times inefficient, 

since the cancer may be "deeply rooted" (metastatic) and continue growing after treatment. 

Chemotherapy does not only target cancerous cells but also healthy cells, leaving patients 

with horrible side effects and, in some cases, secondary therapy induced tumors. However, 

cancer therapy is experiencing innovative changes in the 21st century, with a focus on 

targeted, personalized therapy and the use of endogenous cancer killers (immunotherapy), 

thus focusing on causing minimal side effects and maximum depletion of the tumor. Much of 

the innovation has to do with our increased knowledge of what cancer actually is, which came 

with technological breakthroughs, such as cloning or sequencing but also cell and mouse 

models. Though much remains to be learned, we have moved from believing in superstitious 

causes of cancer to understanding the various levels of cancer disease, from the influences 

of environmental carcinogens, to human organs, tissues, cells and ultimately the 

deoxyribonucleic acid (DNA). 
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Mutations	in	deoxyribonucleic	acid	(DNA)	

The information encoded in the sequence of DNA entails genes, the blueprint for the 

manufacture of proteins, one of the main molecules that operate and control almost all 

processes in a living cell. Changes in the sequence of DNA, pose a potential threat to the 

integrity of proteins and hence the life of a cell and a whole organism, such as a human being. 

Those changes arise in the form of damage inflicted to the DNA or mistakes that occur during 

the copy process of DNA. If those changes in the sequence of DNA are not recognized and 

repaired in time by DNA repair proteins, then those changes can become permanently 

integrated into the DNA. Mutations are permanent changes to DNA from its original sequence. 

Mutations in humans can either occur in germ cells (cells that develop to become sperm and 

ovum) or in somatic cells (any non-germ cells). A somatic mutation only occurs in a single cell 

but can be carried on to all of its potential daughter cells, if that cell has the ability to replicate. 

A germ cell of one sex, carrying a mutation, has the potential to fuse with a gamete from the 

opposite sex, forming a zygote which eventually gives rise to all the cells of a human offspring. 

Thus, mutations in germ cells (germline mutations) are potentially carried on to all the cells 

(germ and somatic cells alike) of an offspring. A person’s germline genome is the individual’s 

genome as inherited from the parents. Two randomly chosen individuals may have about 

twenty thousand genetic (germ line) variations distributed throughout their expressed genome 

(exome) (Vogelstein et al, 2013). 

 

What	is	cancer	

Cancer is a genetic disease (or at least strongly influenced by genetic factors). In general, it 

arises from mutations in a single cell, which then proliferates and evolves towards malignancy, 

with the cancer taking any possible path in order to grow and survive. The overgrowth of 

cancerous cells affects tissues and organs often leading to clinical symptoms. 

Mutations have a strong malignant potential if they occur in cancer related genes (oncogenes 

or tumor suppressors). Those are genes, which upon gain of function or loss of function 

mutations respectively, can transform an otherwise normal cell towards malignancy 

(Pleasance et al, 2010a). The reasoning behind a mutated gene as causal in cancer stems 

from the observation that the number and type of mutations in affected genes were not 

probable to be caused by chance (Futreal et al, 2004). 

Some of the mutations in the development of cancer are responsible for its initiation, 

progression or metastasis (driver mutations). Most of the mutations in a cancer genome 

however are not directly responsible for its development (passenger mutations) (Pleasance et 

al, 2010b). Depending on the conditions, passenger mutations can turn into driver mutations. 
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This has for instance been reported in the response of tumors to chemotherapy, where existing 

mutations may be responsible for "de-novo" driver mutations that confer resistance to 

treatment (Roche-Lestienne et al, 2002). Although driver mutations are not easily identified by 

DNA sequencing alone, drivers are typically the most commonly shared mutations between 

tumors, cluster around known cancer associated genes and tend to be non-silent mutations 

(Stratton et al, 2009). Passenger mutations on the other and are randomly distributed 

throughout the genome. Therefore, it is assumed that clones bearing driver mutations are 

positively selected in the evolution of cancer (Pon & Marra, 2015). 

According to Bernd Vogelstein (Vogelstein et al, 2013), there are about 140 genes that can 

drive cancer when mutated and a typical cancer has 33 - 66 genes with mutations that are 

expected to affect protein integrity (non-synonymous mutations). On average there are only 2 

– 8 driver gene mutations per tumor, the remaining are passenger gene mutations. Vogelstein 

also inferred that overall, all driver mutations fall into 12 signaling pathways that regulate three 

core processes: cell fate, cell survival and genome maintenance. Frequently mutated cancer 

genes include Tumor Suppressor p53 (TP53), RAS oncogenes, various DNA repair genes 

(Knijnenburg et al, 2018) and kinases (Greenman et al, 2007). 

 

Epigenetic	alterations	

Epigenetic changes can alter the expression of a gene in an otherwise unperturbed genomic 

sequence (Plass et al, 2013). Such changes can be passed on from mother to daughter cells, 

functioning as genomic changes, constituting a stable inheritable trait for a cell. These type of 

inherited changes in gene expression are at times referred to as epimutations (Oey & 

Whitelaw, 2014), since they function as mutations. They can either be the cause for mutations 

in genes (primary epimutations) or the consequence of mutations in gene regulating factors 

(cis or trans regulators). Reports of primary epimutations in cancer are very rare. One 

prominent example is the methylation of MLH1 which is often found in cancer (Hitchins et al, 

2007; Ward et al, 2013). An epimutation in a gene can function as a driver gene mutation 

(mut-driver genes). In that case it can be called an epi-driver gene (Vogelstein et al, 2013). 

The expression of epi-driver genes are frequently deregulated in cancer without actual 

mutations (changes in the sequence) of the gene. 

 

Sequencing	of	genomes	

Advances in the cloning and sequencing of genes allowed researchers to study the genome 

and changes therein. Initially the sequence of single bases or genes were studied by different 

methods including early sequencing technologies (Sanger & Coulson, 1975; Sanger et al, 

1977; Capella et al, 1991). Automated sequencing technologies (Gocayne et al, 1987) and 
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computer algorithms for sequence annotations paved the way for the study of exomes and 

whole genomes (Fleischmann et al, 1995; Fraser et al, 1995; Bult et al, 1996; C. elegans 

Sequencing Consortium, 1998; Adams et al, 2000; Arabidopsis Genome Initiative, 2000), 

including the human genome. 

 

Lessons	from	the	human	genome	

The sequencing of the human genome, human genome project (HGP), was pursued in parallel 

by an international governmental organization (Lander et al, 2001) and a private company 

(Venter et al, 2001) with their initial results published in 2001. Since then, additional work has 

been done (Schmutz et al, 2004; International Human Genome Sequencing Consortium, 

2004) with the final studies (Kidd et al, 2008; Boyer et al, 2001) revealing structural variations, 

such as insertions and deletions, between the genomes of eight individual people. Moreover, 

data scientists, who had hoped to identify novel cancer genes after the HGP, were met with 

disappointment because they did not find any (Boyer et al, 2001). Overall, revelations from 

the HGP implied that the goal of attaining the sequence of "the" human genome, required 

rethinking. In order to understand disease associated changes in the genome of humans, 

researchers would have to focus on studying many individual human genomes. This was 

made possible with the advancements in automated sequencing, Next Generation 

Sequencing (NGS), when sequencing became more affordable and available to many 

researchers. Thousands of individual genomes could be sequenced, including cancer 

genomes. The main goal of sequencing cancer genomes has been to look for driver mutations 

that increase the mutation rate in a cell, contributing to a more rapid evolution of the tumor 

and metastases formation (Wong et al, 2011). The thus gained genomic information could in 

theory be used to guide targeted therapies that may result in more effective treatment and 

reduced toxicity (Garraway, 2013). 

 

Current	state	in	our	fight	against	cancer	

The work on cancer over the past centuries has overall resulted in an improved outcome for 

patients (Figure 1). The work has rested on 4 main pillars: prevention, detection, diagnosis 

and treatment. According to Bert Vogelstein and colleagues (Tomasetti & Vogelstein, 2015), 

5% of cancer is inherited, 29% is acquired due to environmental factors and 66% is due to 

random mutations in genomes. Thus, almost 30% of cancer incidences could be prevented 

by adequate measures in our behavior and society. The remaining 66% of cases that are 

acquired through random mutations in the genome require early detection, proper diagnosis 

and adequate treatment (including targeted therapy), similar so for the 5% of inherited cases. 
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Therefore, there is still much to be done to improve any of the four pillars of our fight against 

cancer. 

 

Targeted	approaches	in	cancer	therapy	

There have been some highlights in targeted therapeutic approaches, such as the BCR-Abl 

inhibitor imatinib for chronic myelogenous leukemia (CML) (Shaw et al, 2013), the ALK 

inhibitor crizotinib for ALK positive lung cancer, EGFR inhibitor erlotinib for non-small cell lung 

cancer (NSCLC) (Arteaga, 2003; Lynch et al, 2004) or Vemurafenib, a BRAF inhibitor for late 

stage melanoma. Though some of these targeted therapies have proven extremely effective 

in some cases (Kalia, 2015), cancer often finds ways to acquire resistance to treatment. 

Therefore, understanding the molecular mechanisms that underlie the evolution of each 

cancer type and subtypes will be essential for the next generation of cancer treatment. 

 

 
Figure 1: Advances in cancer therapy 

Age-Standardized ten-year net survival of selected cancers. Patients were adults (Aged 15-99) from 

England and Wales in the years 2010-2011. Ten-year survival for 2005-2006 and 2010-2011 is 

predicted using a statistical model. Breast cancer is for female only. Laryngeal cancer is for male only. 

Figure is taken from Cancer Research UK (Cancer Research UK website). 
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Barriers	against	cancer	

 

Tissue	and	cellular	barriers	

In many ways, cancer is age related (possibly part of the aging process) (Aunan et al, 2017). 

Some barriers against cancer diminish with age (e.g. genomic barriers), therefore, fighting 

cancer is possibly related to a fight against a natural evolutionary process in the life of human 

beings. 

Humans are exposed to specific carcinogenic agents in occupational settings (e.g. asbestos), 

or due to medicinal or life-style choices (e.g. tobacco smoking, alcohol) (Carbone et al, 2004; 

Luch, 2005; Pfeifer & Besaratinia, 2009). However, some carcinogens are currently 

unavoidable, (e.g. in food, water, air or as byproducts of endogenous metabolic processes). 

There are many layers and mechanisms of defense in the human body that are in place to 

protect us from cancer (or in other words, a malignant overgrowth of cells). For instance, the 

skin and the gut represent highly specialized environments with distinct structures, cell types, 

and innate defense mechanisms adapted to support their individual challenges. Ultra violet 

(UV) light is a powerful mutagen that can cause cancer. The cells of the human body that are 

most exposed to UV light are on the skin surface. Interestingly, as skin cells migrate from the 

innermost layers (where proliferation takes place) towards the outermost layers, they lose their 

proliferation potential and eventually even their nucleus. Thus, the cells exposed to the highest 

degree of UV mutagen (and other environmental mutagens) are deprived of their cancer 

potential, since they neither acquire mutations in their genome nor grow or proliferate. 

Something very similar is true for cells in the gut: The dividing cells are hidden (and protected) 

in the depth of the crypts, while apical cells on the surface, exposed to highest degree of 

mutagens in the gut lumen, are non-proliferating or dead. Another example, are 

haematopoietic stem and progenitor cells (HSPCs) in the bone marrow. HSPCs belong to the 

most prolific cells in the human body. Interestingly enough, they can only reside and grow in 

a specific niche with a specific microenvironment. In adult humans that niche is in the bone 

marrow. Researchers recently made an intriguing discovery, which implies that HSPCs 

evolved to exclusively reside in the bone marrow as a protection from mutagenic / carcinogenic 

UV light from the sun (Kapp et al, 2018). A final example is the immune system, which plays 

a vital role in protecting the organism from the outgrowth of renegade cells. Cancer cells 

therefore develop strategies to escape the immune system (Houghton, 1994; Koster et al, 

2015). 

The cells of the human body are extremely specialized, this may (to some degree) explain the 

heterogeneity of cancer. Tissues / organs have specialized functions in specialized tissue 

environments (e.g. breast vs colon). Genes of cells of a tissue could have evolved to adapt to 
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a function and environment (Nunney & Muir, 2015). Cancer appears to evolve by any possible 

means (intrinsic and extrinsic factors). That may be why we, for instance, find BRCA mutations 

predominately in breast cancer, or MMR mutations in colon cancer. 

In addition to tissue and cellular barriers, there are intracellular barriers at place to protect the 

human body from cancer, including programmed cell death of dysfunctional or malignant cells. 

 

Genomic	barriers	

There are features in the structure, architecture and function of the genome (Figure 1) 

(Rübben & Nordhoff, 2013) that act as barriers against cancer. The DNA sequence consists 

of coding and non-coding units (or regions). The coding units (exons) are subsets of genes 

and contain the coding sequences for proteins. Non-coding units can be subsets of genes 

(introns) that do not code for proteins, or form sequences between genes (intergenic regions). 

Intergenic regions may contain sequences involved in the regulation of various diverse 

processes, such as transcription, translation, DNA replication, as well as in the stability of 

structures such as centromeres and telomeres. Coding regions make up about 1% of the 

genome (Elgar & Vavouri, 2008). The remaining ~99% is noncoding DNA, made up of ~75% 

intergenic regions (Shabalina et al, 2001) and ~24% intronic regions. Though some non-

coding regions may indeed represent regulatory units of genes, given just the sequence of 

DNA, most random mutations in the genome would fall into non-coding regions, with no or 

minimal functional implications for a cell. 

DNA is wrapped around histones (nucleosomes) with actively transcribed / expressed regions 

(euchromatin) and less actively transcribed regions (heterochromatin) which also have 

implications for mutations. Euchromatic regions tend to accumulate fewer mutations that 

heterochromatic regions, which means that actively expressed genes, which could induce 

cancer, are more protected from mutations than less expressed ones. 

Damage of DNA, which may lead to mutations, may induce cellular death. Indeed, as 

proposed for some cases of spontaneous abortion in embryos with chromosomal instability 

(CIN) (Adjiri, 2017), keeping the integrity of DNA as a barrier against cancer is important to 

the degree that whole organisms may perish. Consequently, in addition to the packaging, 

architecture and structure of DNA, one of the most important genomic barriers against cancer 

is the response to DNA damage.  

Though there are many barriers that prevent cancer (Hanahan & Weinberg, 2011) from 

environmental, to cellular, to genomic factors, this work focuses on the most fundamental 

origin of cancer: DNA, DNA damage, DNA damage response (including DNA damage repair) 

and mutations. 
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Figure 2: Genome structure 

A cartoon of the 3D structure of the genome in a nucleus. Figure was taken from (Iyer et al, 2011). 

 

DNA	synthesis	&	replication	

 

DNA	synthesis	

In human cells, DNA, is a double stranded helical molecule. Each strand is a chain of single 

nucleotides that form phosphodiester bonds, and the two strands bind together through base 

pairing of the nucleotides. A nucleotide in DNA consists of a deoxyribose (sugar), a phosphate 

group, and a base. The deoxyribose and phosphate residues form the backbone of the strand 

(phosphodiester bonds) and are called sugar phosphate backbone. There are four bases: 

adenine, cytosine, guanine and thymine. Adenine and guanine belong to the purine group and 

cytosine and thymine belong to the pyrimidine group. Normal base pairing in DNA is between 

adenine and thymidine or guanine and cytosine. Other base pairs may lead to mutations if 

unrepaired. 

In order to give rise to functional daughter cells, a parent cell must produce two DNA molecules 

for them to inherit. DNA is copied in a semi conservative manner, which means, the two parent 

strands serve as templates for two newly synthesized daughter strands. Deoxyribonuclotide 

triphosphate (dNTP) are incorporated into DNA by polymerases in an enzymatic reaction: 

DNAn + dNTP = DNAn+1 + diphosphate, where DNAn is the DNA molecule with n nucleotides. 
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Nucleotides can only be added to the 3’-hydroxyl end of DNA, defining the direction of 

replication from the 5’-phosphate to 3’-hydroxyl end (5’ to 3’). DNA damage can already occur 

by incorporation of damaged nucleotides into DNA. Oxidized nucleotides are one of the most 

common types of damaged nucleotides. There are different specialized DNA repair factors 

that deal with damaged nucleotides. One of them is the protein nudix hydrolase 1 (NUDT1, 

also known as MTH1), which can hydrolyze oxidized purinic dNTPs to dNMPs, thereby 

depleting cells from oxidized nucleotides that could otherwise be incorporated into DNA 

causing DNA damage. Besides damaged nucleotides, which are a source of mutations, 

nucleotide variants, such as the RNA nucleotide Uracil, can become integrated into DNA and 

require specialized DNA repair enzymes, Uracil-DNA glycosylase (UNG) in the case of Uracil, 

for their removal. 

 

DNA	replication	

DNA replication belongs to one of the most conserved processes in a cell. The ability to pass 

information encoded in the DNA from a mother to daughter cell must have existed since the 

very early evolutionary stages of life (Taylor & Lehmann, 1998). DNA polymerases are 

specialized proteins, dedicated to the synthesis and repair of DNA. The human replication 

polymerases are DNA polymerase alpha (POLA), epsilon (POLE) and delta (POLD). A 

primase, associated with polymerase alpha, synthesizes an RNA primer to initiate replication, 

subsequently, polymerase alpha performs elongation for a few nucleotides, after which, the 

other two replication polymerases take over the remaining strand synthesis (O'Donnell et al, 

2013). Polymerase epsilon and delta are different in their structure, subunit composition, 

processivity and fidelity. Polymerase epsilon is primarily responsible for replication of the 

forward strand, whereas polymerase delta is responsible for replication of the reverse strand 

(Lujan et al, 2016) with a possible involvement in replication of the forward strand (Johnson et 

al, 2015). Mistakes are rare and estimated to occur every 104 - 105 bases (Kunkel, 2004), with 

high variations depending on polymerase, nucleotides and sequence context (e.g. tandem 

repeats). On average, the rate is 100-fold lower than what is expected stochastically (102 - 103 

in vitro) (Loeb & Kunkel, 1982), indicating that replication polymerases have a high selectivity 

to the polymerization reaction. The occasional mistakes however, can be a source for 

mutations if not repaired. The main elongation polymerases, POLE and POLD, have a 

proofreading function (exonuclease activity), which additionally increases their fidelity: upon 

detection of an adjacent misincorporated nucleotide, the polymerase can move one (or a few) 

nucleotides backwards (3’ to 5’) and excise the mismatched nucleotide via a 3'-to-5' 

exonuclease activity. Since DNA synthesis can only occur from the 5' to 3' direction, the 

forward strand (by definition) is synthesized in a continuous manner and the reverse strand is 
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synthesized in a discontinuous manner, fragment after fragment (Okazaki fragments). The 

Replication via Okazaki fragments require an extra step of DNA ligation, performed by DNA 

ligase 1 (Lig1), in order to link two adjacent fragments. Replication polymerases stall upon 

encounter of DNA damage (replication fork stalling) and either require lesion bypass or repair 

for fork progression. Okazaki fragments, that are not ligated, remain as nicks in the DNA 

strand, encountered as DNA damage, which can induce replication fork stalling. Stalled 

replication forks may collapse, leading to toxic double-strand breaks that can trigger apoptosis. 

 

DNA	damage	

DNA damage to a cell may come from an internal (endogenous) or external (exogenous) 

source (Table 1). Endogenous sources can be mistakes during replication, which mostly result 

in base substitutions or indels, besides replication however, there are many other possible 

endogenous threats to the integrity of DNA. Most commonly, endogenous damage is inflicted 

by reactive oxygen species (Jena, 2012) that are produced from physiological activities in a 

cell, particularly metabolic processes. Other possible endogenous mutagens include S-

adenosylmethionine (SAM) (De Bont, 2004), acetaldehydes (Matsuda et al, 1998) and the 

enzymatic activity of proteins (Supek & Lehner, 2017). Exogenous sources for DNA damage 

come from the environment of the cell, such as the tissue environment (e.g. metabolic 

processes of the tissue or organ) or the environment of the organism. Typical exogenous 

sources for DNA damage in human cells are UV-light, cigarette smoking, alcohol consumption, 

exposure to radioactive material or therapeutic induced DNA damage (chemotherapy, 

radiotherapy). 

DNA damaging agents rarely produce one type of damage, but every damaging agent may 

have a predominant feature. Ionizing radiation (IR), used in radiotherapy, induces single-

strand breaks, double-strand breaks, base damage and more, but its most distinguished 

feature (that induces cell death), are double-strand breaks. Furthermore, IR induced breaks 

are predominantly caused by free radicals, particularly reactive oxygen species (Sonntag, 

2006). Since a single agent may produce different types of damage, different types of repair 

factors are often involved in damage repair. 

DNA damage can trigger cell death, but not all types of DNA damage are equally dangerous. 

Potent apoptosis inducing damages include N-alkylations, bulky DNA adducts, DNA crosslinks 

and DNA double-strand breaks. Another example is O6-methylguanine, although this damage 

requires the activity of DNA mismatch repair to trigger apoptosis (Roos & Kaina, 2006).  

 

 

 



DNA damage and DNA repair in cancer genomes Michel B.-B. Owusu 

 11 

Table 1 Frequency of DNA damage in cells 

 
DSBs+, double-strands breaks and other lesions. Table adapted from (Tubbs & Nussenzweig, 2017) 

and (Roos & Kaina, 2013). 

 

DNA	damage	response	

The DNA damage response (DDR) consists of a complex network of proteins that act as 

sensors, transducers, mediators or effectors of DNA damage. Sensors are proteins that are 

able to detect DNA lesions in the genome. For instance, the MRN complex is a sensor for 

double-strand breaks. Sensors may recruit other factors to the site of damage. Some of those 

factors are transducers; they create or amplify a signal for DNA damage in the nucleus. An 

important example for that is the kinase ATM, which is recruited by MRN to sites of DNA 

damage. ATM phosphorylates a large number of proteins (Matsuoka et al, 2007), thereby 

recruiting them, or modulating their activity after DNA damage. Other recruited proteins act as 

mediators, they mediate interactions between proteins, an important example is the 

phosphorylated histone variant H2AX, called γH2AX, which is also commonly used as a 

marker for DNA damage (Sharma et al, 2012). The last group of proteins, effector proteins, 

regulate the outcome of damage-sensing and signal transduction. There is a variety of effector 

proteins. Some effectors function in the repair of DNA, this is the case for ligases such as 

LIG4, which can anneal the two DNA ends after double-strand breaks. Another group of 

effectors is involved in the regulation of the cell cycle, the checkpoint kinase CHK2 is an 

example for that. It is important for cells with DNA damage, to arrest in their cell cycle, in order 
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to provide time for DNA repair. In the case the DNA damage cannot be repaired, cells need 

to undergo apoptosis (programmed cell death), in order to maintain cellular homeostasis. The 

tumor suppressor TP53 is an important effector protein involved in the regulation of apoptosis 

(Fridman & Lowe, 2003). Other effectors may be involved in the regulation of other essential 

cellular pathways, such as gene expression or metabolism. We are still constantly discovering 

novel factors involved in the DNA damage response (Gupta et al, 2018). Perturbations in the 

DNA damage response network may lead to failure in the protection or repair of DNA, which 

can cause diseases associated with malignant growth, dysfunction or depletion of cells 

(Jackson & Bartek, 2009b). 

 

DNA	repair	

In order to deal with a variety of lesions, cells have evolved specialized proteins, dedicated to 

the repair of DNA. Those proteins can be grouped into DNA repair pathways, depending on 

the repair mechanism. However, a strict separation into pathways is not always possible, due 

to the cooperation of repair factors from different pathways. Moreover, DNA lesions are often 

of a heterogeneous nature, for instance ionizing radiation induces a whole range of DNA 

lesions (Leadon, 1996), including base damages, single-strand as well as double-strand 

breaks, that require repair by proteins from different pathways. In general, DNA repair typically 

happens in five steps: sensing of the damage (sensing), nicking or accessing of DNA 

(incision), removal of damaged nucleotides or adducts (resectioning), replacement of 

nucleotides (synthesis), and ligation of the DNA backbone (ligation). DNA repair is conditional. 

For example, mismatch repair mainly functions in association with replication induced 

mistakes or damages, nucleotide excision repair, has a subpathway, specialized on the repair 

of transcription associated mistakes or damages, and homologous recombination is only 

active in S or G2 phase. In addition, there are conditions where closely related or non-related 

repair factors can repair DNA damage in the absence or failure of the specialized repair factors 

(Moder et al, 2017; Puddu et al, 2015). 

There are two (non-mutually exclusive) ways of how DNA damage or repair may cause a 

disease. Unrepaired DNA damage triggers apoptosis or senescence, which if exacerbated 

leads to diseases associated with cellular depletion, such as anemia, progeria or mental 

retardation. On the other hand, erroneous repair of DNA damage results in mutations that may 

cause diseases associated with malignant cellular dysfunction or growth, such as cancer. The 

rates of different mutations is therefore increased in several rare inherited diseases, including 

Fanconi anemia, ataxia telangiectasia, and xeroderma pigmentosum, which are also 

associated with increased risks of cancer (Jackson & Bartek, 2009b; Stratton et al, 2009). 
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Polymerases	in	DNA	repair	

The synthesis of DNA during DNA repair requires polymerases. Some repair pathways utilize 

replication polymerases (POLE, POLD) for DNA synthesis, but there are many more 

polymerases specialized in the repair of lesions. Polymerase beta (POLB) for instance is the 

repair polymerase in base excision repair. Translesion synthesis (TLS) polymerases can 

assist DNA replication polymerases during replication or during DNA repair by their unique 

ability to synthesize DNA across sites of lesions (lesion bypass), which are inaccessible to 

replication polymerases. Some translesion polymerases are the main DNA synthesis 

polymerases for repair. An example for that is the double-strand break repair factor 

polymerase theta (POLQ), which functions in one of the DSB repair pathways (Mateos-Gomez 

et al, 2015). TLS polymerases most commonly use damaged DNA as a template and have no 

proofreading function, making repair by TLS highly error prone (McCulloch & Kunkel, 2008). 

Therefore, TLS can contribute greatly to mutations in the genome (Supek & Lehner, 2017). 

 

Mismatch	repair	(MMR)	

DNA mismatch repair is primarily responsible for the repair of single or short (few nucleotides) 

base substitutions that occur during DNA replication (Iyer et al, 2006). DNA replication 

polymerases can misincorporate single nucleotides, which can lead to base substitutions if 

not recognized and repaired by the polymerase or by mismatch repair. During replication, 

MMR, is mostly strand specific, and very likely mediated by transiently under-methylated 

GATC sequences that direct MMR to the daughter strand (evidence from experiments in 

bacteria) (Pukkila et al, 1983). Replication polymerases are innately more error prone at sites 

of DNA repeats in the genome. They can skip single (or short sequences of) nucleotides at 

sites of repeats by slipping forward or backwards during replication. This polymerase slippage 

can lead to an insertion or deletion of one nucleotide (or a few nucleotides) at sites of repeat 

sequences in the genome. The proofreading function of polymerases does not work for such 

single base insertions or deletions (Kroutil et al, 1996), they require MMR for efficient repair. 

In general, there is complementarity between replication, proofreading and MMR (Lujan et al, 

2014). For instance, the lagging strand accumulates about twice as much damage as the 

leading strand, but the lagging strand is also about twice as much efficiently repaired by MMR 

than the leading strand, indicating complementarity between replication and MMR. Another 

interesting example is polymerase proofreading and MMR. Polymerase proofreading does not 

work for damaged mismatches. For instance, polymerases preferentially incorporate 

adenosine nucleotides opposite of 8-oxo-guanine (8oxoG). This mistake, if not repaired, leads 

to a G:C > T:A substitution mutation in subsequent replication rounds. Polymerase 

proofreading is unable to detect the mistake because the mismatch forms a Hoogsteen base 
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pair, with a geometry that is alike to a correct base pair. Such lesions however, are efficiently 

corrected by MMR (Ni et al, 1999; Russo et al, 2003). On the other hand, MMR is less efficient 

in repairing the infrequent mismatches C:T or T:T, produced by replication polymerases (Lujan 

et al, 2014). Complementarity between replication, proofreading and MMR implicates that the 

three systems coevolved to ensure fidelity of DNA replication. 

Single base-base and indel mismatches are primarily recognized by MutS alpha, consisting 

of the MSH2/MSH6 heterodimer. The complex scans DNA and stops at mismatches. The 

mismatch detection is associated with an ATP dependent conformational change of MutS 

alpha, such that it forms a moving clamp at the same time allowing recruitment and binding of 

MutL alpha. PCNA activates MutL alpha (containing an endonuclease domain), which (by 

mobility of MutS alpha) nicks the newly synthesized DNA strand upstream and downstream 

of the mismatch. From that point on, there are two to three models for DNA repair (Kunkel & 

Erie, 2015): One possibility involves MutS alpha promoted strand resectioning by EXO1. This 

results in a fragile single stranded DNA molecule that becomes coated and protected by RPA. 

Replication polymerases POLE or POLD can then fill in the missing nucleotides. A second 

possibility is strand displacement synthesis, wherein POLE or POLD directly invade the 

nicked, single-stranded DNA, and synthesize a new strand by displacing the old strand 

containing the mismatch. A third possibility, which still requires more evidence, could use the 

3'- 5' exonuclease activity of POLE or POLD for resection, followed by strand extension. After 

resynthesis of missing nucleotides, all two or three subpathways require ligation of the 

remaining nick in DNA by ligase 1. This results in an error free repair of single base-base and 

indel mismatches that are frequently generated at sites of repeats. Therefore, in the absence 

of MMR, genomes of cells exhibit a large amount of repeat mediated indels, which has become 

a marker for MMR deficient tumors, called microsatellite instability (MSI) (Boland & Goel, 

2010). 

There are very few studies on other known MMR factors, most importantly, MSH2 and MSH3 

(which form the heterodimer MutS beta), MLH1 and PMS1 (MutL beta), and MLH1 and MLH3 

(MutL gamma). Notably, Mut Sbeta, is involved in the repair of large as well as one- and two-

base indel mismatches (Harfe & Jinks-Robertson, 2000). One of the primary reason why 

MLH1, MSH2 and MSH6 are studied in much more detail than other MMR factors, is because 

mutations in those mismatch repair genes account for almost all tumors with MMR deficiencies 

(Korhonen et al, 2008). 

 

Direct	reversal	/	repair	(DR)	

The least complex form of DNA repair is the simple reversal the damage without excisions or 

insertions of nucleotides or bases. This type of repair often only requires the activity of a single 
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enzyme and is error free. A trivial example is a special case of single-strand break repair. In 

its most basic form, single strand breaks (nicks in DNA) are repaired by ligation of the broken 

backbone. The two adjacent nucleotides can be sealed together, provided that the 3’-hydroxyl 

and 5’-phosphate are intact and no base damages have occurred. In general, any one-step 

reversal of a damage can be considered part of the direct reversal repair pathway. 

Conventionally however, there are 3 most commonly known and studied DR pathways (Yi & 

He, 2013): DR of UV adducts, O-alkylation adducts or N-alkylation adducts. 

UV light may induce the formation of dimers- cyclobutane pyrimidine dimers (CPDs)- and 

photoproducts- 6,4-photoproduct (6-4PPs)- at adjacent pyrimidine bases. CPDs are more 

abundant (3:1 ratio), while 6-4PPs are more toxic. From a structural point of view, both adducts 

are formed as two separate adjacent pyrimidine molecules are chemically bound to become 

a single dipyrimidine molecule. If not repaired, these dimers interfere with essential cellular 

processes such as transcription or replication. In humans, UV lesions are repaired by the 

nucleotide excision repair pathway, which uses a complex mechanism and has a wide 

substrate range in addition to UV lesions. Many other organisms use nucleotide excision repair 

or photolyases. Photolyases (not present in placental mammals, which are humans and mice) 

employ a very simple but efficient mechanism for the repair of UV lesions (Essen & Klar, 2006). 

In the case of CPDs, the CPD photolyase contains two chromophores. After binding to DNA, 

one of the chromophores absorbs light in the blue / near-UV spectrum and transfers the energy 

to the second chromophore. The second chromophore uses the energy to split the CPD dimer, 

thus restoring the original pyrimidine bases. 6-4PP is repaired in an analogous manner by 6-

4PP photolyase (Essen & Klar, 2006). 

Alkylation of DNA is the abnormal addition of alkyl (including methyl) groups, to DNA. Little is 

known about the endogenous sources of alkylation induced DNA damage. One reported 

example is S-adenosylmethionine (SAM), a reactive methyl group donor, which plays a role 

in physiological regulation of gene expression (De Bont, 2004). The repair of alkylation 

adducts on DNA is mediated by different proteins, dependent on the position of the methyl 

group. 

AlkB functions in the reversal of N-alkylated bases and is a member of alpha-keto-glutarate-

dependent and iron-dependent oxygenases (Fedeles et al, 2015). It is a bacterial protein, but 

there are nine AlkB homologs in humans. It uses an iron and oxygen intermediate to oxidize 

methylated bases. This results in the conversion of alpha-ketoglutarate to succinate and CO2, 

and is coupled to the hydroxylation of the methyl group. The hydroxyl-methyl group 

spontaneously decomposes to formaldehyde, thereby restoring the original, unmethylated 

base. AlkB is primarily involved in the reversal of 1-methyl adenine and, the structurally similar, 

3-methyl cytosine. 
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An important alkylation induced lesion is methylation of guanine at the oxygen in position 6, 

6-O-methylguanine (O6meG). O6meG is extremely mutagenic, due to its ability to base pair 

with thymine instead of cytosine, leading to a G:C > A:T base substitution. The only known 

repair factor for O6meG is O-6-methylguanine-DNA methyltransferase (MGMT), also known 

as O6-alkylguanine-DNA alkyltransferase (AGT), since it can repair a larger range of alkyl 

adducts besides methylation (Kaina et al, 2007). Due to its unique role, loss of MGMT is 

associated with high incidences of mutagenesis and cancer. MGMT is a suicide enzyme, 

meaning that the protein becomes permanently inactive after the enzymatic repair of a lesion. 

A cysteine residue in the catalytic site of the enzyme forms a strong bond with alkyl groups. 

Continuous expression of MGMT is therefore required for continuous repair of O6meG in cells. 

In order to increase mutagenesis and promote carcinogenesis, cancer cells tend to turn off 

the expression of MGMT by methylation (or loss of function mutations), making them highly 

vulnerable to alkylation based chemotherapeutic agents, such as temozolomide or carmustine 

(Shiraishi, 2000). 

 

Base	excision	repair	(BER)	

Base excision repair is the primary repair pathway for single base damages (short patch 

repair) or a few (2 – 10) base damages (long patch repair) that occur outside of DNA 

replication and hardly distort the helical duplex structure of DNA. Base damages are induced 

by different endogenous or exogenous sources. Reactive oxygen species (ROS), metabolites, 

enzymatic activities, UV, chemo- or radiotherapy, can all lead to single base damages. One 

of the most notorious examples of base damage is the ROS induced oxidation of guanine at 

position 8, known as 8-oxo-guanine, which may lead to G:C > T:A mutations if not repaired 

(Grollman & Moriya, 1993). Even spontaneous events in a cell may result in base damage. 

Such is the case for spontaneous deamination of cytosine to uracil or 5-methyl-cytosin (5meC) 

to thymine, resulting in C:G > T:A base substitutions, if unrepaired. Single base damages that 

lead to base substitution mutations are the most abundant type of mutations in the genome of 

cells, and are main contributors to many genetic diseases including cancer (Pleasance et al, 

2010a). 

Single-strand break repair is often regarded as a special case of base excision repair in 

scientific literature (Giglia-Mari et al, 2011; Curtin, 2012). The repair steps between long and 

short patch base excision repair and single-strand break repair are similar but require different 

proteins for some steps of the repair process (Krokan & Bjørås, 2013; Giglia-Mari et al, 2011; 

Curtin, 2012). After recognition of the damage, the specific base is removed by excision. 

Excision is performed by specialized glycosylases. In the case of 8oxoG, the glycosylase 

OGG1 is primarily responsible for removal of the base. Although each glycosylase is 



DNA damage and DNA repair in cancer genomes Michel B.-B. Owusu 

 17 

specialized in a different manner for the repair of damaged bases, they also act in a redundant 

manner. Other important DNA glycosylases of oxidized lesions include MUTYH and NEIL1. 

Removal of the damaged base results in an apurinic or apyrimidinic (AP) site, typically referred 

to as abasic site (the absence of a purine, pyrimidine base) (Lindahl et al, 2004). APE1 and 

functionally related enzymes can cleave the DNA backbone, resulting in a lesion that 

resembles and is similarly repaired as a single-strand break. The AP site is subsequently 

removed and leaves either a 3’ hydroxyl or phosphate group. In the latter case dual kinase 

and 3’-phosphotase PNKP can catalyze conversion of 3’ phosphate to 3’ hydroxyl, required 

for the addition of nucleotides (Jilani et al, 1999). Polymerase B (POLB) a specialized BER 

polymerase fills in the missing nucleotide and the opened strand is sealed by the BER ligase, 

ligase 3 (LIG3) in association with its cofactor XRCC1. Due to the functional redundancy of 

some base excision repair factors, especially DNA glycosylases, there are few examples of 

major diseases associated with mutations of single proteins in the pathway. Combined 

mutations of multiple BER proteins however, or BER proteins with other DNA repair factors 

are reported to be very toxic and mutagenic (Xie et al, 2004; Chan et al, 2009; Kemmerich et 

al, 2012; Krokan & Bjørås, 2013). 

 

Nucleotide	excision	repair	(NER)	

There are two different types of adducts that threaten the genome integrity of cells. Some 

adducts, such as oxidation or methylation adducts, barely distorts the helical DNA duplex and 

are primarily repaired by BER. Other adducts distort the DNA duplex and interfere with 

replication, transcription or epigenetic regulation (Giglia-Mari et al, 2011; Kuper & Kisker, 

2012). Helix distorting adducts most commonly come from environmental mutagens: UV 

exposure creates CPDs and 6-4PPs, alcohol consumption or tobacco smoke exposes cells to 

acetaldehydes or benzo[a]pyrene (BaP). In many organisms, including humans, NER is the 

main pathway for repair of bulky adducts and thus one of the main pathways to guard the 

genome against some of the most common environmental mutagens that humans are 

exposed to. Failure in the repair of CPDs predominantly results in C > T (including CC > TT) 

mutations, while failure in the repair of BaPs predominantly results in C > A (including CC > 

AA) mutations. 

There are two known subpathways of NER, the transcription-coupled repair (TCR) and global-

genome repair (GGR). Though there are more than 25 proteins known to be involved in NER, 

the mechanism of repair in the two subpathways only differs in the initial recognition of the 

lesion and then converges to one pathway (Hanawalt, 1994). Furthermore, TCR only functions 

in the repair of adducts associated with transcription, whereas GGR may function everywhere 

in the genome (Bukowska & Karwowski, 2018). DNA damage in TCR is recognized upon 
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stalling of RNA polymerase II (RNAPII) at sites of lesions. The recruitment and interactions of 

UVSSA, USP7, CSA / CSB, XAB2 results in backtracking of RNAPII making the lesion 

accessible for repair. In GGR recognition happens via XPC-RAD23B (damage sensor) and 

XPE. The damage sensor binds to the bulky adduct, initiating DNA repair. TFIIH, at the 

converging point of TCR and GGR, unwinds the DNA with its helicase subunits XPB (3’-5’) 

and XPD (5’-3’). The pre-incision complex, consisting of XPA, RPA and XPG, stabilizes the 

lesion whiles the ERCC1-XPF heterodimer performs the 5’-end incision and XPG performs 

the 3’-end incision. PCNA coordinates DNA synthesis by POLD, E or K, and finally, depending 

on the cell cycle stage, the nick is either sealed by LIG3/XRCC1 or LIG1. 

Besides their dedicated roles in NER, some of the repair proteins have additional roles in other 

cellular activities, including other DNA repair pathways (Kamileri et al, 2012). The versatility 

of NER and its factors may explain the versatility in the NER associated disease phenotype. 

NER deficiency results in xeroderma pigmentosum (XP), Cockayne syndrome (CS) and 

trichothiodystrophy (TTD). All NER disorders are associated with photosensitivity and 

neurological abnormalities, XP is distinguished by elevated skin cancer risk, CS by progeria 

syndrome and TTD by cutaneous abnormalities (Bukowska & Karwowski, 2018). There are 

no cures for these diseases, current medical treatment include strategies to avoid exposure 

to sun and other environmental mutagens, dietary restrictions and treatment of symptoms 

(Bukowska & Karwowski, 2018). 

 

Double-strand	break	repair	(DSBR)	

Double-strand breaks are among the most toxic DNA lesions that a cell can possibly 

encounter. Double-strand breaks (DSBs) in the genome, if unrepaired, can trigger apoptosis 

of a cell (Lips & Kaina, 2001). Errors in the repair of double-strand breaks can lead to large 

(up to several kilo bases) deletions, insertions, and rearrangements, which are some of the 

most dangerous mutations and can cause gross genomic instabilities, one of the greatest 

hallmarks of cancer. 

There are nonetheless instances where double-strand breaks are required in normal cell 

physiological processes. 1.) Physiological double-strand breaks in DNA replication: One of the 

initial steps of DNA replication is the unwinding of the DNA helix, which allows polymerases 

to bind and replicate DNA. Chromatin DNA exists in a supercoiled state. The unwinding of the 

two DNA strands creates torsional stress on the DNA molecule, which can lead to DNA 

damage. In order to release torsional stress as well as disentangle DNA, the protein 

topoisomerase 2 (TOP2) creates transient double-strand breaks by cleaving DNA on both 

strands (Nitiss, 2009). These breaks are efficiently ligated after entanglement. 2.) 

Physiological double-strand breaks in adaptive immune cell maturation: The adaptive immune 
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cells, T- and B-cells, undergo programmed and coordinated double-strand break inductions in 

the processes of VDJ recombination and somatic hypermutation (SHM) (Malu et al, 2012), or, 

but only in the case of B-cells, class switch recombination (CSR) (Xu et al, 2012). These forms 

of genetic recombination allow immune cell receptors to adapt to a large repertoire of antigens. 

3.) Physiological double-strand breaks in meiosis: Cells can either divide through mitosis or 

meiosis (Kohl & Sekelsky, 2013). Mitosis results in two identical daughter cells from one 

mother cell, whereas meiosis results in four non-identical daughter cells. In the first step of 

meiosis, a diploid mother cell, containing one copy of the paternal and one copy of the 

maternal chromosome, duplicates both copies of DNA, resulting in a tetraploid cell (four copies 

of DNA). Genetic recombination takes place between homologous paternal and maternal 

chromosomes (crossing over). This is mediated by programmed DNA double-strand breaks 

and their repair (Andersen & Sekelsky, 2010). The resulting chromosomes are each a novel 

mixture of paternal and maternal chromosomes, which become equally segregated into two 

daughter cells in the first cell division. The two daughter cells divide as well, segregating their 

DNA equally, resulting in a sum of 4 daughter cells with one copy of mixed paternal / maternal 

chromosomes. 4.) Physiological double-strand breaks of telomere ends: The ends of 

telomeres, if unshielded by proteins (shelterin proteins) mimic a double-strand break and 

induce recruitment of DNA repair factors (Sfeir & de Lange, 2012). This can result in the fusion 

of chromosomes, constituting a gross genomic instability. Telomere ends therefore require 

constant protection from double-strand break induced repair. 

Cells have evolved two main mechanisms to deal with double-strand breaks: homologous 

recombination (HR), also called homology directed repair (HDR), and repair by non-

homologous end joining (NHEJ). Both pathways require the same damage recognition steps 

and initial signal transduction (Goodarzi & Jeggo, 2013). Double-strand breaks are sensed by 

the MRN complex, consisting of the proteins MRE11, RAD50 and NBS1. NBS1 binds DNA 

and recruits its cofactor ATM. MRE11 is a 3'- 5' exonuclease, which can perform initial 

resectioning of damaged DNA ends. RAD50 is thought to have a tethering function between 

the two ends of broken DNA (de Jager et al, 2001). Recruited ATM, dimerizes and auto 

phosphorylates for its activation. Activated ATM functions as a master kinase in the repair of 

double-strand breaks, recruiting and phosphorylating hundreds of substrates (Matsuoka et al, 

2007), including H2AX, MDC1, 53BP1 and BRCA1. Phosphorylated H2AX (known as γH2AX), 

marks the site of DNA damage, and collocalizes with many DNA repair factors (at the site of 

DNA damage), including the scaffolding protein MDC1. Through mediation of MDC1, the 

ubiquitin ligases RNF8 and RNF168 recruit 53BP1 which opposes BRCA1 for repair pathway 

choice between HR and NHEJ (Chapman et al, 2012b). 

Homology directed repair is the error-free repair choice for cells, but requires a long 3'-single-

stranded DNA overhang (or tail) by resectioning and a homologous DNA template for repair. 
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53BP1 prevents 5'-3' resectioning by the nucleases EXO1, DNA2 and MRE11, via its cofactors 

RIF1 and PTIP and thereby prevents HR from taking place (Daley & Sung, 2014). At the same 

time, BRCA1 competes with 53BP1 to prevent 53BP1 activity. NHEJ repair is active 

throughout the entire cell cycle, but most dominantly in G1, while HR is only active in S and 

G2 phases of the cell cycle (Chiruvella et al, 2013a; Chapman et al, 2012a). Therefore, NHEJ, 

promoted by 53BP1, acts as the default repair mechanism for double-strand breaks, while HR 

is the favored repair mechanism in the presence of sister chromosomes. Although there have 

been reports of HR with homologous chromosomes as templates in human cells, such events 

are very rare compared to repair by sister chromosomes, and are less well studied (Rong & 

Golic, 2003). This may be due to a closer local proximity or higher sequence similarity (no 

allelic variances) of sister chromosomes compared to homologous chromosomes. 

 

Homologous	recombination	(HR)	/	Homology	directed	repair	(HDR)	

5' to 3' resectioning needs to occur on either ends of the broken DNA for HR to take place 

(creating 3'-overhangs). This is mediated by the nucleases MRE11, EXO1, DNA2. The 

processing of DNA results in single stranded DNA (ssDNA) on both DNA strands. BRCA1 

mediates the recruitment and loading of RPA proteins, which coat the otherwise fragile single-

stranded DNA (Daley & Sung, 2014). RPA is replaced by RAD51 filament, via an interaction 

with BRCA2. The RAD51 filament is able to find, recognize and bind the homologous template 

sequence on the sister chromosome (strand invasion), forming a crossing over structure 

(Holliday junction). After strand invasion, DNA polymerases can perform synthesis of the 

damaged DNA region by using the homologous template. The crossing over structure is 

resolved by enzymatic activity (involving several possible pathways), thereby restoring the 

damaged DNA back to its original state without mutations (Matos & West, 2014). 

 

Non-homologous	end	joining	(NHEJ)	

53BP1 prevents resectioning of broken DNA ends and promotes NHEJ, also called classical 

NHEJ (c-NHEJ). DNA-PKcs and its cofactors KU70/KU80, are recruited to the site of damage 

(Hiom, 2005). KU70/KU80 bind and tether the broken DNA ends. The endonuclease, Artemis 

performs minimal resectioning, if required, to clean DNA ends 

(Povirk et al, 2007; Woodbine et al) before LIG4 (with its cofactor XRCC4) ligates the two DNA 

ends. Unless the double-strand break was a clean cut without loss of nucleotides, deleterious 

mutations would occur after end processing and ligation. 

An alternative form of NHEJ (alt-NHEJ) exists in human cells, and requires the availability of 

short homologies (microhomologies) for repair. DNA is resected until microhomologies 

between the two strands are encountered and the two strands can bind. The remaining 
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overhanging DNA is also removed, leaving cells with the loss of DNA sequences at sites of 

microhomology (microhomology mediated deletions). This subpathway of NHEJ, primarily 

involves PARP1, POLQ and LIG3 (Chiruvella et al, 2013b). 

In addition to the core components of NHEJ, other enzymes participate in DSB repair mainly 

through DNA end processing prior to ligation. These include the translesion synthesis 

polymerases POLL and POLM (Covo et al, 2009; Lee et al, 2004). 

 

Fanconi	Anemia	(FA)	pathway	of	repair	

Some endogenous (e.g. acetaldehyde) or exogenous (e.g. cisplatin) chemicals are able to 

crosslink DNA. They can crosslink bases on the same strand, called intra-strand crosslink, or 

adjacent bases on opposite strands, called inter-strand crosslink (ICL). Intra-strand crosslinks 

pose a low threat to normal cells, they form bulky adducts and are readily repaired by the NER 

pathway (O'Donovan et al, 1994). ICLs however, pose a formidable threat to cells because 

they can block the unwinding of DNA during replication or transcription, and can produce toxic 

double-strand breaks. In the case of replication, the DNA polymerases stall at replication folks 

with ICLs. If not repaired, stalled replication forks can lead to replication fork collapse and 

double-strand breaks, which may trigger apoptosis. The error free repair of ICLs requires 

Fanconi Anemia (FA) proteins. Fanconi Anemia is a rare disorder, named after Guido Fanconi, 

a Swiss physician who first described the disorder. There are more than 15 known FA or FA-

like proteins, and loss of each one is to some degree associated with the disorder (Yao et al, 

2013). 

Fanconi Anemia Complementation Group (FANC) M, FANCM, recognizes and binds ICLs. 

This leads to the recruitment of the FA-core complex, consisting of several FA proteins, 

including FANCC and FANCL. FANCL ubiquitinates and thereby activates FANCI and 

FANCD2 (FANCI-D2). Activated FANCI-D2 induces recruitment of other repair factors, 

including BRCA1 and BRCA2 from the homologous recombination pathway, NER factors, TLS 

polymerases and endonucleases (Nojima et al, 2005). The lesion is resolved via 

endonuclease cleavage of nucleotides flanking the crosslink, followed by NER mediated 

detachment of the crosslink from one of the two DNA strands (unhooking) and translesion 

synthesis over the unhooked crosslink (Klein Douwel et al, 2014). Finally, the homologous 

recombination pathway uses the sister chromatid as a template for error free repair of the 

crosslink. This type of repair is cell cycle dependent since it requires sister chromatids. The 

exact mechanism and proteins involved in FA repair are still being studied. Interestingly, there 

is little known about the endogenous sources of crosslinks. Acetaldehydes have only recently 

been established as a possible source of endogenous crosslinks (Stone et al, 2008), 

particularly as a byproduct of alcohol metabolism (Garaycoechea et al, 2018). There is 
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currently no cure for FA disorders. Understanding of the endogenous sources of crosslinks is 

very important, such a knowledge could potentially be used in diet-based symptom 

amelioration of FA disorders. Importantly, FA proteins may have other, hitherto 

uncharacterized functions, associated with the disease phenotype (Sumpter et al, 2016). 

 

DNA	damage	&	DNA	damage	response	in	cancer	therapy	

 

DNA	damage	and	cancer	therapy	

Cancer cells are a malignant transformation of normal cells. As such there are characteristics 

that differentiate cancer from normal cells. One of the goals in cancer therapy, is to find specific 

vulnerabilities of the cancer, which would allow the targeting of malignant cells without harming 

healthy ones. The most commonly exploited characteristic of cancer cells is their heightened 

proliferation rate as compared to the average normal cell. Cells with a high proliferation rate 

spend more time dividing and replicating their DNA, making them (among others) exquisitely 

vulnerable to DNA damage by genotoxic agents (i.e. cheomo- or radiotherapy). This has been 

the main strategy for cancer treatment over the past decades (Jackson & Bartek, 2009a). 

Ionizing radiation, as well as compounds such as cisplatin or doxorubicin, target DNA or DNA 

repair factors. Cancer cells however are not the only fast dividing cells in the body, some 

healthy ones are also highly affected by treatment with genotoxic agents, including cells of the 

hair follicles and stem cells from different organs. This is the cause of some of the common 

side effects of cancer therapy (e.g. hair loss). 

 

Exploiting	DNA	repair	in	cancer	therapy	

For a long time, researchers have been trying to find different targets for cancer with little 

success for all cancers but reasonable success for some cancers. For instance, chronic 

myelogenous leukemia (CML) is most commonly caused by a fusion of two proteins, BCR and 

ABL1 (BCR-ABL), due to a chromosomal aberration. This protein does not exist in healthy 

cells, such that inhibitors against BCR-ABL have been extremely successful in the treatment 

of CML (The Philadelphia chromosome: a mutant gene and the quest to cure cancer at the 

genetic level, 2013). Genomic instability is a hallmark of cancer (Hanahan & Weinberg, 2011) 

and associated with perturbations in DNA replication, DNA repair or DNA damage response 

pathways. As such, the DNA repair and associated proteins are promising targets for cancer 

therapy. A well-known example is the use of PARP inhibitors, such as the clinically approved 

drug, olaparib: BRCA mutations are one of the most common features of breast cancer, and 

result in ineffective DNA repair by the homologous recombination pathway. Cells with BRCA 

associated repair deficiency are often rewired to rely on a repair pathway that depends on 
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PARP. Thus, cancer with loss of function mutations in BRCA are specifically vulnerable to 

PARP inhibition (Fong et al, 2009). Finding novel cancer vulnerabilities is one of the main aims 

of studying cancer genomes (Futreal et al, 2004; Jackson & Helleday, 2016). 

 

Cancer	genomes	

Mutations	in	cancer	genes	

Since the first discovery of oncogenes and tumor suppressors, a quest for finding novel driver 

genes (cancer genes) has dominated the field of cancer research (Lawrence et al, 2013). 

Modern sequencing technologies have permitted researchers to look for those driver genes in 

an unbiased manner, across the whole genome. Through sequencing efforts over the past 15 

years, some experts in the field even propose that almost all of the most common driver genes 

have been discovered by now (Vogelstein et al, 2013), although others disagree (Martincorena 

et al, 2017). They include many genes involved in the DNA damage response, such as TP53, 

ATM, BRCA1/2 and MSH6 (Cancer Genome Atlas Network, 2012; Knijnenburg et al, 2018). 

However, some tumors do not have mutations in any of the known driver genes or the 

regulatory elements of those genes (Vogelstein et al, 2013). There are several possibilities for 

that: 1. There are probably more driver genes to be discovered (Martincorena et al, 2017), 

particularly for specific types of cancer (i.e. not commonly present in all cancers), and though 

many important driver genes have been discovered, there were also many non-validated 

reports (Lawrence et al, 2013). Finding tools that will accurately predict driver genes from 

cancer genome sequencing remains one of the most difficult challenges in the field (Lawrence 

et al, 2013). 2. There are also driver mutations, outside of cancer genes and associated 

regulators. Therefore, it is important to study also non-driver mutations and general patterns 

of mutations in the genome. 3. There are other driver events not detectable as mutations (i.e. 

no changes in the sequence of DNA, such as epigenetic changes or posttranslational 

modifications). 

 

Why	we	look	for	mutation	patterns	

Since the human genome project, advances in sequencing technologies have allowed 

researchers to study the global structure of the genome, including their distribution across the 

genome. This has revealed many fascinating insights about the role of non-coding regions of 

DNA. For instance, at least 97% of DNA in the genome was previously presumed to have no 

function at all ("junk" DNA), because their sequence did not code for proteins (EHRET & DE 

HALLER, 1963; Ohno, 1972). It is now acknowledged that many non-coding regions of the 

DNA form important regulatory elements for genes, such as promoters, enhancers or 

suppressors (Pennisi, 2012). Mutations in regulatory regions of genes can alter the gene 
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expression and drive cancer (Shar et al, 2016). And even synonymous mutations, mutations 

in genes that do not alter the coding sequence of genes, can drive cancer (e.g. differential 

transcription factor binding due to enhancer elements in protein-coding regions) (Supek et al, 

2014; Li et al, 1995). On the other hand, some mutations in cancer genes considered to be 

causative to cancer, may not actually contribute to cancer development (variants of uncertain 

significance, VUS (Findlay et al, 2018)). Thus, it is important to study mutations that are not in 

genes or cancer driver genes. 

Proteins most often interact in a complex, or in a pathway, with other proteins. This principle 

is so important that we have terms to describe the collective of dysfunctions that result in the 

same or similar phenotype as mutations in a main driver gene. BRCAness (Lord & Ashworth, 

2016) describes all molecular dysfunctions that mimic the molecular features of BRCA1/2 

dysfunctions (e.g. EDC4 phenocopies BRCA (Hernández et al, 2018). Furthermore, a 

protein's localization, modifications and interaction with other proteins are important for its 

function, and perturbations on that level can influence cancer development but may not be 

detected by studying driver genes or driver mutations. Therefore, besides testing for the 

dysfunction of known driver mutations in cancer, it is also important to have methods that 

report the dysfunction of entire pathways and complexes or molecular modifications that are 

not detected by only looking at driver mutations. Testing for mutation patterns in genomes 

gives information about biological processes, and is thus a method that can actually report 

dysfunctions in pathways, protein complexes and protein modifications. 

Well established driver mutations do not only associate with malignant tumors (cancer) but 

also with benign ones (Pollock et al, 2003; Bauer et al, 2007). The finding of mutations in 

cancer drivers does therefore not always imply a causative role of those mutations in 

malignant tumor development. Testing for mutation patterns can reveal mutator phenotypes 

that can be associated with malignant diseases as oppose to benign ones. 

Furthermore, studying mutation patterns can also lead to identification of novel driver events 

in cancer. For instance, based on an identified mutation pattern, Alexandrov et al proposed a 

strong prevalence of APOBEC / AID family members' involvement in the development of some 

tumors (Alexandrov et al, 2013a).  

Taken together, this means that once we have successfully catalogued all mutations in all 

cancer genes, some of these mutations may not have an influence on cancer evolution, or 

only have an influence in a context dependent manner (e.g. tissue). Furthermore, we would 

still find a substantial amount of mutations in the genome that promote cancer without being 

in known genes. It is therefore important to find other markers, besides cancer genes, that are 

associated with cancer development. Mutation patterns are promising markers (another 

targetable molecular feature) that can complement driver mutation screens (Garraway, 2013) 

and improve personalized cancer treatment (Davies et al, 2017). 
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Mutation	patterns	in	cancer	genomes	

Mutations and mutation types (e.g. substitutions, indels, rearrangements, and copy number 

variations) are differentially distributed across the genome due to factors such as differences 

in the sequence, structure, localization and function of different regions in the genome as well 

as their exposure to endogenous and exogenous mutagens. This heterogeneous distribution 

of mutations defines specific mutational patterns in the genomes of cells that can serve as a 

proxy for biological processes (Figure 3). 

 

 
Figure 3: Differential distribution of mutations across the genome 

Some of the factors that influence the differential distribution of mutations in the genome. Left: 

replication timing and chromatin accessibility. Right: DNA repair pathways. Figure was taken from 

(Tubbs & Nussenzweig, 2017). 

 

TP53 is the most commonly mutated cancer gene. This is in part due to its function as a tumor 

suppressor, and to another part due to its sequence and sequence structure. Most of its loss 

of function mutations cluster between exons 5 to 8. These exons encompass the DNA binding 

domain, crucial for its functional activity as a transcription factor. Exons 5 to 8 together, span 

a region of 540 nucleotides (180 codons), including sequence structures, such as CpG 

dinucleotides and pyrimidine dimers. The large number of nucleotides and diverse sequence 

structures provide a wide window for possible mutations of different types that may result in a 

loss of function of the protein. Other cancer genes may require specific mutations at a shorter 

nucleotide sequence range or have a less dominant function compared to TP53 (Pfeifer & 

Besaratinia, 2009). BRCA1 for instance requires point mutations or insertion / deletions that 

result in protein truncation or mRNA decay. This narrows down the amount of random 

mutations and the chance of them resulting in a loss of function of the protein and is thus less 
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favorable for cancer evolution, compared to the TP53 gene. Another example is the oncogene 

KRAS, which is very frequently mutated in cancer. The known carcinogenic mutations are all 

in codon 12 or 13 of exon 2, which span a region of 6 nucleotides and therefore offer a very 

narrow nucleotide range for mutations. Natural selection in the tumor microenvironment would 

therefore favor mutations in TP53 compared to KRAS. The sequence of DNA is thus a factor 

for the heterogeneous distribution of mutations in cancer genomes. 

DNA replication and repair influence the distribution of mutations in the genome. Watanabe et 

al observed a differential distribution of mutation frequency in early versus late replicating 

sites, looking at chromosomes 11q and 21q (Watanabe et al, 2002). Early replicating regions 

have a lower mutation burden than late replicating ones. Stamatoyannopoulos et al observed 

the same phenomena, looking at 1% of the human genome (Stamatoyannopoulos et al, 2009). 

The authors speculated that the bias was likely due to accumulation of ssDNA. However, 

Supek et al showed that this phenomena was actually due to MMR, which appears to be more 

active at early replication (and euchromatic) regions (Supek & Lehner, 2015), but the reason 

for this bias in MMR still remains to be revealed. 

The occupancy of DNA by DNA-binding proteins influences the frequency of mutations. 

Sabarinathan et al observed that active transcription factor binding and nucleosome core DNA 

(bound by histones) sites, have a higher mutation burden than their flanking regions 

(Sabarinathan et al, 2016). The authors show that the higher mutation burden was due to a 

decreased activity of NER at those sites. The DNA-binding proteins could be physically 

preventing repair proteins from accessing sites of damage, leading to less efficient repair and 

a higher mutation rate. 

The two strands of DNA are also differentially exposed to damage and differentially accessible 

for repair. The non-coding strand is less enriched for mutations compared to the coding strand. 

It has been suggested that this was due to TC-NER, which is active on the non-coding strand 

(Haradhvala et al, 2016), but in addition to that, transcription factors binding to the DNA could 

protect the non-coding strand from mutagenic attacks, whiles the coding strand would be both 

unprotected by TF and not repaired by TC-NER. Similarly, the leading and lagging strand 

show differential mutation burdens, with the lagging strand generally having a higher mutation 

burden (Pleasance et al, 2010a). Due to discontinuous replication of the lagging strand, it is 

plausible that the lagging strand is less shielded by replication proteins and thus more 

susceptible to mutagenic attacks than the leading strand (Haradhvala et al, 2016). 

Mutations induced by extrinsic or intrinsic mutagens are more enriched in the non-coding and 

the lagging strand. The most likely reason for this is that parts of DNA are easier accessible 

to damage during transcription or replication (Haradhvala et al, 2016). Such mutations, at 

times, appear in the form of clusters (clustered mutations), regions in DNA with unusually high 

mutation burdens. The APOBEC signature for instance, which is a form of clustered mutations, 
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is highly associated with the non-coding or the lagging strand (Haradhvala et al, 2016). 

Erroneous repair by TLS polymerases may also cause clustered mutations by directing 

carcinogen induced mutations to particular sites in the genome (Supek & Lehner, 2017). 

Moreover, some mutations are enriched in specific organs or tissues (Blokzijl et al, 2016). 

Other mutations, particularly spontaneous ones, increase with age (Blokzijl et al, 2016; 

Alexandrov et al, 2015). 

 

Mutation	signatures:	a	brief	history	and	explanation		

The first mutation patterns were identified by applying exogenous DNA damaging agents and 

analyzing nucleotide changes in the sequence of DNA (Tessman et al, 1964). Typical models 

for such studies were single stranded DNA viruses, due to their small and simple genome. 

Forward and reverse mutations at single nucleotide sites in the viral genome were coupled to 

a phenotypic readout, such as plaque formation capability or temperature sensitivity, in order 

to assess changes in the sequence. Studies with UV were the most elucidative once (Howard 

& Tessman, 1964; Setlow & Carrier, 1966; Witkin, 1969). It was discovered that, among other 

lesions, UV exposure predominantly caused a unique type of mutation pattern, C > T or CC > 

TT, resulting from pyrimidine dimers at dipyrimidine sites in DNA. As cloning and sequencing 

technologies improved and became more widely available (Sanger & Coulson, 1975; Mullis et 

al, 1986), so did the ability of researchers to synthesize and analyze specific genomic regions 

for mutational changes. Genomic loci, such as the locus for the TP53 or KRAS gene, which 

are frequently mutated in cancer, were analyzed extensively for endogenously or exogenously 

induced mutational changes, including specific patterns (Capella et al, 1991; Brash et al, 1991; 

Ozturk, 1991; Sidransky et al, 1991; Hollstein et al, 1991). It was not long until whole genome 

sequencing technologies were developed and a decade later, at the beginning of the 21st 

century, entire human genomes, including human cancer genomes were being sequenced. 

For the first time in history, researchers could look at variations between different types of 

cancer at an unprecedented scope and resolution. 

Researchers immediately used the opportunity to study mutations in cancer genes on a 

genome scale. After a while, instead of looking at mutations in cancer genes, a few 

researchers, particularly a team lead by Sir Michael Stratton, had started developing 

algorithms for studying patterns of mutations in cancer genomes (Futreal et al, 2001; 

Greenman et al, 2007; Stratton et al, 2009). The goal was to identify disease relevant patterns 

and use them as biomarkers for inferring the etiology of the underlying mutagenic processes, 

as well as the etiology of the respective cancer. These specific patterns are also referred to 

as mutation signatures. 
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The meanings of the two words, mutation "pattern" and mutation "signature", are still evolving 

in the scientific community and are either used interchangeably, as in one of the first mentions 

of mutation signatures (Greenman et al, 2007), or such that mutation signature is a special 

case of mutation patterns (Pleasance et al, 2010a). In the first mentions of mutation 

signatures, it seemed to be restricted to disease associated mutational patterns with respect 

to base substitutions, due to technical limitations of the time. As the algorithms for data 

assembly and analysis improved, additional known disease associated patterns, especially 

rearrangements (Campbell et al, 2008) and indels (Ley et al, 2008; Mardis et al, 2009), could 

be analyzed. In addition, novel mutation patterns were discovered, such as patterns 

associated to: replication timing and chromatin accessibility (Supek & Lehner, 2015), DNA 

binding factors (Sabarinathan et al, 2016), replicated or transcribed strands (Haradhvala et al, 

2016). Nowadays, with many researchers focused on the discovery of novel patterns, we 

expect the discovery of more mutagenesis-associated patterns in the years to come. 

The first demonstration of the possibly causal nature of a specific mutation signature and 

cancer, was published in 2010 (Pleasance et al, 2010a). The authors sequenced one 

metastatic malignant melanoma and compared it to one lymphoblastoid cell line derived from 

the same patient. The most prominent signature in their analysis, was the C > T base 

substitution at dipyrimidine sites, which is uniquely associated with UV induced mutations and 

had previously been shown to cause skin cancer (Rusch & Baumann, 1939; Brash et al, 1991). 

Their analysis was however limited to base substitutions and chromosomal rearrangements 

due to lack of algorithms for the analysis of other mutation types. In the same year the authors 

published another article, where they confirmed a previously reported mutation signature, 

associated with tobacco smoke (Pfeifer et al, 2002), in the genome of a small cell lung cancer 

(Pleasance et al, 2010b). They mainly focused on base substitutions and rearrangements. 

Interestingly, similar to their previous paper (Pleasance et al, 2010a), they reported differences 

in mutation rates and types between the transcribed and non-transcribed DNA strand (and 

gene expression). They suggested differential DNA repair, instead of differential mutagenesis 

to be responsible for the observed transcription strand bias. 

Shortly after Alexandrov and Nik-Zainal published several papers on mutation signatures, 

which laid the path for many researchers to follow (Nik-Zainal et al, 2012; Alexandrov et al, 

2013b; 2013a). 

 

Algorithms	for	analyzing	mutation	signatures	

Since the beginning of the 21st century, sequencing technologies have been improving, 

making the sequencing of whole genomes more affordable. We moved from studying single 

cancer genomes with their matched controls (Pleasance et al, 2010a; 2010b), to studying 
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dozens (Nik-Zainal et al, 2012), hundreds (Alexandrov et al, 2013a) and now even thousands 

of cancer genomes with their matched controls (Alexandrov et al, 2018). 

The availability of large data sets requires algorithms to extract meaningful information. 

Although dominant signatures can be observed by eye (Nik-Zainal et al, 2012), most 

signatures are subtle and require mathematical rigor for unbiased calls. The choice for such 

algorithms can be based on prior knowledge or reasonable assumptions about the data and 

the information that is to be gained from it. In the case of cancer genomes, we know that 

different genomes have different types of mutations that are prevalent to different extends 

(Pfeifer & Besaratinia, 2009). Different types of mutations are manifested as different patterns 

in cancer genomes (Figure 4). We can assume that the number of those patterns is finite, 

even if it was extremely large. Moreover, there could exist a small subset of all the numbers 

of mutation patterns, which in combination is sufficient to represent almost all of the mutational 

processes that are active in almost all cancer genomes. 

 

 
Figure 4: Clonal evolution of cancer and mutation signatures 

Depiction of cancer development from normal to malignant state. Different mutagenic processes are 

active during the lifetime of a cell. These processes leave behind specific patterns in the genome. Figure 

was adapted from (Helleday et al, 2014). 
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Mathematically the set of processes could be called P, with elements pn and n = 1, ..., N. 

According to our definition, the set of patterns or mutation types could be represented as Ξ 

with K letters where each k element of Ξ represents a specific mutational pattern and each 

process pn would be a combination of patterns. We can therefore describe pn as a probability, 

the probability that a pattern k contributes to a process pn. Thus, a process pn has a 

probabilistic distribution of patterns with the sum 1, this distribution defines a signature for 

each process. Mathematically, this means (Alexandrov et al, 2013b): 

 

𝑝"# = 1	𝑎𝑛𝑑	𝑝"# 	> 0, 𝑘 = 	1, . . . , 𝐾.
0

#12

 

 

In addition to patterns that define signatures for mutational processes, we can expect the 

impact of a signature to be different in different cancer genomes. For instance, UV acts as a 

mutational process with a distinct signature, C > T or CC > TT transitions. The UV signature 

contributes to a much larger amount of mutations in melanoma (skin cancer) than in other 

cancer types, due to the greater exposure of the skin to UV (Brash et al, 1991). In other words, 

different cancer genomes are differentially exposed to different mutational processes (Figure 

4). We can introduce the term e to represent exposure, e, would be dependent on a cancer 

genome g and would be specific for the mutational process pn: 𝑒4" 	≥ 0, 𝑤𝑖𝑡ℎ	𝑔	 =

	1, … , 𝐺	𝑎𝑛𝑑	𝑛	 = 	1, … , 𝑁. 

An individual cancer genome could thus be described as a mutational catalogue mg, the sum 

of all the signatures of mutational processes times their exposure. The mutation type k, of all 

operational processes and their exposures in a cancer genome g would be expressed in this 

manner (Alexandrov et al, 2013b): 

𝑚4
# ≈ 𝑝"#𝑒4".

@

"12

 

 

This term can be generalized for all K mutation patterns and G genomes by expressing 

exposures to mutational processes and mutational catalogs as matrices (Alexandrov et al, 

2013b): 

 

𝑚2
2 𝑚A

2 ⋯ 𝑚CD2
2 𝑚C

2

⋮ ⋮ ⋱ ⋮ ⋮
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0 𝑚C

0
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A simplified depiction of the matrix factorization is 𝑀	 ≈ 	𝑃	×	𝐸. For better understanding of the 

theoretical nature of our problem, we started our argument with mutational processes (P), 

exposures of genomes (E) and ended with mutational catalogues of cancer genomes (M). In 

a practical setting, our problem however starts with having the genome sequence of several 

cancer samples, which are analogous to the mutational catalogues of cancer genomes (M), 

and we are trying to decipher the mutational signatures by finding the factors (P) and (E). This 

was a strange problem in the field of molecular medicine but a well-known one in the field of 

mathematics, called blind signal separation or blind source (BSS) problem(Handbook of Blind 

Source Separation, 2010). The challenge is to find the source of signals from a mixture of 

signals, with little or no knowledge of the sources or how they were mixed. Originally applied 

for temporal separation of audio signals, it has found general application to multidimensional 

data, such as images or in our case mutation patterns in genomes. There are several 

approaches for solving such a problem, including principal component analysis (PCA) and 

non-negative matrix factorization (NMF). NMF is particularly convenient for our type of 

problem, since it requires the data to be non-negative, as is the case for genome data, and 

has previously produced meaningful information from biological data (Lee & Seung, 1999; 

Berry et al, 2007). Since its first applications in the analysis of genome data (Nik-Zainal et al, 

2012; Alexandrov et al, 2013b; 2013a), NMF based methods have become the primary 

methods for extracting mutation signatures in cancer genomes (Alexandrov et al, 2018). 

The accuracy of deciphering mutation signatures from cancer genomes depends on different 

factors, e.g. the number of available cancer genomes, number of mutations and number of 

signatures to be extracted (Alexandrov et al, 2013b). In general, the more genomes and the 

higher the exposures (more mutations), the more signatures can be deciphered with greater 

accuracy, but having more mutations facilitates the deciphering process more than having 

more genomes. Conversely, the higher the number of operational mutational processes or 

mutation patterns in the cancer genomes, the lower the accuracy of NMF algorithms to detect 

signatures. Therefore, combining different cancer types could result in more exposure for a 

given signature (which is the rational for studying mutation signatures in the combined 

genomes of different cancer types). On the other hand, combining different cancer types could 

potentially result in more signatures to be analyzed (which would require even more genomes 

to increase accuracy). Assuming that the number of main mutational processes in cancer 

genomes is limited, the potential risk of combining different types of cancer genomes would 

be lower than the potential benefit. 
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Types	of	patterns	/	mutation	signatures	in	the	genome	

 

Base	substitutions	

There are four bases in DNA: C, T, A, G. In its most basic sense, a single base substitution is 

the change of a base (or nucleotide) in DNA to another base (or nucleotide). They are by far 

the most abundant type of mutations in genomes. For instance, Pleasance et al found 33345 

base substitutions, 66 indels, and 37 rearrangements in the genome of a melanoma cancer 

(Pleasance et al, 2010a). There are 6 possibilities for base substitutions, which define 6 

mutation types. Those are C:G > A:T, C:G > G:C, C:G > T:A, T:A > A:T, T:A > C:G, T:A > G:C. 

They are commonly abbreviated to C>A, C>G, C>T, T>A, T>C, T>G, in which the mutated 

base is represented by the pyrimidine of the Watson-Crick base pair. In that sense a C > A 

and G > T are both represented by C > A. Studying base substitutions alone, can already 

teach us a lot about mutational processes (Table 2). 

 
Table 2 Example of base substitution mutations and associated processes 

 
  

Early reports of base substitutions in cancer genomes described base substitutions in the form 

of single nucleotide polymorphisms (SNP) or single nucleotide variants (SNV), without a 

particular focus on reporting the actual base changes or a pattern therein (Ley et al, 2008; 

Mardis et al, 2009). A single nucleotide variant is any change in a base at a specific locus, 

whereas a single nucleotide polymorphism is a SNV that is common in a population. Later 

publications focused on reporting base changes in the form of the 6 mutation types (Pleasance 

et al, 2010a), which could already be used as signatures for mutational processes. There is 

however some ambiguity in only looking at single base substitutions. As soon we are looking 

for signatures for more than 6 processes, at least 2 processes would have the same signature 

(Figure 5). Researchers found ways to increase the specificity of associating signatures with 

their underlying processes, by increasing the mutation types and subtypes. 

One possibility is to take the sequence context into account, by for instance searching for 

dinucleotide changes instead of single nucleotide changes (Nik-Zainal et al, 2012). This may 

determine specific patterns, like the UV signature CC > TT. Another possibility is to look at the 
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adjacent 5' and 3' base, next to the mutated base (trinucleotides), e.g.: TpCpG > TpTpG, with 

the mutated base underlined (Figure 5). This results in 16 subtypes for each one of the 6 

mutation types, and 96 mutation subtypes overall (Nik-Zainal et al, 2012). This can naturally 

be extended to many more nucleotides, and the challenge is to find a balance between an 

increase in mutation subtypes and the loss of information about specific mutations. The last 

base substitution subtypes, which are noteworthy, are the two adjacent 5' and two adjacent 3' 

bases next to the mutation (pentanucleotides), e.g.: ApTpCpGpT > ApTpTpGpT, with the 

mutated base underlined. This results in a total of 1536 mutation subtypes (Alexandrov et al, 

2013b). Alexandrov et al tested NMF based algorithms on 21 breast cancers and found that 

using the 1536 pentanucleotide signatures resulted in fewer but more specific signatures than 

using the 96 trinucleotide signatures (Alexandrov et al, 2013b). Therefore dividing base 

substitutions into more mutation types leads to fewer mutations per mutation type, decreasing 

the amount of signatures or processes, but produces some highly specific patterns. 

 

 
Figure 5: Rational for 96 base substitution subtypes 

Figure was inspired and adapted from Lupski Lecture 2015 by Prof. Mike Stratton, Wellcome Trust 

Sanger Institute, UK, at Genomics of Rare Disease: Beyond the Exome (29 April - 1 May 2015). 

 

On the next level of complexity, base substitutions can be combined with other mutation types, 

such as indels and rearrangements, or other factors that affect the distribution of mutations, 

such as transcription strand bias, replication strand bias, and clustered mutations. Different 

combinations may yield different results, and increasing the complexity may not always 

improve the accurate identification of specific signatures. Alexandrov et al found that either a 

combination of 96 trinucleotides with dinucleotides, indels and kataegis or a combination of 

96 trinucleotides and strand bias (192 trinucleotide substitutions) resulted in largely 

unchanged signatures compared to the 96 trinucleotides alone, except for the emergence of 

an additional signature which was characterized by kataegis (Alexandrov et al, 2013b). 



DNA damage and DNA repair in cancer genomes Michel B.-B. Owusu 

 34 

Overall the 96-base substitution subtypes along with indels, rearrangements and strand 

biases are the most commonly reported signatures and result in a proper representation of 

the mutational landscapes of cancer genomes. 

 

Insertions	/	deletions	(indels)	

First algorithms for studying indels (along with substitutions) in genomes were published in 

2008/2009 (Ley et al, 2008; Mardis et al, 2009). Indels are distinguished by their type (insertion 

or deletion), size (commonly 1 – 3 bp) and their sequence context (sites of repeat or 

microhomology). Repeat mediated indels are associated with failure in the MMR pathway 

(Figure 6). Microhomology mediated indels are associated with error prone NHEJ repair 

pathways (Figure 6). Indels are the second most common types of mutations identified in 

genomes (Pleasance et al, 2010a). 

 

 
Figure 6: Repeat mediated versus micro-homology mediated insertions or deletions 
Left: Mismatch repair (MMR) is responsible for the repair of single base insertions and deletions at 

repeat sequences. Timely recruitment of MMR factors leads to error-free repair. Deficiency in MMR 

results in insertions/deletions (indels) at repeat sequences. Right: Homologous Recombination (HR) 

repair is an error-free double-strand break repair (DSBR) pathway. In the absence of HR, lesions are 

repaired by the error-prone DSBR pathway, NHEJ. The repair process is associated with deletions and 

translocations at regions of microhomology. Figure was adapted from (Helleday et al, 2008). 

 

Rearrangements	

Rearrangements are mutations that juxtapose nucleotides that are normally separated in the 

genome (e.g. on two different chromosomes). They do not simply change the structure of the 

DNA sequence but also affect a higher order of DNA structure, the chromosomes. 
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Rearrangements can be separated into types: Insertions, Deletions, Duplications, Inversions 

and Translocations (Figure 7). Furthermore, the mutation types can be separated into sizes 

(e.g. 1 – 10 kb, 1 mb). Computationally detecting rearrangements had been quite challenging 

on the data analysis level. Some of the first algorithms were published in 2008/2009 (Campbell 

et al, 2008; Stephens et al, 2009) but algorithms have improved since then (Alexandrov et al, 

2013b). Interestingly Alexandrov et al noticed a strong association in occurrence of 

rearrangements and kataegis (Alexandrov et al, 2013b), possibly suggesting an unknown link 

between the two events. 

 

 
Figure 7: Types of rearrangement mutations 

A depiction of the different types of rearrangement mutations: deletions, duplications, inversions, 

insertions and translocations. 

 

Other	structural	or	topographical	changes	

There are more mutation types or structural variations that are at times included in the study 

of mutation signatures, such as copy number variations (CNV) or topographical changes in 

the genome. One of the most mysterious phenomena is chromothripsis (Stephens et al, 2011) 

(and similar events such as chromoplexies (Baca et al, 2013)), where some parts of the 

genome are reshuffled in a single mutagenic event. The exact mechanisms for such genomic 

catastrophes are not resolved, but current models involve DNA damage, DNA repair and DNA 

replication processes. The study of mutation signatures is not yet at a fully mature stage, and 

thus the meaning is still evolving and adapting to novel observations. Perhaps in the near 
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future, mutation signatures may evolved to include epigenetic marks, gene expression profiles 

and more. 

 

Mutation	signatures	&	molecular	markers	in	cancer	

 

Mutation	signatures	as	markers	of	biological	processes	

The study of mutation signatures is still at an early stage, but even now, applications are being 

developed for clinical purposes (Davies et al, 2017). Mutation signatures can serve as 

molecular markers for cancer (Alexandrov et al, 2013a) (Figure 8). They can be used to 

distinguish diseased and healthy state from each other, but more importantly, they can be 

used to distinguish different types of diseased states from each other. Mutation signatures are 

defined by DNA damage or DNA repair processes and have been predominantly studied in 

cancer, where they are used to profile different types of cancer (Alexandrov et al, 2013a) 

(Figure 8). However, the study of mutation signatures is already being extended to other 

biological problems, such as rare diseases (Garaycoechea et al, 2018) and neuronal 

development (Lodato et al, 2017). 

 

 
Figure 8: Mutation signatures across different cancer genomes 
Thirty mutation signatures and their presence in different cancer types. Figure taken from Cosmic 

Catalogue of Somatic Mutations in Cancer (Wellcome Trust Sanger Institute). 
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Through the studies of mutation signatures, we gain an understanding of important mutagenic 

processes that result in cancer development. This knowledge can already prevent some 

cancer incidences through public education. On the other hand, diagnostic tools are being 

developed to detect cancer at an early stage (Lawrence et al, 2013; Davies et al, 2017). 

Finally, mutation signatures can be used to stratify cancer patients into treatment groups that 

will respond better to therapy, e.g. PARP inhibitors for cancers with HR deficiency signatures 

or immune checkpoint blockades for cancers with MMR deficiency signatures. 

 

Re-categorizing	cancer	with	mutation	signature	analysis	

The current standard markers for breast cancer include the mutation status of BRCA1/2, TP53 

or HER2 and the expression status of hormone receptors estrogen and progesterone. Nik-

Zainal et al showed that using mutation signatures to classify breast cancers resulted in 

different categorizations than what could be obtained by using some of the standard molecular 

markers (Nik-Zainal et al, 2012; Morganella et al, 2016), indicating that there is space for 

improvement in categorizing breast cancer, and mutation signatures could complement 

current standard molecular markers (Davies et al, 2017). For instance, mutation signature 

analysis, identified a minority of MMR deficient breast cancers that could show better response 

to an alternative treatment rather than standard breast cancer therapies (Davies et al, 2017). 

Microsatellites are sequences of repeats (tandem repeats). Repeats between 10 to 60 

nucleotides are called minisatellite, whereas repeats with fewer nucleotides are known as 

short tandem repeats or microsatellites. Microsatellite instability (MSI) is a term for high 

mutation rates in microsatellites, and used as a molecular biomarker for some cancer types. 

For instance, MSI contributes to 15% colon (Boland & Goel, 2010), 22% gastric (Cancer 

Genome Atlas Research Network, 2014), 20 - 30% endometrial (Kunitomi et al, 2017) and 

12% ovarian (Pal et al, 2008) cancer. MSI is commonly associated with a deficiency in MMR. 

However, there are MSI cancer without known mutations in MMR and MMR deficient cancers 

without MSI (Cortes-Ciriano et al, 2017). Recently, an immunotherapy, which works 

surprisingly well for MSI / MMR deficient cancers, has been developed. Immune checkpoint 

blockades allow immune cells to better recognize and eliminate cancer cells. Due to their high 

mutation rate, MSI / MMR deficient cancer, produce many tumor antigens that further facilitate 

their recognition by immune cells. Immune checkpoint blockade is widely assumed to be 

among the most promising emerging approaches in cancer treatment (Shen et al, 2018). 

However, it currently benefits only a limited subpopulation of patients. Therefore, there is an 

urgent clinical need to identify molecular tumor subtypes that are likely to benefit from specific 

immunotherapies (Shen et al, 2018). The application of mutation signatures has already 

shown the capacity to do so by recognizing MMR deficient tumors in different cancer types, 
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even if there is no detectable underlying mutation in a MMR gene (Davies et al, 2017). 

Furthermore, mutation signatures may be used to classify MMR deficiency into more 

meaningful categories based on their mutation patterns (Morganella et al, 2016) which could 

improve patient stratification into better responding treatment groups. 

Though, up to date there are more than 30 signatures and different people using different 

algorithms to study mutation signatures, the results are predominantly similar (Alexandrov et 

al, 2018). 

 

Modelling	mutation	signatures	in	vitro	

Motivation	

After a decade of studying mutation signatures, the mechanistic basis of some signatures is 

either partially or well understood. For many signatures however, the etiologies are unknown 

or remain speculative (Alexandrov et al, 2018). At the time of detection, the average cancer 

has undergone decades of evolutionary selective growth in a human body (Figure 9). During 

that time, the parental tumor will have given rise to millions of sub-clones that each have small 

to large variations to each other’s genome. The most adapted to the tumor microenvironment 

will have been preserved, while many others will have perished, along with their unique genetic 

makeup. Such loss of information and other confinements make it virtually impossible to 

establish a causality between mutation signatures and their underlying mutational processes 

(Figure 9). Nor are we able to establish the timing or sequence of events that would allow us 

to better understand and possibly prevent the evolution of malignant tumors. Besides the 

biology, technical difficulties such as sample availability and tumor heterogeneity from patients 

also pose formidable challenges in the study of cancer genomes. Herein lies the strength of 

in vitro generated mutation signatures. We have established a protocol, wherein, we artificially 

control the microenvironment as well as the genetic starting material of isogenic cell lines. This 

allows us to induced individual mutagenic perturbations and follow the resulting mutation 

signatures over time, making it possible to determine a causal link between signatures and 

mutagenic processes (Figure 9). Moreover, in vitro studies may result in the revelation of novel 

mutation signatures, which have hitherto not been discovered in vivo, due to low prevalence, 

or other impairments. Thus, the in vitro studies may inform the in vivo studies and lead to 

better therapies for subgroups of patients. 

In vitro mutation studies have already been used to confirm the mutation signatures of 

chemical or environmental mutagens, such as UV (Saini et al, 2016), aristolochic acid (Poon 

et al, 2013) and aflatoxin (Huang et al, 2017). Others have used genetic perturbations to study 

mutation signatures in C. elegance (Meier et al, 2014; 2017) and human organoids (Drost et 
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al, 2017; Blokzijl et al, 2016). To our knowledge, we are the first to obtain mutation signatures 

from human isogenic cell lines with loss of specific DNA repair genes. 

 

 
Figure 9: In vitro cancer mutation signatures 

The strategy and goal of in vitro mutagenesis: starting from a signature with no validated association 

and resulting in causal relationships between signatures and mutagenic processes. 

 

Strategy	

The human HAP1 cell line is a derivative of the human KBM7 cell line, which was isolated 

from a male CML patient (Andersson et al, 1995; Kotecki et al, 1999; Carette et al, 2011). 

HAP1 cells are almost entirely haploid (except for a portion of chromosome 15), and in contrast 

to KBM7 cells, are not dependent on the BCR-ABL1 fusion protein. The advantage of working 

with haploid cells is that genome editing on one copy of a gene is more efficient than on two 

or more. In addition, twice the amount of experimental conditions can be tested on a haploid 
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genome compared to a diploid genome when it comes to sequencing costs. We expanded a 

single HAP1 cell to obtain a pool of isogenic cells, and used CRISPR-Cas9 gene editing 

technology to delete individual DNA repair genes in those cells. Since the generated knockout 

cell lines were all derived from the same pool of mother cells, mutations that accumulated over 

time in the knockouts could be traced back to specific mutagenic processes (i.e. the missing 

DNA repair genes). 

We selected a panel of versatile DNA repair genes that cover different pathways and stages 

of DNA repair. NUDT1 removes damaged nucleotides from the nucleotide pool, preventing 

mutations during DNA synthesis. DNA replication polymerase, POLE, is responsible for DNA 

synthesis, detection and repair of single base substitutions. MMR genes MSH6 and EXO1 are 

involved in the repair of mistakes that escape the proofreading function of POLE (and POLD). 

If required, TLS polymerase, POLM, assists replication polymerases with its translesion 

bypass function, at times creating de-novo mutations in that process. Base excision repair 

genes NEIL1 and POLB take part in the repair of single mutated bases, while FANCC and 

EXO1 are involved in the repair of toxic DSBs, especially after replicative stress or the 

encounter of endogenous ICLs (Lopez-Martinez et al, 2016). The checkpoint kinase CHK2 

plays an important role in cell cycle arrest after DNA damage, protecting cells from mutations 

by providing them with sufficient time for DNA repair. 

 

Aims	of	this	thesis	

The aims of this thesis were to: 1.) Establish experimental conditions that would allow for in 

vitro mutagenesis by deletion of endogenous genes in human isogenic cell lines. 2.) Develop 

algorithms for the analysis of in vitro mutational patterns in the in vitro mutagenized cell lines. 

3.) Compare mutational patterns identified in vitro with existing in vivo mutation patterns. 4.) 

Suggest mutational patterns that could serve as novel molecular markers in cancer diagnosis 

and cancer therapy. 
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CHAPTER	TWO:	RESULTS	

Prologue	

Here I present the results of one of my PhD projects that was published in Nature 

Communications, entitled “Validating the concept of mutational signatures with isogenic cell 

models”. In this publication, we demonstrate for the first time that mutation patterns of cancer 

genomes, originating from defects in DNA repair, can be replicated in human isogenic cell 

lines. The manuscript starts with a brief introduction to the field. After that, we present mutation 

patterns of human isogenic cell lines, defective in the following DNA repair genes (by CRISPR-

Cas9): CHK2, EXO1, FANCC, MSH6, NEIL1, POLB, POLE, POLM. Those mutation patterns 

include base substitutions, indels and rearrangements, as well as replication timing associated 

mutation patterns. We also show validation of the deficient cell lines and their proliferation 

rate, which is used to determine mutation rates. Finally, we provide a concise discussion about 

the interpretation of our data. 

I carried out the experimental work with the help of Marc Wiedner and Jana Stranska. The 

data was analyzed by our colleagues in Cambridge, UK, who have been pioneers and are 

experts of the mutation signature field. The manuscript was written by Serena Nik-Zainal, 

Xueqing Zou, Joanna Loizou and myself with input from all authors. 
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The diversity of somatic mutations in human cancers can be decomposed into individual

mutational signatures, patterns of mutagenesis that arise because of DNA damage and DNA

repair processes that have occurred in cells as they evolved towards malignancy. Correlations

between mutational signatures and environmental exposures, enzymatic activities and

genetic defects have been described, but human cancers are not ideal experimental systems

—the exposures to different mutational processes in a patient’s lifetime are uncontrolled and

any relationships observed can only be described as an association. Here, we demonstrate

the proof-of-principle that it is possible to recreate cancer mutational signatures in vitro using

CRISPR-Cas9-based gene-editing experiments in an isogenic human-cell system. We provide

experimental and algorithmic methods to discover mutational signatures generated under

highly experimentally-controlled conditions. Our in vitro findings strikingly recapitulate

in vivo observations of cancer data, fundamentally validating the concept of (particularly)

endogenously-arising mutational signatures.
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The concept of mutational signatures was postulated in
2012: The catalogue of somatic mutations uncovered
through tumour sequencing is the outcome of one or more

mutational processes that have been operative through the life-
time of a cancer patient1,2. Each mutational process, defined by
DNA damage and DNA repair components, leaves a character-
istic pattern or mutational signature on the tumour genome1–4.
The final mutational portrait of each patient’s cancer is
determined by the intensity and duration of exposure to each
mutational process4,5.

As an analytical principle, mutational signatures have gained
considerable traction, and are regularly featured in cancer
genomics literature6–8. Already, there are multiple algorithms to
extract mutational signatures5,9–12, though each has its own
mathematical idiosyncrasies leading to results that are broadly
similar, but never identical. This has caused some to question the
robustness of the concept. Nevertheless, as a field, mutational
signature research has progressed remarkably. Mutational
signatures have been sought across tens of thousands of cancers,
revealing over 40 different base substitution signatures (paper in
preparation), further supplemented by assessments of how these
signatures are distributed across various genomic architectures
including replication-timing domains, replication strands,
nucleosome occupancy and transcription factor binding sites13,14.
More recently, genome rearrangement signatures have been
unveiled, assisting in the categorization of breast cancer
subtypes13,15,16 and clinical applications based on mutational
signatures are currently being developed17.

No matter how sophisticated the analyses of in vivo muta-
genesis of cancers, there are limitations to studying tumours—it is
an uncontrolled and noisy system18–21, and even the best clinical
metadata collections will at most, provide associations. Critics of
the concept have highlighted that this purely mathematically-
based idea, although compelling, lacks definitive validation
through in vitro methods.

Historic TP53 and HPRT reporter assays and experiments
exposing mouse embryonic fibroblasts (MEFs) to various
exogenous agents have already provided convincing evidence that
mutation patterns can be generated, particularly for environ-
mental agents such as ultraviolet light and tobacco carcino-
gens22,23. Yet, there have been limited efforts to demonstrate
similarly clear relationships for endogenous mutational processes.
Few would dispute that substitution Signature 1 composed
primarily of C>T transitions at an NpCpG sequence context is
linked with deamination of methyl-cytosines, and substitution
Signatures 2 and 13 characterised by the distinctive C>T transi-
tions and C > G transversions at a TpCpN trinucleotide context

are initiated by the activity of the APOBEC family of enzymes3,4.
However, many of the mutational signatures that are likely to be
endogenous in origin have not been verified. Associations of
specific substitution and insertion/deletion (indel) signatures with
mismatch repair (MMR) deficiency24–26, as well as substitution,
indel and rearrangement signatures with homologous recombi-
national (HR) repair deficiency27–30 though conspicuous, have
not been confirmed. Many other genes are also involved in the
myriad DNA repair pathways in our cells, and it is not clear
whether genetic defects in alternative, related genes could
produce mutational signatures as well. Even if mutational
signatures could be reproduced using in vitro techniques, it is not
known whether these signatures would mimic what is observed
in vivo.

Here, we explore whether targeted CRISPR-Cas9-based31–33

knockouts of selected DNA repair genes can recreate mutational
signatures. We describe the experimental cell-based system and
develop the computational methodologies to confirm or refute
whether each gene knockout generates mutation patterns, thus,
providing a general approach for exploring mutational signatures.
We further seek whether experimentally-generated mutation
patterns bear similar appearances and/or behaviours to
mutational signatures seen in primary cancers. If so, this would
serve to endorse that mutational signatures are not simply
mathematical extractions, but are the consequences of true
biological processes.

Results
Generation of DNA repair gene knockouts. We used the
immortalised human near-haploid cell line HAP1 to generate
isogenic CRISPR-Cas9-mediated knockouts34. The advantage of
using a haploid cell line is that CRISPR-Cas9-mediated editing is
simplified because only one genetic allele needs to be altered to
generate a null phenotype. Moreover, because only half the
genomic DNA is present, next generation sequencing (NGS)
needs are substantially reduced making the experiment more
affordable. To determine whether we could detect mutational
signatures that result from defects in DNA repair pathways we
chose to target genes that play diverse and independent roles in
the detection, signalling or repair of DNA damage (Table 1).

Aliquots of the HAP1 cell line were exposed to constructs that
express the endonuclease Cas9 and guide RNAs (gRNAs) that
were designed to target individual genes of interest. Single clones
were selected and those carrying a frame-shift mutation in the
given gene were designated as the parental cell line (Fig. 1a),
which were amplified and analysed by high-depth whole genome

Table 1 List of DNA repair genes targeted and their functions

Gene
symbol

Gene name Function Repair pathway Position

CHK2 Checkpoint kinase 2 Serine threonine kinase Cell cycle and apoptotic regulation in response to
DNA damage

22q12.1

EXO1 Exonuclease 1 5′ to 3′ exonuclease; RNase H activity Homologous recombination; mismatch repair 1q43
FANCC Fanconi anemia,

Complementation group C
Component of Fanconi repair system
core complex

DNA cross-link repair 9q22.32

MSH6 MutS homolog 6 Mismatch recognition Mismatch repair 2p16.3
NEIL1 Endonuclease VIII-like 1 DNA glycosylase and apurinic/

apyrimidinic lyase
Base excision repair 15q24.2

NUDT1 Nudix hydrolase 1 Hydrolyzes oxidized purine nucleoside
triphosphates

Modulation of nucleotide pools 7p22.3

POLB DNA polymerase beta DNA polymerase (catalytic subunit) Base excision repair 8p11.21
POLE DNA polymerase epsilon DNA polymerase (catalytic subunit) Nucleotide excision repair and mismatch repair 12q24.33
POLM DNA polymerase mu DNA polymerase (catalytic subunit) Gap filling during non-homologous end-joining 7p13

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04052-8

2 NATURE COMMUNICATIONS |  (2018) 9:1744 | DOI: 10.1038/s41467-018-04052-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


sequencing (WGS). The parental cell lines (labelled as ‘parental
clone’ in Fig. 1a) were subsequently cultured for one month, from
which seven ‘subclones’ were derived, amplified and analysed by
WGS. This workflow served to allow for the identification of
mutations that occurred over approximately 36 cellular divisions,
considering that the doubling time is approximately 20 h.

Each parental clone and subclone was successfully sequenced
to ~15-fold depth. Short read sequences were aligned to the
human reference genome assembly GRCh37/hg19 and all classes
of somatic mutations were called in the parental clones
(subtracting from the primary bulk HAP1 population) and in
subclones (subtracting from the parental clones). Targeting of the
genes of interest was confirmed by identifying frameshift indels in
the relevant gene in short-read data (see Supplementary Fig. 1a
and Supplementary Data 1), and loss of protein expression was
confirmed through immunoblotting (Supplementary Fig. 1b).
Potential off-target edits were also systematically sought in an
agnostic manner, whether generating small or large (multi-kb)
insertion or deletions, and none were identified. Proliferation
rates were also determined for each knockout cell line
(Supplementary Fig. 1c). Moreover, potential off-target sites were
also searched using COSMID (http://crispr.bme.gatech.edu), a
web-based tool to identify and validate CRISPR/CAS9 off-target
sites35 (see Supplementary Data 2 for a ranked-list of potential
off-target sites of the relevant guide RNA sequences generated by
COSMID). Furthermore, we also confirmed in all subclones, that
no additional mutations were acquired in other DNA repair genes
during the early clonal expansion phase (see Supplementary
Data 3 for a list of DNA repair genes) that could affect the final
mutational signature obtained in each subclone.

Knockouts of DNA repair genes instigates mutagenesis. A level
of background mutagenesis was observed in parental clones
(average ~1200 substitutions, ~60 indels, ~6 rearrangements) and
in all subclones (Fig. 1b–d and Supplementary Figs. 2–4). Above
the background mutations, subclones associated with particular
gene knockouts also had greater numbers of specific classes of
mutations, although effect sizes were notably variable. For
example, the knockout of MSH6 was associated with a surge of
substitutions and indels. By contrast, the FANCC knockout was
associated with a possibly small increase in indels but a large
increase in rearrangements. Knockout of EXO1 appeared to cause
modest elevations of all classes of mutation (Fig. 1b–d). For each
gene knockout, a high level of consistency was observed between
all seven subclones in terms of total counts (Fig. 1b–d) and overall
patterns of mutations (Supplementary Figs. 2–4). Thus, at first
pass, it is possible to crudely discriminate between the effects of
gene knockouts through these experiments, suggesting that this is
a rational experimental system for exploring the mutational
effects conferred by defects in specific genes.

Understanding the signal-to-noise issue. There are however a
number of issues to acknowledge and resolve which are universal
to all human cell-based systems used for exploring mutagenesis.
First, the background mutagenesis was easily detectable: for
example, for base substitutions approximately 700–2000 muta-
tions were detected per colony and this comprises a distinctive
C>A/G>T substitution pattern with tallest peaks at TCT, GCA,
GCT and ACA (in decreasing order; Supplementary Fig. 2). This
ubiquitous signature shares considerable similarity with pre-
viously reported Signature 18, first observed in primary neuro-
blastoma3. Subsequently, this mutational signature was described
in breast and adrenocortical cancers. A very similar signature
(cosine similarity of 0.94 to Signature 18) has been associated
with mutations in the MUTYH gene, hinting that it is a final

outcome of a primary mutational process that could involve
oxidative damage8. Regardless, this mutational process was
effectively noise in our system, and was pervasive in parental
clones and subclones in our experiments, supporting the
possibility of it being due to DNA damage incurred during the
experimental process. Background mutagenesis was also
detectable in indels (Supplementary Fig. 3) and rearrangements
(Supplementary Fig. 4).

Second, this inescapable and abundant mutational process
contributed a very large volume of background mutagenesis,
which could complicate the detection of true mutational
signatures for each target knockout gene. The mutation signals
of various gene knockouts were highly different—some were
strong in nature while others may be considerably weaker, and
could be obscured by the overwhelming background signature.
These two issues of high noise and potentially low signal are
generic and arise in other cell-based models including induced
pluripotent stem cells (iPSCs)36, embryonic stem cells (ESCs)
(manuscript in preparation) and organoids36–38. As described
below, we thus developed methods to quantitatively and reliably
discern whether mutational signatures are present in cell-based
experimental systems in order that they may be applied to similar
approaches in the future.

Detecting mutational signatures in experimental systems. The
pervasive background signature was present in all parental clones
and subclones regardless of gene knockout. By contrast, if a gene
knockout produced a mutational signature, then the signature
should be observed in all relevant subclones and would not be
detectable (or be present at a greatly reduced level) in the parental
clone. We do however, expect some variation between subclones
and must therefore take this into consideration in the modelling.
Our aim therefore was to determine whether there is robust and
consistent divergence of subclones from parental clones, both
qualitatively (mutation spectrum) and quantitatively (mutation
count), indicative that targeting particular genes does indeed
produce mutational signatures.

To account for the limited number of samples and mutations
per sample, and the potentially limited signal-to-noise ratio, we
used a bootstrap resampling method of the 96-channel mutation
profile for all parental clones and subclones (Fig. 2 and Online
Methods for details). This provided us with distributions of
subclones and of parental clones from which reliable estimates of
the qualitative differences in mutation spectra could be calculated
(Fig. 2a; see Online Methods for details). An additional tier to
discriminate whether a gene knockout is associated with
mutagenesis came from taking mutation count into considera-
tion: an “expected” mutation density was used to deduce a p value
to detect an alteration in mutation burden for subclones of a
given gene knockout (Fig. 2b, see Online Methods for details).
Once a gene knockout was confirmed to be associated with
generating a mutation pattern, the final mutational profile (which
is a linear combination of background mutagenesis and the
gene knockout) was obtained by subtracting the background
mutagenesis from the mutational profile of the subclones
(see Online Methods).

This principle of signature discrimination (Fig. 2c) was applied
to indel and rearrangement patterns as well, although different
classifications were used. For indels, a vector of eight features was
used comprising the following categories: 1 bp insertion, >=2 bp
insertion, 2 bp microhomology-mediated deletion, >= 3 bp
microhomology-mediated deletion, 1 bp repeat-mediated
deletion, >=2 bp repeat-mediated deletion, other deletion (where
there are no specific junctional features associated) and complex
indels. For rearrangements, a vector of ten features was applied
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comprising: 1–10 kb, 10 kb–1Mb and >1Mb size groups of the
three classes of deletions, inversions and tandem-duplications,
and the last category was translocations.

By using these methods, we conclusively identified seven
mutational signatures from nine gene knockouts in this HAP1-
based experimental system: two substitution signatures were

induced by knockouts of EXO1 and MSH6 (Fig. 3); three indel
signatures produced by knockouts of EXO1, FANCC and MSH6
(Fig. 4); and two rearrangement signatures associated with
knockouts of EXO1 and FANCC (Fig. 5), as described in detail
below.
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Experimentally-generated gene knockout mutational
signatures. MSH6 is a protein involved in DNA MMR. MSH6
forms a heterodimer with MSH2 and helps to maintain a low
error rate during replication39. Inherited mutations in this gene
are associated with elevated risks particularly of colorectal and
endometrial cancer40,41. Inherited and somatic mutations with
loss of the wild-type allele are associated with elevated mutation
rates in primary human cancers, particularly at polynucleotide
repeat tracts conferring a diagnostic phenotype called micro-
satellite instability (MSI)26. In-keeping with previous observa-
tions, the MSH6 knockout was associated with considerably
elevated substitution density (~4 fold) over background and had a
characteristic pattern dominated by C>T and T>C mutations
(Fig. 3a, d). This mutational signature bears a resemblance to the
multiple substitution signatures (extracted from many different
tumour-types) that have been associated with MMR deficiency in
cancers (Signatures 6, 12, 14, 15, 20 and 26), but was not perfectly
identical to any one of them. Interestingly, when mutational
signatures are extracted from breast cancers alone and all analyses
restricted to just this tissue-type, we find that the in vitro
signature is strikingly similar to the MMR deficiency signature in
breast cancers. This is also the case for tumour-specific signature
extractions of 52 colorectal and 44 endometrial cancers, both
being cancer-types that are associated with MSH6 mutations.
Furthermore, the MSH6 knockout had a very high level of 1 bp
deletions occurring at polynucleotide repeat tracts, with ~7 fold
more deletions than insertions overall, in-keeping with MSI
(Fig. 4a, d). Intriguingly, an MSH6 knockout in an alternative
iPSC model generated an identical signature (cosine similarity is
0.94) suggesting that in different cell lines, the signature asso-
ciated with MSH6 knockout is very stable (unpublished data).

EXO1 encodes an enzyme that functions as a 5′-3′ DNA
exonuclease as well as an endonuclease cleaving RNA on DNA/
RNA hybrids (RNase H activity)42–44. It plays a role in, and
interacts with, components of both the DNA double-strand break
repair (DSBR) and MMR45 pathways. The EXO1 knockout
resulted in a substitution signature with predominantly C>A/G>T
transversions with peaks at GCT, GCC and TCT (Fig. 3d) and
smaller contributions from C>G/G>C, C>T/G>A and T>C/A>G.
The EXO1 knockout also had an indel pattern that featured a high
percentage of 1 bp repeat-mediated deletions and a smaller
proportion of long (>=3 bp) microhomology-mediated deletions
(mm-del) (Fig. 4d). This is an example where the indel knockout
signature and background signature are qualitatively similar
(cosine similarity is 0.97, Fig. 4b) but quantitatively distinct
(Fig. 4c). Additionally, the EXO1 knockout produced a rearran-
gement signature characterised predominantly by a high
percentage (60%) of medium-to-large (10 Kb–1Mb) tandem
duplications (Fig. 5d). Knockout of EXO1 thus created multiple
signatures of all mutation classes, probably as a consequence of
EXO1 operating at the junction of several DNA repair pathways.

FANCC is a component of the Fanconi anemia (FA) DNA
repair system that functions in the processing of DNA crosslinks
that are encountered in S phase via a mechanism that ultimately
employs homologous recombination (HR)28,46,47. In-keeping
with this role, the FANCC knockout created a number of
mutational signatures that are predicted to be initiated by a DNA
double-strand break. These included a characteristic indel pattern
of long deletions (⩾3 bp in length) with microhomology observed
at the indel junction (Fig. 4d). Furthermore, the FANCC
knockout produced a rearrangement pattern characterised by
chromosomal deletions of between 1–10 Kb in size, inversions in
all size ranges, as well as short (=<10 Kb) and long (>1Mb)
tandem duplications (Fig. 5d). This combination of indel and
rearrangement patterns showed a high degree of similarity to
those seen in primary tumours with defects of other well-known
HR components such as BRCA1 and BRCA215,17.

To understand whether the targeting of these DNA repair
genes could affect proliferation, we measured the proliferation
rates of the given cell lines over a period of ten days
(Supplementary Fig. 1c). The MSH6, EXO1 and FANCC knock-
outs had the slowest proliferation rate, indicating that loss of
these genes is not associated with an increased proliferative rate.
Hence, the elevated numbers of mutations in MSH6, EXO1 and
FANCC knockouts were not simply due to an increase in the rate
of cell division. Based on these assays, the mutation rates of the
seven mutational signatures can be calculated: MSH6 knockout
signatures produced ~148 substitutions and ~36 indels per cell
division; EXO1 knockout signatures produced ~16 substitutions,
~0.58 indels and ~0.19 rearrangements per cell division; FANCC
knockout signatures produced ~0.58 indels and ~0.68 rearrange-
ments per cell division (Supplementary Data 4).

The knockouts of CHK248–50, NEIL151, NUDT152, POLB53,
POLE54 and POLM55 did not appear to produce detectable
mutational signatures under these experimental conditions.
Additionally, apart from the gene-edits themselves, there were
no additional recurrent activating mutations or loss-of-function
mutations identified in subclones after culture, suggesting that the
enrichment of “driver” events was not a feature in these
experiments.

Somatic mutations in DNA polymerase epsilon (POLE) have
been reported to be associated with a characteristic mutational
process in Signature 1056,57. We found however that knockout of
POLE, did not appear to be associated with a striking signature in
our study. This is not surprising, given that the identified
mutational signature is associated with mutations in the proof-
reading domain of POLE (dominant negative effect), which is not
mimicked by the knockout.

These results highlight successful, methodically-generated
genome-wide mutation patterns of all classes, in a human
cell-based system, demonstrating that biological abrogation of
some DNA repair genes not only initiates mutagenesis, but

Fig. 2 Schematic illustration of algorithm developed in the present study. a Schematic illustration distinguishing the mutational spectrum of parental clones
and subclones. Each red “+” represents a parent clone and green “+” represents a subclone. Red and green clouds represent bootstrapped samples for
parental clones and subclones respectively. dps is the distance between the centroid of parental clones and that of subclones. Red dashed circle shows the
boundary of distance dpc with p value= 0.01 and green dashed circle shows the boundary of distance dsc with p value= 0.01 (see online Methods). The
mutational spectra of parental clones and subclones are considered to be different only when dps > dpc_0.01 and dps > dsc_0.01. b Distribution of background
mutation number in subclones. Left: The number of mutations in each sample. Cyber yellow and grey highlight the samples that do not have or do have
mutational spectrum shifts from parental clones, respectively. Right: Mutation numbers of the samples that do not have mutational spectrum shifts (cyber
yellow samples) are used to construct a distribution indicating expected numbers of mutations in cells where the gene knockout does not have an effect. c
Workflow of characterisation on knockout signatures. d, e Detailed workflow of quantitative estimation of the difference between the mutation spectrum of
parental clones and that of subclones by bootstrapping parental clones (d) and subclones (e) (see Online Methods). f Detailed work flow of the
construction of the distribution of mutation numbers generated in cells where the gene knockout does not have an effect, using bootstrap sampling
methods (see Online Methods)
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creates distinctive mutation patterns, or mutational signatures,
conclusively validating the abstract concept of mutational
signatures in human cancers. Furthermore, single gene targeting
in vitro in some cases generated not just one but multiple
mutational signatures, buttressing previous reports that multiple

in vivo cancer-derived signatures could arise from single gene
defects such as in BRCA1/BRCA217. This is likely to be due to the
multitude of compensatory DSB repair pathways that are brought
into play in the absence of conservative, error-free HR and due to
some activity of translesion synthesis. Whatever are the
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mechanisms that underpin these observations, this is important
authentication—because multiple mutational signatures are now
starting to be exploited as a principle for designing clinical
biomarker assays17. This notion of using multiple signals as a
biomarker would predict more sensitive and more specific
tumour stratification—critical for clinical trials that are currently
still largely based on single-channel assays with all their attendant
limitations.

Similarities between experimental and cancer signatures. When
mutational signatures were first mathematically extracted from
cancers, several mutational signatures were found to be associated
with inactivation of DNA repair genes. To investigate how
in vitro experimentally-generated mutational signatures of gene
knockouts compared with in in vivo cancer-derived signatures,
we calculated cosine similarities between the in vivo and in vitro
mutational signatures for substitutions (Fig. 6a) and rearrange-
ments (Fig. 6b) (cancer-derived indel signatures are not avail-
able). Then, we compared overall mutational profiles of
knockouts with those of patient cancers.

The substitution signatures of MSH6 and EXO1 knockouts
were compared with cancer-derived 30 COSMIC signatures
(http://cancer.sanger.ac.uk/cosmic/signatures). The MSH6 knock-
out signature is most similar to COSMIC signature 20 with cosine
similarity of 0.91 (Fig. 6a), although there are relatively high
cosine similarities when compared to other cancer-derived
signatures associated with MMR-deficiency (all ⩾0.6). The
EXO1 knockout substitution signature is most similar to
COSMIC Signatures 3 (0.71) and 5 (0.71). Whole genome
profiles of experimentally-generated gene knockouts bear
uncanny resemblances to whole genome profiles of primarily
repair-deficient tumours (Fig. 6c). The MSH6 knockout, for
example, bears striking similarity to those in MMR-deficient
tumours—characterised by C>T and T<C substitution signatures
and high burden of indels at polynucleotide repeat tracts
(Supplementary Fig. 5). By contrast, the FANCC and EXO1
knockouts are more similar to HR-deficient cancers; defined by
general genomic instability and an excess of deletions with
microhomology at the breakpoint junction (Fig. 6c, Supplemen-
tary Figs. 6 and 7). This is an interesting observation because
although both of these proteins are not typical HR genes, they do
play a role in promoting HR repair of DNA double-strand breaks.
These data also provide additional experimental evidence to
support how cancers that are deemed to be “HR-deficient”, can be
sub-classified further genetically.

In a previous analytical exercise exploring structural variation
in breast cancer, six classes of rearrangement signatures were
identified15, including two types of tandem duplication signatures
—Rearrangement Signature 3 (RS3) comprising short (<10 Kb)

tandem duplications and enriched in BRCA1-null tumours and
Rearrangement Signature 1 (RS1) comprising long (>100 Kb)
tandem duplications, not associated with BRCA1 mutations
although a genetic cause has not been identified. The rearrange-
ment signatures of EXO1 and FANCC knockouts were compared
with cancer-derived rearrangement signatures (RS1-RS6). The
EXO1-knockout rearrangement signature is strikingly similar
(0.93) to RS1 which is defined by long tandem duplications
(Fig. 6b). By contrast, the FANCC-knockout rearrangement
signature shows little similarity (0.09) to RS1, and instead shows
elements of RS3 (0.43) and RS5 (0.59), which have short tandem
duplications and deletions. Hence, we show that these rearrange-
ment signatures are not just mathematical abstractions but indeed
separate biological entities—that is, the two tandem duplication
patterns, namely RS1 and RS3, are able to be recreated by
knocking out disparate genes. The FANCC knockout rearrange-
ment pattern comprised mainly short tandem duplications and
short deletions (<10 Kb) and also had other rearrangement classes
but essentially echoed those of BRCA1-null cancers (Fig. 6c and
Supplementary Fig. 6). This is consistent with the role played by
BRCA1 in HR, downstream of the FA pathway46,58. By contrast,
the EXO1 knockout rearrangement signature was dominated by
medium-to-long tandem duplications emulating the alternative
cohort of genomically unstable (but BRCA1-intact) tumours
(Fig. 6c and Supplementary Fig. 7).

Genomic architecture of experimentally-generated signatures.
Previous analyses of breast-cancer-derived mutational signatures
revealed diverse relationships with replicative strand and repli-
cative time domains, as well as transcriptional strands. We thus
explored whether experimentally-generated mutational signatures
mirrored are thereby validated these mathematically-derived
observations.

Of the experimentally-generated mutational signatures, first,
we did not find evidence of transcriptional strand bias (Fig. 7a
and Supplementary Fig. 8). Second, replication strand asymmetry
was not observed for the signatures caused by knockouts of
EXO1, though it was observed for the C>T/G>A (1.27 fold, p
value= 0.021, t test) and T>C/A>G (1.38, p value= 0.018, t test)
components of the MSH6 knockout (Fig. 7b). This interesting
bias was consistent with the observation that MMR deficiency
associated mutational signatures 6, 20 and 26 have either an
excess of damage to G and T on the lagging replicative strand or
C and A on the leading replicative strand (Fig. 7c). This implied
that MSH6 must have a particular role in directing the repair of
damage of these nucleotides during replication. Third, while
EXO1 knockout mutational signatures were consistently
increased in regions of the genome associated with late
replication, the mutational signature of MSH6 demonstrated a

Fig. 3 Determination of substitution mutational signatures in gene knockouts. a Profile of 96 mutation types (6 types of substitution ∗ 4 types of 5’ base ∗ 4
types of 3’ base) of parental clones and DNA repair gene knockouts. A strong background signature is observed in all samples. The substitution spectrum
of each sample is shown in Supplementary Fig. 2. Error bars were referred to as standard error of means (n= 7). b Discrimination of mutation spectrum of
parental clone and subclones. Bootstrap sampling method was used to construct a population of parental clones. The distribution of distance of parental
clone replicates to the centroid of parental clones is shown as the pink histogram. The red dashed line indicates a cutoff (dpc_0.01) where 99% replicates are
within this distance to the centroid of parental clones. The distribution of subclone replicates is shown as the light green histogram. The green dashed line
indicates a cutoff (dsc_0.01) where 99% subclones are within this distance to the centroid of all subclones. The blue arrow indicates the distance (dps)
between centroid of subclones to the centroid of parental clones. A knockout is considered to have an effect on the substitution spectrum, when dps >
dpc_0.01 and dps > dsc_0.01 are observed, e.g., EXO1, FANCC,MSH6. c Identification of mutation number increase in subclones due to gene knockout. From (b),
one can discriminate the knockouts that do not generate mutational signatures. The number of mutations in these knockout backgrounds can be used as a
baseline; through bootstrap sampling method, we obtained the distribution of the number of mutations in subclones in a wildtype background and,
therefore calculated the p value of mutation number of each knockout. EXO1 andMSH6 show significantly elevated mutation numbers as well as mutational
profile change. d Substitution signatures of EXO1 and MSH6 knockouts. The mutational signatures associated with gene knockouts are obtained by
removing the substitution profile of parental clones from the mean of the substitution spectrum of the seven subclones
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notably flatter slope, with more mutations early in replication
compared to the other knockout signatures (Fig. 7d). This
strikingly echoed in vivo observations—a base substitution
signature associated with tumour MMR deficiency also exhibits
a flattened profile across replication timing domains, unlike most

other substitution signatures in breast cancer13. Crucially, this
result from an experimentally-generated knockout of MSH6
provided support for a previous hypothesis that MMR activity is
essential for reducing mutagenesis in gene-rich, early replicative
domains. When abolished, the protective role usually played by
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MMR on mutagenesis in these regions, is lost, thus resulting in
the excess of mutations in early domains and a flattened
replication timing profile13. In conclusion, our findings collec-
tively show that mutational signature behaviours across genomic
architecture are corroborated by in vitro studies.

Discussion
The gene-edited human cell-based model system used here has
permitted validation of the mutational signatures concept across
all classes of mutations. This system, however, is not without
issues. A challenge posed by the considerable cell culture-related
signature resulted in an encumbered signal-to-noise ratio. Here,
we combine the experimental set-up with algorithmic develop-
ments in order to successfully view mutational patterns generated
by knockout of DNA repair genes. These principles lend them-
selves to a thorough, systematic screen of all genes involved in
maintaining genome integrity and of all potential genotoxic
agents in order to comprehensively understand the repertoire of
mutational signatures in human cells.

We found that in our experimental setup, not all knockouts of
genes associated with DNA repair produced detectable muta-
tional signatures. While this could reflect lack of a mutational
signature, it is also possible that some gene knockouts produce
signals that are too weak to be detected under these experimental
conditions. They require intensification through elevating muta-
tion rates. One way this could be achieved is by increasing
cumulative time in culture—but the data here already suggest that
mutation accumulation rates are variable between genes and a
one-size-fits-all approach will therefore always have its limita-
tions. Alternatively, increasing DNA damage experimentally
(using acute or chronic regimes) could help to amplify muta-
genesis. However, mutational signatures spawned through assis-
ted methods have arisen under subtly different conditions and
should be interpreted with this in mind. Using alternative iso-
genic models that are more permissive for mutagenesis (e.g.,
MEFs) could also help to increase mutation rates. However, using
different cell-based systems with different genetic backgrounds
could result in diverse mutational signatures, if similar studies are
performed. Lastly, because of the nature of growing cells in cul-
ture, it is possible that this is associated with some loss of insights.
Copy number changes are often poorly tolerated in cell-based
systems and copy number patterns may perhaps be under-
represented using these approaches.

Nevertheless, we present a proof-of-principle, demonstrating
how experimentally-generated mutation patterns recapitulate
those seen through analysis of primary tumours, thus authenti-
cating the abstract concept of mutational signatures. Our findings
also validate previously observed mutational signature relation-
ships with replication, both spatially and temporally. We also
note that our findings have also highlighted how a single gene
defect is not restricted to creating one mutational signature—it
can engender multiple mutational signatures of different classes.

The converse is also true: a mutational signature may not
necessarily reflect a defect in a single gene, as it could arise
through dysregulation of a number of related genes in a pathway.
Herein, we have conclusively demonstrated in vitro that endo-
genous mutational signatures are a direct, mechanistic read-out of
pathway dysfunction and could thus be used as biomarkers of
pathway dysregulation even in the absence of knowing the precise
gene defect or even which gene is compromised.

Methods
Culture conditions. HAP1 cells were grown in Iscove’s Modified Dulbecco’s
Medium (IMDM; GIBCO), containing L-Glutamine and 25 mM HEPES and
supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin
(P/S). Cells were grown at 37 °C, with 20% oxygen and 5% carbon dioxide.
HAP1 cells were passaged every 3 days and maintained sub-confluent for 1 month.
The cell lines were tested negative for mycoplasma contamination using MycoAlert
Mycoplasma Detection Kit. HAP1 is not listed in the database of commonly
misidentified cell lines by ICLAC. The parental HAP1 cell line has been
characterized and authenticated by our collaborators at Horizon Genomics.

Gene editing by CRISPR-Cas9. CRISPR-Cas9 knockouts were generated in
collaboration with Horizon Genomics. HAP1 cells were transfected with a Cas9
expressing plasmid, a guide RNA (gRNA) expressing plasmid and a plasmid
conferring Blasticidin resistance, using Xfect (Clontech). Guide RNA sequences
were 5′-AGGTAAAGCTGGCTTTCGAG-3′ (CHK2), 5′-ATCCATCAAATACG
AGAAT-3′ (EXO1), 5′-GCCAACAGTTGACCAATTGT-3′ (FANCC), 5′-CCAAG
ATGGAGGGTTACCCC-3′ (MSH6), 5′-TGCCCACCTGCGCTTTTACA-3′
(NEIL1), 5′-TTCGGGGCCGGCCGGTGGAA-3′ (NUDT1), 5′- GAGCAAACGGA
AGGCGCCGC-3′ (POLB), 5′-AGTTTCGGCACTCAAGCGCC-3′ (POLE), and
5′-ACAGGCCTGGCGCGCTCCAA-3′ (POLM).

Subsequently, the cells were treated with 20 μg/ml Blasticidin for 24 h in order
to eliminate untransfected cells. After 5–7 days of recovery from Blasticidin
selection, clonal cell lines were isolated by limiting dilutions.

Sanger sequencing. Genomic DNA was extracted using Viagen Bitoech
DirectPRC Lysis Reagent (Cell) adhering to the protocol provided by the
manufacturer. The genomic region targeted by the gRNA was amplified using the
primers and PCR amplification conditions provided below. Frameshift mutations
were identified using Nucleotide BLAST against the reference genome
GCF_000001405.33. Clones with frameshift mutations were selected as parental
cell lines.

Forward primers (For) were 5′-TCAAAGATGCCCCAAAATTTTCCAT-3′
(CHK2-For), 5′-CTCGTAAGTATCCAAGGCAGGATTT-3′ (EXO1-For), 5′-CA
AACCTACACACACATACATGGAC-3′ (FANCC-For), 5′-TGGCAGTAGTGAC
TCTTACCTGTAT-3′ (MSH6-For), 5′-TGGCCAGCCAGTTTGTGAAT-3′
(NEIL1-For), 5′-GCTGGGGAGTTACAGCATACC-3′ (NUDT1-For), 5′-ACTTG
TGAATAATTTTGTGTGGGTCA-3′ (POLB-For), 5′-CACTCTTTAGATAA
GGACCACGCTA-3′ (POLE-For) and 5′-TCGCCCTAATTAATAGCACCCTT
TA-3′ (POLM-For).

Reverse primers (Rev) were 5′-CTTTGTTTTTCCCTCTAGTGGTGC -3′
(CHK2-Rev), 5′-ATCATAGGGTACTAAGGTGCTGAAC-3′ (EXO1-Rev),
5′-ACTAAACAAGAAGCATTCACGTTCC-3′ (FANCC-Rev), 5′-AATGCCA
GAAGACTTGGAATTGTTT-3′ (MSH6-Rev), 5′-TGGTACTCCTGCAAGA
CACA-3′ (NEIL1-Rev), 5′-GAAACCAAGGGTGTGGCCCTA-3′ (NUDT1-Rev),
5′-CAGATCATAAGCTATGGAAGGGTGA-3′ (POLB-Rev), 5′-AGAGCAAGA
CTCCGTCTCAAAAA-3′ (POLE-Rev) and 5′-CGGAGTTTCCCTCTGCGTT-3′
(POLM-Rev).

PCR amplification: heat lid to 110 °C; start reaction with 94 °C for 2 min; loop
35 × (94 °C for 30 s; 55 °C for 30 s; 68 °C for 1 min), then finish with 68 °C for 7
min.

Fig. 4 Determination of indel signatures in gene knockouts. a Indel spectra of parental clones and DNA repair gene knockouts are represented by a 8-
channel indel profile which takes the type, length of indel motif and the characteristics at the indel junction into account: 1 bp insertion, >=2 bp insertion, 2
bp microhomology-mediated deletion, >=3 bp microhomology-mediated deletion, 1 bp repeat-mediated deletion, >=2 bp repeat-mediated deletion, other
deletions and complex indels. Error bars were referred to as standard error of means (n= 7). The indel spectrum of each sample is shown in
Supplementary Fig. 3. b Distribution of bootstrapped indel spectra of parental clone (pink) and subclones (green). FANCC, MSH6 and POLM show
significant changes in indel spectrums. c Comparison of indels numbers among subclones. The cyber yellow distribution is generated by bootstrapping the
indel number of knockout subclones without significant changes in indel profiles. EXO1, FANCC and MSH6 show significant increases in indel numbers,
indicating the effect of gene knockout on indels. In contrast, although POLM shows a detectable indel spectrum shift, it did not show a clear increase in
indel number (p value= 0.9966). Hence, POLM cannot be determined to have an indel signature. d Indel signature of EXO1, FANCC and MSH6. Indel
signature of EXO1 is similar to the culture indels signature. Indel signature of FANCC is dominated by microhomology-mediated deletions of 3 bp or more.
Indel signature of MSH6 is dominated by 1 bp deletions at poly-nucleotide repeat tracts
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Proliferation assay. Knockout cell lines were plated in triplicates at a density of
0.32 × 106 cells ml−1 and allowed to proliferate. Every second day, cells were dis-
sociated with Trypsin-EDTA (Gibco), living cells were counted using CASY Cell
Counter and Analyzer system (Innovatis), and replated at 1:2, 1:3 or 1:4 dilutions,
depending on the growth rate of the cell line. The experiment was carried out for
10 days. Proliferation was plotted for each time point considering the dilution rates.
The average growth rate is a mean over 10 days.

Protein extracts and immunoblotting. Cell extracts were prepared using RIPA
lysis buffer (NEB) with protease (Sigma) and phosphatase (Sigma) inhibitors.
Immunoblots were performed using standard procedures. Samples containing
proteins were separated using SDS PAGE 4–12% gradient gels (Invitrogen) and
transferred onto nitrocellulose membranes. The membranes were incubated with
primary and secondary antibodies. The primary antibodies were NUDT1 (NB100-
109, Novus Biologicals), CHK2 (05–649, Millipore), POLM (C1, Santa Cruz),
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EXO1 (A302-639A, Bethyl Laboratories), FANCC (MABC524- clone 8F3, Milli-
pore), POLE (GTX132100, GeneTex), Actin (A5060, SIGMA), NEIL1 (12145-1-
AP, Proteintech), POLB (ab26343, Abcam), and MSH6 (D60G2, Cell Signalling).
Catalogue numbers and working dilutions for antibodies are provided in Supple-
mentary Table 1. Uncropped immunoblot images are shown in Supplementary
Fig. 9.

DNA library preparation and sequencing. Five hundred nanogram of genomic
DNA was fragmented (average size distribution ~500 bp, LE220, Covaris Inc),
purified, libraries prepared (Agilent SureSelect XT custom kits, Agilent Technol-
ogies), and index tags applied (Sanger 168 tag set). Index tagged samples were
amplified (6 cycles of PCR, KAPA HiFi kit, KAPA Biosystems), quantified (dsDNA
BR assay, HS assay, Thermo Fisher Scientific), normalized (~0.85 ng/μl), then
pooled together in an equivolume fashion. Pooled samples were submitted to
cluster formation for HiSeq ×10 sequencing (32 lanes, 150 bp PE read length,
Illumina Inc). The average sequencing coverage is 15-fold for all samples given that
HAP1 is a haploid cell line. The details of sequence coverage for all clones and
subclones are provided in Supplementary Data 5.

Alignment and somatic variant-calling. Short reads were aligned to human
reference genome GRCh37/hg19. Somatic substitutions, indels and rearrangements
in clones and subclones were called by CaVEMan59 (http://cancerit.github.io/
CaVEMan/), Pindel60,61 (http://cancerit.github.io/cgpPindel) and BRASS15

(https://github.com/cancerit/BRASS), respectively.
De novo somatic mutations of substitutions, indels and rearrangements in

subclones were obtained by removing all mutations seen in parental clones. The
summary of de novo somatic mutations for each gene knockout is provided in
Supplementary Data 6.

Determination of mutational signatures for gene knockouts. The mutational
landscape of a cell over a certain period of time reflects a balance point between
DNA damage and repair processes in the cell. Exposure to exogenous mutagenic
agents or abrogation of DNA repair activity could affect this balance, thereby
inducing changes in the mutational landscape. Based on this principle, if the
knockout of a gene effectively generates a mutation pattern, then one could observe
two changes: First, a shift in the mutational spectrum of cells between subclones
and parental clones (shown schematically in Fig. 2a); Second, a change in numbers
of mutations in subclones when compared to background (Fig. 2b).

To conclusively identify an effect of a gene knockout, three steps are required:
(1) Detecting a qualitative difference between mutational spectra of knockout
subclones and that of parental clones; (2) Detecting a quantitative difference in
numbers of mutations. (3) Extracting knockout signature. Figure 2c demonstrates
the workflow. A more detailed method is described below.

In step 1, we applied a bootstrap resampling method on parental clones and
subclones, and calculated the Frobenius distance between parental clones and
subclones to quantify the difference between the mutational spectrum of parental
clone (without gene knockout effects) and that of subclones (with gene knockout
effects).

First, mutation profiles for parental clones (Mp) and subclones (Ms) for each
gene KO were defined as:

Mp ¼
m1

p

..

.

mK
p

2
664

3
775 and Ms ¼

m1
s1 � � � m1

s7

..

. . .
. ..

.

mK
s1 � � � mK

s7

2
664

3
775;

where m is the mutation number of each mutation feature in each sample, p and s
refer to the parental and subclones of different gene knockouts respectively.

The substitution spectrum is made up of a 96-channel vector (K= 96), where
for each of the six classes of C>A, C>G, C>T, T>A, T>C and T>G, the flanking 5′
and 3′ sequence context for each of the mutated bases is also taken into account (6
types of substitution ∗ 4 types of 5′ base ∗ 4 types of 3′ base= 96 channels). For
indels, the profiles are made up of eight features (K= 8), including 1 bp insertion,
>= 2 bp insertion, 2 bp microhomology-mediated deletion, >= 3 bp

microhomology-mediated deletion, 1 bp repeat-mediated deletion, >= 2 bp repeat-
mediated deletion, other type of deletion and complex indels, are used. For
rearrangements, ten mutation features (K= 10) are employed: 1–10 Kb, 10 Kb–1
Mb, and >1Mb sized deletions, inversions and tandem-duplications respectively
and translocations. The profile of substitutions, indels and rearrangements for all
samples are shown in Supplementary Figs. 2–4, respectively.

Second, a bootstrap distribution for parental clones was generated. Bootstrap
resampling was applied to each parental clone to generate 7000 replicates where the
frequency of each mutation type corresponded to its probability in the clone
multiplied by the total counts. In total, for nine parental clones, 63,000 replicates
are generated. From 63,000 replicates, seven samples are randomly selected and the
normalized distance between the centroid of the seven chosen replicates and the
centroid of original parental clones, is calculated as dpc. By repeating this step
10,000 times, we obtain a distribution of dpc (shown in Fig. 2d), and the distance
associated with p value= 0.01, dpc_0.01, is identified.

Third, bootstrap distributions for subclones of knockouts were generated. The
application of bootstrapping on subclones is similar to that of parental clones, see
Fig. 2e. For each knockout, 63,000 replicates of subclones are generated (9000
replicates * 7 subclones). Nine replicates are randomly chosen from 63,000
replicates and are used to calculate the normalized distance between the centroid of
replicates and the centroid of original subclones, dsc. The distribution of dsc is
therefore obtained by repeating the previous step for 10,000 times and the
threshold distance with p value= 0.01, dsc_0.01, can be calculated.

Finally, changes in mutational spectrum between parental clones and subclones
were determined. For each of the gene knockouts, the distance between centroid of
parental clones and centroid of subclones (dps) is compared with dpc_0.01 and
dsc_0.01. The criterion to determine whether the mutational spectrum associated
with a given gene knockout is significantly different to the parental clone is dps >
dpc_0.01 and dps > dsc_0.01, see Fig. 2a.

Step 2 involves determination of increase of mutation number associated with a
gene knockout. Aggregated mutation numbers of gene knockouts that do not have
a change in mutation spectrum (results from step 1) are used to construct a
distribution of baseline mutation counts (i.e., no effect of gene knockout), as shown
in Fig. 2f. According to this distribution, a p value of aggregated mutation number
of each gene knockout can be calculated. Gene knockouts with p value < 0.01 are
considered to have a significantly elevated mutation count, indicative of mutational
signatures associated with abrogation of these genes.

In step 3, we extracted knockout signatures based on quantile analysis. The
mutational spectrum of subclones can be seen as a linear combination of the
mutational spectrum present in parental clones (background mutagenesis) and the
mutational spectrum associated with the specific gene knockout:

Ms � ep ´Pp þ eko ´ Pko

where Pp ¼
P

p Mp=
P

p

P
k m

k
p and Ms is the centroid of seven subclones of each

knockout gene. ko refers to different gene knockouts. ep and eko are the number of
mutations caused by parental clone signature and knockout gene signature
respectively.

Hence, once a knockout gene is considered to have a mutational signature, its
signature (Pko) can be obtained by removing mutations associated with parental
clones from the mutation profile of the subclone:

Pko � ðMs � ep ´PpÞ=eko

The detailed steps are as described below:
First, we generated bootstrap distributions of subclones. For each knockout

gene, 10,000 replicates of subclones are generated to construct a distribution of
mutation number in kth of K features of each of the subclones. According to that
distribution, the upper and lower boundaries (99% CI) for each kth feature are
identified.

Second, the initial status is assumed that there is no knockout signature, i.e.,
background exposure, ep, is the total mutation number of subclones. Thus, the
background signature profile, ep ´ Pp , can be calculated. Each number in kth of K
features of background signature profile was compared with the upper and lower
boundaries of each kth feature of subclones calculated from step 1. For each step,

Fig. 5 Determination of rearrangement signatures in gene knockouts. a The rearrangement spectra of parental clones and DNA repair gene knockouts are
represented by a 10-channel profile that takes the type and length of rearrangements into account. The rearrangement spectrum of each sample is shown
in Supplementary Fig. 4. Error bars were referred to as standard error of means (n= 7). b Distribution of bootstrapped rearrangement spectra of parental
clone (pink) and subclones (green) of the knockouts. EXO1, FANCC and NUDT1 knockouts show significant changes in their rearrangement profiles. c
Identification of elevated rearrangement numbers in knockouts. EXO1 and FANCC knockouts show high number of rearrangements (p value <= 0.01), while
NUDT1 has a p value of 0.0105, which is at the border of our threshold. To be conservative, NUDT1 is not determined to have a rearrangement signature. d
Rearrangement signature of EXO1 and FANCC. The rearrangement signature associated with knockout of EXO1 is characterised by median tandem
duplications (10 kb–1 Mb). The rearrangement signature associated with knockout of FANCC is characterised by short deletions (1–10 kb), deletions and
tandem duplications of 1–10 kb and 10 kb–1 Mb
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100 bootstrapping background exposure profiles are generated, and if there are at
least five parental signature profiles fall within the boundary of subclones, the
current background exposure is determined as the final background exposure, and
iteration stops. Otherwise, ep will reduce by 1 in the next step and the newly
constructed status will be compared with mutational profiles of subclones.

Third, once the background exposure, ep, is identified from step 2, the exposure
associated with a knockout is thus obtained by subtracting parental exposure from
centroid of subclones.

Topography of mutations associated with knockout genes. We explored the
relationships between genomic features, e.g., DNA replication and transcription,
and mutations associated with knockout genes. Reference information of replica-
tive strands and replication timing regions were obtained from the ENCODE

project Repli-seq data (https://www.encodeproject.org/)62. Regions of protein
coding gene in the genome were used to assign transcriptional strand coordinates.
Here, all substitutions are represented in pyrimidine context and the coordinates of
transcriptional and replicative strands are given on the +strand of the reference
genome, therefore the transcriptional/replicative strand information associated
with each substitution is adjusted to the pyrimidine-based mutation, e.g., a G>C
mutation on the transcribed strand is described as a C>G mutation on the non-
transcribed strand.

Code availability. The code for determination and extraction of knockout sig-
natures associated with this study is available from corresponding author (S.N.-Z.)
upon request.
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Fig. 6 Comparison of mutational signatures between cancer (in vivo) and knockouts (in vitro). a Cosine similarity between 30 COSMIC substitution signatures
(http://cancer.sanger.ac.uk/cosmic/signatures) and EXO1/MSH6 knockout substitution signatures. b Cosine similarity between six cancer-derived
rearrangement signatures and EXO1/FANCC knockout rearrangement signatures. c Genome plots ofMSH6, EXO1 and FANCC knockouts and of cancer samples.
Genome plots show somatic mutations including substitutions (outermost, dots represent six mutation types: C>A, blue; C>G, black; C>T, red; T>A, grey; T>C,
green; T>G, pink), indels (the second outer circle, colour bars represent five types of indels: complex, grey; insertion, green; deletion other, red; repeat-
mediated deletion, light red; microhomology-mediated deletion, dark red) and rearrangements (innermost, lines representing different types of
rearrangements: tandem duplications, green; deletions, orange; inversions, blue; translocations, grey). Genome plot of MSH6/EXO1/FANCC HAP1 knockouts
are aggregations of seven subclones. PD23564 and PD23579 are breast cancers with microsatellite instability which is resulted from impaired mismatch
repair. PD5956 and PD4841 are two breast cancers that would historically have been termed as having HR deficiency but are enriched for rearrangement
signature 1 and distinct from BRCA1/BRCA2-mutated cancers. PD11742 and PD9004 are two breast cancers with BRCA1/BRCA2-null HR deficiency
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Data availability. All mutation data can be obtained from: ftp://ftp.sanger.ac.uk/
pub/cancer/Zou_et_al_2017

All other remaining data are available within the Article and Supplementary
Files, or available from the authors upon request.
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Fig. 7 The topography of experimentally-generated mutations of EXO1, MSH6 and POLB knockouts. POLB does not show a mutational signature in
substitutions. It is shown here as a contrast against EXO1 and MSH6 signatures. The topography of mutational signatures associated with the remaining six
knockout genes is shown in Supplementary Fig. 8. a Histograms exploring transcriptional strand asymmetry. b Histograms exploring replication strand
asymmetry. c Histograms showing replicative strand asymmetry of mutational signatures in breast cancers. Twelve mutational signatures were identified
from 560 breast cancers15. Here only four signatures are shown: Signatures 6, 20 and 26 are associated with mismatch repair (MMR) deficiency; Signature
1 is associated with hydrolytic deamination of methylated CpG is shown as a contrast. d Distribution of normalized mutation density across the replication
timing domains. The G2/S phase was separated into ten replication timing domains13. Mutation densities in replication timing domains were corrected for
genomic size of each domain
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Supplementary Table 
 

Name Catalogue Number Company Dilution 
NUDT1 NB100-109 Novus Biologicals 1:1000 

NEIL1 12145-1-AP Proteintech 1:500 

CHK2 05-649 Millipore 1:1000 

EXO1 A302-639A Bethyl Laboratories 1:1000 

POLE GTX132100 GeneTex 1:1000 

POLB ab26343 Abcam 1:1000 

POLM C-1 Santa Cruz 1:500 

FANCC MABC524 Millipore 1:500 

MSH6 D60G2 Cell Signaling 1:1000 

ACTIN A5060 SIGMA 1:5000 

        Supplementary Table 1. Information of catalogue numbers and working dilutions for 
antibodies. 
                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figures 
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Supplementary Figure 1. Generation and characterisation of CRISPR-Cas9 edited 
human HAP1 cells. (a) Sanger sequencing confirming CRISPR-Cas9-induced frame-
shift mutations in illustrated genes. The red sequence in the wild type (WT) gene 
corresponds to the guide RNA (gRNA) sequence used. Insertions are marked by an 
underlined character and deletions by missing sequences (dashes). (b) 
Immunoblots for expression of MSH6, NEIL1, NUDT1, EXO1, POLB, POLM, POLE, 
CHK2 and FANCC in CRISPR-Cas9 edited human HAP1 clones.  Actin serves as a 
loading control. “*” denotes a non-specific band. Immunoblot images are shown in 
Supplementary Figure 9. (c) Proliferation of indicated knockout cell lines over a 
period of ten days. Living cells were counted every second day using CASY Cell 
Counter and Analyzer system starting with 0.32 million cells. The plot shows a mean 
and standard deviation of 3 replicates for each time point. Error bars are defined as 
standard error of the mean. 
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Supplementary Figure 2. 96-element spectra of substitutions of all parental clones 
(first column) and subclones. A strong and consistent background signature 
comprising C>A mutations can be seen for all samples.  
 
 

 
Supplementary Figure 3. 8-element spectra of indels of all parental clones (first 
column) and subclones. Similar to substitutions, a strong and consistent indel 
background is observed in all samples.  
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Supplementary Figure 4. 10-element spectra of rearrangements of all parental 
clones (first column) and subclones. Due to a low number of rearrangements, the 
profile of  rearrangements of each sample is sparser than the profile of  
indels/substitutions of each sample.  
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Supplementary Figure 5. Comparison of experimentally generated signatures in 
mismatch repair (MMR) gene MSH6 knockouts and mutational signatures in MMR- 
deficient cancers. (a) 96-element substitution spectra of MSH6 knockouts (seven 
subclones were aggregated) and two breast cancers with MMR deficiency, PD23564 
and PD23579.  (b) Substitution signatures associated with knockout of MSH6. (c) 8-
element indel spectra of MSH6 knockouts (seven subclones were aggregated), 
PD23564 and PD23579. (d) Indel signatures associated with knockout of MSH6. 
Overarching substitution and indel whole genome profiles of MMR-deficient 
samples are very similar to that of the MSH6 knockout, particularly the individual 
substitution and indel profiles. 
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Supplementary Figure 6. Comparison of experimentally generated signatures in 
DNA cross-link repair via homologous recombination (HR) gene FANCC knockouts 
and cancer-derived mutational signatures in HR-deficient BRCA1-null samples. (a) 
8-element indel spectra of FANCC knockouts (seven subclones were aggregated) and 
two BRCA1-null breast cancers associated with HR deficiency, PD11742 and 
PD9004. (b) Indel signatures associated with FANCC knockouts. (c) 10-element 
rearrangement spectra of FANCC knockouts (seven subclones were aggregated), 
PD11742 and PD9004. (d) Rearrangement signature associated with FANCC  
knockouts. Indel and rearrangement profiles of BRCA1-null samples are very similar 
to the FANCC knockout: microhomology-mediated deletions and a high number of  
rearrangements (1-10Kb tandem-duplications and 1-10Kb deletions). 
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Supplementary Figure 7. Comparison of experimentally-generated signatures in 
EXO1 knockouts (EXO1 is involved in both HR and MMR pathways) and cancer-
derived mutational signatures in HR-deficient but BRCA1-intact samples. (a) 96-
element substitution spectra of EXO1 knockouts (seven subclones were aggregated) 
and two BRCA1-intact breast cancers with HR deficiency, PD5956 and PD4841.  (b) 
Substitution signatures associated with EXO1 knockouts. (c) 8-element indel spectra 
of EXO1 knockouts (seven subclones were aggregated), PD5956 and PD4841. (d) 
Indel signature associated with EXO1 knockouts. (e) 10-element rearrangement 
spectra of EXO1 knockouts (seven subclones were aggregated), PD5956 and 
PD4841. (f) Rearrangement signature associated with EXO1  knockouts. Indel and 
rearrangement profiles of BRCA1-intact samples are very similar to the EXO1  
knockout: featuring a high number of repeat-mediated deletions and long (>100kb) 
tandem duplication rearrangements. 
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Supplementary Figure 8. The topography of experimentally-generated mutations of  
nine knockout genes. (a) Histograms exploring transcriptional strand asymmetry. 
(b) Histograms exploring replication strand asymmetry. (c) Distribution of  
normalized mutation density across the replication timing domains.  Error bars are 
defined as standard error of the mean. 
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Supplementary Figure 9. Uncropped Immunoblots from Supplementary Figure 1b. 
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CHAPTER	THREE:	DISCUSSION	

 

Functional	interpretation	of	in	vitro	mutation	signatures	

MSH6	associated	signatures	

Mismatch repair is essential in guarding the genome of replicating cells against single (or a 

few) base pair mutations. Mismatches are particularly high at microsatellites. The MMR protein 

MSH6 is part of the MUT Salpha complex which scans DNA for mismatched lesions. Given 

its upstream role in MMR, we expected loss of MSH6 to result in MMR associated signatures. 

Interestingly there are 4 - 5 mismatch repair associated mutation signatures in the COSMIC 

data base (Wellcome Trust Sanger Institute), Signature 6, 15, 20, 26 and 21. The latter one 

however, needs to be taken with caution, since it may not be MMR related. Signature 21's 

association to MMR is that, so far, it has only been found in samples that also had Signatures 

15 and 20. Morganella et al studied the genomes of 560 breast cancers (WGS) and identified 

some unique features of the 4 main MMR signatures in the COSMIC data base. 

COSMIC Signature 15 was entirely absent from 560 breast cancers. This could mean that the 

mutagenic process responsible for Signature 15 is not active or relevant in the development 

of breast cancer. This signature could be specific to some cancer types due to their specific 

tissue environment. So far (to my knowledge) it has only been detected in several stomach 

and a single lung cancer. It would be exciting to find stomach specific mutagens, which in 

combination with a MMR deficiency, could possibly explain the etiology of Signature 15. The 

lack of such mutagens in our study could also explain the low cosine similarity between our in 

vitro MMR deficiency model and Signature 15 (0.62). 

COSMIC Signatures 6, 20 and 26 were all detected in 560 breast cancers, studied by 

Morganella et al. Signature 20 and 26 showed a replication time bias, which had previously 

been linked to MMR deficiency by Supek et al (Supek & Lehner, 2015), but intriguingly, 

Signature 6 did not. However, Signature 6 is still very likely to be MMR related since it is 

associated with defective MMR and predominantly found in microsatellite instable tumors 

(Wellcome Trust Sanger Institute). It may therefore be due to a non-canonical MMR pathway, 

which is not enriched in early versus late replicons. Our in vitro MMR deficiency model shows 

a very clear replication time bias and, only a modest cosine similarity of 0.76, when compared 

to Signature 6. Our model does therefore does not explain COSMIC Signature 6. 

Morganella et al also showed that Signature 26 had a strong replication strand bias (but no 

transcription strand bias), which is the case for our MMR deficiency model as well. However, 

the cosine similarity between our model and Signature 26 is only 0.68. Furthermore, Signature 

26 has a peculiar feature, which we did not find in our model: It is less abundant at nucleosome 

binding sites than their flanking regions. This is the opposite to what is found with other MMR 
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signatures (Signature 6 and 20) (Morganella et al, 2016), and what is known about NER and 

mutations at nucleosome core DNA (Sabarinathan et al, 2016). A possible explanation for this 

is that Signature 26 is a compound of MMR deficiency and another dominant biological 

process, which we have not identified yet. 

Our MMR deficiency model shows the strongest similarity to COSMIC Signature 20 (0.91), but 

was not identical (0.95). We therefore suspect that canonical MMR, which is not intact in MSH6 

knockout cell lines, could be the mutagenic process underlying Signature 20. Interestingly, a 

recent publication that appeared after ours (Haradhvala et al, 2018), demonstrated that 

Signature 20 was a compound signature of replication errors (by catalytic dead POLE) and 

MSI (highly associated with MMR deficiency). The cosine similarity was 0.93, only 0.02 points 

different from our reported signature. It would be interesting to investigate their model in vitro 

by using our approach with isogenic cell lines. Our data compared to their data, very strongly 

suggests that a deficiency in the canonical MMR pathway (i.e. MSH6) is largely responsible 

for COSMIC Signature 20. 

In future it will be interesting to decipher the mutational processes that lead to COSMIC 

Signatures 6, 15, 26 and 21. 

 

FANCC	associated	signatures	

The Fanconi Anemia (FA) repair pathway is primarily known for its role in the repair of 

crosslinks. This pathway consists of more than 15 proteins (Yao et al, 2013) and cooperates 

closely with HR, NER and TLS. Indeed, the HR proteins BRCA1 and BRCA2 play such an 

important role in FA repair that they are also known by their FA repair names FANCS and 

FANCD1. FANCC (Fanconi Anemia Complementation Group C), is part of the FA-core 

complex, a complex of proteins which is recruited after damage recognition and required for 

downstream activation of FANCD2. Loss of FANCC disrupts the core complex leading to 

failure of FA repair (Muniandy et al, 2010). FANCC deleted cells are therefore a good model 

to study the mutagenic process induced by an absence of FA repair. 

FA deficiency is associated with chromosomal aberrations, genomic instability and 

susceptibility to cancer (Crossan & Patel, 2011). This is in line with the observations of our in 

vitro generated mutation signatures for FANCC deleted cells. The dominant mutation types 

that we see are chromosomal rearrangements, by far more frequent than in any of our other 

knockout cell lines. Interestingly, the type of rearrangements (and indels) resembles the 

mutations in BRCA1/2 mutated breast cancer. As a control, we tested our cell line for 

mutations in other DNA repair genes, and except for FANCC, we found none. The mutator 

phenotype was not an obvious expectation but is in line with the close association between 

FA and HR repair. Indeed, FANCC and other FA proteins have previously been described to 
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be BRCAness genes. Here we show that FANCC also shows a very strong BRACAness 

mutator phenotype, to our knowledge, the first time this has been done looking at mutation 

signatures. 

Though we can explain the similarity in mutation signatures between our in vitro cultivated 

FANCC and cancer patient derived BRCA1/2 deficient cells, it is not clear why our in vitro 

model would accumulate large numbers of rearrangements. Recently, FA proteins have been 

shown to be involved in replication folk stability, particularly FANCD2, BRCA2 and RAD51, 

which causes genomic instability. However, others have shown that the FA-core complex 

(which includes FANCC) was not involved in replication fork stability (Raghunandan et al, 

2015). 

FA deficient cells are exquisitely sensitive to crosslinking agents but we did not apply 

exogenous crosslinking agents in our study. The main known endogenous crosslinking agents 

are aldehydes (Stone et al, 2008). Our data suggests that if endogenous crosslinks were the 

actual source of the genomic instability of FANCC deleted cells in culture, then judging from 

the mutator phenotype acquired after one month, they could be of greater importance to 

endogenous DNA damage than hitherto thought. 

FA patients are also sensitive to ionizing radiation (Pollard & Gatti, 2009), which is a potent 

double-strand break inducing agent. Though ionizing radiation also produces a variety of other 

DNA lesions, presumably including interstrand crosslinks (Dextraze et al, 2010), our data 

suggests that FA proteins could play an important role in other DNA repair processes besides 

crosslink repair. 

 

EXO1	associated	signatures	

The nuclease EXO1 is involved in both mismatch repair and double-strand break repair. It 

removes nucleotides around damaged sites allowing for error free repair processes. Our 

EXO1 deficient cell line is thus a suitable model to study the crosstalk between mismatch 

repair and homologous recombination. In accordance with that, we found that EXO1 deleted 

cells showed a mutator phenotype resembling MMR deficiency to one and HR deficiency to 

another part. In contrast to other cell lines, invitro cultured EXO1 deleted cells showed 

elevated base substitution, high levels of 1 bp repeat mediated deletions and a loss of 

replication time bias, similar to MSH6 deleted cells, albeit milder. At the same time, 

microhomology mediated 3 bp deletions and rearrangements were elevated, similar to FANCC 

deleted cells and invivo BRCA1/2 deficient tumors. This is a consequence of EXO1’s function 

but was not necessarily expected, since there are many factors that could have masked this 

mutation signature. For instance, other nucleases (especially DNA2) which is also recruited 

to sites of double-strand breaks could have taken over the role of EXO1, as has been observed 
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in yeast (Cejka, 2015). On the other hand, MMR does not rely on EXO1, therefore EXO1 

independent pathways could have compensated for its loss in MMR. The non-essentiality of 

EXO1 in either MMR or HR may also explain the somewhat milder phenotype compared to 

MSH6 or FANCC deleted cells. 

The elevated mutations in late versus early replicons, was a phenomena observed by multiple 

researchers between 2000 and 2015 (Watanabe et al, 2002; Stamatoyannopoulos et al, 

2009). Unexpectedly, Supek et al proposed that MMR favored early replicons as opposed to 

late ones, leading to elevated mutations in the latter (Supek & Lehner, 2015). However, cancer 

genomes have undergone a long evolutionary process from initial occurrence until clinical 

detection and associations are not proofs beyond doubt. Here we show that by selectively 

depleting MMR factors, we also delete the mutation bias in late versus early replicons. Indeed 

to strengthen the argument, deficiency in core MMR, through loss of MSH6, entirely delete s 

the bias, while deficiency in alternative MMR repair, through loss of EXO1, delete s the bias 

to a moderate degree. 

 

POLE	associated	signatures	

POLE is one of the two main replication polymerases in human cells. It functions in DNA 

synthesis as well as in DNA repair through its proofreading domain. Mutations in POLE are 

known to induce very large numbers of mutations (Haradhvala et al, 2018) and have been 

proposed to underlie the etiology of COSMIC Signature 10 (Wellcome Trust Sanger Institute). 

Interestingly, our POLE deleted cells showed no significant mutation increase compared to 

our other knockout cell lines, such that no base substitution signature could be extracted for 

comparison to the COSMIC data base signatures. A possible explanation for this surprising 

result, is that specific mutations in POLE and not its entire depletion are required to produce 

its known mutator phenotype. This is in fact very likely the case, since the know hypermutation 

and COSMIC Signature 10 were associated with POLE somatic mutations in its catalytic 

exonuclease domain (Pro286Arg and Val411Leu 1 (Briggs & Tomlinson, 2013)). It is not 

unusual that total loss of an enzyme may not recapitulate a loss of function phenotype. For 

instance, ATM mouse models(Choi et al, 2010; Yamamoto et al, 2012) showed that ATM 

knockout mice were viable and mostly recapitulated the human AT phenotype, whereas 

catalytic inactive ATM (kinase-dead ATM) was embryonic lethal and its expression resulted in 

higher genomic instability than observed in knockout lymphocytes. Researchers commonly 

agree that this phenomena could be due to the activity of other related kinases (e.g. ATR, 

DNA-PKcs), which can compensate for loss of ATM. In the presence of kinase-dead ATM, the 

compensatory kinases may experience a physical hindrance, presented by the inactive 

enzyme, leading to a lethal DNA repair deficiency. This activity of catalytic dead enzymes is 
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termed a dominant negative effect. Likewise, exonuclease deficient POLE could be able to 

elongate DNA strands, without being able to repair mistakes, resulting in hypermutations. In 

the total absence of the protein however, other polymerases, presumably POLD with an intact 

exonuclease domain, could compensate for its loss, resulting in the absence of 

hypermutations. This is not implausible, since the main consensus in the literature on the 

function of replication polymerases is that POLE replicates the leading strand (Lujan et al, 

2016), whilst POLD replicates the leading and lagging strand (Johnson et al, 2015). In this 

context, it would be interesting to introduce the Pro286Arg or Val411Leu mutation, instead of 

knocking out the gene, in order to test this hypothesis. 

 

Other	signatures	

The knockout of CHEK2, NEIL1, NUDT1, POLB and POLM did not appear to produce 

detectable mutational signatures under our experimental conditions. Additionally, apart from 

the gene-edits themselves, there were no additional recurrent activating mutations or loss-of-

function mutations identified in sub-clones after culture, suggesting that the enrichment of 

driver events was not a feature in the experiment with these cell lines. 

DNA glycosylases of the base excision repair pathway are known to show functional 

redundancy (Krokan & Bjørås, 2013). Consequently, there are no known major diseases 

associated with a deficiency in single glycosylases (Xie et al, 2004; Chan et al, 2009; 

Kemmerich et al, 2012). NEIL1 is a DNA glycosylase involved in the removal of oxidized 

lesions, but MUTYH and OGG1 are also capable of removing oxidized lesions, perhaps 

compensating for loss of NEIL1 and suppressing mutations (Xie et al, 2004). 

In the case of the other base excision repair factor in our experiment, the polymerase POLB, 

our gene editing resulted in a frame-shift mutation (confirmed by Sanger sequencing), which 

should have resulted in a knockout. However, a truncated version of the protein was still 

expressed (as evident on western blot), probably due to an alternative transcription start site 

downstream of the gRNA targeting the gene. Because of this, we hypothesize that the primary 

reason for lack of mutations in our in vitro model of POLB deficiency was an incomplete loss 

of the protein after gene editing. 

Although Sanger sequencing as well as western blot confirmed the knockout for CHK2, we 

did not observe enrichment of mutations in this cell line. CHK2 and CHK1 share many 

substrates (Lazzaro et al, 2009). It is possible that a functional compensation between the two 

prevented enrichment of mutations in CHK2 deleted cells. We also assessed sensitivity of 

CHK2 to DNA damaging agents and did not observe a sensitivity to double-strand break 

inducing agents as we would have expected. This DNA damage tolerance is very peculiar, 

and unexpected, since CHK2 is canonically activated after double-strand breaks in an ATM 
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dependent manner (Manic et al, 2015). It is possibly that CHK1 is compensating for loss of 

CHK2. For a future experiments, it would be interesting to replicate the phenotype of the CHK2 

knockout in at least one other cell line. 

NUDT1 is an enzyme specialized on the removal of oxidized nucleotides, one of the most 

common damages, from the nucleotides pool. We do not know why our knockout cell line did 

not produce mutations, but it is possible that DNA repair pathways, such as MMR or BER 

compensate for loss of NUDT1 by removing inserted damaged nucleotides from the DNA. 

POLM deficient cells showed the least substitutions and indels and average rearrangements. 

It is involved in NHEJ, which is more mutagenic than HR. Furthermore, POLM deficiency 

increases resistance to oxidative damage and reduces apoptosis (Martin & Blanco, 2014). 

The POLM knockout may therefore have a stronger shift towards HR due to inefficient NHEJ 

(Escudero et al, 2014), which may produce a subtle reduction in indel rates. This is however 

very speculative, and we remain to properly test POLM deficient cells for improved DNA 

damage repair. It has been reported that the catalytic mutant POLM was mutagenic, but not 

the knockout (Escudero et al, 2014). This argues for the possibility of a dominant negative 

effect in this model system. 

 

Clinical	significance	of	in	vitro	mutation	signatures	

The signatures that we identified could be of clinical significance. The MSH6 mutant derived 

signature was in line with the known MMR associated patterns. This confirms that our in vitro 

generated signatures are indeed the same or similar to in vivo signatures. In light of this, 

mutant EXO1 or FANCC derived signatures may represent a subset of tumors, too small to 

have been identified in whole genome sequencing of thousands of tumors, where strong 

mutation signatures may cover subtle ones. These novel BRCA related signatures may thus 

represent markers for a hitherto neglected subset of tumors, which may be targeted through 

specific vulnerabilities conferred by EXO1 or FANCC deficiency. For instance, FANCC 

deficient cells are extremely vulnerable to crosslinking chemotherapeutics, such as cisplatin 

or oxaliplatin. 

 

Optimization	of	experimental	setup	

 

Sequencing technologies have technical limitations, sample preparation as well as the 

sequencing process itself introduce mutational artefacts (Costello et al, 2013; Wong et al, 

2014). Each protocol and instrument may have its own unique features. We controlled for such 

potential technical flaws by using isogenic cell lines including a pool of original parental cells 

and by sequencing all our samples on the same instrument using the same protocol. In vivo 
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signatures however cannot be controlled to such a high degree due to heterogeneity of tumor 

and control samples.  

Known signatures could be a compound of two or more mutational processes which are 

strongly associated with each other, e.g. interaction of genetic mutagens with tissue specific 

mutagens. A recent publication by Haradhvala et al reported to have revealed the etiology of 

COSMIC Signature 20 (cosine similarity 0.93) by demonstrating that the combination of 

exonuclease mutant POLD and MSI did not merely produce an additive mutation signature of 

the two respective mutagenic processes but rather compounded into an unrelated, distinct 

one (Haradhvala et al, 2018). There are many other possible combinations that could arise in 

vivo or in vitro. Testing combinations of mutagens in vivo is not feasible, whereas with in vitro 

mutagens, we can control the mutagens and their combinations. The knowledge of the in vitro 

processes and their signatures could then be used to understand the in vivo ones. 

One source of noise in our in vitro generated mutation signatures was the highly abundant C 

> A mutation in all knockout clones and parental cell lines. We are not sure of the source of 

this lesion, but it appeared to be associated with our model system or cell culture conditions. 

The signature is very similar to COSMIC Signature 18, first observed in breast and stomach 

carcinomas. Signature 18 is presumed to stem from loss of MUTYH (Viel et al, 2017; Pilati et 

al, 2017), which repairs lesions by reactive oxygen species. Sequencing all of our clones, we 

did not detect any deleterious mutations in MUTYH. Almost all cells of the human body live in 

tissue environments with low exposure to oxygen (Jagannathan et al, 2016). The majority of 

cell culture laboratories however, are set up to culture cells in an incubator environment of 

20% oxygen (atmospheric oxygen level). It is feasible that the 20% oxygen level in our 

incubator is responsible for the enrichment of C > A mutations by reactive oxygen species. 

Furthermore, cell culture requires handling of cells outside of the incubator, in a lamina or in 

front of a microscope. In support of this argument, a signature similar to Signature 18 has also 

been reported in organoid based in vitro generated mutation signatures (Blokzijl et al, 2016; 

Drost et al, 2017). This is something that remains to be tested in the future. For instance, cells 

could be cultured in 20% oxygen and 3% oxygen (physiological level (Jagannathan et al, 

2016)) in order asses the link between oxygen levels and C > A mutations. Such an experiment 

would confirm the association between C > A mutations and reactive oxygen radicals, and 

future in vitro mutation signature studies could be performed under low oxygen conditions. 

In addition to the background signature which may have covered actual knockout signatures, 

we cannot exclude that the culture time was insufficient for the enrichment of mutation patterns 

in some knockouts. Moreover, the cell lines do not all have same proliferation rate. Application 

of an exogenous mutagen may also be required to amplify mutational patterns in some of our 

knockout cell lines. Some knockouts may only produce a signature in specific cell lines, due 

to tissue specific differences. Therefore, increasing the culture time and adding exogenous 
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mutagens as well as other cell line models are conditions that need to be tested in future 

experiments. 

 

Future	of	mutation	signatures	

Though mutation signatures are by definition due to DNA damage and DNA repair processes, 

it is important to study other DNA repair associated proteins in the context of mutation 

signatures. Fascinating targets are epigenetic regulators. For instance, ARID1A is one of the 

most commonly mutated genes in cancer (Shen et al, 2018). Loss of function is associated 

with loss of chromatin accessibility. Researchers found that ARID1A is recruited by MSH2 to 

chromatin to promote MMR. Loss of ARID1A decreased the activity of MMR and resulted in 

increased mutation. The increased mutation load resulted in an increased susceptibility of 

ARID1A deficient cancer to immune checkpoint blockade therapy (Shen et al, 2018). 

Complex signatures may result from a combination of mutational processes, therefore some 

of the current signatures may require further delineation. For instance, loss of POLE 

exonuclease (proofreading) activity is associated with a distinct base substitution signature 

(COSMIC signature 10). Loss of MMR factors (identified through MSI) is associated with at 

least 4 distinct signatures. However, loss of POLE exonuclease in combination with loss of 

MMR does not simply result in a combinational (additive) mutation pattern, but rather in one 

or two distinct de novo signatures (Haradhvala et al, 2018). 

 

According to Alexandrov et (Alexandrov et al, 2018) elucidating the underlying mutational 

processes of mutation signatures will depend on two major streams of investigation: (i.) The 

generation of mutational signatures from model systems exposed to known mutagens or 

genetic perturbations and the comparison of those signatures with those found in human 

cancer genomes. (ii.) An overlay of mutation signatures with other characteristics of cancer 

through different approaches ranging from molecular profiling to epidemiology. Collectively, 

these studies will advance our understanding of cancer etiology with potential implications for 

prevention and treatment. 

 

Conclusion	

We have demonstrated for the first time in the known scientific literature, that mutations 

signatures associated to defective DNA repair mechanisms can be generated in vitro using 

isogenic cell lines. This novel approach for studying mutagenesis is complementary to the 

study of genomes from cancer patients, and may inform about their etiology. We therefore 

present a novel approach that adds to the repertoire of tools that researchers have developed 

to aid in our the fight against cancer. 
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