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Figure 1: The sphingolipid and glycerophospholipid metabolic networks  

Figure 2: Lipid structures 

Figure 3: Subcellular localization of sphingolipid metabolism 

Figure 4: TLR signaling processes 

Figure 5: TLR signaling over time  
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As key regulators of the innate immune system, Toll-like receptors (TLRs) are conserved 

transmembrane receptors that recognize molecular structures of pathogens and initiate the 

immediate immune response. Together with a large panel of other proteins and thousands of 

lipids they comprise the cellular membranes, whose physical properties strongly depend on their 

lipid composition. The majority of membrane lipids belong to the glycerophospholipids or 

sphingolipids and their abundance can be measured using mass spectrometry-based lipidomics. 

The combination of shRNA-mediated genetic perturbations of lipid-modifying enzymes important 

for the sphingolipid metabolism in mouse macrophages, with the lipidomics analysis of 245 

different lipid species, revealed broad changes in sphingolipid and glycerophospholipid levels. 

Using this data, we could identify lipids, which were coregulated across all perturbed cell lines. 

Strikingly, visualization of the lipid-lipid coregulation across all lipid species revealed a circular 

network of lipid coregulation, reflecting lipid metabolism, adaptation mechanisms, and 

subcellular localization. To further dissect the consequences of perturbed membrane lipid 

composition on the innate immune response we functionally characterized the TLR-mediated 

responses of these cell lines. By combining the network of coregulated lipids with the detailed 

characterization of TLR biology, we could infer functions for single lipid species in TLR signaling. 

These inferred functions were validated using lipid supplementation approaches. Based on 

changes in the lipid composition upon genetic perturbation we could predict the pro-inflammatory 

response of the previously unknown gene Smpdl3b (Sphingomyelin Phosphodiesterase, Acid-

Like 3B) in a loss-of-function cell line. The gene product SMPDL3B was identified as a TLR4, 

TLR7, and TLR9 interactor, whose expression levels were induced upon diverse inflammatory 

stimuli. Further, in an Smpdl3b-deficient mouse model the negative regulatory role of SMPDL3B 

was confirmed in vivo using a peritonitis model resulting in enhanced cytokine release after 

infection. Fibroblasts derived from a panel of patients suffering from lipid storage disorders were 

also analyzed using lipidomics and a comparison of the lipid coregulation revealed that the 

circular network was largely conserved between mouse and human cells. Using the functional 

lipid annotation of mouse macrophages we could correctly predict the inflammatory response of 

human fibroblasts solely based on their changes in lipid composition. 

 

 



Einer der Hauptakteure des angeborenen Immunsystems, ist die Gruppe der Toll-like 

Rezeptoren (TLRs). Diese konservierten Transmembranrezeptoren erkennen molekulare 

Strukturen von Pathogenen und initiieren daraufhin eine sofortige Immunantwort. Die große 

Gruppe der Membranproteine zusammen mit tausenden von Lipidmolekülen formen die zelluläre 

Membrane, deren physikalische Eigenschaften stark von der Zusammensetzung abhängen. Der 

Großteil der Membranlipide gehört zu den Glycerophospholipiden oder den Sphingolipiden, 

deren Mengen durch massenspektrometrische Analyse (Lipidomics) ermittelt werden können. 

Die Kombination von gezielten genetischen Störungen der Sphingolipid-modifizierenden 

Enzyme in murinen Macrophagen, zusammen mit der Lipidomics Analyse von 245 

verschiedenen Lipidspezies in diesen Zelllinien, offenbarte umfassende Veränderungen der 

Lipidzusammensetzung. Mit Hilfe dieser Daten konnten wir die Koregulation der Lipide 

identifizieren. Bemerkenswerter Weise zeigte die Visualisierung dieser Lipid Koregulationen ein 

zirkuläres Netzwerk, welches den Metabolismus, Adaptierungsmechanismen und die 

subzelluläre Lokalisation der Lipide darstellte. Um die Konsequenzen einer gestörten 

Lipidzusammensetzung auf die angeborene Immunantwort zu identifizieren, charakterisierten wir 

funktionell die TLR-induzierte Signalweiterleitung dieser Zelllinien. Durch das Kombinieren des 

Netzwerkes der koregulierten Lipide mit der detaillierten Quantifizierung der TLR-abhängigen 

Prozesse, konnten wir Funktionen für einzelne Lipidspezies in der angeboren Immunantwort 

ableiten und beschreiben. Basierend auf den Veränderungen der Lipidzusammensetzung in 

einer weiteren Zelllinie, in der das bisher nur dürftig beschriebene Gen Smpdl3b genetisch 

dezimiert wurde, konnten wir mit Hilfe der vorher ermittelten Funktionen von verschiedenen 

Lipiden die pro-inflammatorische Immunantwort dieser Zelllinie vorhersagen. SMPDL3B wurde 

auch als Bindungspartner von TLR7, TLR9 und TLR4 identifiziert, und konnte durch diverse 

inflammatorische Stimuli induziert werden. Des Weiteren wurde die negative regulatorische 

Rolle dieses Proteins in einer Smpdl3b-defizienten Maus mittels eines Peritonitismodels auch in 

vivo bestätigt, da erhöhte Zytokinausschüttung gemessen wurde. Zusätzlich wurden 

Fibroblasten von verschiedenen Patienten mit einer Lipidspeichererkrankung ebenfalls mittels 

Lipidomics analysiert und ein Vergleich der Lipid Koregulationen zeigte, dass das zirkuläre 

Netzwerk zwischen murinen und humanen Zellen konserviert ist. Mit Hilfe der funktionellen 

Lipidbeschreibung, basierend auf den Daten der murinen Macrophagen, konnten wir die 

Immunantwort der humanen Zellen genau vorhersagen. Diese Prognose beruhte einzig auf den 

Veränderungen ihrer Lipidzusammensetzung und konnte experimentell bestätigt werden. 



“Cell membranes are complicated in composition but precise in purpose: to selectively 

compartmentalize the constituents of life away from environmental lifelessness.” (Lingwood & 

Simons, 2010) 

The cellular membrane consists of thousands of different lipid molecules and a variety of 

transmembrane proteins important for cell-cell communication, motility, and monitoring of the 

cell’s surrounding. This membrane fulfills a wide spectrum of functions ranging from large lipid 

reorganization important for cell division or vesicle fusion to fine adjustments in the immediate 

vicinity of membrane proteins, regulating their function. In order to execute these different roles 

the lipid component of cellular membranes consists of several different lipid classes providing 

the cell with a lipid repertoire to modulate its membrane properties such as fluidity, thickness, 

curvature, thermal stability, and protein content (van Meer et al., 2008). The majority of these 

membrane lipids belong to the classes of sterols, glycerophospholipids, or sphingolipids. While 

sterols consist of different steroid rings, glycerophospholipids and sphingolipids are comprised of 

two fatty acid (FA) chains varying in length and saturation level attached to a glycerol or 

sphingosine backbone, respectively. Other lipids found in the cell belong to the FAs, the sterol 

esters, which are made of FAs attached to a sterol and serve as lipid storage molecules and the 

triacylglycerols, which consist of a glycerol and FAs and are also important for lipid storage, 

forming lipid bodies. Thus a cell contains several thousand different lipid species that vary in 

form and function (Coskun & Simons, 2011). Interestingly, lipids and their metabolic processes 

show a high degree of conservation between yeast and human, so initially a lot of findings came 

from studies in yeast and could be confirmed in mammalian cells (Nielsen, 2009). However, it is 

becoming increasingly clear that lipids and their functions cannot be easily studied in an isolated 

system. Due to the complexity of the metabolic and structural connections, it is important to 

perform global analyses of the different pathways and lipids involved. Other findings have 

reported a metabolic ‘ripple’ effect when one lipid class is altered in the cell, further highlighting 

the interconnection of lipid metabolism. Over several decades scientist have thought of lipids 

primarily as energy storage and structural components and only recently is has been proposed 



that deciphering the functional properties of lipids in signaling could open up an entire new field 

of research (Hannun & Obeid, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The sphingolipid and glycerophospholipid metabolic networks: The pathways 
show the different metabolic processes involved in sphingolipid (left) and glycerophospholipid 
(right) metabolism (lipids and other metabolites are in black, enzymes are in blue). Spha: 
Sphinganine, Cer: Ceramide, Spho: Sphingosine, GluCer: Glucosylceramide, GM3: 
Gangliosides, CGT: Galactosyltransferase, CERK: Ceramide kinase, UGCG: Ceramide 
glucosyltransferase, ST3GAL5: Ganglioside GM3 synthase, PIK: Phosphatidylinositol kinase, 
PEMT: Phosphatidylethanolamine N-methyltransferase, CPT: Carnitine palmitoyltransferase, 
ATX: Autotaxin, PAP1: Phosphatidic acid phosphohydrolase 1, LPAAT: Lysophosphatidic acid 
acyltransferase, GPAT: Glycerol-3-phosphate acyltransferase 1. Figure adapted from Köberlin, 
Snijder et al., 2015. 

 

 

 Most processes involved in the de novo synthesis of membrane lipids occur in the 

endoplasmic reticulum (ER), the cellular organelle which harbors the majority of enzymes 



involved in lipid biosynthesis (Gault, Obeid et al., 2010). Importantly, the genes, proteins, and 

lipid molecules associated with lipid biosynthesis pathways are highly conserved (Guan, 

Riezman et al., 2010). The first step in sphingolipid metabolism is the synthesis of 3-keto-

dihydrosphinganine resulting from the hydrolysis of serine and palmitoyl-CoA mediated by the 

SPOT complex, a multi-protein complex consisting of serine palmitoyltransferases (SPTLC1 and 

SPTLC2) as well as the proteins ORMDL1, ORMDL2, and ORMDL3 (Breslow & Weissman, 

2010). After the reduction of this lipid to dihydrosphingosine, ceramide synthases (CERS 1 – 6) 

catalyze the reaction to different dihydroceramide molecules by attaching a second FA chain. 

Different ceramide synthases show selective specificity for various FA chain lengths (Pewzner-

Jung, Ben-Dor et al., 2006). This specificity is further discussed in more detail below. 

Dihydroceramides are then desaturated to ceramides (Causeret, Geeraert et al., 2000). The 

ceramide transfer protein (CERT) shuttles ceramide molecules from the ER, their location of 

synthesis, to the trans-Golgi network (TGN) where they can further be trafficked to the plasma 

membrane (PM) and metabolized to sphingomyelin (SM) (Hanada, 2014) (Figure 1). This step is 

catalyzed by sphingomyelin synthases (SGMS1 and SGMS2), which attach a phosphocholine 

head group to ceramide molecules. This reaction can be reversed by neutral or acidic 

sphingomyelinases (NSMA and NSMA3 or ASM) residing at the PM or in endosomes, 

respectively (Milhas et al., 2010). Within the sphingolipid network ceramides represent the 

metabolic hub as these lipids can further be glycosylated, galactosylated, or phosphorylated by 

specific enzymes in the ER to form more complex sphingolipid molecules (Ichikawa & 

Hirabayashi, 1998) (Figure 1). Proteins such as glucocerebrosidases and galactosidases can 

degrade these complex sphingolipids to form ceramides again (Hakomori, 2000). The 

degradation of ceramides by ceramidases at the ER (ACER 1 and ACER3), at the Golgi 

(ACER2), or in lysosomal compartments (ASAH1 and ASAH2) leads to sphingosines, which can 

either be recycled to make ceramides or be phosphorylated by sphingosine kinases (SPHK1 and 

SPHK2) to form sphingosine-1-phosphates (S1P). This lipid class can be dephosphorylated by 

SGPP1 (sphingosine-1-phosphate phosphatase) to sphingosines, feeding back into the 

sphingosine pool of the cell, or be irreversibly degraded by sphingosine-1-phosphate lyase 

(SGPL) into the non-sphingolipid molecules phosphoethanolamine and hexadecenal (Johnson, 

Johnson et al., 2003, Nakahara et al., 2012). Enzymes that hydroxylate or desaturate the FA 

components further contribute to the diversity of sphingolipids (Degroote, Wolthoorn et al., 2004). 

 Although the main metabolic steps of sphingolipid biosynthesis have been known since 

several decades, the regulation principles of different enzymes involved in the pathways have 

begun to emerge only now. The most important protein-mediated regulation of the de novo 



synthesis of sphingolipid metabolism is the SPOT complex. In mammalian cells, the ORMDL 

proteins have been found to interact with SPTLCs but not with the mammalian isoform of Sac1 

as in yeast (Breslow & Weissman, 2010). The Orm proteins are a highly conserved family of 

transmembrane domain proteins without any known protein domains (Breslow, Collins et al., 

2010). They have been reported to act as negative regulators of sphingolipid synthesis and 

recently also other lipid metabolic processes as well as protein quality control (Han, Lone et al., 

2010, Shimobayashi, Oppliger et al., 2013). However, their exact function, especially if and how 

they are involved in the sensing of lipid composition, still remains to be elucidated. In yeast, 

different kinases and phosphatases controlled by the activity of target of rapamycin (Torc1 and 

Torc2) regulate the phosphorylation and the consecutive inhibition of Orm protein function (Sun, 

Miao et al., 2012). In mammals, there are three Orm1 homologues (ORMDL1, 2, and 3). 

Interestingly, single nucleotide polymorphisms (SNPs) influencing the expression levels of 

Ormdl3 have been connected to the susceptibility of early-onset childhood asthma (Moffatt, 

Kabesch et al., 2007).   

   

 

Compared to sphingolipids, glycerophospholipids constitute the bulk of membrane lipids 

in a cell. The precursor of all glycerophospholipids is phosphatidic acid (PA), a product of the 

dual acylation of glycerol-3-phosphate (G3P) using acyl-CoA (Figure 1). Other lipids can be 

converted into PA by different mechanisms such as the phosphorylation of diacylglycerol (DAG) 

by DAG kinases (Sakane, Imai et al., 2007) or the degradation of phosphatidylcholines (PC) into 

PA regulated by phospholipase D (PLD) (Peng & Frohman, 2012). PA can also be 

dephosphorylated by the phosphatidate phosphohydrolase (PAP) into DAG, which in turn is 

used for the synthesis of the main glycerophospholipid classes PC, phosphatidylglycerols (PG), 

phosphatidylserines (PS), and phosphatidylethanolamines (PE) as well as triacylglycerols (TAG).  

 Phosphatidylcholine: The most abundant lipid class in eukaryotic cells representing up 

to 55% of all lipids is enriched at the outer leaflet of the PM as compared to the inner leaflet 

(Bohdanowicz & Grinstein, 2013). Because the head group and lipid backbone have the same 

molecular width this lipid has a cylindrical shape (Sprong et al., 2001). The choline/ethanolamine 

phosphotransferase (CEPT) uses CDP-choline and DAG to synthesize PC in the ER (Figure 1). 

PC can then be further metabolized into the important signaling molecules arachidonic acid, 



important for the synthesis of prostaglandins and leukotrienes, and lysophosphatidylcholine 

(LPC) which can be further metabolized into platelet-activating factor (PAF) (Lagarde, Bernoud 

et al., 2001). PC is also involved in the synthesis of sphingomyelin, catalyzed by the 

sphingomyelin synthase (SGMS), which transfers the phosphocholine head group of PC to a 

ceramide molecule to form SM and DAG (Van Helvoort, Vant Hof et al., 1994). PC can 

additionally serve as a precursor for PS, a step that is catalyzed by the PS synthase 1 (PSS1) 

(Arikketh, Nelson et al., 2008).  

 Phosphatidylethanolamine: This glycerophospholipid is enriched at the inner 

mitochondrial membrane, at the inner leaflet of the PM and is, to a lesser extent, also present at 

the outer leaflet of the PM (Vance & Tasseva, 2013). The asymmetric distribution of PE at the 

PM is introduced by flippases, specific proteins, which will be discussed in more detail below 

(van Meer, 2011). PE belongs to the aminophospholipids because it harbors a primary amine 

attached to its head group. In comparison to PC, PE adopts a more conical molecular structure 

thereby introducing a curvature in the membrane it resides (Lonez, Lensink et al., 2010). The 

synthesis of PE can either be catalyzed by CEPT using CDP-ethanolamine and DAG or by the 

decarboxylation of PS mediated by PS decarboxylase (PSD), which occurs mostly in the 

mitochondria (Vance, 2008) (Figure 1).  

 Phosphatidylserine: In contrast to PC, anionic PS is mostly localized at the inner leaflet 

of the PM and in organelles involved in endocytosis. The synthesis of PS is catalyzed by the PS 

synthases PSS1 and PSS2, which attach an L-serine to PE or PC, respectively (Leventis & 

Grinstein, 2010) (Figure 1). The reaction of PSS2 is reversible and is necessary to counteract 

large amounts of PS building up in the membrane (Bohdanowicz & Grinstein, 2013). The major 

degradation pathway of PS into PE is mediated by the PSD. Importantly, flippases control the 

location of PS at the inner leaflet of the PM. During apoptosis, PS flips to the outer leaflet where 

it acts as a ligand for phagocytic receptors (Murakami, Tian et al., 2014). Other functional roles 

of PS were described in the context of blood clotting or mast cell degranulation (Martin, Pombo 

et al., 2000, Schoenwaelder, Yuan et al., 2009). Proteins harboring amphiphilic alpha helices 

such as K-Ras or Rho GTPases have been described to interact with membranes that are 

enriched for anionic PS because of electrostatic binding (Hancock, Paterson et al., 1990, Sun & 

Drubin, 2012).  

 Phosphatidylglycerol: As the first step of PG biosynthesis the phosphatidylglycerol 

phosphate synthase (PGPS) forms phosphorylated PG from glycerol-3-phosphate and CDP-

DAG in the ER and in mitochondrial membranes before the product is further dephosphorylated 



to make anionic PG (Ohtsuka, Nishijima et al., 1993). PGPS was found to be exclusively located 

at mitochondrial membranes (Kawasaki, Kuge et al., 2001). 

 Phosphatidylinositol: Phosphatidylinositol (PI) is synthesized by PI synthase (PIS) from 

inositol and CDP-DAG in the ER (Figure 1). PI is the only phospholipid that is phosphorylated 

directly at its head group. The inositol can be phosphorylated at three different positions by 

phosphatidylinositol kinases creating up to seven different polyphosphoinositides (PI(3)P, PI(4)P, 

PI(5)P, PI(3,4)P2, PI(4,5)P2, PI(3,5)P2, PI(3,4,5)P3) (Leventis & Grinstein, 2010). These 

phospholipids are very low abundant at the inner leaflet of cellular membranes and act as 

important signaling molecules for various cellular processes (Foster & Janmey, 2001), some of 

which are discussed further below.  

 Lysophospholipids: These lipids are generated by the phospholipase A (PLA)-

mediated degradation of glycerophospholipids or the degradation of ceramide and are important 

signaling molecules (Hla, Lee et al., 2001). An interesting feature of lysolipids is that they are 

much less hydrophobic compared to lipid molecules with two FA chains, enabling them to move 

between different organelles through the cytosol (Bohdanowicz & Grinstein, 2013) (Figure 2). 

Similar to their glycerophospholipid counterparts, lysophosphatidylcholine (LPC) is the most 

abundant lysophospholipid (Makide, Kitamura et al., 2009). Lysophosphatidic acid (LPA) and 

S1P are lysolipids for which G-protein-coupled receptors (GPCRs) have been identified that can 

bind these lipids extracellularly and initiate downstream signaling processes including cell 

migration in lymphocytes and endothelial cells (Choi, Lee et al., 2008). Lysophosphatidylserine 

(LPSe) is involved in mast cell degranulation and triggers enhanced histamine release in vivo 

(Bruni, Bigon et al., 1984). The PS-specific PLA catalyzes the production of this lysolipid (Sato, 

Aoki et al., 1997). Lysophosphatidylethanolamine (LPE) has been recently implicated in 

increasing intracellular Ca2+ levels in breast cancer cells via an LPA GPCR indicating that these 

receptors can also bind other lysolipids (Park, Lee et al., 2013). And lysophosphatidylglycerol 

(LPG) was shown to stimulate chemotactic migration in human endothelial and natural killer cells 

(Jo, Kim et al., 2008, Lee, Lee et al., 2007). Lysophospholipids can also be reacetylated by the 

activity of lysophospholipid acyltransferases (LPCAT) (Gijon, Riekhof et al., 2008). 

 

 

 



 

Figure 2: Lipid structures: Different lipid classes and examples of structures with specific FA 
chain lengths and saturation are shown 

 

 In contrast to glycerophospholipids and sphingolipids sterols are polycyclic consisting of 

several steroid rings and not FA chains (Figure 2). As other lipids, sterols are also amphipathic 

harboring a small polar head group, which is a single hydroxyl group and an apolar part, which is 

comprised of aliphatic groups attached to the steroid backbone (Fantini & Barrantes, 2009, Rose, 

Hanson et al., 1980). While cholesterol is the most abundant sterol in mammalian cells, yeast 

cells have high levels of ergosterol. The first steps in the biosynthesis of cholesterol and 

ergosterol are identical starting from acetyl-CoA used for the synthesis of mevalonate and 

catalyzed by HMG-CoA reductase (3-hydroxyl-3-methylglutaryl coenzyme A - HMGR) in the ER. 

Mevalonate is then further processed into squalene by a diverse set of kinases and synthases, 

which is subsequently used for the production of lanosterol. This sterol can then be further 

processed into ergosterol in yeast or into cholesterol in mammalian cells (Goldstein & Brown, 

1990). When cellular cholesterol levels decrease, the sterol regulatory element-binding protein 



(SREBP) is trafficked to the Golgi via COPII (coat protein complexes II) vesicles where SREBP 

is cleaved and can then enter the nucleus to drive the transcription of Hmgcr creating a feedback 

response to outbalance low levels of cholesterol in the cell (Espenshade & Hughes, 2007). 

Cholesterol is present in both leaflets of the membrane, but is more abundant in the inner leaflet 

(Mondal, Mesmin et al., 2009). 

 

 The variety of lipids translates into diverse biophysical properties of the different lipid 

classes. All glycerophospholipids are comprised of FA chains and a phosphate head group, 

which differs between the glycerophospholipid classes and is linked to the glycerol backbone. 

These different head groups further determine the overall charge of the membrane. While PC 

and PE molecules are zwitterionic, PS and PI molecules are anionic. Both, head group and FA 

chains can influence the biophysical properties of lipids. A variety of FAs are found in 

glycerophospholipid molecules differing in chain length and/or saturation level, especially 

influencing the packing properties of the membranes they constitute (Litman & Mitchell, 1996). 

PC, for instance, usually harbors one unsaturated acyl chain, which lowers the packing density 

and increases membrane fluidity (Koynova & Caffrey, 1998). The other zwitterionic 

glycerophospholipid PE has a comparatively small head group which leads to an overall more 

conical shape of the entire molecule, similar to PA. This property allows the molecule to induce a 

negative curvature in the membrane, which increases with the level of unsaturation of its FA 

chains (Hui, Stewart et al., 1981). Lysophospholipids can induce negative and positive 

curvatures because their head group is larger than the tail (Sprong et al., 2001). As anionic lipids 

PS and PI also serve to modulate the charge of the membrane and are mostly found in the inner 

leaflet mediating interactions with polycationic proteins (Magalhaes & Glogauer, 2010, Yeung & 

Grinstein, 2007). Additionally, different transmembrane domain proteins harbor cytoplasmic tails 

that can detect membrane charge and thus induce conformational changes in the protein in 

response to a change of the membrane surface charge (Alexander, Jaumouille et al., 2011).  

 Sphingolipids are usually comprised of saturated or monounsaturated FAs, thus 

compared to PC, they increase the packing density of the membranes (Slotte, 2013). This 

packing density is relieved by the addition of sterols, which interfere with the acyl chain binding 

of two lipid molecules directly, making the membrane more fluid. On the other hand, sterols can 

also rigidify a membrane, which consists mostly of loosely packed lipid with unsaturated FA 



chains (Simons & Ikonen, 2000). This means that the addition of sterols provides the cell with a 

mechanism to fine-tune its membrane fluidity in response to changes in lipid composition. 

Together with sphingolipids and membrane-associated proteins sterols form dynamic 

segregations at the outer leaflet of the PM membrane, called rafts or microdomains. These 

sphingolipid-rich regions are characterized to be more ordered than other regions of the 

membrane and can be detected using fluorescent probes (Harder, Rentero et al., 2007, 

Lingwood & Simons, 2010). Especially glycosylphosphatidylinositol (GPI)-anchored proteins are 

associated with these membrane microdomains (Friedrichson & Kurzchalia, 1998).   

 

  

Although the majority of lipids are synthesized in the ER or the Golgi, their distribution 

varies between the different cellular organelles as well as the two leaflets of cellular membranes. 

These differences in lipid distribution regulate the biophysical properties of membranes and 

translate into functional consequences, tailored to the requirements of the cell. To achieve this 

selective distribution, lipid molecules translocate through the cytosol or are actively trafficked 

between organelles and across the leaflets of the membranes by specialized proteins or vesicle 

transfer (Pomorski, Hrafnsdottir et al., 2001).  

 Lipid Trafficking in the Cytoplasm: Following the synthesis of lipids in the ER, different 

lipid classes are shuttled through the cell using vesicles from the TGN. Specific lipid 

compositions have been identified in these vesicles and are thought to contribute to the 

formation of lipid microdomains found at the PM (Lingwood & Simons, 2010). More specifically, 

analysis of the lipid composition revealed that retrograde vesicles transported from the TGN to 

the ER contained lipids that were predominately found in the ER while anterograde vesicles 

transported from the TGN to the PM contained high levels of SM and cholesterol, lipids that are 

enriched at the PM compared to the donor membrane of the TGN (Brügger, Sandhoff et al., 

2000). These findings hint towards lipid sorting mechanisms involved in vesicles formation. In 

fact, this sorting could be necessary for the initiation of the budding and vesicle formation. 

Lateral separation of lipids with different biophysical properties in the membrane can cause 

tension between the ordered and the less ordered phases. This tension is relieved when a part 

of the membrane curves and is budded outward (Jülicher & Lipowsky, 1993). And this budding 

process could be further implicated in a feed-forward mechanism recruiting more lipids favoring 



curved membranes as well as proteins with domains recognizing the membrane curvature (Itoh 

& De Camilli, 2006, Sorre, Callan-Jones et al., 2009). Interestingly, depletion of PC levels only 

altered protein transport within the TGN and not from the ER to the TGN. However, strong 

morphological changes were observed in the ER and not in the Golgi or the PM. These findings 

indicate that the protein transport function of vesicles and the morphology of organelles depend 

on different lipids and their composition (Testerink, van der Sanden et al., 2009). Analysis of the 

vesicle shuttling from the ER to the PM also shows that lipids and proteins use the same routes 

and their functions could possibly depend on this coupled transport (Surma, Klose et al., 2011) 

(Figure 3). 

 

Figure 3: Subcellular localization of sphingolipid metabolism: Different metabolic steps are 
illustrated in the sphingolipid metabolism. CERK: Ceramide kinase, UGCG: Ceramide 
glucosyltransferase, ST3GAL5: Ganglioside GM3 synthase, Cer: Ceramide, 3-kSph: 3-
ketosphingosine, Sph: Sphingosine, dhSph: Dihydrosphingosine, dhCer: Dihydroceramide, 
GalCer: Galactosylceramide, GluCer: Glucosylceramide. PM is represented in blue, lysosome is 
represented in pink, Golgi is represented in green, and ER is represented in purple.  



 

Lipid Transfer Proteins: Since lipids are strongly hydrophobic molecules the 

spontaneous translocation between separated membranes occurs very slowly but still 

contributes to the differences in lipid distribution. It has been shown, for instance, that 

unsaturated glycerophospholipids are able to translocate faster between membranes compared 

to their saturated forms in vitro (Silvius & Leventis, 1993). Especially, lysolipids can move rather 

rapidly between different membranes and it is intriguing to speculate that these lipids could 

mediate glycerophospholipid transfer between organelles by being reacetylated at the target 

membrane. Apart from vesicle transfer, lipids can also be transported as single molecules from 

one membrane to the other. This is especially important to fine-tune the lipid composition of 

organelles, which are not connected to the ER by vesicular trafficking such as the mitochondria 

or peroxisomes (Tatsuta, Scharwey et al., 2014). To mediate the quick bidirectional lipid transfer 

between different organelles within the cell, proteins with specific hydrophobic lipid-binding 

domains have evolved. These lipid transfer proteins harbor binding motifs making them selective 

for certain membranes in the cell. The pleckstrin homology (PH) domains, for instance, bind 

PI(4)P and are required for the protein recruitment to the TGN (Godi, Di Campli et al., 2004). 

The oxysterol binding proteins (OSBPs) can bind and carry glycerophospholipids such as PS, 

transported by Osh6 and Osh7, from the ER to the PM in yeast (Maeda, Anand et al., 2013). 

Osh4, a different lipid binding protein in yeast can bind sterols or PI(4)P in a mutually exclusive 

way, thus shuttling sterols from the ER to the TGN and PI(4)P back to the ER (Mesmin, Bigay et 

al., 2013). And the steroidogenic acute regulatory (STAR) proteins have been shown to mediate 

cholesterol transport from the outer to the inner mitochondrial membranes in mammalian cells 

(Miller, 2007). Some lipid carriers such as CERT or the glucosylceramide transfer protein 

(FAPP2) can bind two membranes simultaneously as they contain two specific binding motifs 

(Hanada, Kumagai et al., 2003, Yamaji, Kumagai et al., 2008). This feature enables CERT to 

function at the ER and the TGN and perhaps to even mediate the formation of membrane 

contact sites between the two organelles (Levine, 2004) (Figure 3).  

 Lipid Transport in the Membrane Bilayer: Lipid composition not only varies between 

the different organelles of a cell, it also varies between the inner and the outer leaflet of the lipid 

bilayer. Glycerophospholipids are asymmetrically arranged between the leaflets of cellular 

membranes, with the aminophospholipids PS, PE, and PI mainly located at the inner leaflet of 

the PM, while PC and PG are evenly distributed across both leaflets (van Meer, 2011). Within a 

cellular membrane only a few lipid classes such as DAGs can flip spontaneously across the lipid 

bilayer. Other lipids contain large head groups that hinder the translocation across the 



hydrophobic membrane (Bevers, Comfurius et al., 1999). To aid their translocation there are 

specialized proteins namely scramblases, flippases, and floppases. Scramblases are energy-

independent proteins that move lipids across the leaflets in both directions. During apoptosis, for 

example, these proteins are important for exposing PS on the outer leaflet of the PM (Leventis & 

Grinstein, 2010). While scramblases work against the asymmetric distribution of different lipid 

classes between the two leaflets, flippases and floppases create this distribution. These 

enzymes are energy-dependent and transport lipids actively from the outer leaflet (flippases) to 

the inner leaflet and back (floppases) (Hankins, Baldridge et al., 2015). Flippases belong to the 

family of P4 ATPases and are important for maintaining mainly PS and PE at the inner leaflet 

(Perez, Gerber et al., 2015) while floppases belong to the ATP-binding cassette (ABC) 

transporters which are transmembrane domain proteins transporting a variety of different 

molecules across the cellular membranes. These floppases also transfer lipids onto acceptors 

outside of the cell membrane, for instance onto lipoprotein particles (van Meer, Halter et al., 

2006). So far specific flippases or floppases have only been identified for glycerophospholipids 

and sterols, not for sphingolipids. However, ceramide molecules were shown to flip between the 

two leaflets and this movement was inhibited as soon as ceramides were located within 

microdomains (Hannun & Obeid, 2008, Lopez-Montero, Rodriguez et al., 2005). Further, 

glycosylated ceramides are usually detected at the outer leaflet of the PM or the Golgi even 

though the glycosylation events occur at the inner leaflet of the Golgi indicating that glycosylated 

ceramides are also able to flip across the bilayer (van Meer & Hoetzl, 2010).  

 Distribution and Function of Lipids in Cellular Membranes: As the main site of lipid 

synthesis, the ER produces the majority of glycerophospholipids, ceramides, and sterols. 

Interestingly, the ER only has low amounts of detectable sterols, because upon synthesis, 

sterols are rapidly distributed to other cellular membranes via vesicle-mediated lipid trafficking 

pathways or lipid transfer proteins described earlier (Bretscher & Munro, 1993, van Meer et al., 

2008). Another important organelle of lipid biosynthesis is the Golgi, specialized for the synthesis 

of sphingomyelin and more complex ceramides such as glucosylceramides and 

galactosylceramides (Henneberry, Wright et al., 2002) (Figure 3). These glycosphingolipids are 

trafficked to the PM and flipped to the outer leaflet by a yet unknown mechanism (Devaux, 1991). 

In contrast to the ER and the Golgi, the PM contains high levels of sphingolipids and sterols, 

which introduce a higher packing density and increase the rigidity of the membrane (Klemm, 

Ejsing et al., 2009). Several proteins important for the synthesis or degradation of specific lipids 

are found at the PM, including the sphingomyelin synthases, the neutral sphingomyelinases, or 

the sphingosine kinases (Milhas et al., 2010) (Figure 3). The lipid composition of the early 



endocytic vesicles is similar to that of the PM, rich in cholesterol and PS, and during endosomal 

maturation PS and cholesterol levels are strongly decreased. Polyphosphoinositide species at 

the vesicle membrane are used as markers to distinguish between the different steps of 

endosomal maturation. More specifically, PI(4,5)P2 is present at the PM, PI(3)P is found in early 

endosomal membranes, PI(3,5)P2 is located in late endosomal membranes, and PI(4)P is 

detected in the TGN. These different polyphosphoinositide species are recognized by proteins of 

the vesicle transport machinery, positioning lipid-protein interactions as an important regulatory 

mechanism of endosome maturation (Di Paolo & De Camilli, 2006). FA chain length of a lipid 

molecule as well as the saturation level also determines the localization inside the cell. 

Sphingolipids and glycerophospholipids with longer FA chains are found at the PM, where they 

interact with sterols, increasing the membrane thickness compared to the ER membrane. 

Shorter and more saturated FA chains are found in lipids of the ER or Golgi membranes 

(Schneiter, Brügger et al., 1999). In the sphingolipid metabolic pathway specific CERS regulate 

the FA chain length of ceramides. While CERS6 catalyzes the reaction to shorter ceramide 

species with a FA chain length of C14 to C16, CERS1 and CERS4/5 synthesize species of chain 

lengths C16 to C20, and CERS2 forms the longest ceramide species ranging from C22 to C26 

(Mullen, Hannun et al., 2012). The biological function of different ceramide species is mostly 

unknown which is why this topic is currently subject to extensive investigations.  

 

 

 Regulation of Glycerophospholipid Homeostasis: Apart from the spatial regulation of 

lipid synthesis and lipid trafficking, the expression of the different enzymes is strictly regulated to 

maintain membrane lipid homeostasis or to adapt to different cell stresses. One mechanisms of 

protein-mediated regulation is product inhibition, which has been mostly studied using PS-

containing vesicles. Treatment of mammalian cells with these vesicles and not any other lipid 

vesicles inhibited the synthesis of PS by PSS1 and PSS2 (Kuge, Saito et al., 1999). Similarly, 

the PIS could be inhibited with vesicles containing high levels of PI (Imai & Gershengorn, 1987). 

These feedback mechanisms do not necessarily have to be product specific but could be 

initiated by changes in the biophysical properties of the membrane properties. Differences in the 

absolute levels of certain lipid classes also alter the lipid composition of the membrane as well 

as its biophysical properties. Several studies simulated membrane properties and proposed, for 

instance, that stored elastic energy could be a potential regulator of membrane homeostasis by 



feeding back to modulate the biosynthesis of PC and other lipids (Alley, Ces et al., 2008, Beard, 

Attard et al., 2008). Another regulatory mechanism is the metabolic crosstalk between the 

different lipids important for directing the metabolic fluxes across the network in case of a 

perturbation. For example, cells with decreased PC biosynthesis were shown to increase their 

PE and PI content, thereby adapting to the low levels of PC by enhancing its synthesis from PE 

(Boumann et al., 2006). Protein and lipid synthesis are also tightly linked as increased protein 

load of the ER leads to an expansion of its membranes to buffer high protein concentration. This 

membrane expansion was shown to be mediated by an increase in PC synthesis leading to an 

excess production of PC, which was then counteracted by upregulation of PLA2 (Lykidis, 

Baburina et al., 1999).  

 Regulation of Sphingolipid Homeostasis: The most important regulators of 

sphingolipid homeostasis are proteins mediating the underlying metabolic processes. Several 

enzymatic steps in the sphingolipid metabolism are reversible and can be shifted in one or the 

other direction; however, the initial step of de novo synthesis catalyzed by the SPT complex and 

the terminal step catalyzed by the S1P lyase are considered to be unidirectional (Breslow & 

Weissman, 2010). Interestingly, the initial step involving serine and palmitoyl-CoA is strongly 

dependent on the intracellular serine levels of a cell linking sphingolipid metabolism and amino 

acid levels (Dickson, Lester et al., 2000). In yeast, one important signaling pathway for the 

regulation of sphingolipid metabolism is Torc2, which is required for optimal ceramide synthase 

activity. This regulation is mediated by the kinase Ypk2 and is inhibited by the phosphatase 

calcineurin (Aronova, Wedaman et al., 2008). This pathway has not been studied in mammalian 

cells and the exact mechanism of how Torc2 senses and increases ceramide levels is yet 

unknown.  

 

 

 The lipid composition of different organellar membranes described earlier is strongly 

dependent on each of the membrane components and changes when lipid classes increase or 

decrease. Sphingolipids, for example, are associated with sterols in microdomains. Therefore, a 

change in sphingolipid levels also greatly alters the absolute levels of sterols in the membrane 

(Guan, Souza et al., 2009). Studies have shown that upon decreased sphingolipid levels more 

sterols shuttle from the PM to the ER where they are detected by the specific sterol sensor 



SREBP, leading to the initiation of downstream signaling and activating the uptake and 

biosynthesis of cholesterol (Brown & Goldstein, 2009, Chang, Chang et al., 2006). Additionally, 

non-vesicular transport of ceramides from the ER to the Golgi via CERT is increased, hence, 

forming a sterol-mediated feedback loop to enhance the production of sphingomyelin at the PM 

(Olkkonen & Li, 2013). This sterol-dependent regulation of CERT is mediated by OSBP whose 

sterol trafficking function is also increased upon SM depletion at the PM (Perry & Ridgway, 

2006). Sphingolipids have been further implicated in the post-translational control of SREB and 

sphingolipid synthesis was shown to induce SREBP-mediated transcription (Worgall, 2008). 

Sterols and sphingolipids also share the same extracellular transport mechanisms within 

lipoprotein particles (Nilsson & Duan, 2006). In human macrophages, free cholesterol loading 

led to the degradation of ORMDL1 following its relocation from the ER to autophagosomes. This 

enhanced the activity of de novo ceramide synthesis in the ER (Wang, Robinet et al., 2015). In 

Drosophila melanogaster, evidence for regulatory crosstalk between sphingolipids and other lipid 

classes has also been found. The only ceramide synthase schlank has been identified to not 

only regulate sphingolipid metabolism but also FA synthesis by increasing the expression of 

SREBP and decreasing the expression of triacylglycerol lipase (Bauer, Voelzmann et al., 2009). 

The inhibition of cholesterol synthesis inhibits PC synthesis and, conversely, cholesterol loading 

of macrophages induces the synthesis of PC (Cornell & Goldfine, 1983, Shiratori, Okwu et al., 

1994). This metabolic relationship is described to buffer increasing ER cholesterol levels to avoid 

ER stress. It also facilitates the induction of the unfolded protein response and apoptosis if the 

PC synthesis is blocked (Feng, Yao et al., 2003).  

 Metabolic Crosstalk between Sphingolipids and Glycerophospholipids: Even 

though the general structure of FA chains attached to a head group is quite similar between 

sphingolipids and glycerophospholipids, surprisingly little is known about the metabolic crosstalk 

between these two lipid classes. So far the best-described points of metabolic overlap have 

been identified between (1) SM and PC, and between (2) S1P and PE. (1) SM and PC both 

have a phosphocholine group attached to their functional head group which, when cleaved off, 

results in the formation of ceramide or DAG, respectively. This way, the sphingomyelin 

synthases and phospholipases C can, depending on the requirements of the cell either limit the 

amounts of SM or PC (Huitema, van den Dikkenberg et al., 2004). (2) S1P is another metabolic 

link between sphingolipids and glycerophospholipids. It can be irreversibly degraded by the 

enzyme SGPL1 generating phosphoethanolamine and hexadecenal. Both products are 

important in the synthesis of glycerophospholipids. Phosphoethanolamine can enter the pathway 

of PE synthesis via the CDP-ethanolamine pathway (Kihara, 2014). And hexadecenal is used in 



the FA metabolic pathway and the generation of palmitoyl-CoA, which contributes to the 

synthesis of LPA (Hannun & Obeid, 2008) (Figure 1).    

 The FA molecules that are present in sphingolipids and glycerophospholipids also link 

the lipid classes metabolically. For instance, during lipid degradation the FA chains derived from 

PC can be used for the biosynthesis of ceramide, and the degradation of sphingolipids yields 

FAs used for the synthesis of glycerophospholipids (Meyer, Karow et al., 2005). The conversion 

of sphingolipids into glycerophospholipids has been shown by a study supplementing different 

human cell lines with radioactively labeled sphingosine. In the course of four hours 

glycerophospholipids had incorporated up to 35% of total radioactivity (Nakahara et al., 2012).  

 Regulatory Crosstalk between Sphingolipids and Glycerophospholipids: In yeast, a 

regulatory mechanism between sphingolipids and glycerophospholipids has been identified 

during which the kinase Ypk1 downregulates the aminophospholipid flippase activator Fpk2. 

This downregulation could be counteracted by a complex ceramide species, thus, regulating the 

overall distribution of glycerophospholipid between the lipid bilayer. Conversely, inhibition of the 

synthesis of this ceramide species restored the downregulation of another flippase activator 

kinase Fpk1 (Roelants, Baltz et al., 2010). These findings show that there are regulatory 

feedback mechanisms between sphingolipids and glycerophospholipids, modulating the 

distribution of different lipids across the membrane.    

 Important links between the polyphosphoinositide species PI(4)P and sphingolipid 

metabolism has been recently reported in yeast. A member of the SPOT complex that regulates 

the de novo synthesis of sphingolipids is the PI(4)P phosphatase Sac1 (Breslow & Weissman, 

2010). However, the mechanism of how this protein and its lipid-binding properties regulate 

sphingolipid metabolism is so far unknown. PI(4)P is also important for the function of the 

proteins CERT and FAPP2, regulating non-vesicular ceramide and glucosylceramide transfer, 

respectively. Both proteins harbor PH domains that bind to PI(4)P, which are thought to mediate 

the recognition of the acceptor membrane of the Golgi (D'Angelo, Polishchuk et al., 2007). 

Furthermore, ceramide-1-phosphate (C1P) has been implicated in the direct regulation of cPLA2 

and its translocation from the cytosol to the Golgi (Pettus, Bielawska et al., 2004). This finding 

describes another interesting regulatory mechanism how sphingolipids can regulate enzymes 

important for glycerophospholipid metabolism.  

 Interestingly, the ABCA1-mediated efflux (floppase activity) of cholesterol and PS is 

influenced by sphingomyelin levels. The pharmacological depletion of sphingomyelin levels 



leads to higher PS exposure and higher cholesterol efflux (Gulshan, Brubaker et al., 2013). 

Furthermore, SPTLC1 has been shown to bind directly to ABCA1 in the ER, thus limiting the 

protein expression of ABCA1 at the PM. Myriocin, an inhibitor of SPT can disrupt this binding 

and ABCA1 is then trafficked to the PM (Tamehiro, Zhou et al., 2008). Sphingomyelin reduction 

also inhibits the protein turnover of ABCA1 at the PM (Yamauchi, Hayashi et al., 2003).  

 Functional Crosstalk between Sphingolipids and Glycerophospholipids: Although 

there is a lot known about the general metabolism and cellular distribution of sphingolipids and 

glycerophospholipids throughout the different membranes, there are surprisingly few studies on 

the functional relationships between these two lipids classes. It is apparent that lipids from both 

classes are required for proper membrane function and cellular integrity as genetic perturbations 

of important enzymes of both metabolic networks lead to lethality in mice (Schiffmann, 2015, 

Vance & Vance, 2009). Electron microscopy of human epithelial cell membranes could show 

that PS is not evenly distributed at the inner leaflet of the PM. Instead, it is connected to clusters 

of sphingomyelin and cholesterol, which are at the outer leaflet of the membrane (Fairn, 

Schieber et al., 2011). Studies on membrane composition have further revealed that 

sphingomyelin can directly bind to PC (Massey, 2001). Both of these lipid molecules have a 

cylindrical shape inside the membrane, important for densely packed FA chains. And only 

recently, studies could show that loss of lipids from one lipid class can be counteracted by 

increasing lipids from the other lipid class. In yeast, for example, genetic targeting of a 

phosphoinositide phosphatase in combination with an inhibitor of sphingolipid metabolism led to 

synthetic lethality, showing that the genetic impairment of glycerophospholipid metabolism could 

be counteracted by the cell as long as the sphingolipid metabolism was intact (Tani & Kuge, 

2010). Other studies in yeast could demonstrate that a loss of complex and long-chained 

sphingolipids induced the synthesis of glycerophospholipids containing very long chained FA 

chains, possibly functionally compensating for the missing sphingolipid species (dos Santosa, 

Riezman et al., 2014, Vionnet, Roubaty et al., 2011).  

  

 

 An important step in lipid research has been the development of lipidomics. This is a 

mass spectrometry-based method used for the identification and quantification of individual lipid 

species (Wenk, 2005). It has become clear that even though lipids are seemingly simple 



molecules compared to proteins, for instance, a cell can have up to 100 000 different lipid 

species in their membranes (Shevchenko & Simons, 2010, van Meer, 2005). These lipid species 

differ in saturation and hydroxylation levels, in FA chain lengths or ester/ether linkage of the 

moieties to the backbone. All of these features can be detected and quantified using lipidomics. 

The detection and the identification of individual FA chains of one lipid molecule require tandem 

mass spectrometry (Han & Gross, 2005). In general, the field of lipidomics depends on the 

availability of synthetic standards to be able to quantify the absolute levels of individual lipids in a 

sample. Additionally, the unification of lipid extraction protocols and lipid nomenclature is still 

ongoing in the field. Other drawbacks are the exact localization of double bonds within the 

molecules and the discovery of new unknown lipid molecules, which is still dependent on the 

comparison with known lipid species (Wenk, 2010).  

 

 

 The degradation of most sphingolipids occurs in the lysosomal compartments, which 

provide the responsible enzymes with the acidic environment they require for optimal efficiency. 

Mutations in genes involved in lipid degradation or transport cause lipid storage disorders in 

humans, of which around 40 have been identified until now (Sillence & Platt, 2003). Selected 

examples are described here.  

Gaucher Disease: This autosomal recessive disorder is caused by mutations in the 

glucocerebrosidase gene GBA. The gene product, glucosylceramidase, catalyzes the reaction of 

glucosylceramide to ceramide. A large neonatal screening campaign of newborns revealed that 

the prevalence for Gaucher disease is one in around 17 000 births (Mechtler, Stary et al., 2012). 

Around 300 unique mutations have been identified of which most are missense mutations 

leading to the misfolding of the protein and further to its degradation (Hruska, LaMarca et al., 

2008). Patients harboring these mutations show a severely reduced enzymatic activity of 

glucosylceramidase and suffer from hepatosplenomegaly, thrombocytopenia, and bone 

malformations. According to the severity of the symptoms and whether or not they also involve 

neuropathological symptoms, patients are classified in three different types of Gaucher disease. 

While type 2 manifests early after birth, type 1 or type 3 patients either develop symptoms in 

early adolescence or in early childhood, respectively (Grabowski, 2008).  



Krabbe Disease: This autosomal recessive disorder is caused by mutations in the gene 

GALC, which severely reduce the enzymatic activity of the gene product galactosylceramidase. 

Similar to the mutated GBA causing Gaucher disease, the mutated GALC shows impaired 

activity to degrade a complex sphingolipid and form ceramide. Over 110 different mutations have 

been identified; however, the most common mutation is a 30kb deletion reducing the residual 

enzyme activity to 5% or less. One child in 100 000 births is diagnosed with this disorder and 

around 90% of the patients develop severe neurological symptoms early after birth leading to 

death before the age of two (Wenger, Rafi et al., 1997). 

Farber Disease: This extremely rare disorder is also called Farber lipogranulomatosis 

and only occurs once in one million births (Fensom, Neville et al., 1979). Patients harbor 

mutations in the acid ceramidase gene ASAH1 leading to greatly reduced enzymatic ceramidase 

activity. Currently, 17 different mutations have been identified of which most are point mutations 

(Bar et al., 2001). Similar to Krabbe disease the onset of Farber disease is shortly after birth 

leading to deformed joints and neurological phenotypes causing death before the age of two 

(Bar et al., 2001). 

Chediak-Higashi Syndrome: In contrast to the other diseases, this lysosomal storage 

disorder is not caused by mutations in metabolic enzymes but rather by mutations in the gene 

LYST, which encodes for a lysosomal trafficking factor important for lysosome morphology 

(Ward, Griffiths et al., 2000). Patients diagnosed for Chediak-Higashi syndrome show symptoms 

such as progressive neurologic defects, lymphoproliferative phenotypes, and hypopigmentation 

(Introne, Boissy et al., 1999). There is also a high incidence of deaths caused by bacterial 

infections of the skin or the respiratory tract (Padgett, Reiquam et al., 1967) suggesting that this 

lysosomal regulator is important for an efficient immune response.  

 Other well-described lysosomal storage disorders include Niemann-Pick disease A, B, 

and C, caused by mutations in the acid sphingomyelinase gene SMPD1, or the cholesterol 

transporter NPC1, respectively (Schuchman & Wasserstein, 2015). Also, Fabry disease, 

Sandhoff, and Tay-Sachs diseases manifest in patients with mutations in lipid metabolizing 

enzymes (Kolter & Sandhoff, 2006). Since almost all of these diseases show progressive 

neurological symptoms, early diagnosis is the first critical step of treatment. After diagnosis, 

therapeutic strategies used for these patients are hematopoietic stem cell transplantations or 

enzyme replacement therapy (Malatack, Consolini et al., 2003). Currently, other treatment 

options are being developed such as substrate reduction therapy. This approach is based on 

metabolically limiting the levels of the lipid substrate and thereby also reducing the enhanced 



product levels in these diseases. This strategy is already used in the treatment of Gaucher 

disease by pharmacologically inhibiting the enzyme glucosyltransferase CGT and was recently 

proposed to work in Fabry disease as well, a disease that also leads to the accumulation of 

glycosphingolipids (Ashe, Budman et al., 2015, Platt & Jeyakumar, 2008). For Niemann-Pick 

Type C patients, who accumulate cholesterol in the lysosome, clinical trials with statins or low-

cholesterol diet failed, however, to improve the clinical outcome (Patterson & Platt, 2004). 

Another approach that has been developed is the pharmacological chaperone therapy, a 

strategy that uses molecules, which have been found to chaperone the misfolded proteins and 

stabilize them, thereby inhibiting their degradation and increasing the transport into the lysosome. 

Clinical trials for this chaperone therapy are currently ongoing for Gaucher and Fabry disease 

patients (Parenti, 2009).  

 

  

The enzymatic machinery of lipid metabolism has been discovered and characterized 

extensively over the past decades and especially genetic screens in yeast have contributed 

tremendously to the advances in dissecting lipid metabolism (Beeler, Bacikova et al., 1998, 

Desfarges, Durrens et al., 1993). Only in the last years, studies in lipid biology have focused 

more on the functional properties of lipids in a cell. These studies have suggested that cellular 

lipids act in concert with a variety of other lipids, proteins, and metabolites (Dickson, 

Sumanasekera et al., 2006). Apart from providing the cell with structural boundaries and the 

environment for transmembrane proteins, lipids are also important signaling molecules that can 

bind directly to proteins and act as regulators of protein activity. While this has been, so far, only 

shown for single lipid molecules, the notion that a group of lipids can functionally regulate 

proteins inside the membrane is becoming increasingly clear. A cell does not only regulate the 

function of single proteins with the help of its membrane lipids but it can also regulate entire 

cellular processes such as polarization, cell growth, or cell movement (Zanghellini, Natter et al., 

2008). The coordination of these processes requires a finely tuned regulation of lipid metabolism 

and trafficking in order to maintain the ratio of different lipids and, with that, membrane function 

and integrity (Walker, Jacobs et al., 2011). Regulatory processes, which are used to guarantee 

that lipid rearrangement does not alter the overall lipid ratio, have been described already (van 

Meer et al., 2008). However, the exact consequence of altered lipid ratios is still unknown. The 

study of the function and regulation of lipid metabolism requires a systematic approach 



dissecting various parts of the different membrane lipid pathways, characterizing their function, 

and integrating the results to obtain a global picture of how a cell regulates their lipid metabolism 

in biological processes (Ejsing, Sampaio et al., 2009). It is essential to study the functional roles 

of lipids in the context of the entire cell and not in isolated systems. Given this high order of 

complexity, systems biology approaches have shown to be successful in integrating high-

throughput transcriptional, proteomic, and metabolomics data (Herrgard, Lee et al., 2006, Kell & 

Oliver, 2004). Using these approaches, lipid fluxes in the network could be detected and 

mapped. Predictive simulations have also been performed, identifying new regulators of lipid 

metabolism (Gombert, Moreira dos Santos et al., 2001). Especially the intersection of 

experimental data and mathematical modeling has been shown to synergize in retrieving new 

insights into the metabolic regulation (Famili, Forster et al., 2003). With this quantitative 

description of biological processes new regulators, lipid transfer mechanisms, and novel 

metabolic connections have been revealed (dos Santosa et al., 2014, Maeda et al., 2013). The 

advances in lipidomics have now enabled the data-driven approach to not only reveal novel 

insights into lipid regulation but to also to begin the systematic annotation of lipid function in 

various biological processes (Dennis, 2006). Especially the macrophage biology has been in 

focus recently, as inflammatory stimuli have been shown to greatly and rapidly change the 

lipidome of these cells (Dennis, Deems et al., 2010). 

 

  

The innate immune system is the first line of defense against various pathogens. Upon 

encounter of a virus or a bacterium, cells of the immune system such as macrophages or 

dendritic cells recognize the pathogen-associated molecular patterns (PAMPs) using specific 

receptors and activate signaling pathways that lead to the expression of inflammatory genes 

including cytokines and chemokines. These are important molecules mediating cell-cell 

communication throughout the entire organism to coordinate innate and adaptive immune 

responses (Janeway & Medzhitov, 2002).   

 

 

 



  

There are several classes of pathogen recognition receptors in mammalian cells, 

including NOD-like receptors, AIM2-like receptors, RIG-I-like receptors, and intracellular DNA 

sensors (Fritz, Ferrero et al., 2006, Pichlmair, Schulz et al., 2006, Schroder, Muruve et al., 2009). 

One of the well-characterized receptor families of the innate immune system are the Toll-like 

receptors (TLRs), which are highly conserved transmembrane proteins that recognize a variety 

of PAMPs. Ten different members of the TLR family have been identified in human and 12 in 

mouse (Akira & Hemmi, 2003). These receptors are either localized at the PM (TLR1, 2, 4 – 6 

and 10) or in endosomal compartments (TLR3, 7 – 9, 11 – 13). They are expressed in immune 

cells such as macrophages or dendritic cells, as well as in cells that are not directly associated 

with the immune system such as fibroblasts or adipocytes (Batra, Pietsch et al., 2007). 

Recognition of PAMPs by TLRs is mediated by homo- or heterodimers in combination with 

different cofactors assisting ligand binding and regulating complex assembly (Takeda & Akira, 

2004).  

PAMP Recognition: In order to cover a variety of pathogens the TLRs have evolved and 

specialized to recognize different pathogen-specific molecules. This recognition also depends on 

their location within the cell (Figure 4). More specifically, TLRs that reside at the PM recognize 

bacteria-specific components such as diacylated and triacylated lipopeptides or lipoteichoic 

acids and peptidoglycan bound by TLR1, TLR2, or TLR6, respectively. TLR4 recognizes 

lipopolysaccharide (LPS) and TLR5 is activated by flagellin. All of these PAMPs are highly 

abundant in either gram-positive or gram-negative bacteria (Takeda & Akira, 2015). In contrast, 

the intracellular TLRs recognize PAMPs that are derived from bacterial or viral nucleic acids. For 

instance, TLR3 binds double-stranded RNA, while TLR7 binds single-stranded RNA and TLR9 

recognizes unmethylated bacterial or viral CpG-DNA motifs (Kawai & Akira, 2010).  



 

Figure 4: TLR signaling 
processes: TLRs are 
located at the PM or the 
endosomal membrane. 
Different TLRs and their 
ligands are depicted (TLR9, 
green; TLR4, blue; TLR7, 
pink). TRIF domain-
containing adaptor proteins 
(yellow) and downstream 
signaling proteins are 
shown (MyD88, purple; 
IRAK, TRAF2, blue; IKK, 
orange). Transcription of 
representative cytokines (IL-
6 and IFNβ) is shown. 

 

 

 

 

TLR Adaptors and Signaling: Different signaling pathways downstream of TLRs are 

activated upon PAMP recognition. While the extracellular domain of the receptor mediates the 

recognition of PAMPs, the intracellular Toll/IL-1 receptor (TIR) domain at the inner leaflet of the 

membrane binds to the TIR domain of different adaptor proteins to initiate the signaling events 

(Botos, Segal et al., 2011). All TLRs, except TLR3, can recruit the adaptor protein MyD88 

(myeloid differentiation primary response gene 88), which forms a complex with the IRAK 

(Interleukin-1 receptor-associated kinase) and then leads, via the E3 ubiquitin ligase TRAF6 

(TNF receptor-associated factor 6), to the activation of the mitogen-activated protein kinases 

(MAPK) such as ERK1/2 (extracellular signal-regulated kinase), p38, and JNK (c-Jun N-terminal 

kinase) inducing AP-1 (activator protein 1)-mediated transcription of inflammatory genes 

(Kawasaki & Kawai, 2014). A second pathway that is activated upon MyD88 binding leads to the 

recruitment of the IKK (I kappa B kinase) complex and consequently to the nuclear translocation 

of the transcription factor NFκB (nuclear factor kappa B) initiating the transcription of pro-

inflammatory genes (Akira & Takeda, 2004) (Figure 4). Important for the membrane recruitment 

of MyD88 is the sorting adaptor TIRAP (TIR-domain containing adaptor protein), which was 

shown to bind specifically to PI(4,5)P2 at the PM and PI(3)P at the endosome, thereby inducing 



receptor signaling downstream of TLR2, and TLR4, or TLR9, respectively (Bonham, Orzalli et al., 

2014). Other adaptor proteins important for downstream signaling of activated endosomal TLRs 

are TRIF (TIR-domain-containing adapter-inducing interferon-β) binding to TLR3 and TRAM 

(TRIF-related adaptor molecule), a molecule that bridges the interaction between TRIF and 

TLR4 at the endosome (Sheedy & O'Neill, 2007). TRIF interacts with TRAF6 and TRAF3 leading 

to the recruitment of downstream kinases TBK1 and IKKε, and to the activation of NFκB or IRF3 

(Interferon Regulatory Factor 3), respectively. IRF3 induces the transcription of type I interferon 

(IFN) genes (Tatematsu, Ishii et al., 2010). 

TLRs and the Membrane: As transmembrane domain proteins, TLRs are embedded in 

different membranes and their adaptor proteins are associated with these membranes, thus TLR 

signaling depends on the membrane lipid composition. In the last years studies have suggested 

the potential involvement of membrane lipids in TLR function (Chang, Lee et al., 2011, Parker, 

Prestwich et al., 2008, Zhu, Owen et al., 2010b). Important regulatory mechanisms of TLR 

signaling are conformational changes upon ligand binding which induce the intracellular TIR 

domain dimerization. For TLRs these conformational changes have not been studied in such 

detail, as there are only a few crystal structures available. However, a comparison with another 

ligand-activated transmembrane receptor, epidermal growth factor receptor (EGFR), whose 

structure is very similar to those of the TLRs can be used as a model to understand this 

functional mechanism (Gay, Symmons et al., 2014). Ligand-mediated activation of EGFR leads 

to a rearrangement of the transmembrane helices causing the formation of a new dimerization 

interface and pulling the juxtamembrane sequences off the PM. In an inactive state, these 

domains, containing mostly basic amino acid residues, are directly associated with the anionic 

head groups of PS or PI at the inner leaflet of the membrane. Repositioning of these domains 

facilitates the dimerization of the intracellular kinase domains and their cross-phosphorylation 

(Endres, Das et al., 2013, Sengupta, Bosis et al., 2009). A similar mechanism could be important 

for TIR dimerization and subsequent signaling. The TIR-domain containing adaptor proteins 

TIRAP and TRAM are also associated with the membrane by binding of the lipid species 

PI(4,5)P2 or by harboring a myristoyl group at a glycine residue, respectively (Kagan & 

Medzhitov, 2006, Rowe, McGettrick et al., 2006). The membrane association of TRAM is 

disrupted by its phosphorylation, an event that is essential for further progression of TLR4 

signaling (McGettrick, Brint et al., 2006). Interestingly, purified TIR-domains do not form 

complexes in vitro, indicating that they require an additional factor to dimerize. Indeed, the 

computational modeling of a TLR4-TIR homodimer revealed that the cytoplasmic 

juxtamembrane sequences were oriented on the same membrane-proximal surface, similar to 



the lipid-binding domain of amphiphysin, indicating a direct involvement of the membrane during 

TLR dimerization (Casal, Federici et al., 2006, Gay et al., 2014, Miguel, Wong et al., 2007).  

 

Figure 5: TLR signaling over time: Schema shows the dynamic processes induced by TLR4 
stimulation and their localization. Macrophage differentiation (purple cell), TLR4 endocytosis 
(pink), sphingolipid production (turquoise), cytokine secretion (green), cytokine transcription 
(purple) are shown.  

 

TLR Trafficking: TLRs are translated in the ER and are trafficked via the Golgi to their 

destination membranes. Specific adaptor proteins such as UNC93B1, PRAT4A, and gp96 

facilitate this trafficking by acting as chaperones for different TLRs (Kim, Brinkmann et al., 2008, 

Takahashi, Shibata et al., 2007, Yang, Liu et al., 2007), while the function of other TLR cofactors 

such as the binding of MD2 (myeloid differentiation factor 2) to TLR4 in the ER is important for 

the glycosylation pattern and responsiveness of the receptor (Nagai, Akashi et al., 2002). The 

trafficking mechanisms of TLR4 has been further characterized and TMED7 (transmembrane 

emp24 domain-containing protein 7), a protein that sorts correctly folded proteins for packaging 

into COPII vesicles was identified to be specifically required for the regulation of the anterograde 

trafficking of TLR4 (Liaunardy-Jopeace, Bryant et al., 2014). At the PM, TLR4 is rapidly 

endocytosed upon LPS stimulation and then signals from endosomal compartments via TRIF 

(Figure 4 and 5). This clathrin-dependent endocytosis requires the cofactors CD14 and RAB11A 

(Husebye, Aune et al., 2010, Zanoni, Ostuni et al., 2011). After LPS stimulation, replenishing of 

TLR4 from the Golgi or endosome to the PM is mediated by the small G protein RAB10 (Wang, 

Lou et al., 2010).  

 Similar to TMED7, UNC93B1 regulates the anterograde trafficking of TLR7 and TLR9 

from the Golgi to the endosome in COPII-coated vesicles (Lee, Moon et al., 2013). One study 
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also showed that the trafficking of TLR9 additionally requires the clathrin adaptor protein AP-2 

(Lee et al., 2013). Intriguingly, this adaptor is important for trafficking of cargo to the PM 

suggesting that TLR9 is first shuttled to the PM before it is endocytosed. In contrast, this 

mechanism was not observed for TLR7; instead, TLR7 binds to AP-4, a protein that mediates 

the trafficking of cargo directly from the TGN to the endosome (Lee et al., 2013). TLR9 signals 

from different intracellular compartments to induce either an IRF7-dependent IFN response or an 

NFκB-dependent response. After binding CpG-DNA, TLR9 traffics to early endosomes, which is 

facilitated by UNC93B1. The pre-form of TLR9 is cleaved by cathepsins and to trigger NFκB 

activation. Subsequently, TLR9 is trafficked to lysosomes facilitated by AP3, where it induces 

IRF7 activation (Sasai, Linehan et al., 2010).  

Cofactors of TLRs: Apart from the proteins that regulate the intracellular trafficking of 

TLRs to their destination membrane, cofactors are important for local TLR activation as well as 

for the downstream signaling. One example is the GPI-anchored CD14, which mediates the 

recognition of LPS and promotes the endocytosis of TLR4 upon LPS stimulation, together with 

the LPS-binding protein (LBP) and MD2 (Zanoni et al., 2011). CD14 was also shown to be 

required for the activation of TLR7 and TLR9 in the endosome (Baumann, Aspalter et al., 2010). 

Another TLR cofactor is the scavenger receptor CD36, important for binding of long-chained FAs 

from oxidized LDL (low-density lipoprotein). CD36 was shown to induce the heterodimer 

formation of TLR4 and TLR6 leading to an inflammatory response (Stewart, Stuart et al., 2010, 

Triantafilou, Triantafilou et al., 2007). Importantly, upon stimulation TLRs as well as their 

cofactors migrate into sphingolipid- and cholesterol-rich lipid rafts (Plociennikowska, Hromada-

Judycka et al., 2015).  

 The β2-integrins and complement receptors CR3 and CR4 are another important class of 

proteins involved in the LPS-dependent TLR4 response. Studies in neutrophils demonstrated 

that CD14 clustering induced by LPS also increased the CR3 levels and consequently the 

adhesive properties of the cells (Zarewych, Kindzelskii et al., 1996). The downstream signaling 

of TLR4 requires the recruitment of TIRAP, which binds to PI(4,5)P2-rich regions of the 

membrane and β2-integrins have been implicated in the induction of PI(4,5)P2 synthesis by 

activating PI(4)P5 kinase via ARF6. And macrophages deficient for CD11b, which is part of CR3, 

showed reduced levels of IL-6 (Interleukin 6) production due to an impaired recruitment of 

TIRAP (Hynes, 2002). This increase of PI(4,5)P2 in response to TLR4 could act as a feed-

forward loop to enhance the TLR response by recruiting more downstream adaptors to the 

membrane as well as the cytoskeletal components important for endocytosis (Botelho, Teruel et 



al., 2000). A dynamic control of the lipid levels is, however, required for these endocytic 

processes because hydrolysis of PI(4,5)P2 is also involved in promoting the actin remodeling 

during endocytosis (Scott, Dobson et al., 2005). 

 

   

In order to prevent harmful hyperinflammatory processes induced by TLR signaling such 

as sepsis, leading to fatal tissue damage, there are multiple negative regulators of TLR signaling 

acting at different steps of the signaling pathway. These negative regulators are also implicated 

in the context of resolution of inflammation. While some interfere with the TLR adaptor 

complexes, others mediate the degradation of proteins involved in signaling, or modulate the 

transcriptional response. Since the recruitment of TIR domain-containing proteins is one of the 

first steps after TLR activation its negative regulation is very efficient. Additionally, there are 

proteins that only interfere with specific TIR domain-containing adaptors. TAG, a variant of 

TRAM, for instance, can compete for the binding to TRIF and thus block signaling via TLR4-

TRAM. This process could also be important to initiate the degradation of the TLR4 signaling 

complex after LPS binding (Palsson-McDermott, Doyle et al., 2009). Similarly, IRF4 can 

compete with IRF5 for MyD88-binding, thereby inhibiting its transcriptional response, acting as a 

negative feedback loop, because Irf4 transcription is induced by TLR signaling (Negishi, Ohba et 

al., 2005). SOCS (suppressor of cytokine signaling) proteins harbor an SH2-domain and function 

as E3 ubiquitin ligases, mediating the ubiquitylation and degradation of TIRAP and TRAF 

(Yoshimura, Naka et al., 2007). A mechanism of transcriptional regulation is mediated by ATF3 

(cyclic AMP-dependent transcription factor), which recruits the histone deacetylase 1 (HDAC1), 

thus inhibiting transcription factor binding (Whitmore, Iparraguirre et al., 2007). Furthermore, a 

TLR-inducible nuclear IκB protein (IκBNS) can negatively regulate a subset of TLR-induced 

genes such as IL-6 by regulating NFκB activation (Kuwata, Matsumoto et al., 2006).  

 

  

A rapid and efficient communication is essential for the function of the immune system, 

and cells use cytokines to enhance or dampen an inflammatory response within the organism. 

Upon receptor activation, cytokines are secreted into the extracellular space and can bind to 



receptors to initiate downstream signaling in a paracrine or autocrine way. Different cytokines 

are secreted via different mechanisms; however, most cytokines are translated and packaged in 

the ER before they are trafficked to the Golgi in vesicles (Lacy & Stow, 2011). Cytokines such as 

IL-2, IL-3, and IL-7 harbor a signal sequence that is important for proper intracellular targeting to 

the ER (Goodwin, Lupton et al., 1989, Yang, Ciarletta et al., 1986). In macrophages, these 

cytokine-containing vesicles are trafficked from the ER to the Golgi and the PM. IL-6 and TNFα 

(tumor necrosis factor alpha) both also localize to recycling endosomes; however, intracellular 

staining has shown that they localize to different subcompartments of recycling endosomes, 

indicating an additional sorting step for these cytokines (Manderson, Kay et al., 2007). The 

membrane fusion events involved in cytokine secretion are regulated by the SNARE (Soluble 

NSF attachment protein) complex (Mollinedo, Calafat et al., 2006). Other cytokines do not have 

any signal sequences such as IL-18, which, after maturation, is trafficked from the cytosol into 

secretory lysosomes and is then released (Blott & Griffiths, 2002). This cytosolic localization is 

important for tubulin-mediated, restricted secretion of IL-18 at the synaptic cleft of dendritic cells, 

for instance, interacting with natural killer cells without spreading of the cytokine (Semino, 

Angelini et al., 2005). Other cytokines such as IL-1β (Interleukin 1 beta) or MIF (Macrophage 

migration inhibitory factor) are described to be released via non-classical secretion pathways 

because they never enter the ER/Golgi pathways and could possibly even be released via 

specific ABC transporters (Eder, 2009, Flieger, Engling et al., 2003).  

 

 

Several links have been identified between inflammatory processes and lipid 

biosynthesis. The best-studied lipids in inflammation are the eicosanoids prostaglandin, lipoxin, 

as well as the newly discovered lipid mediators resolvins, maresins, and protectins, synthesized 

from arachidonic acid, which have been identified to resolve inflammatory processes (Serhan & 

Savill, 2005). The most important proteins in eicosanoid generation are PLA2 and COX, 

mediating the degradation of glycerophospholipids and the generation of arachidonic acid from 

PC, for example (Brash, 2001).  

Phorbol ester (PMA) mimics the structure of DAG and is used to activate PKC, inducing 

an inflammatory response leading to the activation of p38 and the production of IL-6, and it also 

enhances ceramide levels. One study showed that silencing of Gba, also mutated in Gaucher 



disease, led to enhanced levels of IL-6 upon PMA activation in human breast cancer cells. 

Ceramide treatment of the cells could reverse the hyperinflammatory response as well as 

silencing of an isoform of p38, indicating that the hyperproduction of IL-6 was regulated by the 

ceramide levels produced by GBA and the isoform of p38 mediated this response downstream 

of PKC (Kitatani, Sheldon et al., 2009). Similarly, also acid sphingomyelinase was found to 

regulate TNFα- or PMA-induced IL-6 production via p38 (Perry, Newcomb et al., 2014). Acid 

sphingomyelinase has been further implicated in the outcome of sepsis-induced organ failure as 

patients that had suffered from sepsis showed elevated plasma levels of ASMase (Claus, Bunck 

et al., 2005). Free cholesterol loading of macrophages enhanced the TLR4-mediated response 

also via p38 (Sun, Ishibashi et al., 2009). Conversely, high-density lipoproteins, important for 

reversed cholesterol transport, have been shown to act anti-inflammatory via the transcription 

factor ATF3, which downregulates the expression of TLR-induced cytokines (De Nardo, Labzin 

et al., 2014). 

TLR Signaling and Sphingolipids: Specifically in the context of TLR function, several 

observations have been made connecting sphingolipids and the TLR-mediated inflammatory 

response. TLR4 stimulation induces the de novo sphingolipid synthesis and also increased 

levels of other lipids (Dennis et al., 2010, Sims, Haynes et al., 2010) (Figure 5). Conversely, 

exogenously added ceramides could reduce the production of IL-5, IL-10, and IL-13 in mast cells 

upon stimulation with LPS (Chiba, Masuda et al., 2007). Pathogens and cytokines have also 

been described to specifically activate sphingomyelinases to generate ceramide directly at the 

PM or to increase the de novo synthesis of sphingolipids (Milhas et al., 2010). In dendritic cells, 

sphingomyelinase activation upon host pathogen interaction is important for the generation of 

ceramide accumulation at the outer leaflet of the PM (Avota, Gulbins et al., 2011). Mouse 

embryonic fibroblasts, deficient in sphingomyelinase showed decreased levels of the chemokine 

CCL5 release upon TNFα stimulation (Jenkins, Clarke et al., 2011). S1P was also shown to be 

generated upon TNFα stimulation in a TRAF-dependent mechanism (Xia, Gamble et al., 1998, 

Xia, Wang et al., 2002). And IL-1β treatment can induce the protein complex formation of 

SPHK1, cIAP2 and IRF1 inducing the expression of chemokines important for sterile 

inflammation (Harikumar, Yester et al., 2014).  

TLRs and Membrane Lipids in vivo: Several studies have described the role of 

membrane lipids and TLR signaling in vivo. Cholesterol levels, for instance, were identified to be 

modulators of the TLR response, since TLR re-localization into lipid rafts and complex formation 

is essential for downstream signaling. Cholesterol loading of macrophages or a deficiency of the 



cholesterol exporter ABCA1 (ATP-binding cassette subfamily A1) enhanced the TLR4-induced 

inflammatory signaling while depletion of free cholesterol reduced the inflammatory response 

(Fessler & Parks, 2011, Sun et al., 2009, Zhu, Owen et al., 2010a). Enhanced inflammatory 

gene expression was also measured in Abca1 and Abcg1 double knockout mice when TLR2, 3, 

or 4 were stimulated but not TLR7 or 9. This hyperresponse could be rescued when cholesterol 

was depleted from the membrane (Yvan-Charvet, Welch et al., 2008).  

The role of sphingomyelin was also studied in this context. Macrophages derived from 

Sgms1- or Sgms2-deficient mice showed impaired TLR4 responses due to decreased 

abundance of TLR4-MD2 complexes at the cell surface (Gowda, Yeang et al., 2011, Li, Fan et 

al., 2012). And impaired downstream signaling was measured in macrophages from 

haploinsufficient Sptlc2 mice upon TLR4 stimulation due to reduced receptor surface levels 

(Chakraborty, Lou et al., 2013). 

Mechanisms of TLR Signaling and Lipids: Potential mechanisms of TLR signaling and 

membrane lipids have been suggested in several studies. An exogenously added cationic lipid, 

for instance, was shown to disrupt the TLR4-CD14 interaction and thus inhibit LPS-induced 

signaling (Leon-Ponte, Kirchhof et al., 2005). This disruption of TLR4 signaling has also been 

suggested as mechanism for oxidized phospholipids in inflammatory signaling (Erridge, Webb et 

al., 2007). An oxidized PE species has been shown to inhibit LPS-mediated TLR4 signaling by 

inducing the activation of neutral sphingomyelinase thus increasing the levels of long-chained 

ceramides (Walton, Gugiu et al., 2006). Another study could identify endogenous 

globotetraosylceramide binding directly to the TLR4-MD2 complex at the PM thereby 

counteracting the TLR4-induced response (Kondo, Ikeda et al., 2013). One important 

prerequisite for TLR4 signaling, recently identified, is the incorporation of LPS into the 

membrane, preferentially into sphingomyelin- and cholesterol-rich domains suggesting that 

depletion of these lipids in the PM could also lead to altered binding of LPS (Ciesielski, Griffin et 

al., 2013). A PI(3)K isoform has been identified which regulates the internalization of TLR4 by 

inducing the dissociation of TIRAP from the membrane potentially by inhibiting the binding to 

PI(4,5)P2. Blocking of this kinase induced a prolonged and enhanced TLR4 signaling in 

response to stimulation and knockout mice were more susceptible to endotoxin-mediated death 

(Aksoy, Taboubi et al., 2012). 

 The sequence analysis of TLRs revealed that several harbor cholesterol recognition 

amino acid consensus (CRAC) domains close to their transmembrane domain (Ruysschaert & 

Lonez, 2015). These motifs are located next to the TIR domain in the cytoplasmic part indicating 



that this region is essential for binding cholesterol at the inner leaflet of the PM. Previously, this 

part of the protein was implicated in the activation and dimerization of TLR4 (Nishiya, Kajita et al., 

2006). Since lipids located in rafts increase the membrane thickness, the cholesterol binding of 

the TLR molecule could only be enabled when the TLR is localized in rafts, consecutively 

leading to the conformational changes important for dimerization and activation. This way the 

interaction between the TIR domain of the TLR and the TIR domain of the adaptor protein, which 

binds to the inner leaflet of the membrane, is initiated and stabilized when the receptor is located 

in a cholesterol- and sphingolipid-rich environment. A sphingolipid-binding domain has also 

recently been identified and this sequence was found in the transmembrane regions of TLR3 

and TLR5 (Contreras, Ernst et al., 2012, Ruysschaert & Lonez, 2015).  

Lipid Storage Disorders and Inflammation: Abnormal inflammatory responses have 

been characterized in patients suffering from different storage disorders. In Gaucher disease, for 

instance, elevated IL-6 and IL-10 levels have been measured in the serum of patients (Allen, 

Myer et al., 1997). These findings were further confirmed in a mouse model of Gaucher disease, 

where enhanced inflammation was measured, especially in the brain, with elevated levels of IL-

1β, TNFα, and several chemokines, whose levels also increased with disease progression 

(Vitner, Farfel-Becker et al., 2012). These findings suggest elevated neuroinflammation to be 

involved in the neurodegenerative symptoms of the disease. Peripheral mononuclear cells 

(PBMCs) of a Fabry disease patient were found to have elevated basal pro-inflammatory 

cytokine production, which further increased with LPS stimulation and was abolished with the 

treatment of a TLR4 blocking antibody (De Francesco, Mucci et al., 2013). These findings 

highlight an interesting connection between lipid storage disorders and potential inflammatory 

deregulation.  

  



 

 By combining lipid biology, characterization of innate immune responses, and systems 

biology approaches we aimed to characterize the functional role of membrane lipid metabolism 

in TLR-mediated signaling.  

More specifically, the following main aims were addressed. (1) Dissection of the 

transcriptional regulation of lipid metabolism upon TLR stimulation. By monitoring gene 

regulation of 25 genes located in the sphingolipid metabolic pathway over time, the general 

patterns of induced and repressed genes could be assessed. (2) Analysis of the lipid 

composition after genetic perturbation of genes important for sphingolipid metabolism. Using 

quantitative mass spectrometry-based lipidomics we could monitor the changes in abundance of 

245 different glycerophospho- and sphingolipids. (3) Monitoring of how changes in lipid 

composition affect TLR-mediated signaling. Several quantitative read-outs were used to 

measure changes in TLR function, such as receptor surface expression, cytokine release, and 

cytokine transcription. For the novel sphingomyelinase –like gene Smpdl3b we also tested the in 

vivo role in a peritonitis model. (4) Uncovering of general roles of lipid coregulation in a panel of 

perturbed cell lines. Calculation of lipid-lipid correlations between all possible combinations 

identified different clusters of coregulated lipid species. The visualization of these coregulated 

lipids revealed a circular network. (5) Annotation of lipid function using the circular network of 

lipid coregulation. By combining the quantitative characterization of TLR signaling with the 

changes in lipid composition we could infer a function of each measured lipid in the different 

TLR-induced processes. The circular network could be used to visualize the function of the 

coregulated lipids. (6) Comparison of lipid coregulation between mouse and human cells and 

testing of a predictive model of lipid function in diseased fibroblasts. We performed quantitative 

lipidomics on a panel of different fibroblasts derived from patients suffering from lipid storage 

disorders. Analysis of lipid coregulation showed that the circular architecture of the network was 

conserved. Using the functional annotation of lipid function we could further predict the different 

inflammatory responses of the human fibroblasts solely based on the changes in lipid 

composition.   
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SUMMARY

Lipid composition affects the biophysical properties
of membranes that provide a platform for receptor-
mediated cellular signaling. To study the regulatory
role of membrane lipid composition, we combined
genetic perturbations of sphingolipid metabolism
with the quantification of diverse steps in Toll-like
receptor (TLR) signaling and mass spectrometry-
based lipidomics. Membrane lipid composition was
broadly affected by these perturbations, revealing a
circular network of coregulated sphingolipids and
glycerophospholipids. This evolutionarily conserved
network architecture simultaneously reflected mem-
brane lipid metabolism, subcellular localization, and
adaptation mechanisms. Integration of the diverse
TLR-induced inflammatoryphenotypeswith changes
in lipid abundance assigned distinct functional roles
to individual lipid species organized across the
network. This functional annotation accurately pre-
dicted the inflammatory response of cells derived
from patients suffering from lipid storage disor-
ders, based solely on their altered membrane lipid
composition. The analytical strategy described
here empowers the understanding of higher-level
organization of membrane lipid function in diverse
biological systems.

INTRODUCTION

The cellular membrane defines the minimal unit of life and cre-

ates the compartmentalization that orchestrates the transport

of molecules, intracellular signaling, cell-cell communication,

pathogen recognition, and many other processes (van Meer

et al., 2008). Membrane function is an emergent property of

the intricate interactions of its protein and lipid constituents,

with glycerophospholipids, sphingolipids, and sterols as most

abundant membrane lipids. Glycerophospholipids and sphingo-

lipids are categorized into distinct lipid classes defined by the

chemical structure of their head group. Each lipid class contains

hundreds of different lipid species, further varying in fatty acid

chain length, linkage, and saturation, among others (Coskun

and Simons, 2011), the exact measurement of which has been

empowered by the advent of lipidomics (Shevchenko and Si-

mons, 2010; Wenk, 2005). Distinct lipid species are asymmetri-

cally distributed across the plasma membrane (PM) and the

various intracellular membranes (van Meer et al., 2008), in part

due to locally confined synthesis and active transport of lipids

(Maeda et al., 2013), providing a functionally distinct spatial

organization to the lipid landscape of a cell (Holthuis andMenon,

2014).

The plasma membrane and endosomal membranes mediate

the first line of defense in cellular innate immunity by establishing

a physical barrier against microbial pathogens and constitute the

main site of pathogen recognition by accommodating special-

ized cell surface receptors such as Toll-like receptors (TLRs).

TLRs are a conserved family of transmembrane proteins that

recognize distinct pathogen-associated molecular patterns

and activate key signaling pathways in innate immunity (Kawai

and Akira, 2010). The plasma membrane and endosomal resi-

dent TLR4, for instance, mainly recognizes gram-negative bac-

terial lipopolysaccharides (LPS), while the endosomal TLR7

and TLR9 recognize nucleic acids derived from a wide range of

microbes. TLR ligand-binding leads to receptor dimerization

and the activation of subsequent signaling cascades, which,

for most TLRs, involves a partially overlapping set of accessory

molecules (Bonham et al., 2014; Lee et al., 2012). This in turn

leads to transcriptional and metabolic changes, including the

induction and secretion of cytokines (Kawai and Akira, 2010),

as well as the upregulation of sphingolipid synthesis (Memon

et al., 1998). TLR signaling eventually triggers pathogen-specific

responses by the adaptive immune system, thus linking cellular

innate immunity to the adaptive immune system of the host (Ka-

wai and Akira, 2010). In macrophages, TLR activation induces

changes in the lipid composition and properties of cellular mem-

branes (Andreyev et al., 2010; Dennis et al., 2010), adapting the

cellular morphology for polarization and pathogen phagocytosis.

TLR signaling is meticulously regulated to clear pathogens yet

avoid host damage through hyperinflammation (Serhan et al.,

2008). Mechanisms of regulation act, among others, at the level

of transmembrane domains of TLRs, mediating dimerization and
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activation (Kawai and Akira, 2010) and at the level of receptor

trafficking, altering the adaptor protein complexes and signaling

(Bonham et al., 2014; Lee et al., 2012). While selected species of

sphingolipids have been characterized in the context of inflam-

mation (Alvarez et al., 2010; Józefowski et al., 2010; Vandan-

magsar et al., 2011), the chemical complexity of biological

membranes requires more global approaches to deconvolute

the function of the lipid landscape (Atilla-Gokcumen et al.,

2014; da Silveira Dos Santos et al., 2014).

RESULTS

Sphingolipid Metabolism Is Regulated by TLR
Stimulation and Modulates TLR-Induced IL-6 Release
Previously, quantitative lipidomics and genome-wide transcrip-

tional changes upon TLR4 stimulation were measured in bone

marrow-derived macrophages (BMDMs) and in the murine

macrophage RAW264.7 (RAW) cell line (Dennis et al., 2010;

Ramsey et al., 2008) (Figures S1A–S1C), which revealed sphin-

golipid metabolism to be strongly differentially regulated upon

TLR stimulation (Figure S1B). We therefore selected 24 genes

based on the sphingolipid metabolic network (Kanehisa and

Goto, 2000) focusing on ceramide metabolism, including several

poorly studied genes, all expressed in RAW cells (Figure S1D;

Table S1) (Hannun and Obeid, 2011). Their TLR4- and TLR9-

driven transcriptional regulation was measured by stimulating

RAW macrophages with LPS and unmethylated CpG DNA

(CpG), respectively (Figures 1A, S1D, and S1E).

Mapping our expression results onto the known sphingolipid

metabolic pathway showed that 18 of the 24 geneswere similarly

regulated by both TLRs (Figures 1A and S1E), consistent with the

fact that TLR4 and TLR9 activate a partially overlapping set of

downstream transcription factors (Kawai and Akira, 2010).

Genes induced by at least one TLR ligand were associated

with the de novo synthesis of ceramides (Sptlc1 and Sptlc2,

Cers5 andCers6, andOrmdl1) and their downstream processing

into other key sphingolipids including sphingomyelins (SMs) by

Sgms2, sphingosine-1-phosphate (S1P) by Sphk1, and gluco-

sylceramides (GluCers) by Ugcg (Figure 1A). In contrast, genes

involved in the degradation of sphingomyelins (Smpd1 and

related genes) and S1P (Sgpl1) were predominantly downre-

gulated (Figure 1A). This significant and consistent transcrip-

tional pattern across the network (p < 1.7 3 10�8; Figure S1F)

suggested increased levels of ceramides, sphingomyelins,

S1P, and glucosylceramides upon TLR stimulation, as indeed

observed in the publicly available lipidomics data (Figure S1A).

To study the roles of sphingolipids in TLR biology, we geneti-

cally perturbed these 24 genes to identify reproducible and

diverse effects on TLR signaling and quantify the corresponding

changes in membrane lipid abundance, allowing an integrated

analysis of these two cellular properties. Each of the 24 genes

and three TLR controls were targeted by three to five short

hairpin RNAs (shRNAs) in RAW macrophages resulting in 129

stable shRNA cell lines (Figure 1B; Table S1). Filtering for a

knockdown efficiency of at least 58% resulted in 87 cell lines

with a median knockdown efficiency of 88% (Figure S1G). These

87 cell lines covered the 24 genes with on average three shRNA

cell lines per gene (Table S1).

In a focused screening campaign, these 87 cell lines were

monitored for differences in TLR signaling as measured by the

release of the cytokine interleukin 6 (IL-6) into the supernatant

after stimulation, a late quantitative read-out of TLR activation

(Kawai and Akira, 2010). To measure the activity of diverse

TLRs, cells were stimulated with Imiquimod (IMQ) or CpG, which

are recognized by the endosomal TLRs 7 or 9, respectively, or

with LPS, recognized by TLR4. As expected, silencing of the

TLR controls (sh:Tlr4, sh:Tlr7, sh:Tlr9) strongly attenuated their

respective ligand-induced IL-6 release compared to sh:GFP

control (Figure 1C). Silencing of genes involved in sphingolipid

metabolism led to various TLR-induced IL-6 release phenotypes

(Figure 1D). For instance, knockdown of Sphk1 or Cers2 led to

significantly reduced IL-6 release after stimulation with all three

TLR ligands, while knockdown of Ormdl1 led to enhanced IL-6

release upon endosomal TLR stimulation and decreased IL-6

release upon TLR4 stimulation (Figure 1D). Cytoplasmic recogni-

tion of pathogen-associated molecular patterns (Stetson and

Medzhitov, 2006) was not affected by silencing of Sphk1, as

stimulation with interferon stimulatory DNA or poly(dA:dT) re-

sulted in equal levels of interferon b release for sh:Sphk1 and

sh:GFP (FigureS1H). Tosummarize theTLR-induced IL-6 release

measurements over all shRNA cell lines per gene and per stim-

ulus, the log2 fold-change relative to the corresponding sh:GFP

control value was calculated and averaged over technical and

biological replicates. We next either averaged the values of

consistent and strong (absolute log2 fold-change >0.7) shRNA

phenotypes per gene (Figures 1E–1G, black dots), or, in case

these criteria were not met, the values of all shRNAs per gene

(Figures 1E–1G, gray dots). Knockdown of 18 genes affected

IL-6 release after stimulation with at least one TLR ligand consis-

tently for two or more shRNA cell lines (Figures 1E–1G), while cell

viability was unaffected in all cases. In unstimulated conditions,

the 87 shRNA cell lines showed only background IL-6 levels in

the supernatant.

In both the IMQ and CpG screens, the associated sh:Tlr7 and

sh:Tlr9 controls led to the strongest reduction in IL-6 release,

respectively (Figures 1E and 1F). In contrast, the LPS screen re-

vealed five genes whose knockdown led to an even stronger

reduction than the sh:Tlr4 control (Figure 1G). The CpG and

IMQ screens not only manifested decreased IL-6 release but

also revealed several genes which, upon knockdown, led to

increased IL-6 release after stimulation (Figures 1E and 1F).

Comparing the results of the three IL-6 release screens showed

that the CpG and IMQ screens were strongly correlated (r = 0.94)

(Figure 1H), while the LPS screen correlated considerably less

with the other two screens (mean r = 0.71). This suggested that

the sphingolipid metabolic pathway affected the endosomal

TLRs 7 and 9 to an equal extent, while TLR4 at the plasma mem-

brane was differentially affected.

Integrating the TLR-induced transcriptional regulation of

sphingolipid metabolism with the corresponding gene pertur-

bation phenotypes could reveal mechanisms by which a cell

either boosts or resolves inflammation through modulation of

its membrane lipid composition. To reveal the presence of

such mechanisms, the IL-6 screening results for all three TLR

stimuli were combined with the relative expression of target

genes in wild-type RAW cells after stimulation of TLR4 and
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TLR9 (Figure 1I). This integration revealed a group of genes

acting to enhance pan-TLR signaling. Among those were

Ugcg and Sphk1, associated with the synthesis of the cer-

amide-derived metabolites glucosylceramides and S1P,

respectively, which were required for and induced by pan-

TLR signaling. However, the majority of the genes appeared

to dampen TLR signaling. For instance, six genes were identi-

fied as negative regulators of CpG- and IMQ-driven signaling

and transcriptionally upregulated upon TLR stimulation. Four

of these six genes encoded proteins that are associated with

de novo ceramide synthesis (Ormdl1, Sptlc1, Cers6, and

Sptlc2) (Figure 1I) and could be involved in preventing hyperin-

flammation and promoting the resolution of inflammation in

response to endosomal TLR activation (Serhan et al., 2008).

Further, a different set of genes associated with ceramide syn-

thesis was specifically regulated by and functionally involved in

TLR4 signaling (Cers5, Cers2, Smpd4, and Ormdl3) (Figure 1I).

Taken together, the integration of TLR-induced transcriptional

regulation of sphingolipid metabolic genes with their corre-

sponding perturbation phenotypes revealed both positive and

negative modulators of TLR function across various branches

of sphingolipid metabolism.

To resolve these different phenotypes at the level of indi-

vidual membrane lipids, nine gene perturbations (sh:Sptlc2_1,

sh:Cers2_4, sh:Cers6_2, sh:Smpd1_4, sh:Ormdl1_3, sh:Ugcg_1,

sh:Asah1_2, sh:Lyst_1, and sh:Cln3_1) were selected for further

characterization by quantitative lipidomics (Table S1). The IL-6

releasephenotypesuponknockdownof thesegeneswereconsis-

tent across multiple independent shRNAs (Figures 1D and S1I).

To maximize the statistical power by which lipid-phenotype rela-

tionships could be inferred, this subset of genes was chosen to

represent diverse IL-6 release phenotypes across the different

regulatory mechanisms and across sphingolipid metabolic

branches (indicated in Figures 1A, 1E–1G, and 1I).

Genetic Perturbations of Sphingolipid Metabolism Lead
to Diverse Membrane Lipid States
Mass spectrometry-based lipidomics was used to measure the

abundance of 245 membrane lipids at steady state in the nine

selected cell lines and the sh:GFP control (Figure 2A). Specif-

ically, glycerophospholipids (phosphatidylcholines [PC], phos-

phatidylethanolamines [PE], phosphatidylglycerols [PG], and

phosphatidylserines [PS]) and sphingolipids (ceramides [Cer]

and sphingomyelins [SM]) were quantified. The developing field

of lipidomics still lacks standardized methods for data normali-

zation, analysis, and visualization, as well as for lipid annotation

(Snijder et al., 2014). Here, lipid levels were normalized to total

lipid content and transformed as log2 fold-change relative to

the sh:GFP control (Figure S2A). Both raw and transformed for-

mats are available as supplementary results, annotating all lipids

with two complementary nomenclatures (Table S2). The three

biological replicates displayed high reproducibility (average r =

0.89). Throughout this data set, significant increases and de-

creases were observed for the majority of lipid classes in each

of the nine perturbations, defining the unique lipid states in which

their cellular phenotypes manifested (Figure 2B).

Analysis of the changes in lipid composition caused by the

nine perturbations revealed both expected and unexpected re-

sults. As expected, in most cases silencing of an enzyme led

to increased substrate levels and/or decreased product levels.

For instance, knockdown of the serine palmitoyltransferase

Sptlc2, a key enzyme for de novo synthesis of ceramides

(Hanada, 2003), led to a strong reduction in ceramide levels

(Figure 2B). Knockdown of ceramide synthases 2 or 6 also

reduced ceramide levels, including individual species with spe-

cific fatty acid chain lengths that have previously been associ-

ated with each enzyme (Figures 2A, 2B, and S2B) (Levy and

Futerman, 2010). Total ceramide levels were decreased, and

sphingomyelin levels were increased, upon knockdown of the

sphingomyelinase Smpd1 (Figure 2B). Following this consistent

pattern, ceramide levels were significantly increased upon

knockdown of Ormdl1, a negative regulator of ceramide synthe-

sis (Breslow et al., 2010), and upon knockdown ofUgcg, the cer-

amide glucosyltransferase (Figure 2B). An unexpected reduction

in total ceramide levels was however measured upon the deple-

tion of the acid ceramidase ASAH1. This observation supports

the notion that ASAH1 may function bimodally, mediating not

just degradation but also synthesis of ceramides, consistent

Figure 1. TLR-Driven Transcription of the Sphingolipid Metabolic Network and Characterization of Cytokine Release upon shRNA-Mediated
Silencing of This Network

(A) Selected sphingolipid and glycerophospholipid metabolic reactions (KEGG), shown together with main metabolites (rounded rectangles) and 24 selected

proteins (rectangles). Protein location based on KEGG where possible. Heatmaps show relative expression of 24 selected genes after stimulation of RAW cells

with LPS (100 ng/ml) or CpG (5 mM) for indicated time points measured by qRT-PCR. Bold protein names indicate selection for lipidomics analysis. Metabolites

are colored consistently throughout the study. Data are combined of at least two independent experiments with technical triplicates. FC, fold-change; Spha,

sphinganine; Spho, sphingosine; C1P, ceramide-1-phosphate. For other abbreviations, see text or legend and Table S1.

(B) Schematic representation of the generation and characterization of stable shRNA RAW cell lines, filtered based on knockdown efficiency.

(C) IL-6 release as measured by ELISA in sh:Tlr and sh:GFP control cell lines stimulated with IMQ (5 mM), or LPS (100 ng/ml) or CpG (5 mM) for 16 hr. Data are

representative of at least five independent experiments and shown as mean ± SD of four technical replicates. *p < 0.0001.

(D) As in (C), but for sh:Sphk1, sh:Cers2, and sh:Ormdl1 cell lines. Data are representative of at least five independent experiments and shown as mean ± SD of

four technical replicates. *p < 0.005.

(E–G) Screening results of three IL-6 release screens in 87 loss-of-function cell lines stimulated for 16 hr with IMQ, CpG, and LPS as measured by ELISA. Values

are plotted as log2 fold-change relative to the respective sh:GFP control cell line and averaged overmultiple shRNA cell lines. Black dots represent the averages of

two or more shRNA cell lines with consistent phenotypes, while gray dots represent averages of all shRNA cell lines per gene. Indicated genes are selected for

lipidomics analysis. Data are combined of at least five independent experiments.

(H) Scatter plot of IMQ and CpG screening results. Red line indicates linear fit. Data are combined of at least five independent experiments.

(I) Heatmap shows integration of target gene expression in wild-type RAW cells after stimulation with LPS and CpG and IL-6 release screening results of shRNA

cell lines. Gray triangles indicate absence of consistent phenotypes for multiple shRNAs per gene. Data are combined of at least five independent experiments.

See also Figure S1 and Table S1.

Cell 162, 170–183, July 2, 2015 ª2015 The Authors 173



with previous in vitro data (Okino et al., 2003) (Figure 2B). Given

that most of these perturbed genes are members of larger

conserved gene families, based on either sequence similarity

or enzymatic function, the strongly altered lipid states revealed

an absence of redundancy between these family members.

This goes against previous findings suggesting functional redun-

dancy within the ORM1-like gene family (Siow and Wattenberg,

2012).

Perturbing sphingolipid metabolism unexpectedly led to

changes in glycerophospholipid levels, with strongest changes

observed upon knockdown of Sptlc2 and Ormdl1 (Figure 2B).

Knockdown of Lyst and Cln3, both involved in lysosomal

trafficking, only led to significantly altered glycerophospholipid

levels (Figure 2B). In summary, the selected set of genetic per-

turbations targeting sphingolipid metabolism translated to a

remarkable heterogeneity in lipid states, revealing considerable

tolerance of cells to such perturbations and establishing these

as an effective method to alter cellular lipid composition and

study the functional consequences. Additionally, this membrane

lipidomics analysis underscored a strong link between the sphin-

golipid and glycerophospholipid metabolic networks.

Hierarchical clustering of the average fold-changes per lipid

class and per cell line separated genes associatedwith ceramide

synthesis from those associated with other processes (Fig-

ure 2B). We therefore applied the hierarchical interaction score

(HIS) for network reconstruction between perturbed genes

(Snijder et al., 2013), analyzing hierarchical patterns among the

measured lipid species of each perturbation (Figure S2C). The

HIS correctly inferred the known metabolic hierarchy of the

different enzymes starting with SPTLC2, over CERS2 and

CERS6, to ASAH1 and SMPD1 (Figure S2C). This intriguingly

suggested that diverse membrane lipid states resulting from

genetic perturbations may be instrumental for the unbiased

reconstruction of gene-centered metabolic networks, as also

shown in yeast (da Silveira Dos Santos et al., 2014).

A Logical Circular Network of Coregulated Lipids
Given the broad changes in lipid composition over the diverse

genetic perturbations, we next analyzed the coregulation of lipid

abundance at the level of individual lipid species to expose the

larger organizational principles that orchestrate membrane lipid

composition. Comparing the lipid abundance of individual lipid

species across all nine perturbations revealed pairs of positively

and negatively correlated lipids (Figure 3A). Such positive corre-

lations, indicative of lipid coregulation, occurred both within and

between lipid classes (Figure 3B). Hierarchical clustering of the

complete lipid-lipid correlation matrix describing 29,890 unique

pairs of lipids revealed ten distinct lipid clusters of positively

correlated lipids, organized along the diagonal of the matrix

(Figure 3C). Neighboring clusters showed positive correlations,

whereas distant clusters were negatively correlated with each

other (Figure 3C). Intriguingly, analysis of the lipid composition
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per cluster revealed sphingolipids to be distributed over all

clusters, whereas significant separation of glycerophospholipid

classes was observed between different clusters (Figure 3D).

Positively correlated glycerophospholipid classes reflected their

proximity in the metabolic pathway, as clusters 8 and 9, the two

largest clusters, contained most PS and PE species, and clus-

ters 1 to 5 grouped most PC and PG species. Interestingly, the

strong negative correlation between these two sets of clusters

identified that a loss in PS and PEwas associated with increased

levels of PC, as observed for sh:Sptlc2 and sh:Ormdl1 and

inversely for sh:Cln3 (Figure 2B). This general trend has also

been reported in yeast and may be indicative of conserved

metabolic adaptation (Boumann et al., 2006). Positive correla-

tions therefore indicated coregulation between lipids driven by

proximity in metabolic pathways and structural dependencies.

Negative correlations, in turn, reflected compensation or adapta-

tion between lipids within the cell. Analysis of fatty acid chain

length properties per cluster and lipid class further revealed

that separation of lipid species from the same class into different

clusters was associated with significant changes in chain length,

following a trend over neighboring clusters (p < 0.01 – p < 0.001,

Figure 3E).

Interestingly, the most distant lipid clusters 1 and 10 were

positively correlated, which suggested that this hierarchical

view on cluster organization was a suboptimal representation

of lipid coregulation (Figure 3C). We therefore transformed the

lipid-lipid correlation matrix into a network where nodes repre-

sented individual lipid species and edges represented positive

correlations of 0.7 or higher (Figure 3F). Strikingly, this correlation

network displayed near-perfect circularity. Continuity across the

different lipid clusters was revealed by mapping different lipid

features, including lipid class, and fatty acid linkage and chain

length, onto the network (Figures 3F, S3A, and S3B). This

network view furthermore emphasized the distribution of sphin-

gomyelins and, to a lesser extent, ceramides across the network,

indicative of a general strong coregulation of individual sphingo-

lipids with glycerophospholipids (Figure 3F).

Color-coding each node in this network according to the log2
fold-change in lipid abundance revealed significant (p < 3.6 3

10�28) bimodal separation of increased and decreased lipids

for each of the nine perturbations (Figure 3G). These bimodalities

reflected an imbalance in the lipid state of each perturbation,

supporting the notion that opposite segments of the circular

network were also defined by metabolic adaptation. Validating

the relevance of this circular network beyond this dataset, the

results of an independently performed lipidomics analysis in

RAW cells stably silencing Smpdl3b were projected on this

network, which also led to the significant separation of increased

and decreased lipids (p < 1.2 3 10�5), revealing yet another

unique lipid state (Figure S3C) (Heinz et al., 2015).

Cellular membranes are known to be comprised of lipids with

similar fatty acid chain lengths (Holthuis and Menon, 2014; van

Meer et al., 2008). Indeed, themajority (58%) of lipid coregulation

was found between lipid species with fatty acid chain length

differences of two or less, with only ceramides not following

this trend (Figure 3H). To assess if the circular network reflected

the spatial organization of lipids, we used publicly available lipi-

domics measurements of subcellular membrane fractions of

RAW cells (Andreyev et al., 2010). Mapping of lipids enriched

in the different fractions identified distinct segments of the circu-

lar network predominantly connecting lipids enriched in either

plasma membrane (PM; p < 7.3 3 10�6) or ER (p < 0.00022)

fractions (Figure 3I). Consistent with previous reports, the core-

gulated long-chained PS and PE species were mostly enriched

in the plasma membrane fraction, while the PC species were

mostly ER-enriched (Figure 3I) (van Meer et al., 2008). Calcu-

lating the significance of the clustering of enriched lipids on

the circular network further revealed significant clustering of

nuclear-enriched lipids (p < 4.3 3 10�6), but not of mitochon-

drial-enriched lipids (Figure 3I).

As an alternative to a protein-centered view on metabolic net-

works, this analysis of lipid coregulation offered a unique view of

the mammalian lipid landscape, revealing a potentially universal

logic in lipid organization. Intriguingly, circularity is not typically

observed in biological coregulation networks (Costanzo et al.,

2010) and may therefore be a unique property of metabolic

networks.

Functional Annotation of the Lipid Landscape in TLR
Signaling
We next sought to resolve the diverse TLR-phenotypes at the

level of earlier TLR signaling and integrate the phenotypes with

the abundance of individual lipid species. IL-6 release into the

supernatant is a late read-out of TLR activation, as it depends

on TLR expression, trafficking, signaling, and cytokine transcrip-

tion. Therefore, TLR4 plasma membrane levels at steady state

as well as LPS-induced internalization dynamics over time (Fig-

ure S4A) were monitored for all 24 genetic perturbations and

controls using representative cell lines (Figure 4A; Table S1).

Silencing of eight genes showed significant reductions of TLR4

surface levels at steady state (>40% reduction at p < 0.01)

although none of the genetic perturbations led to a reduction

stronger than sh:Tlr4 (87.5%) (Figures S4B–S4D). LPS-depen-

dent activation of TLR4 led to partial receptor internalization at

5 min and a near complete internalization after 30 min for all

monitored perturbations (Figures 4A, S4C, and S4D). Normal

TLR4 surface levels at steady state were observed for most of

the genetic perturbations that led to the strongest reductions in

LPS-induced IL-6 release (Figure S4E). However, increased

internalization of the receptor 5 min post-stimulation was

observed for several perturbations including the three that led

to the strongest reductions in IL-6 release (Cers2, Cers5,

Ormdl2). Sphingolipid metabolism therefore mostly modulated

LPS-induced IL-6 release by altering the trafficking and likely

subsequent signaling of TLR4 after stimulation rather than by

altering the steady-state TLR4 surface levels.

To monitor changes in early TLR signaling we performed time

coursemeasurements of TLR-induced Il6 transcription for a sub-

set of genetic perturbations including the nine cell lines analyzed

by lipidomics (Table S1). Strong changes in Il6 transcript levels

were observed, while peak Il6 transcript levels were maintained

at 10 hr post-stimulation for all tested cell lines (Figures 4B and

S4F), indicating that sphingolipid metabolism affected early

TLR signaling, modulating the amplitude not the dynamics of

TLR-induced Il6 transcription. Integration with the correspond-

ing IL-6 release phenotypes could separate changes in TLR
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signaling from defects in cytokine secretion. As expected, most

of the cell lines tested displayed altered Il6 transcription

coherentwith themeasured changes in IL-6 release (Figure S4G).

Surprisingly though, knockdown of Cers2 showed increased

Il6 transcription but decreased IL-6 release, suggestive of

enhanced TLR signaling being followed by a post-transcriptional

block, potentially at the level of secretion (Figures S4F and S4G).

Indeed, intracellular staining of IL-6 after stimulation revealed a

strong perinuclear accumulation in a subset of Cers2 silenced

cells, while no intracellular accumulation was observed in the

controls (sh:GFP or sh:Tlr4) (Figure S4H). Knockdown of Cers2

did however not affect the regulated exocytosis of chemokine

CCL5 (Lacy and Stow, 2011), as its TLR-induced release was

not reduced (Figure S4I).

Integration of TLR-dependent read-outs with the changes in

lipid abundance could allow functional annotation of individual

lipids across the lipid landscape. To identify the changes of lipid

abundance associated with, for instance, TLR4 surface levels,

we analyzed consistent trends over all nine perturbations. This

correlation analysis revealed potential functional relationships,

as exemplified by the negative correlation (r = �0.84) between

the relative abundance of ceramide C20:0 and TLR4 PM levels

(Figure 4C). An increase of this lipid species, strongest in

sh:Ormdl1 and sh:Ugcg, was associated with reduced TLR4

levels at the plasma membrane (Figure 4D). However, the strong

coregulation in the abundance of lipid species identified in this

study necessitated a more global analysis of potential lipid func-

tion. Therefore, correlations between each TLR-related process

and the relative abundance of each lipid were calculated (n =

2,205; Table S2) andmapped onto the lipid coregulatory network

(Figures 4E–4H). This resulted in highly significant (p < 3.1 3

10�63) separations of positive and negative correlations between

functional readouts and lipid abundance (Figures 4E–4H and

S4J). Comparing the functional annotations for TLR4 PM levels

with Il6 transcription and IL-6 release revealed different yet over-

lapping segments of the circular network to be positively and

negatively correlated (Figure 4E–4H). This suggested that

distinct sets of lipids were functionally related to each step in

TLR signaling. The distribution of the functional annotations on

the network did not considerably change depending on the

different ligands for TLR-induced IL-6 release or time points for

LPS-induced TLR4 surface levels, despite changes at the indi-

vidual lipid level (Figures 4E–4H and S4J).

The similarity in predicted lipid function of neighboring and

coregulated lipids in the lipid landscape is consistent with the

view that the majority of membrane lipids function in concert

with other lipids. Mapping the different correlations onto the cir-

cular lipid network revealed short-chained glycerophospholipids

and sphingomyelins as positively associated with TLR4 surface

expression (Figures 4E and 3F). The majority of ceramides

were predicted to negatively modulate TLR4 surface expression,

similar to studies reporting that accumulation of ceramides at the

plasma membrane led to altered surface expression of the nico-

tinic acetylcholine receptor (Gallegos et al., 2008). Among the

other lipids negatively correlated with TLR4 PM levels were the

glycerophospholipids with the longest fatty acid chains associ-

ated with the plasma membrane, as well as their lysolipids (Fig-

ure 4E). Lysolipids facilitate membrane curvature required for

vesicle trafficking (Holthuis and Menon, 2014). The subset of

lipids negatively correlated with both IL-6 release and TLR4

PM levels contained most PS species (Figures 4E, 4G, and

4H), for which individual species have been described to nega-

tively influence TLR-induced responses by disruptingmembrane

microdomains (Parker et al., 2008). Intriguingly, sphingomyelins

and ceramides were predicted to both positively and negatively

regulate IL-6 release: unsaturated sphingomyelins and short-

chained ceramides resided within the positively correlated

region of the network, while saturated or nearly saturated sphin-

gomyelins and long-chained ceramides resided within the nega-

tively correlated region at the opposite segment of the network

(Figures 4G, 4H, and S4K).

To validate the different predicted functions of sphingolipids in

TLR-induced IL-6 release, candidate lipids were selected from

the coregulated lipid clusters most enriched for either positive

Figure 3. Analysis of Lipid Abundance Reveals the Circular Organization of the Lipid Coregulatory Network

(A) Scatter plots show example pairs of lipids whose relative abundance over the nine perturbations is negatively (left panel) or positively (right panel) correlated.

Red lines indicate linear fit. Data are combined of three independent experiments and shown as mean.

(B) Analysis of the fraction of correlations that link lipids of the same lipid class (white) or different lipid classes (gray), as function of correlation strength. Data are

combined of three independent experiments and shown as mean.

(C) Hierarchical clustering of the lipid-lipid correlation matrix. Rows and columns correspond to the 245 measured lipid species. Black boxes indicate clusters of

strongly positively correlated lipids. Lipid cluster numbers indicated on the right. Data are combined of three independent experiments and shown as mean.

(D) Analysis of the number of lipids in each cluster per lipid class. Width of the bars is scaled to match (C). Data are combined of three independent experiments

and shown as mean.

(E) Normalized fatty acid chain lengths for selected clusters and lipid classes. Lipid classes are colored as in (D). Chain length is normalized from the shortest to

the longest fatty acid side chain per class. Data are combined of three independent experiments and shown as mean. Values are mean ± SEM.

(F) Network visualization of the positive lipid-lipid correlations. Edges are correlations of r R 0.7. Nodes are lipids. Node shape, size, and outline represent fatty

acid bonds, chain length, and lysolipids, respectively (see legends). Data are combined of three independent experiments and shown as mean.

(G) Nodes of the network are color-coded based on the fold-change of relative lipid abundance for each of the nine shRNA cell lines as indicated in legend. Data

are combined of three independent experiments and shown as mean.

(H) Cumulative percentage of lipid coregulation as a function of the maximum fatty acid chain length difference per lipid class and for all (see legend). Data are

combined of three independent experiments and shown as mean.

(I) Left: network visualization of lipid enrichment in either ER (blue) or plasmamembrane (PM, green) subcellular fractions. White nodes depict not enriched or not

measured lipids. Right: significance of the clustering on the circular network for the enrichment in four subcellular fractions. Red lines indicate the average

absolute difference between enrichment scores of direct neighbors in the network, gray areas indicate the distribution of randomized repeats. NS, not significant.

Subcellular fraction data are from http://lipidmaps.org combined of three independent experiments and shown as mean.

See also Figure S3.
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Figure 4. Inference and Validation of Lipid Function in TLR-Related Processes

(A) TLR4 PM levels after stimulation with LPS for indicated time points normalized to unstained and steady-state control levels for 41 cell lines silencing 24 genes.

Both box-and-whisker plots and individual line plots are shown. Lines represent mean values of two independent experiments.

(B) Il6 expression after TLR stimulationmeasured at indicated time points and normalized to unstimulated and 10h sh:GFP control for 14 cell lines. Lines represent

mean values of two independent experiments.

(C) Scatter plot shows example correlation between relative lipid abundance and TLR4 PM levels over the nine perturbations. Red line indicates linear fit.

(D) As in (A), TLR4 PM levels for sh:Ormdl1_3, sh:Ormdl1_4 and sh:GFP control. Data are shown as mean ± SD of two technical replicates *p < 0.05.

(E–H) Correlations between relative lipid abundance and measurements of selected TLR-related processes plotted on the circular network.

(I and J) Network close-up of lipids positively (I) and negatively (J) correlated with LPS-induced IL-6 release.

(legend continued on next page)
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or negative correlations (Figures 4I–4L). A determining factor in

candidate selection was the availability of synthetic lipids in a

chemically pure form. Compared to vehicle treatment, RAW

macrophages showed enhanced LPS-stimulated IL-6 release

when pre-treated with the ceramides N-C18:0(OH)-Cer or

N-C8:0(2H)-Cer (Figure 4M), validating the inferred function of

these two ceramides. Treatment with these lipids alone did not

induce IL-6 release. Conversely, LPS-induced IL-6 release after

pre-treatment with the sphingomyelin SM C24:0 or the ceramide

N-C16:0-Cer was dampened compared to vehicle treatment

(Figure 4N), validating the inferred inhibitory function of these

lipids on IL-6 release. Lipid supplementation did not affect

viability in any of the experiments (Figure S4L).

As sh:Smpdl3b was not included in the set of perturbations

that led to the identification of the lipid coregulatory network

and to the lipid functional annotations, the lipidomics analysis

of sh:Smpdl3b, performed with different infrastructure, was

used to test the predictive power of the complete functional

annotation of the lipid landscape (Figure S4M). The lipid state

of sh:Smpdl3b displayed a highly significant increase of lipids

positively associated with, and a decrease of lipids negatively

associated with LPS-induced IL-6 release (p < 2.4 3 10�8).

This, therefore, correctly predicted a TLR-induced hyperinflam-

matory phenotype upon knockdown of Smpdl3b in the same

cellular system, based solely on the changes in lipid abundance.

Validation experiments confirmed increased pan-TLR signaling

in Smpdl3b knockdown cells, and Smpdl3b knockout mice

displayed enhanced inflammation in LPS- and Escherichia coli-

induced peritonitis models (Heinz et al., 2015). Further, pre-treat-

ment of the hyperinflammatory sh:Smpdl3b cells with a set of

ceramide lipid species here predicted to act anti-inflammatory

lowered LPS-induced IL-6 release to the levels observed in

sh:GFP control (Heinz et al., 2015).

In conclusion, organization of the lipid coregulatory network

strongly reflected lipid function across the diverse steps of TLR

signaling, revealing a higher-level functional organization for

membrane lipids with predictive power at the level of single lipids

and the global lipid landscape.

The Lipid Coregulatory Network Is Conserved between
Human and Mouse
Mutations in genes associated with sphingolipid metabolism

lead to sphingolipid storage disorders associated with severe

neurodegeneration and premature death (Futerman and van

Meer, 2004). In both patients and mouse models of these dis-

eases, altered cytokine levels have been reported previously

(Barak et al., 1999; Wang et al., 2014). To test the validity of

the functional annotation of the lipid landscape in a human

setting, and independent of shRNA-mediated gene silencing,

we performed quantitative lipidomics on patient-derived fibro-

blasts and their age-matched healthy controls at steady state

(Table S3). The patient fibroblasts harbored mutations associ-

ated with Gaucher disease, Krabbe disease, Farber disease,

and Chediak-Higashi syndrome (Figure 5A). Calculation of the

fold-changes of membrane lipid abundance by normalizing

against the corresponding healthy controls showed that the fi-

broblasts also displayed broadly altered lipid states, affecting

both glycerophospholipids and sphingolipids (Figure S5A).

Measuring lipid-lipid coregulation in this smaller dataset derived

from human fibroblasts significantly confirmed the circular lipid

coregulatory network derived from mouse RAW macrophages

(p < 10�222, Figure 5B). This striking overlap showed conserva-

tion of the circular organization of lipid coregulation across

species, cell types, and genetic perturbations. Plotting the

fold-change lipid abundance for each disease onto the circular

network further confirmed the bimodal separation of increased

and decreased lipids, indicating that the adaptationmechanisms

revealed by the circular organization also occurred in human

cells (Figure 5C).

Lipid Functional Annotation Predicts the TLR-Induced
Response of Patient-Derived Fibroblasts
To globally test the validity of the functional lipid annotations, we

next used the changes in lipid abundance to predict the inflam-

matory states of the patient fibroblasts. The lipid states of

Krabbe and Gaucher patient-derived fibroblasts displayed

strong positive correlations with the functional lipid annotations

for IL-6 release, predictive of a hyperinflammatory response (Fig-

ure 5D). Inversely, the lipid states of Farber and Chediak-Higashi

patient-derived fibroblasts were predictive of a dampened cyto-

kine release in response to LPS and CpG (Figure 5D). Strikingly,

TLR stimulation of the four patient fibroblast samples and corre-

sponding healthy control samples confirmed the predicted in-

flammatory states; with increased IL-6 release measured for

Krabbe and Gaucher and decreased IL-6 release measured for

Farber and Chediak-Higashi fibroblasts (Figure 5E). In unstimu-

lated conditions, all of the human samples showed only back-

ground IL-6 levels in the supernatant (Figure 5E). When calcu-

lating the log2 fold-changes in lipid abundance between pairs

of healthy controls, the resulting lipid states were not predictive

of either a hyperinflammatory or dampened inflammatory

response (Figures 5F and S5B). Indeed, when stimulated under

equal conditions, no significant differences in TLR-induced IL-

6 release weremeasured between the healthy control fibroblasts

(Figure S5C). In total, the functional lipid annotation derived from

RAW cells correctly predicted the inflammatory state of seven of

the eight different human fibroblast samples (Figure 5F). The lipid

state of the second Gaucher patient fibroblast sample was

significantly clustered on the circular network of lipid coregula-

tion (Figure S5D), but was not predictive of an altered IL-6

(K) Example correlation of the relative abundance of N-C18:0(OH)-Cer with LPS-induced IL-6 release over all nine cell lines. Red line indicates linear fit.

(L) As in (K), but for the negatively correlated N-C16:0-Cer.

(M) IL-6 release as measured by ELISA after pre-treatment with N-C18:0(OH)-Cer (15mM) or N-C8:0-Cer(2H) (15 mM) or respective vehicle controls. Data are

representative of three independent experiments and presented as mean ± SD of four technical replicates. *p < 0.005.

(N) As in (M), pre-treatment with N-C16:0-Cer (15 mM) or SM C24:0 (15 mM) or respective vehicle controls. Data are representative of three independent ex-

periments and presented as mean ± SD of four technical replicates. *p < 0.005.

See also Figure S4 and Table S1.
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independent experiments.

(legend continued on next page)
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release phenotype (Figure S5E), even though this was experi-

mentally shown (Figure S5F). Taken together, quantitative lip-

idomics of patient-derived fibroblasts confirmed both the lipid

coregulatory network and the functional annotation of lipids in

TLR-induced IL-6 release.

DISCUSSION

Building on the previous success of network-informed perturba-

tion strategies (Bouwmeester et al., 2004) and the ability to

quantitatively measure lipid abundance of hundreds of lipid

species (Shevchenko and Simons, 2010; Wenk, 2005), we

have developed an integrative framework that combined quanti-

tative lipidomics with genetic perturbations and their phenotypic

assessment across various TLR-related parameters. In analogy

to the early advances in transcriptomics (Eisen et al., 1998),

our approach led to the discovery of the conserved circular orga-

nization of lipid coregulation and the unbiased inference of lipid

function in innate immunity across the lipid landscape.

As the circular lipid network reflects the intersection of

different lipid metabolic pathways, metabolic adaptability, and

the spatial organization of lipids, it offers a global view of the

mammalian lipid landscape. Metabolic pathways commonly

display circular motifs, with the citric acid cycle and the urea

cycle as well-known examples. Circularity in metabolite coregu-

lation at the order of magnitude discovered here may therefore

be a fundamental property of lipid and potentially other meta-

bolic networks. The tight coregulation between lipid species of

different classes, most notably between sphingolipids and glyc-

erophospholipids, suggested that part of the robustness of cells

to loss of certain membrane lipids may stem from the fact that

they are able to functionally compensate this by increasing other

lipids (Boumann et al., 2006). It is conceivable that the identified

coregulatory interactions are context-dependent, as observed

for genetic interactions and signaling networks (Bandyopadhyay

et al., 2010). Future comparisons with lipid coregulatory net-

works measured in different physiological contexts and with

measurements of additional lipid classes such as sterols will

allow to distinguish general properties from context-dependent

variation.

Sincemembrane lipids predominantly act in concert, and given

the strong coregulation of lipids observed, annotation of functions

for single lipid species in mammalian cells is challenging andmay

be uniquely amenable to systematic approaches such as the one

developedhere. The inference of lipid function, validated at the in-

dividual and global lipid level, revealed strikingly opposite func-

tions for individual ceramide species in TLR-driven inflammation

(HannunandObeid, 2011), consistentwithprevious contradictory

reports on the role of ceramide in inflammation (Józefowski et al.,

2010; Vandanmagsar et al., 2011). The functional annotations of

membrane lipids in the different TLR-related processes were

organized in a continuum on the circular lipid coregulatory

network, the implication of which requires further investigation.

The finding that the inflammatory state of perturbed cells could

be predicted based solely on this global functional annotation of

lipids indicates that the protein state of a cell mediating the in-

flammatory phenotype is strongly dependent on and intertwined

with the cellular lipid state. The concept of predicting functional

phenotypes based on different lipid states as outlined in this

work should be applicable to more membrane-dependent pro-

cesses such as cell division (Atilla-Gokcumen et al., 2014), pro-

liferation, apoptosis (Pettus et al., 2002), and autophagy (Singh

et al., 2009). Since many of the lipids measured here are present

in identical chemical form in different organisms (Guan et al.,

2010), the conservation of the identified lipid coregulation and

function is an exciting avenue for further research. The unbiased

functional annotation of lipids therefore advances lipidomics to

complement the genomic and proteomic characterization of

cells, expanding our toolset for the investigation and diagnosis

of complex diseases. Intriguingly, it may aid the informed design

of therapeutic interventions that modulate the cellular lipid state.

The framework developed here can identify the function of the

lipid landscape in additional biological settings, is scalable to

more and diverse perturbations and likely applicable to other

metabolites, invaluable for a systems-level understanding of

cellular physiology across organisms.

EXPERIMENTAL PROCEDURES

Human Fibroblasts

The following fibroblast samples were obtained from the NIGMS Human

Genetic Cell Repository at the Coriell Institute for Medical Research:

(GM02075, GM02315, GM05659). The ‘‘Cell line and DNA biobank from

patients affected by genetic diseases’’ (Istituto G. Gaslini), member of the

Telethon Network of Genetic Biobanks (project no. GTB12001) funded by

Telethon Italy, provided us with specimens of human fibroblasts.

Lipid Supplementation

All lipids were solubilized as previously described using ethanol/dodecane

(Wijesinghe et al., 2009). RAW264.7 cells were incubated for 30 min with indi-

cated lipid concentrations prior to LPS stimulation.

Lipidomics

Targeted lipidomics analysis was performed on an AB SCiex triple-quadrupole

mass spectrometer operating in positive and negativeMRMmode (BIOCRATES

Life Sciences AG, Innsbruck, Austria). Forty-threeCalibrators in seven levels and

(C) Lipid abundance plotted on the circular network for four patient fibroblast samples. Significance of the clustering on the circular network for the lipid

abundance measurements is calculated and shown as in Figure 3I. Data are combined of three independent experiments.

(D) IL-6 release phenotype predictions for each of the patient fibroblast samples are based on the correlation between lipid functional annotation and lipid

abundance. Red dashed line indicates p < 0.05. Colored areas indicate significant phenotype predictions (blue, increased IL-6 release; red, reduced IL-6 release).

(E) IL-6 release after stimulation with IMQ (25 mM) and LPS (1 mg/ml) as measured by ELISA for patient fibroblasts and age-matched healthy controls. Mock:

unstimulated. Patient fibroblast bars are colored according to the predictions. Data are representative of three independent experiments and presented as mean

± SD of four technical replicates. *p < 0.001.

(F) Summary of the LPS- and CpG-induced phenotype predictions for all fibroblast samples, colored according to the agreement between predictions and

experiments. Blue and red areas indicate significant (p < 0.05) phenotype predictions as in (D).

See also Figure S5 and Table S3.
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five internal standards (three of them were deuterated) were used to measure a

panel of glycerophospholipids and sphingolipids.

Lipidomics Data Normalization

The lipidomics results were normalized based on the sum of concentrations for

all lipid species measured in a single biological replicate. Values were next

averaged over the three biological replicates and log2 transformed against

the corresponding average concentrations measured in sh:GFP.

Network Clustering Significance

The significance of clustering of various features was calculated by comparing

the absolute difference of the given feature between a node and its nearest

neighbor as defined by the network, averaged over all nodes, with the distribu-

tion of over 10,000 repeats of the same calculation using randomly shuffled

feature values.

Membrane Fraction Enrichment Score

The lipid subcellular membrane fraction enrichment scores were calculated as

the Z score over the lipid concentrations measured for any one lipid species

over all the analyzed fractions (Andreyev et al., 2010).

Lipid Function Prediction

Functional predictions or associations for lipids were performed based on

Pearson’s linear correlation coefficients between the log2(FC) readouts of

the TLR-related functional assays and the log2(FC) in lipid levels, over the

nine shRNA cell lines.

General Statistics

P values were calculated with two-tailed t tests, unless otherwise indicated.

Correlation values given are Pearson’s linear correlation coefficients, unless

otherwise indicated.

See also the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION
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Figure S1. TLR-Driven Transcription of the Sphingolipid Metabolic Network and Characterization of Cytokine Release upon shRNA-

Mediated Silencing of This Network, Related to Figure 1

(A) TLR4-induced changes in the abundance of selected sphingolipids in RAW macrophages. Data from http://lipidmaps.org (Dennis et al., 2010).

(B) Pathway enrichment analysis of all differentially regulated genes in a genome-wide analysis of TLR4-stimulated bone marrow-derived macrophages

(BMDMs). Shown are the highest enriched lipid-related annotations. Data from http://systemsimmunology.org (Ramsey et al., 2008). Enrichment analyzed

by DAVID.

(C) Relative expression of key regulators of sphingolipid metabolism upon TLR4 stimulation over indicated time points in BMDMs and RAW cells. Relative

expression calculated as delta log10 of the FPKM, or as log2 fold-change.

(D) Scatter plot of log2 fold-change expression (x axis) versus significance (y axis; t test) of RAWmacrophages stimulated with LPS or CpG for 2 and 4 hr. Red lines

indicate p < 0.05. Strongest regulated genes are indicated. Data are combined of two independent experiments with two technical replicates each.

(E) Venn diagram shows the number of regulated genes upon TLR4 stimulation by LPS and/or TLR9 stimulation by CpG. Predominant TLR localizations indicated

in schemas. Red and green numbers in brackets indicate down- and upregulated genes respectively.

(F) LPS- and CpG-induced relative expression of selected genes separated by different branches of the sphingolipid metabolic pathway (KEGG). Boxplots group

all expression values per subnetworks, with colors corresponding to subnetwork background colors. Abbreviations are as in Figure 1. Data are combined of two

independent experiments with two technical replicates each.

(G) Knockdown efficiencymeasured by qRT-PCR of all 129 shRNA cell lines, normalized to sh:GFP. Each dot represents one cell line. Green dots were included in

the screen, red dots were excluded due to insufficient knockdown efficiency. Threshold and median knockdown efficiency are indicated. Data are mean of

technical triplicates.

(H) IL-6 release after stimulation with LPS or CpG, and IFNb release after stimulation with Interferon-stimulatory DNA (ISD) or pdAdt in sh:Sphk1_1 and sh:GFP.

Data are representative of three independent experiments.

(I) IL-6 release after stimulation with LPS, CpG or IMQ after 16 hr measured in selected shRNA cell lines and sh:GFP. * indicates p < 0.005. Data are representative

of five independent experiments and shown as mean ± SD of four technical replicates.

See also Table S1.
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(A) Lipidomics measurements of sh:GFP control cell line shown as log10-transformed lipid concentrations (mM).

(B) Values are log2 fold-change relative abundance of selected ceramide species in sh:Cers2 (black bars) and sh:Cers6 (gray bars) relative to sh:GFP.

(C) Part of the sphingolipid metabolic pathway as defined by KEGG (left) compared to the hierarchical interactions (Snijder et al., 2013) between proteins inferred

from changes in lipid abundance (right). Arrows indicate inferred hierarchy; known metabolic connections are indicated in black, unknown inferred interactions

indicated in dark blue. Line thickness represents strength of hierarchical interaction. Spha: Sphinganine; Spho: Sphingosine; GluCer: Glucosylceramide. (A–C)

Lipidomics data are combined of three independent experiments and represented as mean.

See also Table S2.
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Figure S3. Further Characterization and Validation of the Circular Lipid Coregulatory Network, Related to Figure 3

(A) Lipid clusters as identified in Figure 3C indicated in different colors on the lipid coregulatory network. Lipids that could not be assigned to any single cluster are

indicated in gray.

(B) Visualization of diverse measurements on the network: lipid abundance in sh:GFP (far left), the number of unsaturated bonds (left), the type of linkage (right), or

lysolipids (far right). For lipid abundance and the number of unsaturated bonds the significance of clustering of these properties are displayed below the

respective networks. Color-coded as indicated in corresponding legends.

(C) Left: Relative lipid abundance in sh:Smpdl3b (Heinz et al., 2015) mapped onto the lipid network. Color-coded as indicated in legend. Significances of

clustering of these features on the network are displayed.
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Figure S4. Inference and Validation of Lipid Function in TLR-Related Processes, Related to Figure 4

(A) Histograms of TLR4-PE PM levels measured by FACS at steady state or after LPS (100ng/ml) stimulation at indicated time points in wild-type RAW cells.

(B) Histogram of steady-state TLR4-PE PM levels measured in sh:Tlr4 and sh:GFP cell lines analyzed by FACS.

(C and D) Screening results of TLR4PM levels unstimulated (C) and after 5min (D) of LPS (100 ng/ml) stimulation in loss-of-function cell lines stained with TLR4-PE

and measured by FACS. Values are log2 fold-change of mean fluorescence intensity relative to sh:GFP. Indicated are genes with strongest knockdown

phenotypes.

(E) Vector plot of log2 fold-change TLR4 PM levels from 0 to 5min (x axis) versus log2 fold-change in LPS-induced IL-6 release (y axis). Vector origin (dot) indicates

0 min and end (arrow) indicates 5 min.

(F) Time course measurements of CpG-induced Il6 transcription in the nine knockdown cell lines used for lipidomics (gray line) normalized to unstimulated and

10h sh:GFP control (black line).

(G) Scatter plot of log2 fold-change CpG-induced Il6 mRNA levels (x axis) versus log2 fold-change in CpG-induced IL-6 release (y axis). Indicated are the nine

genes selected for lipidomics analysis.

(H) Immunofluorescence microscopy of IL-6 protein levels in sh:Cers2_4, sh:GFP and sh:Tlr4 reveals perinuclear accumulation after 8h stimulation with LPS in

sh:Cers2_4. IL-6 (red), actin (green), DAPI (blue). Scale bars indicate 10mm. Inserts show close-ups of indicated areas.

(I) IL-6 and CCL5 release after stimulation with LPS, CpG, or IMQ, in sh:GFP and sh:Cers2_4.

(J) Correlations between relative lipid abundance and measurements of LPS-induced TLR4 PM levels (top) and IMQ-induced IL-6 release (bottom) plotted on the

circular network. Nodes of the network are color coded based on the strength of the correlation as indicated in legend.

(K) Average (gray bars) and SEM of the correlations between lipid abundance and IMQ-stimulated IL-6 release, per lipid fatty acid chain length, for ceramides (top)

and sphingomyelins (bottom). Dark gray lines indicate chain length trends. Background colors vary with strength of correlation (red for negative, blue for positive

correlations).

(L) Cell viability as measured by CellTiter-Glo luminescence, expressed in relative luminescence units (RLU) after supplementation with selected lipids (gray) or

respective vehicle control (black).

(M) Scatter plots between relative lipid abundance independently measured for sh:Smpdl3b (x axis) against functional lipid correlations (y axis) for all measured

TLR-induced IL-6 release. Dots represent individual lipids, colored based on the local data density. Strong and significant positive correlations of IL-6 release

predict a pro-inflammatory phenotype, as confirmed (Heinz et al., 2015).

P-values are indicated above panels. (A) and (B) Data are representative of at least two independent experiments. (C) and (D) Data are combined of two inde-

pendent experiments with two technical replicates each. (F) Transcriptional data are combined of two independent experiments and shown as mean ± SEM (H)

Microscopy results are representative of two independent experiments. (I) Data are representative of at least two independent experiments. * indicate p < 0.05.

ns: not significant. (L) Data are representative of at least three independent experiments.
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Figure S5. Lipidomics Analysis of Patient-Derived Fibroblasts Confirms Functional Lipid Annotations, Related to Figure 5

(A) Lipidomics analysis of 245 lipid species in four human fibroblast samples. Values are shown as log2 fold-change relative to the respective healthy controls.

Each dot represents a lipid species, color coded per lipid class; dot size indicates significance. Vertical gray bars separate lipid classes.

(B) IL-6 release phenotype prediction for the log2 fold-change normalized lipid states of pairs of healthy controls derived from the same biobank, based on the

correlation between lipid functional annotation and lipid abundance. Red dashed line indicates p < 0.05. Colored areas indicate significant phenotype predictions

(blue, increased IL-6 release; red, reduced IL-6 release).

(C) IL-6 release after stimulation with IMQ as measured by ELISA for different healthy fibroblast samples (see legend).

(D) Lipid abundance plotted on the circular network for the second Gaucher patient fibroblast sample relative to the respective healthy control. Significance of the

clustering on the circular network for the lipid abundance measurements is shown. Red line indicates the average absolute difference between abundance of

direct neighbors in the network; gray area indicates the distribution of randomized repeats.

(E) As in (B), for the second Gaucher patient fibroblast sample.

(F) IL-6 release after stimulation with IMQ asmeasured by ELISA for the second Gaucher patient fibroblast sample and age matched healthy control (see legend).

Mock: Unstimulated. (A) and (D) Data are combined of three independent experiments. (C) and (F) Data are representative of three independent experiments and

presented as mean ± SEM of three technical replicates. * indicated p < 0.005; ns: not significant.

See also Table S3.
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SUMMARY

Lipid metabolism and receptor-mediated signaling
are highly intertwined processes that cooperate to
fulfill cellular functions and safeguard cellular ho-
meostasis. Activation of Toll-like receptors (TLRs)
leads to a complex cellular response, orchestrating
a diverse range of inflammatory events that need
to be tightly controlled. Here, we identified the
GPI-anchored Sphingomyelin Phosphodiesterase,
Acid-Like 3B (SMPDL3B) in a mass spectrometry
screening campaign for membrane proteins co-pur-
ifying with TLRs. Deficiency of Smpdl3b in macro-
phages enhanced responsiveness to TLR stimulation
and profoundly changed the cellular lipid composi-
tion and membrane fluidity. Increased cellular re-
sponses could be reverted by re-introducing affected
ceramides, functionally linking membrane lipid
composition and innate immune signaling. Finally,
Smpdl3b-deficient mice displayed an intensified in-
flammatory response in TLR-dependent peritonitis
models, establishing its negative regulatory role
in vivo. Taken together, our results identify the mem-
brane-modulating enzyme SMPDL3B as a negative
regulator of TLR signaling that functions at the inter-
face of membrane biology and innate immunity.

INTRODUCTION

Toll-like receptors (TLRs) are important sensors of pathogens as

well as cellular and environmental stress (Kawai and Akira, 2010;

Moresco et al., 2011; O’Neill, 2008). Stimulation of these recep-

tors leads to a complex inflammatory response, orchestrating a

diverse range of cellular functions such as cytokine secretion,

cell migration, and antigen presentation (Kawai and Akira,

2007). To avoid unnecessary tissue damage or manifestation

of chronic inflammation, these events are tightly controlled (Ka-

wai and Akira, 2010; Liew et al., 2005; Medzhitov, 2008). Many

proteins have been identified previously as regulators of TLRs

acting via different mechanisms (Kondo et al., 2012; Lee et al.,

2012; Liew et al., 2005). These include accessory proteins

involved in folding and vesicular transport, facilitators of recep-

tor-ligand interactions, transcriptional regulators as well as intra-

cellular proteins involved in activation of receptor-proximal

signaling.

Lipids are involved in most cellular processes by serving at the

same time as structural components of membranes, energy

storage molecules, and second messengers in signaling events

(Hannun and Obeid, 2008; vanMeer et al., 2008). While the func-

tion of membrane-bound or associated proteins is strongly influ-

enced by the lipid composition and state of the accommodating

membrane, the molecular connections responsible for these re-

lationships are only beginning to be elucidated (Ernst et al.,

2010). Stimulation of macrophages with TLR ligands strongly im-

pacts on cellular gene expression and morphology. This also

involves regulation of the cellular lipid repertoire, further high-

lighting the high degree of interdependence of these processes

(Andreyev et al., 2010; Dennis et al., 2010;Maurya et al., 2013). In

addition to the TLRs themselves, several components of the re-

ceptor sorting and signaling machinery are associated with

different cellular membranes (Gay et al., 2014). This extensive

interconnection withmembrane biology suggests that the recep-

tor function is sensitive to changes in cellular lipid composition.

Therefore, it is not surprising that perturbations influencing
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cellular lipid flux or membrane microdomain composition

have been shown to affect TLR-dependent signaling events

(Fessler and Parks, 2011; Triantafilou et al., 2002, 2004; Zhu

et al., 2010).

Here, we report on the identification of SMPDL3B as a lipid-

modifying enzyme and demonstrate its involvement in the regu-

lation of TLR-induced signaling processes. We could show that

this GPI-anchored glycoprotein is prominently expressed on

macrophages and dendritic cells (DCs) and further strongly

upregulated by TLR stimuli and interferon gamma (IFN-g). Func-

tionally, Smpdl3b-deficient macrophages and DCs showed

hyper-responsiveness to TLR stimulation, suggesting a negative

regulatory role for SMPDL3B in TLR-induced signaling. Enzy-

matic measurements revealed that SMPDL3B is a potent phos-

phodiesterase active on the surface of these cells. Identifying a

role in lipid metabolism, Smpdl3b knockdown or knockout mac-

rophages showed a strong reduction in membrane order. This

was further highlighted by changes associated with SMPDL3B

depletion on the global cellular lipid composition as assessed

by lipidomics analysis. In particular, specific ceramide species

appeared to be depleted. Supplementation of these lipids in

Smpdl3b knockdown cells reverted their hyper-inflammatory

phenotype, thus confirming an implication of these molecules

in the regulation of TLR signaling. Finally, Smpdl3b-deficient

mice manifested higher inflammatory responses in models of

TLR-dependent peritonitis, establishing the importance of this

enzyme in vivo. Taken together, our results identify SMPDL3B

as lipid-modifying enzyme that acts as a negative regulator of

TLR signaling at the interface of lipid metabolism and inflamma-

tory signaling.

RESULTS

Identification of SMPDL3B as GPI-Anchored TLR
Interactor
The discovery of proteins modulating the activity of TLRs is

crucial for the understanding of TLR-dependent immune re-

sponses. The characterization of TLR-associated protein com-

plexes by affinity purification followed by mass spectrometry

has previously led to the identification of CD14 as co-receptor

for nucleic acid recognition by the endosomal TLRs 7 and 9

(Baumann et al., 2010). In the same screening campaign,

SMPDL3B (UniProt: P58242, entry name: ASM3B_MOUSE)

was consistently identified as membrane protein co-purifying

with endosomal TLRs 3, 7, 8, and 9 with robust sequence

coverage from RAW264.7 macrophages suggesting association

with the same membrane compartments harboring TLRs

(Figure 1A).

SMPDL3B contains an N-terminal signal peptide (amino acid

[aa] 1–18), a central metallo-phosphodiesterase domain

(MPP_ASMase, aa 23–323) as well as a C-terminal GPI-mem-

brane anchor signal and belongs to a small family of three

evolutionarily related enzymes (Figure 1B) (Masuishi et al.,

2013). Of these, Sphingomyelin Phosphodiesterase 1/Acid

Sphingomyelinase (SMPD1/ASM) is a well-characterized lyso-

somal protein involved in the degradation of sphingomyelin to

ceramide and phosphorylcholine (Hannun and Obeid, 2011;

Milhas et al., 2010; Seto et al., 2004). In contrast, less is known

about the precise functions of the related proteins SMPDL3A

and SMPDL3B. SMPDL3A was shown to be regulated by the

oxysterol-inducible transcription factor LXRa, linking it to lipid

metabolism, and recently confirmed to harbor phosphodies-

terase activity (Noto et al., 2012; Pehkonen et al., 2012; Traini

et al., 2014). SMPDL3B was shown to be a membrane-associ-

ated protein proposed to play a role in podocytes in human kid-

ney diseases including focal segmental glomerulosclerosis as

well as diabetic kidney disease (Fornoni et al., 2011; Yoo

et al., 2015).

To study the topology of SMPDL3B and related proteins in

overexpression experiments, HEK293T cells were transiently

transfected or stably transduced with the corresponding expres-

sion constructs (Figure S1A). SMPDL3B could be detected on

the surface of HEK293T cells stably expressing the protein while

mutants lacking the C-terminal GPI-membrane anchor signal

(SMPDL3BDGPI) accumulated in cell supernatants (Figures

1C, S1A, and S1B). While overexpressed SMPDL3A was also

detected in cell supernatants, confirming a previous report that

it is a secreted protein (Traini et al., 2014), SMPD1/ASM, a

well-established lysosomal protein, was not found at this loca-

tion (Figure S1B). Confocal microscopy of overexpressed

SMPDL3B in HEK293T cells confirmed the predominantly sur-

face-associated localization (Figure S1C). As the co-purification

of SMPDL3B with several TLRs was initially observed in

RAW264.7 macrophages, we used these cells to study the prop-

erties of the endogenous protein. In line with the human variant

(Masuishi et al., 2013), endogenous murine SMPDL3B was en-

riched in themembrane fraction of these cells and showed sensi-

tivity to phosphatidylinositol-specific phospholipase C (PI-PLC)

treatment, an enzyme known to cleave GPI anchors (Figures

1D, 1E, and S1D). Additionally, we assessed the presence of

N-linked glycosylation sites on murine or human SMPDL3B or

murine SMPDL3A and found that all proteins were highly glyco-

sylated as evidenced by sensitivity of proteins to PNGase F

(Figure S1E).

GPI-anchored proteins such as the TLR co-receptor CD14 are

known to localize to sphingomyelin- and cholesterol-enriched

membrane subdomains that can be purified based on their insol-

ubility in certain detergents (Mayor and Riezman, 2004). We

found SMPDL3B and CD14 both enriched in these detergent

resistant membranes isolated from RAW264.7 macrophages

(Figure S1F). In this light, we also evaluated whether the associ-

ation of SMPDL3Bwith TLRs could be confirmed by co-immuno-

precipitation (Figure 1F). SMPDL3B co-purified with the TLRs 4,

7, 8, and 9 and only weakly with TLR3 (Figure 1F), thus indeed

resembling the behavior of CD14 (Baumann et al., 2010; Lee

et al., 2012). Although these data are compatible with physical

proximity of SMPDL3B and TLRs, it is also possible that the

observations made reflect the presence of these proteins in

membrane and/or detergent complexes obtained under the

experimental solubilization conditions used, without the involve-

ment of direct protein-protein interactions.

Taken together, we found that SMPDL3B is a GPI-anchored

glycoprotein with putative enzymatic function that efficiently

co-purified with several TLRs frommacrophages and was there-

fore chosen for further functional evaluation as potential modu-

lator of TLR activity.
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SMPDL3B Is a Negative Regulator of TLR Signaling
SMPDL3B expression was prominently observed in macro-

phages and DCs (Figure S1G). Consistent with a possible role

for this enzyme in the course of inflammatory processes,

Smpdl3b transcription in bone marrow-derived macrophages

(BMDMs) and DCs (BMDCs) was robustly induced upon TLR

stimulation (Figure 2A). To further study the role of this protein

in primary cells, we decided to generate Smpdl3b-deficient

mice. The knockout mice were viable and did not have any overt

developmental phenotype. Interestingly, BMDMs and BMDCs

from Smpdl3b-deficient mice showed higher expression and

release of the chemokine KC/CXCL1 upon stimulation with

TLR agonists in comparison to wild-type cells (Figures 2B–2F

and S2A). In line with this, knockdown of Smpdl3b in

RAW264.7 macrophages increased the release of interleukin 6

(IL-6) upon treatment with lipopolysaccharide (LPS), CpG-DNA

(CpG), and imiquimod (IMQ) (Figures S2B and S2C). To evaluate

whether other important membrane-dependent events that

occur early upon TLR activation were affected by SMPDL3B

depletion, we measured the internalization rates of TLR4 and

the phagocytic uptake of CpG (Figures S2D–S2F). Endocytosis

of TLR4 upon LPS stimulation was unchanged in RAW264.7

macrophages or primary BMDMs depleted or deficient in

Smpdl3b, suggesting that the enhanced release of cytokines in

SMPDL3B-depleted cells was not caused by retaining TLR4 at

the plasmamembrane ormalfunctioning of receptor endocytosis

(Figures S2D and S2E). Also, uptake of fluorescently labeled

Cy3-CpG was unaltered in knockdown cells further indicating

that endocytic functions were intact (Figure S2F). Taken

together, these data show that Smpdl3b expression is induced

upon TLR stimulation and reveal that SMPDL3B negatively af-

fects TLR-dependent responses.

SMPDL3B Affects TLR-Dependent Signaling Processes
TLR signaling proceeds through the activation of mitogen-acti-

vated protein kinases (MAPKs) and the transcription factor

A C D

E

FB

Figure 1. Identification of SMPDL3B as GPI-Anchored TLR Interactor

(A) Average spectral counts (av spc) and average% sequence coverage (av%sc) of SMPDL3B detected bymass spectrometry in endosomal TLR tandem affinity

purifications.

(B) Domain organization of SMPDL3B, SMPDL3A, and SMPD1/ASM. Gray triangles indicate predicted or validated N-linked glycosylation sites; black triangles

indicate conserved motifs in metal coordination/substrate binding.

(C) HA-specific FACS analysis of HEK293T cells stably expressing murine SMPDL3B or a deletion mutant lacking the C-terminal GPI signal.

(D) Cells were lysed using 1% NP-40 or subjected to TX-114 phase separation. Proteins were analyzed by western blot for SMPDL3B, CD14, and IkBa. I,

detergent-insoluble proteins; D, detergent phase, amphiphilic integral membrane proteins; A, aqueous phase, hydrophilic proteins.

(E) Cells were lysed with TX-114; lysates were divided in two and treated or not with PI-PLC. Proteins were subjected to phase separation, and fractions were

analyzed by western blot for SMPDL3B, CD14, and IkBa.

(F) HEK293T cells were transfected with SMPDL3B and V5-tagged TLRs as indicated. Immunoprecipitates and extracts were analyzed by western blot using

SMPDL3B- and V5-specific antibodies.

(C–F) Data are representative of at least two independent experiments. See also Figure S1.
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NF-kB (Arthur and Ley, 2013; Kawai and Akira, 2007). To deter-

mine the effect of Smpdl3b knockdown on these signaling

events, we monitored phosphorylation of the MAPKs p38a,

c-Jun N-terminal kinase (JNK) or extracellular signal-regulated

kinase (ERK) (Figure 2G). SMPDL3B-depleted cells showed

higher levels of phosphorylated p38a and JNK, whereas phos-

phorylation of ERK appeared rather reduced. In addition to

the differences in these important phosphorylation events,

SMPDL3B-depleted macrophages showed sustained degrada-

A B

C D

E F

G

Figure 2. SMPDL3B Is a Negative Regulator of

TLR Signaling

(A) BMDMs or BMDCs were stimulated with 100 ng/ml

LPS or 1 mM CpG-DNA for the indicated time and

relative expression of Smpdl3b was measured by RT-

PCR.

(B) Expression of SMPDL3B and tubulin in wild-type

and Smpdl3b-deficient BMDMs was analyzed by

western blot.

(C and E) BMDMs or BMDCs from wild-type (WT) or

Smpdl3b-deficient (KO) mice were stimulated with

100 ng/ml LPS for the indicated time, and relative

expression of KC was measured by RT-PCR.

(D and F) BMDMs or BMDCs from wild-type (WT) or

Smpdl3b-deficient (KO) mice were stimulated with

LPS for 8 hr, and supernatants were analyzed for KC by

ELISA.

(G) The phosphorylation status of p38, JNK, and ERK

and protein levels of IkBa in the lysates of control

(shCTRL) and SMPDL3B-depleted RAW264.7 cells

(shS3B) upon stimulation with LPS were analyzed by

western blot.

(A and C–F) Data show mean ± SD of technical tripli-

cates and are representative of at least two indepen-

dent experiments. (G) Data are representative of two

independent experiments. See also Figure S2.

tion of IkBa, which is indicative of enhanced

NF-kB activity (Figure 2G). Together, these

results revealed that signaling processes

occurring relatively early after TLR engage-

ment are affected by the absence of

SMPDL3B.

Identification of SMPDL3B as TLR-
Inducible Neutral Phosphodiesterase
The similarity to other phosphodiesterases

prompted us to assess SMPDL3B activity

by monitoring phosphodiesterase-depen-

dent hydrolysis of chromogenic bis(4-nitro-

phenyl)phosphate (bis-pNPP) (Figure S3A).

Recombinant SMPDL3B lacking the C-termi-

nal GPI signal, purified from supernatants of

Sf9 insect cells or HEK293T cells, efficiently

hydrolyzed the substrate, exerting highest

activity at neutral pH (Figures 3A, 3B, and

S3B). This indicated that the enzyme is fully

active at the pH found at the plasma mem-

brane location. Confirming specificity, a

mutant (H135A) replacing a conserved histi-

dine residue of SMPDL3B predicted to be involved in substrate

hydrolysis (Seto et al., 2004), showed reduced enzymatic activity

(Figure 3C). In line with the abundant expression on the plasma

membrane, substrate hydrolysis could also be detected on

HEK293T cells stably expressing murine or human SMPDL3B,

indicating that this assay was well suited for measuring activity

on the surface of intact cells (Figures 3D, S3C, and S3D). Indeed,

RAW264.7 cells showed robustly detectable enzymatic activity,

which was strongly reduced in the Smpdl3b knockdown cells,
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highlighting SMPDL3B as an important phosphodiesterase

enzyme significantly contributing to substrate hydrolysis on

macrophages (Figures 3E and S3E).

Given that Smpdl3b transcription was upregulated upon TLR

activation in macrophages and DCs (Figure 2A), we next deter-

mined the effect of inflammatory stimuli on protein levels and

enzymatic activity. In line with enhanced transcription,

SMPDL3B protein levels were upregulated in BMDMs upon

stimulation with different TLR ligands, including LPS, CpG,

IMQ, and Pam3CSK4, and also the pro-inflammatory cytokine

interferon g (Figure 3F). Consistent results were also obtained

for RAW264.7 macrophages (Figure S3F). The cellular enzymatic

activity correlated well with the protein levels and was strongly

reduced in BMDMs from knockout mice, further highlighting

SMPDL3B as the dominant phosphodiesterase on the surface

of these immune cells (Figure 3F).

Deficiency in SMPDL3B Leads to a Global Increase
in Membrane Fluidity
To evaluate the impact of SMPDL3B, a lipid-associated enzyme,

on the cellular membrane environment, wemeasuredmembrane

fluidity of macrophages. The lipid phase of membranes in intact

cells can be studied using fluorescent probes that alter their

spectral emission properties dependent on lipid packing and

can thus reflect membrane order (Owen et al., 2012). The gener-

alized polarization (GP) function can be used to calculate a

normalized ratio between the measured intensities of ordered

and unordered fractions in fluorescence microscopy images

and therefore allows the quantification of changes in membrane

order. In line with a role for SMPDL3B in membrane biology, mi-

croscopy-based measurements of membrane fluidity using the

fluorescent probe di-4-ANEPPDHQ revealed a strong decrease

of membrane order (i.e., increase of membrane fluidity) in

SMPDL3B-depleted RAW264.7 macrophages (Figures 4A–4C).

Treatment with the cholesterol-extracting agent methyl-b-cyclo-

dextrin (MbCD) also led to reduced measureable membrane

order and served as a positive control for this assay system.

As an increase in membrane fluidity associated with SMPDL3B

knockdown might affect the integrity of lipid rafts found on the

cell surface, we measured the concentration of the raft marker

GM1 ganglioside by flow cytometry. Interestingly, the concentra-

tion of GM1 was not affected by knockdown of Smpdl3b, sug-

gesting no general modulatory effect on lipid raft abundance

(Figure S4A). Highly consistent with the data obtained in

RAW264.7 cells, also Smpdl3b-deficient BMDMs showed a

decrease in membrane order, indeed assigning a role to

SMPDL3B in membrane biology (Figure 4D).

Lipidomics Analysis
The clear changes of membrane fluidity in SMPDL3B knock-

down or knockout cells strongly suggested that the TLR-modu-

lating activity of SMPDL3B is associated with a change inmacro-

phage lipid composition. To test this, we assessed the global

impact of SMPDL3B on the cellular lipid repertoire by mass

spectrometry-based lipidomics. RAW264.7 cells were incubated

for 2 hr in serum-free medium and lipids from control (shCTRL)

and SMPDL3B-depleted cells (shSMPDL3B) were extracted

and analyzed for sphingo- and glycerophospholipid as well as

cholesterol levels (Table S1). In line with the strong reduction in

membrane order, knockdown of SMPDL3B led to a profound

global change in the cellular lipid composition, with significant al-

terations observed for components of most analyzed lipid

A B C

D E F

Figure 3. Enzymatic Activity and Inducibility

of SMPDL3B

(A) Substrate velocity curve and Lineweaver-Burk

diagram for murine SMPDL3B produced in Sf9 in-

sect cells.

(B) Influence of pH on the enzymatic activity of

murine SMPDL3B produced in Sf9 insect cells.

(C) Coomassie staining of SDS-PAGE gel contain-

ing equal amounts of human or mouse SMPDL3B

and H135A point mutants. Bar graphs show phos-

phodiesterase activity of the indicated proteins.

(D) Measurement of phosphodiesterase activity on

HEK293T cells stably expressing an empty vector

(mock) or murine SMPDL3B.

(E) Phosphodiesterase activity on control (shCTRL)

and Smpdl3b-depleted (shSMPDL3B) RAW264.7

cells.

(F) Wild-type (wt) or Smpdl3b-deficient (ko) BMDMs

were stimulated or not with 100 ng/ml LPS, 1 mM

CpG, 2.5 mM IMQ, 200 ng/ml Pam3Csk4 (P3C4),

and 1,000 U/ml IFN-b or 1,000 U/ml IFN-g for 16 hr,

and SMPDL3B or Actin protein levels were analyzed

by western blotting. Bar graphs represent phos-

phodiesterase activity measured after stimulation.

(A and C) Data are representative of at least two

independent experiments. (B and D–F) Data show

mean ± SD of technical triplicates and are repre-

sentative of at least two independent experiments.

See also Figure S3.
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classes (Figures 4E, S4B, and S4C). Among sphingolipid spe-

cies, significant decreases were observed for ceramide species

upon knockdown of SMPDL3B, and two sphingomyelin species

were significantly increased while five were decreased (Figures

4E and S4B). Also, glycerophospholipids were strongly affected

by SMPDL3B depletion. Phosphatidylcholine species were

rather increased, whereas most phosphatidylethanolamine,

-inositol and -serine, were decreased (Figures 4E and S4B).

Finally, cellular cholesterol levels were also significantly

decreased in SMPDL3B-depleted cells (Figure S4D). Taken

together, our membrane fluidity and lipidomics measurements

identified SMPDL3B as regulator of macrophage membrane

composition and order.

Silencing of Smpdl3b Leads to a Pro-inflammatory Lipid
State
Given that the depletion of SMPDL3B in RAW264.7 cells did not

only affect a subset of measured lipid species, but led to a

global change in the cellular lipid repertoire, the interpretation

of these data required further analysis. Based on a systematic

perturbation screen targeting genes involved in sphingolipid

metabolism combined with lipidomics analysis and measure-

ment of TLR-related processes the function of 245 diverse lipid

species could be inferred (see Köberlin et al., 2015). Utilizing

this resource, we compared the changes in lipid abundance

upon SMPDL3B knockdown with their predicted function in

IL-6 release for those lipid species that were detected in both

lipidomics data sets. Consistent with the increased inflamma-

tory response observed in SMPDL3B-depleted cells, we found

lipids associated with increased IL-6 release upon LPS or CpG

stimulation to be increased in abundance while lipids associ-

ated with reduced IL-6 release were decreased in abundance

(Figure S4E). Interestingly, several ceramide species predicted

to dampen TLR-dependent IL-6 release (Cer d18:1/16:0,

d18:1/22:0, and d18:1/24:1) were significantly reduced upon

SMPDL3B knockdown (Figures 4F and S4E). To validate their

potential involvement in regulating LPS-induced IL-6 release,

we performed lipid supplementation experiments. Indeed,

when control and SMPDL3B-depleted macrophages were

pre-treated with the synthetic ceramide species Cer d18:1/

16:0, Cer d18:1/22:0, and Cer d18:1/C24:0, the SMPDL3B-

dependent increase in IL-6 release upon TLR stimulation could

be reverted (Figures 4G and S4F). Similarly, the IL-6 release

induced upon stimulation with CpG and IMQ was reduced by

A B
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F G

Figure 4. SMPDL3B Alters the Biophysical

Properties and Composition of Cellular

Membranes

(A–D) Membrane fluidity measurements. (A)

Confocal images pseudocolored based on GP

values (see color bar). Left: shCTRL; right:

shSMPDL3B. Scale bar, 20 mm. (B) GP value dis-

tribution from representative experiment. Mean ±

SEM, n = 7. (C) Fraction of ordered membrane of

RAW264.7 relative to shCTRL. Mean ± SD of at

least three biological replicates is shown. (D)

Fraction of ordered membrane of BMDMs relative

to WT. Mean ± SD, n = 5. Figure is representative

of two biological replicates.

(E) Lipids were extracted from control (shCTLR) or

SMPDL3B-depleted (shSMPDL3B) RAW264.7

macrophages and analyzed by MS for glycer-

ophospho- and sphingolipids. Bubble plots

represent mean log2-transformed fold-change

differences between cell lines. SM, sphingomyelin;

GluCer, glucosylceramide; Cer, ceramide; PC,

(lyso-) phosphatidylcholine; PE, (lyso-) phosphati-

dylethanolamine; PA, phosphatidic acid; PI, (lyso-)

phosphatidylinositol; PS, (lyso-) phosphatidylser-

ine; PG, phosphatidylglycerol. Data are represen-

tative of two biological replicates each consisting

of five technical replicates.

(F) Relative lipid levels for ceramide in control

(shCTRL) and SMPDL3B-depleted RAW264.7

macrophages (shSMPDL3B). Cer d18:1/16:0 is

abbreviated as C16:0, Cer d18:1/22:0 as C22:0,

Cer d18:1/24:0 as C24:0, and Cer d18:1/24:1 as

C24:1. Data represent mean ± SEM of two bio-

logical replicates each consisting of five technical

replicates. *p % 0.05.

(G) Control (shCTRL) and SMPDL3B-depleted

RAW264.7 macrophages (shSMPDL3B) were

pretreated for 30 min with vehicle (VEH) or the indicated synthetic ceramide species (15 mM) and then stimulated with 100 ng/ml LPS for 8 hr. IL-6 release was

measured by ELISA.

Data show mean ± SD of technical triplicates and is representative of at least two independent experiments. See Figure S4.
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supplementation of ceramide Cer d18:1/24:0 further experi-

mentally confirming the predicted roles on other TLRs

(Figure S4G).

Taken together, changes in cellular lipid species abundance

associated with SMPDL3B depletion were highly indicative of

pro-inflammatory responses. Furthermore, our lipidomics anal-

ysis combined with lipid supplementation experiments allowed

us to highlight several long-chained ceramide species as puta-

tive modulators of the enhanced inflammatory response upon

SMPDL3B depletion.

SMPDL3B Negatively Regulates TLR Activity In Vivo
If, as all evidence so far would show, SMPDL3B is involved in

homeostasis of membrane lipid composition and TLR signaling,

then it should have a role in TLR-mediated inflammatory pro-

cesses in vivo. To assess this, we used an LPS-dependent

mouse inflammation model. Wild-type or Smpdl3b-deficient

mice were injected intraperitoneally with LPS and peritoneal

cell influx as well as serum cytokine levels were determined

6 hr later (Figures 5A and 5B). Smpdl3b-deficient mice con-

tained higher numbers of immune cells in the peritoneal lavage

fluid (PLF), due to a significantly enhanced influx of neutrophils,

in line with an aberrantly strong inflammatory response (Fig-

ure 5A). Concomitantly, Smpdl3b-deficient mice showed

increased IL-6 levels in the serum as compared to control

mice (Figure 5B). Serum levels of TNF were not significantly

affected under these conditions (Figure 5B). To test whether

SMPDL3B also affects the host-response against viable patho-

gens, we used an E. coli-induced peritonitis model. Hence,

wild-type and Smpdl3b-deficient mice were injected with bac-

teria in the peritoneum and serum cytokine levels were quanti-

fied 6 hr later. Serum levels of IL-6, TNF, IL-12p40, and KC

A B

C

Figure 5. SMPDL3B Is a Negative Regulator

of Inflammation In Vivo

(A and B) Wild-type (WT) and Smpdl3b-deficient

(KO) mice were injected with 50 mg LPS i.p. After

6 hr, mice were sacrificed, and (A) peritoneal lavage

was taken and total cells and neutrophils were

counted, and (B) serum IL-6 and TNF were

measured by ELISA.

(C) Wild-type (WT) and Smpdl3b-deficient (KO)

mice were injected i.p. with 1 3 104 cfu of E. coli.

After 6 hr, mice were sacrificed, and the serum

cytokine levels of IL-6, TNF, IL-12p40, KC, IL-10,

and IL-1bwere analyzed by ELISA. Bars are means

of each group ± SEM (*p % 0.05) and are repre-

sentative of two independent experiments, each

performed with eight mice/group.

were significantly elevated in Smpdl3b-

deficient mice as compared to wild-type

(Figure 5C). Interestingly, we did not

detect significant alterations in the serum

levels of the cytokines IL-10 and IL-1b,

indicating that not all inflammatory medi-

ators were equally affected by Smpdl3b

deficiency (Figure 5C). Taken together,

our experiments indeed establish SMPDL3B as negative regu-

lator of TLR-dependent inflammatory responses in vivo.

DISCUSSION

In the present study, we have identified the GPI-anchored lipid-

modifying enzyme SMPDL3B as negative regulator of TLR

signaling. We found that this sphingomyelinase-related protein

is abundantly expressed on macrophages and DCs and can be

further upregulated by inflammatory stimuli. Furthermore, enzy-

matic assays on intact cells revealed that SMPDL3B is respon-

sible for a large fraction of measurable phosphodiesterase activ-

ity on these important immune cells. Loss-of-function of this

enzyme led to increased cellular responses upon TLR stimula-

tion while Smpdl3b-deficient mice showed enhanced inflamma-

tion in models of TLR-dependent peritonitis. Confirming the

involvement of this protein in lipid metabolism, we found that

lack of the cellular activity of this enzyme was associated with

a significant change in membrane fluidity and the global cellular

lipid composition. Supplementation of specific ceramide

species that were reduced in SMPDL3B-depleted cells was

able to revert the SMPDL3B-dependent hyper-inflammatory

phenotype.

Bioactive lipids such as ceramides, sphingosine-1-phosphate

and phosphatidylinositol derivatives as well as changes in struc-

tural components of cellular membranes have all been impli-

cated in modulation of TLR signaling (Fessler and Parks,

2011; Liew et al., 2005). The inducibility upon TLR stimulation

and impact of SMPDL3B on cellular lipid composition and

consequently membrane fluidity is suggestive of a not yet

described regulatory mode of macrophage function acting at

the interface of membrane biology and inflammatory signaling.
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The lipid environment of TLRs, including membrane microdo-

mains rich in sphingolipids and cholesterol, has been shown

to play a role in receptor function (Fessler and Parks, 2011;

Lingwood and Simons, 2010; Triantafilou et al., 2002, 2004;

Zhu et al., 2010). Perturbations affecting the receptor-accom-

modating membranes, as observed in macrophages defective

for the cholesterol efflux transporters ABCA1 and ABCG1 that

display an increase in free cholesterol, lead to enhanced

responsiveness of TLRs, presumably as a consequence of

altered plasma membrane composition (Draper et al., 2010;

Yvan-Charvet et al., 2008; Zhu et al., 2008, 2010). In cells defi-

cient for SMPDL3B, we could not detect changes in the amount

of GM1, a marker for sphingolipid- and cholesterol-enriched mi-

crodomains, indicating that these structures are intact. Instead,

we observed a global decrease in membrane order and change

in the cellular lipid repertoire that was associated with upregula-

tion of TLR-triggered signaling, suggesting that SMPDL3B ac-

tivity may affect innate immunity signaling by an alternative,

possibly composite mechanism.

Interestingly, whereas TLR receptor-proximal signaling and

cytokine production were clearly changed by SMPDL3B deple-

tion, other processes, including TLR4 surface expression and

endocytosis or CpG uptake, appeared normal. This indicates

that membrane-dependent functions are differently sensitive to

SMPDL3B depletion, which might also affect other TLR-associ-

ated processes including receptor-lipid interactions, adaptor

recruitment dynamics, receptor diffusion and trafficking, or

ligand dissociation (Ernst et al., 2010; Gay et al., 2014). While

in the context of TLR signaling SMPDL3B-depleted or deficient

macrophages manifested a stronger inflammatory response,

the global changes in the cellular lipid repertoire are likely to

have more pleiotropic functional effects and affect other cellular

signaling pathways and processes that were not covered in our

study. Therefore, future experiments will aim at the identification

and elucidation of additional roles of SMPDL3B in macrophages

and other cellular systems in which SMPDL3B is expressed.

Generation of ceramide has been observed in response to

various stimuli, leading to the formation of ceramide-rich mem-

brane platforms, thought to be involved in the regulation of trans-

membrane signaling processes (Hannun and Obeid, 2008; Mil-

has et al., 2010; Stancevic and Kolesnick, 2010). Based on

observations in experimental lipid bilayers, an increase in cer-

amide species causes higher membrane order, highlighting a

regulatory effect of these lipids on membrane biophysical prop-

erties (Stancevic and Kolesnick, 2010). Interestingly, several cer-

amide species (Cer d18:1/16:0, Cer d18:1/22:0, and Cer d18:1/

24:1), which were found to be negatively correlated with TLR-

induced IL-6 release, were also significantly reduced upon

SMPDL3B depletion, potentially explaining the effect on mem-

brane order observed in these cells.

Despite the complexity of the mechanism at play, the specific

and high expression of SMPDL3B in immune cells, the induc-

ibility of its expression and activity by immune stimuli, combined

with the unequivocal phenotype observed in Smpdl3b-deficient

mice, demonstrate an intimate link between a major cell surface

lipid-modulating enzyme and the regulation of pro-inflammatory

processes. Undoubtedly, more connections between meta-

bolism, tissue homeostasis, and the resolution of inflammation

are likely to emerge in the future and further elucidate these inter-

dependent regulatory networks.

EXPERIMENTAL PROCEDURES

Information on reagents, plasmids, cell culture, and protein purification can be

found in the Supplemental Experimental Procedures.

FACS

All samples were analyzed on a BD Biosciences FACSCalibur or LSR Fortessa

flow cytometer. See the Supplemental Experimental Procedures for further

information.

RT-PCR

RNA was isolated with the QIAGEN RNeasy Mini Kit. 100 ng RNA/sample was

reversely transcribed using RevertAid reverse transcriptase (Fermentas).

cDNA was diluted 1:20, and relative transcript levels were analyzed using

SYBR green (GeneXPress) using the following primers: Cyclophilin B 50-CAG
CAA GTT CCA TCG TGT CAT CAA GG-30 and 50-GGA AGC GCT CAC CAT

AGA TGC TC-30; Smpdl3b 50-AAG TCT ATG CTG CTC TGG GAA-30and 50-
TGC CAC CTG GTT ATA GAT GC-30; mKC 50CAATGAGCTGCGCTG

TCAGTG-30 and 50-CTTGGGGACACCTTTTAGCATC-30. Real-time PCR anal-

ysis was performed on a Rotor Gene 6000 (QIAGEN) in technical duplicates or

triplicates. Expression of target genes was normalized to that of the house-

keeping gene Cyclophilin B.

ELISA

All ELISA experiments were performed according to the manufacturers’ in-

structions. The kit for detection of KC was from R&D Systems, TNF was

from BioLegend, and all others were from BD Biosciences.

Triton X-114 Phase Separation and PI-PLC Sensitivity Assays

Triton X-114 (TX114) phase separation experiments were performed accord-

ing to Bordier (1981) and as described previously (Heinz et al., 2012). PI-PLC

experiments were carried out by incubation of samples with 0.5 U/ml PI-PLC

(Invitrogen) for 30 min on ice. See the Supplemental Experimental Procedures

for further information.

Phosphodiesterase Enzymatic Activity

Generation of p-nitrophenol from bis-p-nitrophenolphosphate by phosphodi-

esterase activity was measured as absorbance at 405 nm in 96-well plates

with 100 ml reaction volume. Kinetic measurements were carried out using

325 ng/ml enzyme purified from Sf9 insect cells in HEPES buffer (20 mM

[pH 7.8]) with a substrate concentration as indicated. pH optima were deter-

mined by incubation of enzymes purified from Sf9 insect cells or HEK293T

cells in the presence of different buffers adjusted to the indicated pH in

the presence of 1 mM substrate. For determination of the impact of point

mutations, enzymes were incubated with HEPES buffer (20 mM [pH 7.8])

in the presence of 1 mM substrate. For measurement of cell-associated

enzymatic activity, cells were incubated in 96-well plates with isotonic

Tris-buffered saline (TBS) in the presence of 1 mM substrate at 37�C and

5% CO2.

Membrane Fluidity Measurements

Membrane fluidity measurements were carried out using the fluorescent probe

di-4-ANEPPDHQ following a modified protocol from Owen et al. (2012). See

the Supplemental Experimental Procedures for additional information.

Lipidomics

1.5 3 107 RAW264.7 cells stably expressing SMPDL3B-specific or control

small hairpin RNA (shRNAs) were seeded in 10-cm dishes in serum-free

DMEM medium as five technical replicates and incubated for 2 hr at 37�C,
5% CO2. Cells were harvested into ice-cold PBS and centrifuged for 5 min

at 300 3 g, 4�C, and pellets were resuspended in 50 ml PBS, transferred to

Eppendorf tubes, and frozen in liquid nitrogen for further processing. Samples

were hydrated by adding 200 ml H2O and extracted by addition of 600 ml
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methanol/chloroform (1:2 v/v) by vigorously vortexing the samples three times

for 1 min with 5-min intervals. After addition of 300 ml chloroform and 2 ml of

100 mM KCl samples were vortexed three times for 30 s with 1-min intervals.

Samples were centrifuged at 9,000 rpm for 2 min at 4�C; the lower, organic

phase was transferred to new tubes and dried in a SpeedVac centrifuge.

Lipids were quantified by HPLC/MS as described previously with corre-

sponding internal standards including C17-Cer, C12-SM, C8-GluCer, C20-

LPC, and PC-14:0/14:0 (Avanti Polar Lipids) (Shui et al., 2011). Individual

lipids were normalized to phosphatidylcholine and sphingomyelin levels.

In Vivo Experimental Procedures

HeterozygousSmpdl3b+/�mice (B6N;B6N-Smpdl3b < tm1a(EUCOMM)Wtsi >

/H) were purchased from the EMMA consortium (EUCOMM) and shipped from

the MRC. Smpdl3b homozygous knockout was confirmed by genotyping

using the following primers: SMPDL3B WT 50 -GTG TAA GCC TTC TCC

CCC AG-30; SMPDL3B WT 50-CAG AAA AAG TTC TAC GGA CCA GC-30;
SMPDL3B MUT 50-TTG GTG ATA TCG TGG TAT CGT T-50. Wild-type

C57BL/6J mice were obtained from Charles River Laboratories and bred at

the same location as Smpdl3-deficient mice. Pathogen-free 9- to 11-week-

old female C57BL/6J and homozygous B6N;B6N-Smpdl3btm1a(EUCOMM)Wtsi/

HSmpdl3b�/�mice were used in all in vivo experiments, which were approved

by the Animal Care and Use Committee of the Medical University of Vienna.

Mice were injected intraperitoneally with 50 mg LPS in 200 ml of saline per

mouse. After 6 hr, mice were sacrificed, peritoneal lavage was performed,

and blood was taken. Cell counts were determined on each peritoneal lavage

sample stained with Tuerks solution, and differential cell counts were per-

formed on cytospin samples stained with Giemsa. E. coli-dependent perito-

nitis was induced as described previously (Knapp et al., 2007). In brief,

E. coliO18:K1 was cultured in Luria-Bertani medium (Difco) at 37�C, harvested
at mid-log phase, andwashed twice before inoculation. Mice were injected i.p.

with 1–23 104 cfu E. coli in 200 ml saline per mouse. The inoculum was plated

on blood agar plates to determine viable counts. Mice were sacrificed, and

blood was isolated after 6 hr.

Bioinformatic Analysis and General Statistics

Protein sequences and information were retrieved from UniProtKB database

(2012). Additional information on domain organization was obtained through

the NCBI conserved domain database (CDD) (Marchler-Bauer et al., 2011).

Protein homology searches were carried out using NCBI Blast (Altschul

et al., 1990). Expression data for murine SMPDL3B were extracted from the

BioGPS gene annotation portal (Lattin et al., 2008; Wu et al., 2009). p values

were calculated with two-tailed t tests, unless otherwise indicated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2015.05.006.
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Supplemental Experimental Procedures 

Reagents and antibodies. All synthetic TLR ligands, imiquimod, CpG-DNA-ODN1826 and LPS (E.

coli K12) were obtained from InvivoGen. Alexa488-conjugated anti-mouse antibodies and cholera 

toxin beta (CTx -Alexa488) were from Life Technologies. Mouse anti-HA was from Covance, V5 

from Invitrogen and Tubulin from Abcam. Rabbit anti-p38, JNK and phosphorylated forms of p38 

(Thr180, Tyr182), ERK (Thr202/Tyr204) and JNK (Thr183, Tyr185) were from Cell Signaling, I B  

and ERK from Santa Cruz. Rat anti-CD14 was from Pharmingen, rabbit anti-actin from Cytoskeleton 

Inc. PE-conjugated rat anti-TLR4 antibodies (clone MTS510) were from BioLegend. HRP-conjugated 

secondary antibodies were from Jackson ImmunResearch, fluorescence-conjugated antibodies were 

from Invitrogen. Custom rabbit anti-SMPDL3B antibodies raised against recombinant murine 

SMPDL3B (aa1-281) produced in E.coli were obtained from Charles River. Ceramides Cer d18:1/24 

(C24), Cer d18:1/22 (C22) and Cer d18:1/16 (C16) were obtained from Avanti Polar Lipids and 

dissolved in ethanol/dodecan (98:2 v/v) vehicle by sonication for 25 minutes with vortexing steps 

every 5 min in 40°C warm water as previously described (Wijesinghe et al., 2009). 

Plasmids. Murine TLR constructs (available from GenBank/EMBL/DDBJ under the following 

accession nos.: mTLR3, NM_126166; mTLR4, NM_021297; mTLR7, NM_133211; mTLR8, 

NM_133212; mTLR9, NM_031178) were cloned from InvivoGen vectors (pUno-HA vectors) into 

pTracer-V5 (Invitrogen) and pCeMM CTAP(SG) using the Gateway LR Clonase (Invitrogen) sytem. 

All gateway entry clones for C-terminal tagging of full-length cDNAs were created using 20–25 bp of 

flanking regions and the following gateway primer sequences: sense attB1primer, 5‘-GGG GAC AAG 

TTT GTA CAA AAA AGC AGG CTA GAC TGC CAT G(NNN) 5–10-3‘; and antisense attB1 

primer, 5‘-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTT NOSTOP(NNN)10–15-3‘. For N-

terminal HA-tagged expression, cDNAs were cloned in the entry vector pEntry1A-SP-HA, a 

derivative of pEntry1A (Invitrogen) containing the signal peptide of influenza hemagglutinin followed 

by an HA tag and a short multiple cloning site by ligation of two annealed oligos corresponding to the 

sequence 5’-GTC GAC GCC ACC ATG GCT ATC ATC TAC CTC ATC CTC CTG TTC ACC GCT 

GTG CGG GGC TAT CCA TAT GAC GTC CCA GAC TAC GCA GGA CCC GGA AAG CTT 



3 

GGA TCC GAA TTC-3’ in the SalI and EcoRI sites of the plasmid. cDNAs were amplified by PCR 

from plasmid templates or cDNA libraries (Takara Bio Inc.) using the primers: mSMPDL3B (19-456) 

5’-GCG AAG CTT CAA CTA GGG AGG TTC TGG CAC-3’ and 5’-GCG GCG GCC GCT CAT 

AAC ACC TCC AGT ACG TG-3’; hSMPDL3B (19-455) 5’-GCG AAG CTT GAA CCA GGG AAG 

TTC TGG CAC-3’ and 5’-GCG GCG GCC GCT CAC AGC ACG AGC GTG CAC AG-3’; 

mSMPDL3B GPI (19-435) 5’-GCG AAG CTT CAA CTA GGG AGG TTC TGG CAC-3’ and 5’-

GCG GCG GCC GCT CAC TTG GCA CCA AGA CCA TGC AA-3’; hSMPDL3B GPI (19-435) 5’-

GCG AAG CTT GAA CCA GGG AAG TTC TGG CAC-3’ and 5’-GCG GCG GCC GCT CAC GTG 

GTG CCA GAG GCA TAC AG-3’; mSMPD1/mASM (45-627) 5’-GCG AAG CTT CTG TTT GAC 

TCC ACG GTT CTT-3’ and 5’-GCG GCG GCC GCC TAG GAC AAC AGG GGG CGT GA-3’; 

mSMPDL3A (23-445) 5’-GCG AAG CTT GTG CCC CTG GCG CCG GCG GAT-3’ and 5’-GCG 

GCG GCC GCT TAT AAA TGC TGT TTA AGG CA-3’ and were ligated in the plasmid using 

HindIII and NotI. Site-directed mutagenesis for murine and human SMPDL3B H135A was carried out 

using the Quikchange II kit (Stratagene). cDNAs containing the N-terminal signal peptide and HA tag 

were transferred from pEntry1A-SP-HA in pTO or pMSCV-GW expression vectors using LR Clonase. 

For expression and secretion from insect cells, the mSMPDL3B GPI (19-435) cDNA was cloned into 

a derivative of pFastbac1 containing the mellitin signal peptide followed by a HIS-tag and an MCS 

using HindIIII and NotI. pLKO.1 lentiviral shRNA vectors for SMPDL3B-1, clone Id 

TRCN0000099681 and shSMPDL3B-2, clone Id TRCN0000099683) and GFP as control were from 

Sigma. If not otherwise stated, shSMPDL3B-1 was used in experiments. 

Cell culture. RAW264.7, HEK293T and primary bone marrow cells were cultured in DMEM (PAA) 

supplemented with 10% FCS (Invitrogen) and antibiotics (100 U/ml penicillin and 100 g/ml 

streptomycin) at 37°C, 5% CO2. In all types of direct stimulation experiments involving RAW264.7 

macrophages, cells have been washed twice and shifted to serum-free medium 1h prior stimulation to 

avoid lipid rescue by FCS-derived lipids. For stimulation experiments involving synthetic ceramide 

pretreatment, cells were incubated for 30 min in serum free medium containing 15 μM ceramide or the 

corresponding ethanol/dodecan vehicle control and were stimulated with LPS (100 ng/ml), CpG (5 

μM) or imiquimod (5 μM) for 8h. Cell viability was assessed using CellTiter-Glo (Promega) 
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according to the manufacturer’s instructions. Primary cells were stimulated in full medium. BMDMs 

and BMDCs were generated by differentiation of bone marrow cells with 10 ng/ml rmM-CSF 

(Peprotech) or 20 ng/ml rmGM-CSF (R&D Systems) at a concentration of 1x106 cells/ml in non-tissue 

culture treated dishes for 7-8 days. For stimulation experiments, cells were transferred to 96-well cell 

culture-treated dishes and stimulated for 8h as indicated. Sf9 cells were cultured in Sf-900TM III SFM 

medium (Life Technologies) containing 2% FCS and antibiotics (100 U/ml penicillin and 100 g/ml 

streptomycin) at 27°C. 

Transfection, co-immunoprecipitation and western blot. For co-immunoprecipitation experiments, 

HEK293T cells were transfected using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions. 24 h later, cells were lysed in E1A lysis buffer containing 1% NP-40, 

50 mM Tris pH 8.0, 250 mM NaCl, 5 mM EDTA, Complete protease inhibitor cocktail (Roche) for 

15 min, 4°C; lysates were cleared by centrifugation in a microcentrifuge (13 000 r.p.m., 10 min, 4°C) 

and incubated overnight on the wheel with anti-V5 beads (Sigma-Aldrich). Beads were washed with 

E1A buffer and eluted with Laemmli sample buffer. Lysates and immuneprecipitated proteins were 

resolved by SDS-PAGE, transferred to nitrocellulose membranes (Whatman) and analyzed by western 

blot. For other applications, cells were lysed in RIPA buffer containing 10 mM Tris-HCl pH 7.5, 

150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, Halt phosphatase 

inhibitor cocktail (Thermo Scientific), Complete protease inhibitor cocktail and 250 u/ml Benzonase 

(Novagen). Protein concentration was measured using Bradford protein assay (Bio-Rad) and 

normalized using RIPA buffer. Samples were mixed with Laemmli sample buffer, resolved by SDS-

page and analyzed by western blot. For purification of recombinant SMPDL3B lacking the C-terminal 

GPI anchor from HEK293T cells, proteins were immunoprecipitated from cellular supernatants using 

HA beads (Sigma-Aldrich) and competitively eluted using HA peptide (Sigma-Aldrich). For 

glycosylation assays, eluted proteins were incubated with PNGaseF (New England BioLabs) 

according to the manufacturers’ instructions and analyzed by western blot. 

FACS. HEK293T cells stably expressing murine or human SMPDL3B were stained with mouse 

monoclonal anti-HA antibodies (Covance) diluted 1:1000 in PBS for 30 minutes at 4°C. Cells were 
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washed once with PBS and stained with AlexaFluor488 goat anti-mouse secondary antibodies 

(Invitrogen) diluted 1:1000 in PBS for 30 minutes at 4°C. For TLR4 endocytosis assays RAW264.7 

cells or BMDMs were stimulated for the indicated time points with 100 ng/ml LPS. Cells were 

harvested and stained with anti-TLR4 antibodies for 20 minutes at 4°C. For GM1 staining, RAW264.7 

cells were harvested and stained for 15 minutes using 100 ng/ml CTx -Alexa488. Cy3-CpG-DNA 

uptake was determined as previously described (Baumann et al., 2010) 

Triton X-114 phase separation and PI-PLC sensitivity assays. 

3x106 RAW264.7 cells were resuspended in 500 l PBS and 100 l 6% pre-condensed TX114, mixed 

by pipetting and lysed for 15 min on ice. Samples were centrifuged for 1 min at 13 000 r.p.m., the 

supernatants were transferred to new tubes, the pellets, correspond to the insoluble fractions, were 

resuspended in 200 l Laemmli sample buffer. Supernatants were incubated for 5 min at 37°C to 

induce phase separation and centrifuged for 1 min at 13 000 r.p.m. at room temperature. The upper 

aqueous phases were transferred to new tubes. To wash, the lower, detergent phase was mixed with 

500 l PBS, the upper phase with 100 l 6% TX114 and incubated for 5 min on ice and for 5 min at 

37°C. Samples were centrifuged and the initial phases were kept for further processing. Proteins were 

precipitated by adding 500 l methanol and 125 l chloroform to the aqueous and 450 l PBS, 500 l 

methanol and 125 l chloroform to the detergent phases. Samples were centrifuged for 4 min at 

13 000 r.p.m., 750 l of the upper phases were removed, 400 l methanol was added and mixed by 

pipetting. Samples were centrifuged again for 1 min at 13 000 r.p.m. and the protein pellets were dried 

under the chemical hood. Precipitated proteins from the aqueous phase were resuspended in 200 l, 

those from the detergent phase in 50 l Laemmli sample buffer. Samples were analyzed by western 

blot.

To assess sensitivity to PI-PLC, after initial lysis using PBS/TX114 and before phase separation, 

samples were incubated or not for 30 min on ice with 0.5 u/ml PI-PLC (Invitrogen). Samples were 

processed as described above and analyzed by western blot. In parallel, 3x106 RAW264.7 cells in 500 

l PBS were incubated on ice with or without 0.5 u/ml PI-PLC to release GPI-anchored proteins from 

the cell surface. Cells were centrifuged, the pellet was resuspended directly in 300 l sample buffer, 
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supernatants were precipitated using methanol/chloroform and suspended in 50 l sample buffer. All 

samples were analyzed by western blot. 

Purification of recombinant murine SMPDL3B from Sf9 insect cells. Recombinant murine 

SMPDL3B lacking the C-terminal GPI anchor (SMPDL3B GPI) was produced using the BAC-TO-

BAC baculovirus expression system (Invitrogen) according to the manufacturer’s instructions and 

purified from supernatants of baculovirus-infected Sf9 insect cells. Briefly, 1l serum-free Sf9 insect 

cell culture at a concentration of 2x106 cells/ml were infected by addition of 20 ml p3 virus stock and 

incubated for 72h at 27°C on the shaker. The serum-free supernatant was cleared by centrifugation and 

recombinant protein was purified using Ni-NTA-Agarose (Qiagen) according to the manufacturer’s 

instructions. Beads were washed with Buffer A (50 mM Tris/HCl, pH 7.5, 500 mM NaCl, 1mM 

MgCl2) and eluted with Buffer A containing 250 mM imidazole. Protein was dialyzed against PBS in 

a Slide-A-Lyzer Dialysis Cassettes, MWCO 10 kDA (Pierce) and kept at -80°C for further use. 

Isolation of detergent resistant membranes (DRMs) 

DRMs were isolated using an adapted protocol as described by Brown et al. (Brown, 2002). Briefly, 

RAW264.7 macrophages were lysed for 20 minutes on ice in 1 ml TNE buffer (25 mM Tris-HCl, 150 

mM NaCl, 5 mM EDTA, pH 7.4) containing 1% Triton X-100 and Complete protease inhibitor 

cocktail (Roche). The lysate was mixed with 1.25 ml TNE buffer containing 80% sucrose and layered 

on the bottom of a 14 ml ultracentrifugation tube (Beckman Coulter). The sample was carefully 

overlaid with 7 ml TNE buffer containing 35% sucrose followed by 3.5 ml TNE buffer containing 5% 

sucrose. The sample was centrifuged overnight at 100.000g at 4°C in an SW40Ti swinging bucket 

rotor (Beckman Coulter) and 1 ml fractions were collected from the top. Fractions were mixed with 

Laemmli sample buffer, resolved by SDS-page and analyzed by western blot. 

Confocal microscopy and membrane fluidity measurements.  

For confocal microscopy of overexpressed, HA-tagged SMPDL3B, HEK293T cells were seeded on 

fibronectin-coated glass cover slips. 16h later, cells were washed with PBS and either fixed (4% 

formaldehyde in PBS, 10 min., RT) and permeabilized (0.3% saposin, 10% FCS in PBS, 30 min., RT) 
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or left untreated. Slides were incubated with anti-HA antibodies (1h, RT), washed and incubated with 

anti-mouse AlexaFluor488 antibodies (1h, RT). Non-permeabilized samples were washed and fixed 

with formaldehyde (4% formaldehyde in PBS, 10 min., RT). All samples were incubated with DAPI 

stain, washed and mounted on cover slips with ProLong Gold (Life Technologies). Images were 

acquired on a Zeiss LSM700 confocal microscope.  

For membrane fluidity measurements 2.55 RAW264.7 cells or primary macrophages were seeded on 

glass cover slips in 24-well plates and adhered in DMEM (PAA) supplemented with 10% FCS 

(Invitrogen) and antibiotics (100 U/ml penicillin and 100 g/ml streptomycin) at 37°C, 5% CO2. 

Medium was exchanged with serum-free DMEM and cells were stained with 5 μM di-4-ANEPPDHQ 

for at least 30 minutes. In case of M CD extraction, cells were preincubated for 1 hour with 2.5 mM 

M CD (Sigma) in serum-free medium and then stained as described above. Coverslips were mounted 

using ProLong®Gold (Invitrogen), images were acquired on a Zeiss LSM700 confocal microscope. 

The fluorescent dye was excited at 488 nm and images corresponding to ordered and disordered phase 

were acquired sequentially. These images were used to calculate generalized polarization (GP) values 

as previously described (Owen et al., 2012).  
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Supplemental Figure legends 

Figure S1, Related to Figure 1 – SMPDL3B GPI-anchor, glycosylation and expression. (A) 

Schematic representation of SP-HA expression constructs of SMPDL3B, SMPDL3A and 

SMPD1/ASM. (B) HEK293T cells were transfected with the indicated SP-HA-tagged constructs. 48h 

later, cell lysates and supernatants were analyzed using HA-specific antibodies. (C) Confocal 

microscopy of non-permeabilized or permeabilized HEK293T cells stably expressing mock or HA-

tagged murine SMPDL3B (mSMPDL3B). Blue: DAPI, green: HA. (D) RAW264.7 cells were treated 

or not with PI-PLC. Cells were lysed in sample buffer; supernatants were precipitated with 

methanol/chloroform and resuspended in sample buffer. Samples were analyzed by western blot using 

SMPDL3B, CD14 and I B -specific antibodies. (E) HEK293T cells were transfected with expression 

constructs for murine (m) and human (h) SMPDL3B lacking the C-terminal GPI signal ( GPI) or 

murine SMPDL3A. 48 h later, proteins were immunoprecipitated from cell supernatants, eluted using 

HA peptides and treated or not with PNGase F. Samples were analyzed by western blot using HA-

specific antibodies. (F) Western blot of SMPDL3B, CD14 and Tubulin in detergent resistant 

membrane (DRM) and soluble fractions from RAW264.7 macrophages. (G) BioGPS data for 

GeneAtlas MOE430 murine dataset, probeset 1417300_at for SMPDL3B. Only tissues with 

normalized expression > 20 are shown. Red bars highlight expression in macrophages or DCs. (B,D-F) 

Data are representative of two independent experiments. 

Figure S2, Related to Figure 2 - Enhanced secretion of cytokines in the absence of SMPDL3B. (A) 

BMDMs or BMDCs from wildtype (WT) or Smpdl3b-deficient (KO) mice were stimulated with the 

indicated TLR ligands for 8h and supernatants were analyzed for KC by ELISA. (B) Control (shCTRL) 

and SMPDL3B-depleted RAW264.7 macrophages were stimulated for the indicated time points with 

100 ng/ml LPS. The effect of SMPDL3B depletion on pro-inflammatory cytokine secretion was 

analyzed by ELISA for IL-6. (C) Control (shCTRL) and SMPDL3B-depleted RAW264.7 

macrophages were stimulated for 8h with 5 μM CpG or 5 μM IMQ. The effect of SMPDL3B 

depletion on pro-inflammatory cytokine secretion was analyzed by ELISA for IL-6. (A-C) Data show 

mean ± SD of (A) technical triplicates and (B,C) technical quadruplicates and are representative of at 
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least two independent experiments. (D,E) TLR4 endocytosis upon stimulation with 100 ng/ml LPS for 

the indicated time in (D) RAW264.7 cells expressing the indicated shRNAs and (E) wild-type (wt) and 

Smpdl3b-deficient (ko) BMDMs. Diagrams show average mean fluorescence intensity ± SD of (D) 

two and (E) three technical replicates. (F) Phagocytosis rates of Cy3-CpG-DNA in RAW264.7 

expressing the indicated shRNAs. Data shows mean ± SD of technical triplicates. 

Figure S3, Related to Figure 3 – SMPDL3B enzymatic activity and inducibility. (A) Schematic 

representation of SMPDL3B-dependent enzymatic cleavage of bis(p-nitrophenyl)phosphate (bis-pNPP) 

to (p-nitrophenyl)phosphate (pNPP) and p-nitrophenol (pNP). (B) pH dependence of murine and 

human SMPDL3B produced in HEK293T cells. (C) Measurement of phosphodiesterase activity on 

HEK293T cells stably expressing an empty vector (mock) or human SMPDL3B. Data shows mean ± 

SD of technical triplicates and are representative of two independent experiments. (D) Western blot 

for HA and Tubulin of HEK293T cells used in (Figure 3D, S3C). (E) RAW264.7 cells were 

lentivirally transduced with shRNAs for SMPDL3B (sh3B) or control (shCTRL). Knockdown 

efficiency was analyzed by western blotting for endogenous SMPDL3B and Tubulin. (F) RAW264.7 

cells were stimulated with 100 ng/ml LPS, 200 ng/ml Pam3Csk4 (P3C4), 1000 u/ml Ifn  or the 

indicated combinations for 16h and SMPDL3B or Actin protein levels were analyzed by western 

blotting. Data are representative of two independent experiments. 

Figure S4, Related to Figure 4 - Lipidomics analysis. (A) CTx -staining of RAW264.7 cells 

expressing control (shCTRL) or SMPDL3B-specific (shSMPDL3B) shRNAs. (B) Lipids were 

extracted from control (shCTLR) or SMPDL3B-depleted (shSMPDL3B) RAW264.7 macrophages and 

analyzed by MS for glycerophospho- and sphingolipids. Bubble plots represent mean difference 

between cell lines. SM, sphingomyelin; GluCer, glucosylceramide; Cer, ceramide; PC, (lyso-) 

phosphatidylcholine; PE, (lyso-) phosphatidylethanolamine; PA, phosphatidic acid; PI, (lyso-) 

phosphatidylinositol; PS, (lyso-) phosphatidylserine; PG, phosphatidylglycerol. (C) Correlation of 

difference in normalized lipid concentration between two biological replicates. Only data points 

significant in both replicates are shown. (D) Relative cellular cholesterol levels in control shRNA-

expressing RAW264.7 macrophages (shCTRL) and SMPDL3B-depleted cells (shSMPDL3B). Data 
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represents mean ± SEM. (E) Correlation of mean log2-transformed fold-change differences of lipids 

(shSMPDL3B/CTRL) mapped with predicted lipid function for LPS- (left) and CpG-induced (right) 

IL-6 release. (F) Control (shCTRL) and SMPDL3B-depleted (shSMPDL3B) RAW264.7 macrophages 

were pre-incubated with the indicated ceramides or a vehicle control and then stimulated for 8 hours 

with LPS (100 ng/ml). Cell viability was assessed by CellTiter-Glo. (G) SMPDL3B-depleted 

RAW264.7 macrophages were pre-incubated with Cer d18:1/24 ceramide (C24) or a vehicle control 

(VEH) and then stimulated for 8 hours with CpG (5 μM) or imiquimod (5 μM). Supernatants were 

analyzed for IL-6 by ELISA. (B,C,E) Data is representative of two biological replicates each 

consisting of 5 technical replicates. (F,G) Data shows mean ± SD of technical quadruplicates and is 

representative of at least two independent experiments. 
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Supplemental Tables 

Table S1 - Lipidomics analysis of sphingo- and glycerophospholipid species in control and 

SMPDL3B-depleted RAW264.7 cells, related to Figure 4. 
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 This work constitutes a global assessment of the intersection between membrane lipids 

and TLR-mediated innate immunity signaling. The activity of 20 out of 25 proteins representing 

important nodes within the sphingolipid network affects TLR function. Characterization of loss-of-

function cell lines connected genetic perturbation to TLR4 levels at the PM, receptor endocytosis, 

and differences in IL-6 transcription and secretion after TLR stimulation. Further, quantitative 

lipidomics and lipid clustering after systematic perturbation revealed a circular network of 

coregulated lipids, conserved in mouse and human cells. For the first time, this analysis allowed 

to decouple the mammalian lipidome from single proteins and to observe lipid dynamics 

influenced by an entire protein network. Based on this network, lipids predicted to act pro- or 

anti-inflammatory on TLR signaling could be identified. Further, the inflammatory state of human 

fibroblasts derived from patients suffering from lipid storage disorders was accurately predicted 

solely based on their membrane lipid composition, revealing an altered inflammatory response in 

these cells upon TLR stimulation. In a second, related study, a novel sphingomyelinase-like 

protein, SMPDL3B, could be identified as a negative regulator of TLR signaling using interaction 

proteomics and in vivo infection models. 

 

  

Deciphering thousands of different lipid species inside a cell, their relationships between 

each other, and functions in different processes, has only become imaginable with the 

development of mass spectrometry-based lipidomics (Shevchenko & Simons, 2010, Wenk, 

2005). However, this developing field is facing several problems that require a clear structure 

and representation of the data obtained (Snijder, Kandasamy et al., 2014). The main points to 

address are (1) a unified lipid nomenclature, (2) standardized data processing, and (3) 

integrated representation of the results. This study provides a unified framework of how to 

analyze, compare, and represent lipidomics data as a network of lipid coregulation. Another 

problem arising when comparing lipidomics results is that the general abundance of different 



membrane lipids within the cell varies between lipid classes. This prevents the direct comparison 

of the absolute abundance of lipid species. To enable this comparison, we normalized the 

abundance of one lipid species to the overall lipid levels per cell line. This way, the fold change 

of one species could be monitored compared to a control cell line to obtain the relative changes 

in lipid abundance over all measured lipids. Lipid coregulation was then calculated by comparing 

the lipid composition across all perturbed cell lines.  

 

 

 Based on our results, the coregulation of lipid species could be plotted as a network in 

which nodes and edges represent lipids and their coregulation, respectively. In our analysis, the 

circular network architecture revealed several interesting findings. (1) Lipid coregulation is not 

limited to lipid classes. Instead, different lipid classes were distributed across the network and 

closely linked with other lipids classes, indicating that coregulation is an important feature 

between lipid classes and not only within one class. This finding also supports observations 

connecting reduction of one lipid class to an increase in another lipid class (Boumann et al., 

2006). (2) Sphingolipids and glycerophospholipids are coregulated. Especially sphingomyelin 

and ceramide species were rather coregulated with glycerophospholipid classes than with each 

other. Intriguingly, sphingolipids were broadly spread across the circular network and located at 

those regions of the network that represented connections between glycerophospholipid classes, 

for example, between PC and PE/PS. This observation illustrates the impact of perturbing 

sphingolipid metabolism on glycerophospholipids and highlights the close link and metabolic 

crosstalk between these networks. (3) Lipids with similar chain length properties are coregulated 

within and between classes. Independent of the lipid class, the circular network of lipid 

coregulation illustrates that and how lipid species with similar FA chain lengths are coregulated 

(i.e. PCs; PE and PS). Since the difference in FA chain length is especially important for 

subcellular localization, this finding shows how lipids comprising different membranes (i.e. PM or 

ER) are strongly coregulated (van Meer et al., 2008). 

 

 

 



 

It is intriguing to speculate that a cell integrates different regulatory feedback 

mechanisms to coordinate metabolic processes leading to the concerted and efficient synthesis 

or degradation of lipids required for certain functions. The basis for many biological processes is 

the fast rearrangement of a large number of lipid molecules; even more than compared to the 

number of proteins. Hence, lipid coregulation plays an important role in quick adaptations of the 

cellular lipid landscape. More specifically, there are around 2 – 4 million proteins per cubic 

micron in a cell (Milo, 2013) and there are approximately 5 million lipid molecules in the same 

sized area of the PM (Lamond, 2002). The regulation of these large amounts of lipid molecules 

is controlled by sensing of the lipid composition, trafficking of lipid molecules, and regulation of 

their biosynthesis. In order to not have to regulate the level of each lipid molecule independently 

at the expense of energy and time, lipids are coregulated. This way there is a so-called “domino” 

or ripple effect allowing for an efficient automated lipid rearrangement. Hence, lipid coregulation 

assures a constant ratio between the thousands of different lipids within a cell. This means, for 

instance, during cell growth all required lipids are adjusted correctly without creating an 

imbalanced composition, leading to altered biophysical membrane properties, and thus to 

malfunctions (Deguil, Pineau et al., 2011). Upon perturbation this coregulatory mechanism also 

enables a cell to stabilize the ratios between different lipids with similar biophysical and chemical 

properties, at the expense of fluctuations at the absolute level of different lipids. It is further 

important that lipid coregulation is the organizing principle also at the subcellular level, as the 

function of lipids is clearly different depending if they reside in the ER or at the PM (van Meer et 

al., 2008). 

 

 

The discovery of the circular network of lipid coregulation could also facilitate the 

identification of lipid function in other biological processes. While there are numerous studies on 

single lipid species and their function in cytokinesis (Atilla-Gokcumen, Muro et al., 2014), 

autophagy (Singh, Kaushik et al., 2009), apoptosis (Pettus, Chalfant et al., 2002), or receptor 

regulation the network allows to depict these functions in the context of the lipid landscape. This 

way different lipid functions are represented, identifying the connected coregulated lipids that 

potentially have similar functions in these processes. Ideally, each quantifiable read-out should 



be coupled to mass spectrometry-based lipidomics to study the relationship between a biological 

process and the abundance of a lipid species. 

 

 

 Lipid metabolism and especially the different building blocks of lipids are highly 

conserved between yeast and human cells, and large studies in yeast have contributed 

extensively to our understanding of the lipid metabolic pathways (Guan et al., 2010). Especially 

the main lipid classes and their structures are identical in most organisms. While yeast and 

mammalian cells produce their essential FAs using the FA synthase, mammalian cells can also 

use FAs from the diet and convert them into polyunsaturated FAs, which are further used for the 

synthesis of arachidonic acid (James, Gibson et al., 2000). Thus mammalian cells have a larger 

variety of FAs compared to yeast. However, all lipid biosynthesis pathways in yeast and 

mammalian cells use acetyl-CoA as the universal carbon precursor of lipids. Furthermore, PA, 

the lipid precursor for all glycerophospholipids is synthesized by attaching two FAs to G3P in 

both yeast and human (Nielsen, 2009). Other lipid classes are different between yeast and 

mammalian cells. Sphingomyelin, for example, is not produced in yeast cells, which synthesize 

other types of sphingolipids (Steiner, Smith et al., 1969). And the most important sterol in yeast 

is ergosterol while mammalian cells harbor large amounts of cholesterol. The synthesis 

pathways of these sterol species are nevertheless very similar and also start from the common 

precursor lanosterol (Goldstein & Brown, 1990). 

 

 

In our study, stable knockdown of genes in the sphingolipid metabolic network led to 

strongly altered and diverse cellular lipid compositions in both sphingolipids and 

glycerophospholipids, revealing a lack of compensation of these genetic perturbations at the 

individual lipid level. This lack of compensation is further illustrated by two observations: (1) The 

severe symptoms associated with lysosomal storage disorders, many of which stem from 

somatic mutations in genes associated with sphingolipid metabolism (Futerman & van Meer, 

2004); and (2), the considerable number of genes in sphingolipid metabolism that are 

embryonically lethal in mice, including acid ceramidase, the Sptlc family, and 



glucosylceramidase (Hojjati, Li et al., 2005, Li, Park et al., 2002, Yamashita, Wada et al., 1999). 

This low capacity to outbalance missing key enzymes of the sphingolipid network can be 

partially explained by the absence of redundancy within conserved gene families associated with 

sphingolipid metabolism. Members of the CERS family, for instance, each synthesize a distinct 

subset of ceramide species (Levy & Futerman, 2010). Along these lines, we observed differential 

regulation of the function of the three Ormdl genes upon TLR signaling, strongly different 

perturbation phenotypes for the individual family members, and sh:Ormdl1 displaying the overall 

second strongest perturbed lipid state. All these findings argue against redundancy between the 

three ORMDL proteins, as suggested elsewhere (Siow & Wattenberg, 2012). This means that, 

rather than having the same function, these proteins display specialized or opposite roles within 

the network, which cannot easily be adopted by closely related proteins. Systematic perturbation 

of the network also showed that the entire sphingolipid system is not easily buffered and cannot 

compensate these genetic impacts as depletion of a specific gene translated into massive 

changes in the glycerophospholipid and sphingolipid levels. 

 

 

As described earlier, several studies identified a role of single lipid species or lipid 

classes in TLR biology. However, the mechanisms and the global picture of lipid function in 

these immune processes are still unknown. 

 

 

A recent report showed that macrophages reduce their TLR response by modulating free 

cholesterol levels in lipid rafts (Zhu et al., 2010b). This observation provides evidence that a cell 

can selectively regulate their metabolic processes to change the lipid content of their 

microdomains and modulate TLR signaling. Sphingomyelin, as one of the most abundant lipids 

in the PM, but also ceramide, both could act in a similar way and change the membrane 

composition or fluidity locally to affect signaling of TLRs. We found that TLR activation 

differentially regulates gene transcription across the sphingolipid metabolic network, with 

opposite regulation observed for different members of the same gene families (i.e. Ormdl, Cers, 

Smpd), indicative of a precise level of control. This regulatory system based on lipid metabolism 



could provide the cell with a fine-tuning mechanism that mediates the spatio-temporal activation 

of TLR signaling. Further, the membrane lipid composition could act as a cellular memory device 

integrating and adapting to signaling events in response to a pathogen over time. 

 

 

Among the TLRs, most studies have focused on TLR4, its interacting proteins, and the 

underlying signaling mechanisms. However, the function of the membrane in these processes, 

or the recruitment mechanisms involving membrane lipids has not been elucidated yet. Recently, 

the TLR4 dimers together with ceramides have been shown to mobilize into membrane rafts in 

response to Helicobacter pylori infection (Lu, Chen et al., 2012). And a new mechanism of 

negative regulation of TLR4 involving the recruitment into lipid rafts has also been found. It is 

mediated by adenylyl cyclase 6 (AC6), whose activation shifts TLR4 endocytosis from a clathrin-

mediated to a lipid raft-mediated and caveolin-independent process, accelerating endocytosis 

and inhibiting downstream signaling (Cai, Du et al., 2013). This means that changes of the lipid 

composition in the membrane could shift the clathrin-mediated to a lipid raft-mediated 

endocytosis thereby regulating TLR4 signaling. Recently, TMED7 has been identified as a 

protein that specifically mediates the sorting of TLR4 into COPII vesicles for the shuttling to the 

PM (Liaunardy-Jopeace et al., 2014). Interestingly, TMED2, another member of the p24 protein 

family has been identified to specifically bind to the SM C18:0 species. This binding induces the 

dimerization of TMED2 and is necessary for the transport function of COPI and COPII vesicles 

(Contreras et al., 2012). In our data, SM C18:0 is strongly positively correlated with TLR4 

surface expression at steady state as well as five minutes after stimulation. These findings 

suggest that SM C18:0 is important for TLR4 surface expression possibly mediated by the 

protein-lipid interaction regulating protein transport to the PM.  

Several other potential regulatory mechanisms have been found in the context of 

different transmembrane receptors and are likely to be applicable, to some extend, to TLR 

signaling as well. The transferrin receptor, for instance, was shown to induce ceramide 

production upon activation via acid sphingomyelinase. Blocking of the generation of cell surface 

ceramide resulted in a faster clathrin-independent internalization of the receptor and its recycling 

was inhibited (Shakor, Atia et al., 2012). This finding identifies a feedback mechanism for the 

production of ceramides upon receptor activation, which is important for prolonged receptor 

signaling and recycling. A misbalance between endocytosis and replenishing of the receptor 



could thereby result in an increased or diminished signaling. Another mechanism involving 

ceramides has been identified in a Cers2 null mouse. These mice, lacking long-chained 

ceramides, do not internalize the TNFR (TNFα receptor) after stimulation, indicating that the 

length of the ceramide species in the membrane influences their function in receptor 

internalization processes (Ali, Fritsch et al., 2013). And in resting T-cells, the T-cell receptor 

(TCR) interacts with anionic glycerophospholipids at the inner leaflet of the membrane. Upon 

activation, Ca2+ inhibits this lipid binding, thereby exposing phosphorylation sites of the protein, 

leading to an active TCR-CD3 complex. This feedback mechanism involving membrane lipids 

has been reported to amplify the signal of the TCR (Shi, Bi et al., 2013).  

Another mechanism of action for the function of membrane lipids on TLR signaling could 

be the assembly of the receptor-signaling complex. It has been shown, for instance, that the 

ectodomain of TLR4 has a regulatory function by preventing spontaneous receptor dimerization 

and thus constitutive activation (Panter & Jerala, 2011). Receptor dimerization could also be 

induced or inhibited by altered lipid composition. TLR dimers are already formed in an 

unstimulated cell and traffic into lipid rafts upon stimulation. Upon ligand binding the TIR 

domains of both TLR molecules move closer and thus enable downstream signaling (Triantafilou 

et al., 2007). The membrane environment could be an important determinant to alter the 

conformation of the dimer and thus to facilitate the binding of interaction partners. Conversely, 

the TIR-containing interactors harbor different lipid modifications, which target them to lipid rafts 

such as the myristoylated TRAM (Nishiya, Kajita et al., 2007).  

 

 

Other regulatory mechanisms of membrane lipids in TLR signaling could be direct lipid-

protein binding. This has already been described for the C16:0 ceramide species, mediating the 

activity of atypical protein kinase Cζ (PKCζ), which is also an important downstream signaling 

protein of TLRs (Lim, Sutton et al., 2015, Wang, Krishnamurthy et al., 2009). Ceramides have 

further been described to bind to SET (phosphatase 2A inhibitor), inhibiting its binding to 

serine/threonine protein phosphatases (PPAs) and thereby activating their enzymatic function. 

Activation of PP2A, in turn, leads to the dephosphorylation of AKT, which regulates the signaling 

downstream of TLRs leading to the transcription of inflammatory cytokines (Canals, Roddy et al., 

2012, Janssens & Beyaert, 2002). The kinase suppressor of Ras (KSR) is also a direct target of 



ceramides and essential for the regulation of TNFα-induced ERK1/2 activation (Zhang, Yao et 

al., 1997). 

As the best-studied lipid-protein interaction downstream of TLR signaling, S1P interacts 

with the RING domain of TRAF6 enhancing its autoubiquitination function. Interestingly, the 

kinases ERK1/2 downstream of TLR signaling mediate the phosphorylation of SPHKs, which is 

necessary for their translocation to the PM and their activation (Pitson, Moretti et al., 2003). This 

leads to increased intracellular levels of S1P upon stimulation, as has also been demonstrated in 

inflammatory in vivo models possibly forming a positive feedback loop (Snider, Kawamori et al., 

2009). However, the exact role of S1P in inflammatory processes has not been identified yet. 

Some studies reported reduced inflammatory responses in Sphk1 knockout mice (Baker, Barth 

et al., 2010) of which one was retracted (Puneet, Yap et al., 2013), which raises concerns and 

uncertainty about the role of SPHKs in inflammation. Another phosphorylated sphingolipid, 

Ceramide-1-phosphate (C1P), has been shown to bind specifically to TACE (TNFα converting 

enzyme) inhibiting its activity and thus the secretion of TNFα (Lamour, Wijesinghe et al., 2011). 

Exogenously added C1P could reduce the LPS-induced secretion of NFκB-dependent cytokines 

by inhibiting the degradation of IκB and the phosphorylation of the NFκB subunit p65 in human 

PBMCs (Hankins, Fox et al., 2011).  

Our data shows that perturbations in the sphingolipid metabolism lead to increased or 

decreased TLR-induced inflammatory responses. Interestingly, the transcriptional expression 

dynamics of the cytokine Il6 do not change over time. This suggests that the downstream 

signaling in the genetically perturbed cell lines is modulated due to altered activity of TLR 

signaling amplifiers or silencers rather than temporal regulators.  

 

 

A recent study on PS and TLR signaling reported that the LPS-induced chemokine 

release of CXCL10 in THP-1 cells was greatly reduced in the presence of PS C38:4 while IL-1β-

induced cytokine release was not affected. This PS species also inhibited the response upon 

TLR2 and TLR7 signaling as well as the association of TLR4 with its cofactor CD14 or the 

microdomain marker GM1, as shown by fluorescence resonance energy transfer (FRET) (Parker 

et al., 2008). This finding suggests a specificity for PS C38:4 on TLR responses but not on IL-1β 

receptor responses. In our work, PS C38:4 was identified to be negatively correlated with TLR-



induced IL-6 release highlighting its role as a negative regulator of TLR-mediated cytokine 

release.  

The PC biosynthetic pathway is also connected to cytokine secretion as mice deficient 

for CCTα, the protein that is involved in the first step of PC synthesis, displayed impaired 

secretion of TNFα and IL-6 in response to LPS stimulation, as well as altered Golgi morphology. 

Intracellular staining of these cytokines revealed an accumulation inside the cell, most likely due 

to a secretory block (Tian, Pate et al., 2008). Interestingly, our work shows that all measured PC 

species are positively correlated with TLR-induced cytokine secretion suggesting them to be 

beneficial or even necessary for this process. Furthermore, we could identify the Cers2 deficient 

cell line to have a strikingly similar phenotype, also accumulating intracellular IL-6 in the 

perinuclear region. However, this cell line does not show reduced PC levels but rather strongly 

reduced ceramide and mildly reduced PG levels, indicating that several lipid classes are 

important for the secretion of cytokines in response to TLR activation. A potential mechanism 

explaining these secretory blocks could involve the p110δ PI3K isoform as it is induced by LPS 

or IFNγ in macrophages, it depends on a lipid substrate, and is important for membrane fission 

at the Golgi as loss-of-function cell lines and genetic inactivation in mice showed accumulating 

TNFα after stimulation (Low, Misaki et al., 2010).  

Apart from the transport via the Golgi, vesicle fusion at the PM is also an important step 

in cytokine secretion that requires membrane lipid rearrangements. LPS stimulation has been 

shown to induce several components of the SNARE complex such as VAMP-3, which mediate 

the fusion of vesicles containing cytokines in stimulated cells (Stow, Manderson et al., 2006). 

TNFα and VAMP-3 have also been shown to colocalize in recycling endosomes and traffic to the 

PM together (Murray, Kay et al., 2005). And the insertion of endosomal membranes into the PM 

occurs at the phagocytic cup in a cholesterol-dependent manner (Kay, Murray et al., 2006). 

However, the secretion of the soluble cytokine IL-6 is independent of phagocytic cups 

(Manderson et al., 2007), indicating that there are several secretion mechanisms for different 

cytokines.  

 

 

 

 



 

The work described here represents the first comprehensive characterization of lipid 

coregulation over a panel of lipid perturbations as well as the inference and validation of lipid 

function in inflammatory processes in vitro and in vivo. Further, we propose the circular network 

of lipid coregulation as a general, comprehensive visualization method to map lipid species and 

their function. Several avenues of research are now suggested, which build on the framework 

established here. (1) Extend the quantification to other lipid classes and metabolites. So far only 

a small part of the thousands of different lipids have been mapped onto the network due to 

limitations in the detection and quantification methods. As the technology of lipidomics advances 

we will be able to add more lipid classes and species to the network. Further quantification of 

other metabolites such as amino acids or sugars should also be included to advance our 

knowledge of the coregulation of all metabolites within the cell. (2) A time-resolved perturbation 

model using inducible genetic targeting coupled to lipidomics measurements could be used to 

elucidate the priority of changes in the lipid composition across the network. Also, drug treatment 

or serum deprivation over time could be used to interfere with the metabolic processes in the cell. 

This way the lipid flux across the network could be determined. (3) To further establish the 

connection of lipid metabolism and inflammation, time-resolved lipidomics over a variety of TLR 

stimulations and infection models could shed light on the inducible changes in the lipid 

composition in an inflamed cell. This way the spatio-temporal lipid changes as a response to 

inflammatory processes could be tracked and mapped onto the network. (4) By measuring other 

biological processes in the perturbed macrophages we could extend the predictive power of lipid 

function further, identifying lipids important for many different cellular processes.   

 

 

Our work describes the powerful tool of predicting the inflammatory response solely 

based on changes in the lipid composition of cells. For future applications this finding could be 

pioneering early diagnosis of diseases and predispositions of patients. Of course, the toolset of 

lipidomics is still very limited due to the costly analysis and specialist training it requires, 



however, for clinical purposes, lipidomics analysis and our framework could be an important 

innovation. In accordance to the genetic profile of a human, the lipid profile is based on the 

expression of proteins regulating lipid metabolism. Additionally, the lipid composition depends on 

environmental factors such as lipid uptake and turnover in the individual cell. This means, the 

lipid composition of a cell is the outcome of gene, protein, and environmental regulation, and 

thus provides a more downstream read-out of the actual state of the cell, which could be more 

accurate for the prediction of pathologies. Another important limitation for clinical use is the 

material needed for lipidomics analysis as, so far, large amounts are required to measure the 

abundance of lipid species (Chen, Hoene et al., 2013). The detection of biomarkers using 

lipidomics is currently already being applied in clinical approaches (Gorden, Myers et al., 2015). 

However, the advancement of single-cell lipidomics could be a groundbreaking method to 

analyze cells of different tissues and to be able to predict their individual responses.  

 

 

While the prediction of a diseased state is the first step in treatment, the second step 

could be the exploitation of targeting lipid metabolism to modulate the inflammatory response. 

Our work has shown that the individual lipid composition of a cell greatly impacts on its 

inflammatory response. Could we alter the lipid composition of a cell using small molecules to 

fine-tune its inflammatory response? As a prevalent inflammatory disease there is still no 

effective treatment for sepsis. One of the few available drugs is recombinant human activated 

protein C, which shows only a modest improvement and is used for a small subset of patients 

with a low risk for hemorrhage (Ulloa, Brunner et al., 2009). Our results show that changes in 

lipid composition alter the inflammatory response induced by several different TLRs, a 

circumstance that is beneficial for the treatment of severe sepsis. Other attractive lipid targets to 

prevent infections are the glycosphingolipids at the cell surface. These lipids are recognized by 

many pathogens and used as a signal to enter the cell (Hanada, 2005). The temporal 

downregulation of these lipids could reduce infections in an acute setting such as the 

confinement of an epidemic.  

Our work further suggests that one mechanism of action of how lipids modulate the 

inflammatory response is the disruption or stabilization of TLR signaling complexes at the 

membrane or the assembly of adaptor proteins at the inner leaflet. Targeting these sites could 



be an effective way to terminate or enhance inflammatory signaling specifically, without 

disrupting downstream signaling pathways important for other cellular functions or provoking 

side effects by targeting master transcription factors (Graversen, Svendsen et al., 2012). 

Eritoran, for instance, is an LPS mimetic that targets TLR4 antagonistically and prevents 

downstream signaling, at the same time reducing the side effects compared to other anti-

inflammatories (Shirey, Lai et al., 2013). Other small molecule inhibitors were designed to 

disrupt the TIR-TIR interactions of TLRs and their adaptor proteins, thus acting anti-inflammatory 

and neuroprotective (Davis, Mann et al., 2006, Piao, Ru et al., 2013).  

The unknown mechanism of action for drugs that are already used in the clinics to 

modulate the immune response could be changing of the lipid composition. The antimalarial 

drug chloroquine, for example, inhibits TLR9 signaling possibly by modulating the endosomal pH 

(Kuznik, Bencina et al., 2011). Lipid degradation in the endosome is also strongly pH dependent 

and could be the mechanism of action of how chloroquine directly reduces TLR function. A lipid 

mimetic drug already used successfully for therapeutic purposes is fingolimod (FTY720). It 

mimics sphingosine and can be phosphorylated by SPHK. Subsequently it binds to S1P 

receptors on immune cells and diminishes the inflammatory response and cell migration. This is 

especially important for the treatment of multiple sclerosis (Brinkmann, Billich et al., 2010). Even 

though the main mechanism of action is proposed to be blocking of the S1P receptors, it could 

be also acting intracellularly by inhibiting the specific interaction of S1P and proteins such as the 

TRAFs and thereby also downregulating the inflammatory response. Understanding the changes 

of lipid metabolism and the functional consequences in biological processes is, of course, also 

important in other disease settings. Lipid metabolism, inflammation, and cancer development are 

tightly linked, as obesity, for instance, is known to increase the risk of developing a tumor by at 

least 20% (Santos & Schulze, 2012). 

 

 

Taken together, we have identified the architecture of cellular lipid coregulation, which is 

conserved between mouse and human. This discovery also lets us propose a new framework for 

approaching, analyzing, and visualizing lipidomics data. Building on the success of the genomics 

and proteomics era, we hope to contribute to the advancement of lipidomics analysis and lipid 

biology. Our work shows that studying lipids and their functions in isolated systems or in ad hoc 

approaches will not lead to the major answers the field of lipidology is looking for. While the cell 



invests energy in the synthesis of lipid species with various FA chains of different lengths, 

saturation, and hydroxylation it is still unclear how this variety translates into a functional role. To 

answer these questions and also to advance the knowledge on lipid function inside the cell, 

more global approaches have to be performed, such as the analysis of large sets of lipids in 

perturbed systems and their consequences on biological processes. In the future, we hope to be 

able to characterize a cell not only based on its genotype, proteotype, and phenotype, but also 

on its “lipotype”. Our work, described here, lays the foundation for deciphering the lipid code that 

is present in all living cells.  
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