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IV. Abstract 
Cells are the basic units of life. The ability to maintain functionally specialized and cooperating cell 
types provides the foundation for multicellular organisms. One of the most fascinating aspects of 
multicellular life is how a shared genomic sequence supports morphologically and functionally di-
verse cell types. Understanding the regulatory processes and molecular mechanisms underlying 
cellular identity is therefore important to understanding multicellular life. With the advances of mod-
ern molecular biology, the interplay between genome, epigenome, and transcriptome has emerged 
as the leading determinant of cellular identity. Technological advances in high throughput sequenc-
ing have further provided the necessary tools to study these molecular determinants of cellular 
identity in detail. 

Despite substantial scientific progress, many fundamental questions remain to unanswered. For 
example, studies conducted mainly in human and mouse have shown that DNA methylation is cru-
cially involved in the determination of cellular identity, which appears to be conserved across verte-
brates. Invertebrates, however, display fundamentally different DNA methylation patterns and in 
some species, DNA methylation cannot be detected at all. This raises the question of how and why 
DNA methylation acquired its defining role for cellular identity in vertebrates, what the role of DNA 
methylation in invertebrates might be, and how some higher organisms can exist without detecta-
ble levels of DNA methylation. Answering these evolutionary questions might identify yet unknown 
mechanisms involved in the determination of cellular identity or new functions of DNA methylation 
that may be relevant to human physiology. To advance research in this direction, we have devel-
oped a computational framework called RefFreeDMA that allows differential DNA methylation anal-
ysis without the need of a reference genome, enabling the assessment of DNA methylation in virtu-
ally any species. We successfully validated our approach in three species (human, cow, and carp) 
and plan to apply it next in the assessment of tissue specific DNA methylation across many more 
vertebrate and invertebrate species. 

In the context of human diseases, the clinical relevance of changes in cellular identity is widely ac-
cepted. Aberration of cellular identity has been recognized as a fundamental factor in cancerogen-
esis. Focusing on glioblastoma, the most common malignant tumour of the adult central nervous 
system, we assessed the processes involved in tumour progression by comparing the DNA methyl-
ation profiles of primary and recurring tumours in 112 patients. We found that primary and recurring 
tumours display considerable variability in their subtype compositions and identified subtype spe-
cific epigenome regulatory patterns and a loss of DNA methylation in Wnt signalling genes during 
progression. Our results chart the dynamics of DNA methylation in the progression of glioblastoma 
and establish the feasibility of conducting a DNA methylation study on samples collected in a rou-
tine clinical setting.  

Finally, the field of regenerative medicine has been actively researching the possibility to replenish 
lost pancreatic beta cell mass in diabetic patients by reprogramming the identity of other, more 
abundant cell types to beta cells. To support these efforts, we generated and analysed transcrip-
tomes of 64 healthy human pancreatic islet cells by single-cell sequencing. We were able to iden-
tify four endocrine and two exocrine human pancreatic islet cell types, which allowed the genera-
tion of accurate, cell type specific expression profiles. In a subsequent study assessing the trans-
differentiating potential of small molecule drugs, these expression profiles then served as reference 
to identify characteristic changes in the expression profiles of alpha cells upon treatment with Arte-
misinins. 

Taken together, the work presented in this thesis contributes biologically and medically relevant 
results to the understanding of cellular identity. Moreover, it emphasizes and promotes the promis-
ing potential of recent high throughput sequencing technology for the advancement of this field. 
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V. Zusammenfassung 
Zellen sind die elementaren Einheiten des Lebens. Die Fähigkeit, funktionell spezialisierte und ko-
operierende Zelltypen aufrecht zu erhalten, bildet die Grundlage für die Existenz multizelluläre Or-
ganismen. Einer der faszinierendsten Aspekte multizellulären Lebens ist die Ausbildung morpholo-
gisch und funktionell unterschiedlicher Zelltypen auf Basis derselben genomischen DNA-Sequenz. 
Molekularbiologische Forschungsbemühungen haben das Zusammenspiel zwischen Genom, Epi-
genom und Transkriptom als zentral für die Regulation der zellulären Identität identifiziert. Techno-
logische Fortschritte in der Hochdurchsatz-Sequenzierung bieten die Werkzeuge, diese Mechanis-
men im Detail zu untersuchen. 

Trotz des wissenschaftlichen Fortschritts sind viele fundamentale Fragen bisher unbeantwortet ge-
blieben. Zum Beispiel haben Untersuchungen in Mensch und Maus gezeigt, dass die DNA-Methyl-
ierung in Säugetieren wichtig für die Festlegung zellulärer Identität ist, was über alle Vertebraten 
hinweg konserviert zu seinen scheint. Invertebraten jedoch zeigen grundlegend andere DNA-Me-
thylierungsmuster, und in manchen Spezies ist überhaupt keine DNA-Methylierung messbar. Dies 
wirft die Fragen auf, wie und warum DNA-Methylierung in Vertebraten seine zelluläre Identität defi-
nierende Funktion erlangt hat, was genau die Rolle der DNA-Methylierung in Invertebraten ist, und 
wie manche höheren Organismen ohne detektierbare DNA-Methylierung existieren können. Diese 
evolutionären Fragen zu beantworten könnte bisher unbekannte Mechanismen identifizieren, die in 
der Festlegung zellulärer Identität eine Rolle spielen, oder zur Entdeckung neuer Funktionen der 
DNA-Methylierung führen, die möglicherweise auch für die humane Physiologie relevant sind. Um 
die Forschung in dieser Richtung voranzubringen haben wir eine computerbasierte Analyseme-
thode (RefFreeDMA) entwickelt. Diese Methode ermöglicht differentielle DNA-Methylierungsanaly-
sen auch ohne Referenzgenome, womit die Untersuchung von DNA-Methylierung in praktisch je-
der Spezies möglich wird. Wir haben unseren Ansatz erfolgreich in drei Spezies (Mensch, Rind 
und Karpfen) validiert und planen diese Analysemethode zur Untersuchung gewebespezifischer 
DNA Methylierung in vielen weiteren Vertebraten- und Invertebraten-Spezies zu verwenden. 

Im Kontext humaner Erkrankungen ist die klinische Relevanz von Veränderungen der zellulären 
Identität gut etabliert. Fehlentwicklungen zellulärer Identität wurden als fundamentaler Faktor in der 
Entstehung von Krebs erkannt. Mit Fokus auf dem Glioblastom, dem häufigsten bösartigsten Tu-
mor des adulten zentralen Nervensystems, haben wir in der Tumorprogression involvierte Pro-
zesse untersucht, indem wir DNA-Methylierungsprofile von primären und rezidivierten Tumoren in 
112 Patienten vergleichen haben. Diese Untersuchung hat ergeben, dass sowohl primäre als auch 
rezidivierte Tumore eine erhebliche Heterogenität in ihrer Subtyp-Zusammensetzung zeigen, dass 
sich die Glioblastom-Subtypen durch distinkte Epigenom-regulatorische Signaturen unterscheiden 
lassen und dass im Laufe der Tumorprogression eine Reduktion der DNA-Methylierung in Genen 
der Wnt-Signalkaskade auftritt. Unsere Ergebnisse beschreiben die Dynamik der DNA-Methylie-
rung in der Progression von Glioblastomen und etablieren die Machbarkeit von DNA-Methylie-
rungs-Studien, die auf im klinischen Routinebetrieb gesammelten Proben basieren. 

Im Bereich der regenerativen Medizin hat sich die Forschung intensiv mit der Möglichkeit beschäf-
tigt, verlorengegangene Betazellen in Diabetes-Patienten durch die Umwandlung von anderen 
pankreatischen Inselzellen zu ersetzen. Um diese Bemühungen zu unterstützen, haben wir Tran-
skriptome von 64 gesunden, humanen, einzelnen, pankreatischen Inselzellen produziert und aus-
gewertet. Wir konnten vier endokrine und zwei exokrine pankreatische Typen von Inselzellen iden-
tifizieren, was das Erstellen von akkuraten, zelltypspezifischen Expressionsprofilen ermöglichte. In 
einer darauf aufbauenden Studie, die das Transdifferentierungspotential von Wirkstoffen kleiner 
molekularer Größe untersuchte, dienten diese Expressionsprofile dann als Referenz, um charakte-
ristische Veränderungen in den Expressionsprofilen von mit Artemisininen behandelten Alphazel-
len festzustellen. 
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Zusammen genommen trägt die hier präsentierte Arbeit biologisch und medizinisch relevante Er-
gebnisse zum Verständnis der zellulären Identität bei. Sie betont und fördert außerdem das Poten-
tial neuartiger Hochdurchsatz-Sequenzierungstechnologien für die biomedizinische Forschung. 
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1 Introduction 
The research presented in this thesis spans several topics of biology and biomedicine, including brain 
cancer, pancreatic islets, and vertebrate evolution. As a common theme, all these lines of research 
contribute to the better understanding of cellular identity as a fundamental biological principle through 
molecular characterisation on the genomic, epigenomic, and transcriptional level. This chapter intro-
duces relevant evolutionary, developmental, and regulatory aspects of cellular identity, as well as the 
state-of-the-art sequencing based methods that enable profound molecular characterisation of cells 
and tissues. 

 

1.1 What is cellular identity? 
The logical prerequisite to the concept of “cellular identity” was the realisation that all living organisms 
are composed of cells. “Cell theory” was first formulated in the years 1838/1839 by Schleiden and 
Schwann about 180 years after Hooke first coined the term “cell” in 1665 when describing the micro-
scopic structure of a slice of cork (Mazzarello, 1999). With improvements in microscopy, naturalists 
soon observed cellular substructures and began to morphologically characterize different types of 
cells. By the end of the 19th century the concept of cellular hierarchies and identities emerged and 
was consolidated through experiments on hematopoietic differentiation by Till and McCulloch in the 
1960s (Daley, 2015). 

While the “cell theory” is no longer considered a theory but has rather acquired the status of an estab-
lished fact, the concept of cellular identity remains vague in its evolutionary, developmental, and regu-
latory details. Through modern molecular biology technique, including high-throughput sequencing, 
we now have the necessary tools at hand for broad as well as deep assessment of key molecular de-
terminants of cellular identity, including the genome, epigenome, and transcriptome. However, in the 
light of assessing millions of different cells in millions of conditions at high resolution, trying to eluci-
date cellular identity in detail prompts us to consider the closely related concept of “cell state”. The 
terms “cell state” and “cell(ular) identity” are often used interchangeably and biologically the concepts 
are not well discriminated. Therefore, the next section clarifies the use and meaning of these con-
cepts at least for the scope of this thesis. 

 

1.1.1 Cell state versus cellular identity 
Differentiating between cellular identity and cell state is more than a semantic problem. In fact, estab-
lishing a useful and meaningful differentiation is necessary and achievable. Intuitively one might de-
fine “cell state” as transient and “cellular identity” as long-lasting properties of a cell. In this logic, for a 
given cell, its cellular identity comprises all its possible cell states, which manifest as cellular pheno-
types, and the cell can reversibly change its cell state without changing its identity. While a cell can 
only have one cellular identity at a time, cell states are not necessarily mutually exclusive. This rela-
tively simple definition, which emphasises the temporal dynamics of properties also accommodates 
the fact that large and persistent changes in cell state can lead to changes in cellular identity, as is 
observed in de-, re-, and trans-differentiation (Efroni et al, 2015). During the process of differentiation 
a cell acquires its identity while potentially running through a series of identity changes at each asym-
metric stem-cell division (Knoblich, 2008). As a simplified example, a neural progenitor cell divides 
asymmetrically and thereby produces one cell that retains the identity of a neural progenitor cell as 
well as another cell with a new identity that develops into a functional neuron. Both cellular identities 
(progenitor and neuron) comprise a distinct set of states, the manifestation of which does not change 
the identity. For example, the progenitor cell can be in a dividing or quiescent state, while the neuron 
never divides but can be in an excited or resting state [Fig. 1]. This concept of cellular identity classi-
fies cells into biologically meaningful groups, also referred to as cell types, that are not confounded by 
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transient effects and distinguishes common long-term properties. However, the definition of a cell’s 
identity might go further and even comprise a track record of a cell’s origin, including cellular ances-
tors, place and time of appearance as well as uniquely identifiable marks such as distinct sets of (so-
matic) mutations. Depending on the properties one includes in the definition of cellular identity, the 
groups of cells perceived as “identical” change in inclusiveness, size, and heterogeneity. This flexibil-
ity allows to adjust the exact definition to the studied system and research question. For example, de-
fining appropriate sets of common properties is particularly important in the study of diseases, when 
the responsible cells need to be held accountable in order to understand and appropriately treat the 
disease. A prominent example is the characterisation of cells of origin in malignant diseases 
(Visvader, 2011), where a more narrow definition appears appropriate. On the other hand, a classifi-
cation at the level of cell type seems sufficient for the identification of non- or dysfunctional cells in 
diseases with a cellular cause like type I diabetes where the symptoms are caused by the mostly im-
mune-mediated death of beta-cells (Atkinson et al, 2014). 

This flexible definition of cellular identity together with the distinction of cellular identity and cellular 
state is in line with current opinion (Wagner et al, 2016) and provides biologically and medically mean-
ingful classifications and is therefore sufficient for the scope of this thesis, although it is not all-encom-
passing. For example in the case of mono-cellular organisms (bacteria and protozoa) acquiring cellu-
lar identity through differentiation does not generally apply since each single cell represents an entire 
viable organism. For many mono-cellular organisms, cellular identity is therefore rather associated 
with speciation than specialisation and lineage hierarchies should be seen rather in a phylogenetic 
than ontogenetic sense (Stoeck, 2005; Yubuki et al, 2009). 

 

 
Figure 1 Schematic to illustrate the distinction between cell state and cellular identity as used in this thesis. 
The different colors of the inner circle represent the different states a cell can engage, with grey indicating 
that the state is not available. The outer circle signifies whether the respective state is active. Colors: blue: 
quiescent state; orange: dividing state; green: resting state; red: excited state. 
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1.1.2 Evolutionary aspects of cellular identity 
The evolution of cellular identity is closely related to the evolution of the cell itself (Cooper, 2000) and 
involves three major transitions: The emergence of eukaryotic cells (Woese & Fox, 1977; Woese, 
1998), the emergence of multicellular organisms (Hedges et al, 2004), and the emergence of verte-
brates (Holland et al, 2015). Each of these evolutionary milestones goes along with a marked in-
crease in complexity (Bird, 1995; Cooper, 2000). Eukaryotic cells display higher cellular complexity 
than prokaryotic cells (e.g. organelles), multicellular organisms display higher organisational complex-
ity than unicellular organisms (e.g. cell signalling and specialisation), and vertebrates display higher 
organismal complexity than invertebrates (e.g. immune and nervous system). This view of discrete 
increases in complexity is useful to emphasize evolutionarily important common features in groups of 
organisms, but to some degree violates the mostly continuous nature of evolution. Therefore, it is not 
surprising that one can find examples that do not quite fit into this discrete scheme. These examples 
include simple yet multicellular prokaryotes such as some cyanobacteria (Flores & Herrero, 2010), 
signalling and interaction between unicellular organisms (e.g. biofilms and quorum sensing), differenti-
ation in unicellular organisms such as yeasts (Herskowitz, 1989), and invertebrates with vertebrate 
like intelligence such as cephalopods (Kröger et al, 2011; Roth, 2015). 

The definition and evolution of biological complexity is a difficult topic, but a trend towards higher com-
plexity even in the absence of positive selection seems to widely accepted (Adami, 2002; Lukeš et al, 
2011). Also, a connection between an organism’s complexity and its number of different cell types is 
rather evident (Arendt, 2008). As a molecular measure of biological complexity, the number of distinct 
genes rather than the size of an organism’s genome has been proposed in a time when genome se-
quencing was still in its infancy and the number of genes could only be estimated (Bird, 1995). This 
early hypothesis has since been challenged: An ever increasing number of sequenced genomes 
showed that organisms with similar levels of complexity display highly variable numbers of genes, 
which led to the proposal of alternative measures of biological complexity, stressing in particular the 
importance of non-protein coding DNA (Taft et al, 2007; Jiang & Xu, 2010). While a strictly linear rela-
tionship between complexity and gene number is indeed very unlikely, recent genomic data do sup-
port the originally proposed increases in gene number at the prokaryote/eukaryote and inverte-
brate/vertebrate boundary (Bird, 1995) [Fig. 2]. The emergence of novel epigenomic mechanisms to 
control gene expression noise (nucleus/chromatin and histones in eukaryotes and DNA methylation in 
vertebrates) (Bird, 1995) as well as increased energy supply through endosymbionts (mitochondria 
and chloroplasts) (Lane & Martin, 2010) are thought of as crucial for these increases in gene number. 
The large amount of genome sequencing data that is available today confirms the trend toward larger 
genomes and greater numbers of genes in increasingly complex groups of organisms, with increases 
in genome size at complexity boundaries being more clear-cut than the increase in gene number [Fig. 
2]. As a consensus and with respect to the recently established regulatory importance of non-coding 
genomic regions (Dunham et al, 2012), it seems plausible that a certain genome size together with a 
certain number of distinct genes only enables but not enforces a certain level of cellular, organisa-
tional, or organismal complexity. This concept accommodates the fact that organisms of similar com-
plexity often display large differences in genome size and gene number, while on average the ge-
nome size and gene number do increase with increasing complexity [Fig. 2]. 
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Cellular differentiation (i.e., the process of establishing cellular identity) is a central process in the de-
veloping as well as the adult organism. In both cases, stem cells are the point of origin. Stem cells 
usually do not differentiate themselves, but they can divide asymmetrically giving rise to cells retaining 
stem cell identity (self-renewal) and to more lineage-committed daughter cells, which follow certain 
differentiation trajectories (Knoblich, 2008). One of the best-understood adult differentiation systems 
is that of haematopoiesis. Haematopoietic stem cells (HSCs) have long been known to replenish 
blood cells after transplantation but only recent lineage tracing experiments in mice show that HSCs 
indeed give rise to all major hematopoietic lineages under homeostatic conditions (Sawai et al, 2016). 
Interestingly, HSCs themselves are not the most proliferative cells. Instead it has been shown that the 
most potent HSCs actually divide the least (only 5 times in a mouse life), while the majority of dividing 
multipotent hematopoietic cells are the more lineage committed multipotent progenitors (MPPs) 
(Wilson et al, 2008) and the lineage restricted common myeloid progenitors (CMPs) and common 
lymphoid progenitors (CLPs) (Höfer & Rodewald, 2016). CMPs and CLPs give rise to cells that then 
finally differentiate into functional myeloid (granulocytes, monocytes, megakaryocytes, and erythro-
cytes) and lymphoid (B cells, T cells, and NK cells) cells respectively. This principle of separation be-
tween potency and amplification is also found in other stem/progenitor cell compartments that fre-
quently need to replenish lost cells (e.g. the gut and the skin) and is thought of as a means to protect 
the most valuable “backup” cells from mutational damage. 

The ability to regenerate after injury varies widely between different tissues and species, depends on 
the age of the organism, and crucially involves immune cells - in particular tissue resident macro-
phages (Forbes & Rosenthal, 2014). Generally, the ability to regenerate seems to decline with age 
and with increasing complexity. While for example the neonatal mammalian heart and the adult fish 
heart efficiently replenish lost cardiomyocytes, the adult mammalian heart fails to do so. In contrast, 
the adult mammalian liver can easily tolerate a 70% loss and reconstitute the lost mass within weeks. 
Mostly, tissue specific stem cells are attributed a major role in tissue regeneration, and their limited 
occurrence entails limited regenerative potential, as seems to be the case in the adult mammalian 
heart (Forbes & Rosenthal, 2014). Interestingly, liver regeneration does not rely on stem cells, but is 
achieved through terminally differentiated, functional and primarily quiescent hepatocytes that re-enter 
the cell cycle on demand (Michalopoulos, 1997). Similarly, in zebrafish (Poss, 2002) and neonatal 
mice (Porrello et al, 2011) heart regeneration is achieved through proliferating pre-existing cardiomyo-
cytes. These findings imply that the cellular identity of neonatal mammalian cardiomyocytes still com-
prises the proliferative state, while the ability to enter this state is lost in adult cardiomyocytes.  

Terminally differentiated cells usually execute their functions as defined by their identity and die after 
a cell-type specific time-period. Nevertheless, under certain conditions cells can actually change their 
identity, either through dedifferentiation followed by redifferentiation or through direct transdifferentia-
tion. In vitro, it is for example possible to dedifferentiate human fibroblast to a pluripotent state through 
the induced expression of only three transcription factors (Oct3/4, Sox2, and Klf4) (Nakagawa et al, 
2007). In vivo, physiological changes in cellular identity mostly happen in the context of regeneration. 
Complete limb and tail regeneration in the adult Mexican axolotl has been proposed to include dedif-
ferentiation of muscle and dermis cells to form the blastem, an undifferentiated cell mass from which 
cells re-differentiate to form all missing structures (skin, muscle, cartilage). Although, this regenerative 
process even appears to includes ectoderm to mesoderm lineage switching (Echeverri, 2002), a later 
study from the same research group showed that blastem forming cells do keep a memory of their tis-
sue of origin and that complete dedifferentiation is not necessary for regeneration (Kragl et al, 2009). 
In human, plasticity of differentiated pancreatic islet cells is highly studied in the context of diabetes 
and the regeneration of lost insulin producing cells (beta cells). Indeed, the cells of the mammalian 
pancreatic islets display astonishing plasticity in that especially alpha (Thorel et al, 2010) but also 
delta and even ductal cells (Romer & Sussel, 2015) can transdifferentiate to beta cells in the case of 
severe beta cell loss. For humans, beta cell regeneration has been reported but seems to be less effi-
cient compared to mice (Thorel et al, 2010; Li et al, 2017).  
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Given the obvious benefits of cellular plasticity for regeneration, why do not all differentiated cells re-
tain the ability to re-enter cell cycle, dedifferentiate, or transdifferentiate? Apparently, there must be 
costs attached to cellular plasticity that make the stable maintenance of cellular identity more favoura-
ble for most cell types of the adult mammalian organism. One potential cost might be the uncontrolled 
loss and aberration of cellular identity as is observed in malignant transformation (Roy & Hebrok, 
2015). In fact, the uncontrolled proliferative state is what all malignant diseases have in common and 
what makes them incompatible with homeostasis and ultimately life (Hanahan & Weinberg, 2011). 
However, similar to non-malignant tissues, malignant neoplasms do not entirely consist of highly pro-
liferative cells. Often they display clonal hierarchies with few self-renewing stem cell like cells at the 
root and proliferative, phenotypic, and (epi-) genomic heterogeneity between the cells that make up 
the vast majority of the neoplastic cell population (Nguyen et al, 2012). Therapies are directed against 
proliferating cells in general (e.g. Antimetabolites and DNA alkylating agents) or against specific tar-
gets such as BCR-ABL fusion protein in chronic myelogenous leukemia. Unfortunately, therapy in-
duced selective pressure applied on a heterogeneous population of malignant cells more often than 
not leads to the emergence of therapy resistant cells and therefore relapse of the disease. This phe-
nomenon has prompted the idea to use combination therapies, similar to the treatment of HIV, in or-
der to attack and control the most dangerous sub-populations of malignant cells in each treatment 
round (Bock & Lengauer, 2012). 

Glioblastoma is an example for a malignant neoplasm that rapidly develops therapy resistance in 
most patients. Glioblastomas are highly invasive brain tumours of astrocytic origin with a 5-year pro-
gression free survival rate of just 4.1% (overall survival rate 9.8%) when treated with standard of care 
(maximal safe resection, radiotherapy, temozolomide) (Stupp et al, 2009). This extremely low pro-
gression free survival rate is only partially due to the inherent difficulty of completely resecting an in-
vasive tumour from the brain. Additionally, glioblastomas display intra-tumour heterogeneity in the 
three major molecular determinants of cellular identity (genome, epigenome, and transcriptome) lead-
ing to the observed variable and mostly unfavourable treatment result (Sottoriva et al, 2013; Parker et 
al, 2016). Understanding and characterizing the deregulation and subsequent decay of cellular iden-
tity in glioblastoma on a molecular level might lead to more targeted treatment approaches with the 
ultimate goal to prevent tumour progression.  

 

1.2 Regulation and determination of cellular identity 

1.2.1 Genome 
Given that genomes are largely identical between cells within an organism, and even between individ-
uals of the same species, the importance of the genome in the regulation and determination of cellular 
identity might not be evident. However, there are plenty of rather subtle differences between ge-
nomes, which critically shape and reveal individual as well as cellular identity. These genomic variants 
can be broadly grouped into three classes: Single nucleotide variants (SNVs), short insertions and de-
letions (indels), and structural variants (SVs) including copy number variation (CNV). Genomic varia-
tion within the human population has been mapped by the 1000 Genomes Project, which analysed 
genomes of more than 2500 individuals and revealed that a typical genome differs from the reference 
genome in about 4.5 million sites (0.1% of the genome) (Auton et al, 2015). While most of these vari-
ants are common in the human population, some are private to subpopulations, families, or even indi-
viduals and can thus be used to infer identity (Erlich & Narayanan, 2014).  

On a cellular level, somatic variants (i.e. variants that are not inherited but arise spontaneously during 
the course of a lifetime) can be used to infer cellular identity. For example, immune receptor diversity 
of jawed vertebrates is produced through genomic rearrangements in the BCR and TCR genes. 
These genomic rearrangements randomly select certain segments to be part of the immune receptor 
and remove others from the genome, which makes the selection irreversible and leaves each cell with 
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an individual combination of segments. Furthermore, the joining of the different segments involves 
random mutations, and B cells additionally undergo somatic hypermutation to further increase BCR 
diversity (Hood et al, 1985; Teng & Papavasiliou, 2007). Through the many random elements in the 
generation of BCRs and TCRs, each B- and T-cell is equipped with an individual version of the re-
spective immune receptor. The specific configuration of an immune cell’s immune receptor is an im-
portant part of its identity because only cells that express receptors that do not recognize self-anti-
gens will be allowed to survive, and only those that recognize danger antigens will receive prolifera-
tive signals in order to elicit the adaptive immune response. Using the immune receptor as identity 
markers has also proven useful for detecting and monitoring many B- or T-cell malignancies. These 
malignancies usually arise from only one malignantly transformed cell resulting in the expression of 
the same TCR or BCR version in all descendant malignant cells, which in turn makes clonal 
BCR/TCR expression an important diagnostic marker (Boyd et al, 2009). Interestingly, some unicellu-
lar organisms (prokaryotic as well as eukaryotic) such as Neisseria (Rotman & Seifert, 2014) and 
Trypanosoma (Horn, 2014) use similar mechanisms of controlled enhanced genomic mutation to 
change their surface proteins and thereby produce antigenic variation within the population. This vari-
ation allows immune evasion or other rapid adaptations to changes in the environment by providing a 
multiplicity of phenotypes of which the fittest in a certain environment gets to represents the majority 
but not the entirety of the population. 

While the generation of genomic mutations during immune receptor diversification or antigenic varia-
tion are physiological, controlled, and localized processes, genomic mutations can also occur sponta-
neously throughout the genome. Depending on type and location, the effects of somatic mutations 
range from no phenotypic changes (e.g. silent mutations) to changing the identity of a cell (e.g. dele-
terious mutations in crucial transcription factors). Cancer genomes are known to be especially ridden 
with somatic mutations (Roberts & Gordenin, 2014), and large studies have identified mutational sig-
natures that are specific for certain types of cancers and certain mutational processes (Alexandrov et 
al, 2013). In cancer genomes, relevant mutations can be classified into two major categories: Muta-
tions that confer growth advantage (driver mutations) and mutations that coincide with driver muta-
tions but do not confer growth advantage themselves (passenger mutations). Driver mutations are 
rare events and usually affect oncogenes and tumour suppressor genes, while passenger genes oc-
cur more frequently (Greenman et al, 2007). Because it is very unlikely that mutations revert to the 
original sequence, cells tend to accumulate mutations during tumour progression. Therefore, the mu-
tational signature of an individual cell represents a logbook of its genesis that allows to infer its origin 
(founder cells) and position in the clonal hierarchy as well as the timing of mutational events in grow-
ing tumours (Bozic et al, 2010). Mutational heterogeneity (i.e. cells with different mutational profiles 
within the population of malignant cells) is common in most malignancies. Similar to antigenic varia-
tion in unicellular organisms, tumours often display one major clone that makes up most of the malig-
nant population and several minor clones that might only consist of few cells. When the environment 
changes and favours a different set of mutations (e.g. through therapy, immune response or metasta-
sis) minor clones often rescue the malignant neoplasm by replacing the vulnerable major clone with 
the effect of therapy resistance, immune evasion or spreading metastasis (Vogelstein et al, 2013). 
The knowledge of the different cellular identities within the population of malignant cells is therefore 
crucial for the understanding and treatment of malignant diseases. 

As illustrated in the physiological as well as pathological examples above, genomic variation is ma-
jorly involved in the determination and inference of cellular identity. However, regulation of cellular 
identity cannot be understood by focusing on the genomic level alone. For example, genomic regula-
tory mutations do not always per se affect cellular identity, but manifest through their effect on tran-
scription factor binding, enhancers, or chromatin structure (Melton et al, 2015; Lappalainen et al, 
2013). Therefore, crucial aspects in the regulation of cellular identity happen at the level of and 
through interaction with epigenome and transcriptome, which are discussed in the following sections.  
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1.2.2 Epigenome 
The epigenome comprises regulatory, potentially heritable modifications of the genome that do not 
affect the genomic sequence but rather the interpretation thereof (Bernstein et al, 2007). If the ge-
nome was a cookbook, the epigenome would consist of post-it notes with instructions like “For 8 peo-
ple use 1.5 times the ingredients.” to scale up a recipe or “Never do that again!” to mark a particularly 
horrible recipe. Inherited cookbooks, might even still contain notes from earlier generations. Although 
the text in all copies of a certain cookbook is the same, different households will select different fa-
vourite dishes and preparation of the dishes will vary slightly. The comments in the cookbook help to 
ensure continuity within one household and thereby contribute to culinary identity. However, because 
the actual text is not altered, changes in the menu and corrections remain possible. In this analogy, 
different households with the same copy of a cookbook represent the different cells in an organism 
that are equipped with essentially the same genome but display phenotypic differences due to the 
way the genome is interpreted. In each cell, the epigenome specifically guides the interpretation of the 
genome (with gene expression as a crucial step), to enable stable cellular identity without changing 
the genomic sequence itself. Thereby each cell in principle retains the potential to produce any of the 
gene products encoded in the genome and thus display any phenotype according to the configuration 
of the epigenome. This potential is for example exploited in vivo during de-, re-, and transdifferentia-
tion in the context of regeneration and in vitro for the generation of induced pluripotent stem cells. 

During normal cellular differentiation, the epigenome orchestrates the shift from the expression of plu-
ripotency genes in stem and progenitor cells to the expression of lineage specific genes in differentiat-
ing cells. By tagging the respective genes with activating or repressive marks, the epigenome plays a 
crucial role for the controlled expression of cell type specific genes – if disrupted inappropriately, cells 
fail to maintain or establish their identity. In addition, pathogenic changes in the epigenome, especially 
those that lead to silencing of tumour-suppressor genes or activation of oncogenes, are frequently in-
volved in malignant transformation (Berdasco & Esteller, 2010). Similar to genetic heterogeneity, epi-
genetic heterogeneity is often observed in malignant neoplasms and poses similar medical challenges 
(Mazor et al, 2016). The aforementioned reversibility of changes in the epigenome bears the potential 
to correct pathogenic aberrations but also the risk to cause even more. Therefore, a profound under-
standing of the molecular mechanisms behind the epigenome is important for cancer therapy. 

The epigenome is shaped by DNA methylation and histone modifications (Bernstein et al, 2007), but 
also comprises non-coding RNAs (Koerner & Barlow, 2010; Lee, 2012) and chromatin remodelling 
complexes. While DNA methylation directly modifies the DNA, histone modifications alter the way the 
DNA is packed. There are several different types of histone modifications (different histones, posi-
tions, and marks) with effects ranging from transcriptional silencing over poised transcription to active 
transcription initiation and/or elongation. For example, histone acetylation is generally associated with 
transcriptional activation, as its negative charge opens up the chromatin and makes the DNA accessi-
ble for transcription (Strahl & Allis, 2000). In contrast, DNA methylation (in eukaryotes always at the 
C5 position of cytosines), is predominantly associated with transcriptional repression (Schübeler, 
2015). Both epigenetic modifications (DNA methylation and histone modifications) can be maintained 
through cell divisions, enabling propagation of cellular identity to the next cell generations. While the 
mechanisms behind the heritability of histone modifications are not well understood, propagation of 
DNA methylation has been beautifully explained: In vertebrates, DNA methylation mostly occurs at 
cytosines in CpG motifs. Directly after replication, a methylated CpG motif displays a methylated cyto-
sine on the pre-existing strand, while the corresponding cytosine on the newly synthesized strand is 
unmethylated. Due to the sequence symmetry of CpG motives, the maintenance DNA methyltransfer-
ase DNMT1 can specifically detect such hemi methylation CpG motifs and ad the missing methyl-
group to the cytosine on the newly synthesized strand (Song et al, 2011). Demethylation is achieved 
passively during replication though reduced DNMT1 activity, or actively through ten-eleven transloca-
tion (TET) family of proteins (Tahiliani et al, 2009).  
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The importance of cell type specific DNA methylation for establishing and maintaining cellular identity 
has been demonstrated by assessing and comparing DNA methylation in various differentiated cell 
types and tissues (Ziller et al, 2013) as well as stem and progenitor cells (Bock et al, 2012; Farlik et 
al, 2016). These studies revealed that cell type specific DNA methylation is highly associated with 
regulatory genomic elements such as promoters, enhancers, and transcription factor binding sites 
(TFBSs), suggesting its involvement in transcriptional regulation. Although most studies are focused 
on human and mouse, comparative profiling of non-methylated DNA provides evidence that the regu-
latory role of DNA methylation is conserved across vertebrates (Long et al, 2013). In the contexts of 
hematopoietic differentiation it was shown that hypermethylated regions in lymphoid cells (in compari-
son to myeloid cells) are enriched in myeloid transcription factor binding sites and vice versa. This 
phenomenon was observed in mammalian species as well as in fish (Klughammer et al, 2015), but 
whether the lack of transcription factor binding elicits methylation of the respective binding sites, or 
whether DNA methylation prevents transcription factor binding is not clear to date. Additionally, lym-
phoid cells have been found to display more hypermethylated regions compared to myeloid cells 
(Klughammer et al, 2015; Farlik et al, 2016), which complements the finding that proper DNA methyla-
tion is crucial for lymphoid differentiation but dispensable for myeloid differentiation (Bröske et al, 
2009).  

From an evolutionary prospective, the emergence of lymphoid cells in vertebrates coincides with a 
drastic change in genome-wide DNA methylation patterns at the invertebrate-vertebrate boundary. 
Although the DNA methyltransferases and some methyl-CpGbinding domain (MBD) proteins are con-
served between vertebrates and invertebrates (Albalat, 2008), vertebrates display globally methylated 
genomes with few unmethylated regulatory sites mostly associated with CpG islands (CGIs), while 
invertebrates display vastly unmethylated genomes where DNA methylation is mostly found in gene 
bodies (Suzuki & Bird, 2008; Zemach et al, 2010) [Fig. 3]. This difference in genome-wide DNA meth-
ylation patterns between invertebrates and vertebrates might indicate a new regulatory role of DNA 
methylation in vertebrates tightly associated with cell type specific transcription and regulation of cel-
lular identity. One approach to further investigate this hypothesis is to assess cell type (or tissue) spe-
cific DNA methylation in a wide range of invertebrates and vertebrates, which in combination with 
transcriptional analysis would allow to draw conclusions regarding the evolutionary role of DNA meth-
ylation in the regulation of cellular identity. 

 

1.2.3 Transcriptome 
The transcriptome is the entirety of different transcripts (i.e. RNAs) that are produced in a cell, a tis-
sue, or an organism, depending on the level of investigation. A cell’s transcriptome is the result of its 
interpretation of the genome and the primary display of its molecular phenotype. To create functional 
phenotypes, the coding part of the transcriptome can be translated into proteins, which in turn cata-
lyse most cellular processes (CRICK, 1970). Ultimately, all regulatory or pathogenic changes to the 
genome and epigenome directly or indirectly affect and act through the transcriptome, making the 
transcriptome (together with the proteome) the instance that actually implements and manifests cellu-
lar identity. However, in contrast to the genome and epigenome, the transcriptome is highly suscepti-
ble to short-term endogenous or exogenous regulatory changes that affect the state of a cell rather 
than its identity. One prominent example for short-term changes in cell state that involve distinct tran-
scriptional signatures is the cell cycle in which a cell passes through four stages (G1, S, G2, and M) 
until it divides (Scialdone et al, 2015). However, it is possible to account for the transcriptional 
changes that come with the cell cycle or other potentially unknown perturbances and thereby discrimi-
nate between cell state and identity, which in turn allows the characterisation of otherwise hidden sub-
populations (Buettner et al, 2015). When cell types display very strong and specific transcriptional 
profiles as is the case for the cells of the pancreatic islets (Li et al, 2016a) the transcriptome can be 
informative about cellular identity and cell state at the same time. This was demonstrated by studies 
comparing the different pancreatic islet cells from healthy and diabetic individuals (Segerstolpe et al, 
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2016; Wang et al, 2016; Xin et al, 2016). In these studies, the strong expression of cell type specific 
marker genes (e.g. glucagon for alpha cells, insulin for beta cells, somatostatin for delta cells, and 
pancreatic polypeptide for PP cells) allowed to determine the identity of a cell, while the broader tran-
scriptional profile was used to compare healthy and diseased (diabetic) cell states. The cell type re-
solved comparison of cell state (healthy vs. diabetic) led to the discovery of novel disease associate 
genes and pathways (Segerstolpe et al, 2016; Xin et al, 2016) as well as signs of dedifferentiation of 
alpha and beta cells during type 2 diabetes (Wang et al, 2016). The transcriptome also allows to pre-
cisely track directed changes in cellular identity and for example place transdifferentiating cells on an 
“identity continuum” between the original cell type and the completely transdifferentiated cell type 
(Treutlein et al, 2016). These and other studies (Treutlein et al, 2014; Grün et al, 2015; Zeisel et al, 
2015), demonstrate that the transcriptome can be a suitable readout for cellular identity and its dy-
namic changes.  

In order to understand the regulatory contribution of the transcriptome to creating, changing, and 
maintaining cellular identity, one component is of particular importance: Transcription factors and their 
functioning in gene regulatory networks. Transcription factors are a diverse group of proteins that 
have the ability to regulate the rate of transcription of their target genes. Thereby transcription factors 
crucially contribute to the implementation of cell type specific gene expression, which in turn is crucial 
to establish and maintain cellular identity. Transcription factors act through their specific binding to the 
DNA and their interaction with the transcription machinery, which can be activating or repressive. The 
specificity of transcription factors is provided through their DNA binding preferences at certain tran-
scription factor specific sequence motifs as well as co-binding as part of protein complexes 
(Latchman, 1997). The activity of transcription factors themselves is regulated through the rate of their 
transcription, accessibility of their binding sites, interaction with other transcription factors, and post-
translational modifications (e.g. phosphorylation). The processes that regulate transcription factors in 
turn involve proteins (e.g. kinases, other transcription factors, and chromatin modifiers) the expression 
of which is again regulated by transcription factors. To disentangle these gene regulatory networks 
and identify master transcription factors (i.e. transcription factors that alone or in small groups can in-
duce or abolish complete transcriptional programs) has greatly aided the understanding of the regula-
tory processes underlying cellular identity. For example, evidence has been found that in order to con-
fer cellular identity, the master transcription factors for ESCs (Oct4, Sox2, Nanog, Klf4 and Esrrb), B 
cells (PU.1, Ebf1, E2A and Foxo1), T helper cells (T-Bet), macrophages (C/EBPα), and myotubes 
(MyoD) occupy large enhancer regions (super-enhancers) that are exceptionally dense in transcrip-
tion factor binding sites and associated with cell type specific genes (Whyte et al, 2013). Furthermore, 
expression levels of just 18 key hematopoietic transcription factors were sufficient to distinguish five 
types of hematopoietic stem and progenitor cell types, hinting at the importance of controlled combi-
natorial expression of key transcription factors (Moignard et al, 2013). Furthermore, in T cell matura-
tion the temporally coordinated expression of key transcription factors and the transitions between 
three distinct gene network phases has been identified as crucial for acquiring cellular identity and 
preventing leukemic transformation (Yui & Rothenberg, 2014). 

Despite the seemingly unlimited regulatory potential of transcription factor combinations, the imperfect 
specificity of transcription factor binding leading to global crosstalk has been suggested as the limiting 
factor of large gene regulatory networks (Friedlander et al, 2016). This limitation implies that there is 
only a finite number of different transcription factors and transcription factor binding sites a cellular 
system can control, which in turn sets limits to genome size, gene number, and ultimately the number 
of different cell types (i.e. cellular identities) within an organism. In fact, comparative analysis have 
provided evidence that transcription factors and transcription factor binding motifs are highly con-
served among metazoans and that evolutionarily novel transcription factors emerge together with new 
cell types (Nitta et al, 2015). Despite the conservation of transcription factors and their binding motifs, 
aligned binding events in orthologous genomic regions across different species appear to be rare, in-
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dicating species specificity of transcriptional regulation, after all (Schmidt et al, 2010). From an evolu-
tionary perspective, given these transcription factor associated constraints, it is interesting to specu-
late on the maximally possible number of different cell types within one organism and whether this 
number might be already reached in vertebrates. Non-coding RNAs have been suggested to create a 
large additional regulatory space in higher organisms (Mattick, 2001) and another way to control gene 
expression without the necessity of transcription factors and thereby exceed this limit would be to re-
move genes from the genome in a cell type specific manner. In principle, this mechanism would be 
very similar to the processes involved in B and T cell receptor generation in vertebrates, where ge-
nomic segments are excised from the genome to ensure the exclusive expression of a particular re-
ceptor composition. 

 

1.2.4 Interaction between genome, epigenome, and transcriptome 
Although introduced separately in the previous sections, genome, epigenome, and transcriptome are 
highly interdependent and changes on one level often also affect the others. Together with the above 
described individual effects, these interactions are critically involved in the regulation, determination, 
and aberration of cellular identity. While some interactions between genome, epigenome, and tran-
scriptome are self-evident, others are rather unexpected and, amongst other insights, their recognition 
allows a better understanding of evolutionary as well as pathogenic processes. 

Although originally perceived as a disease caused by aberrations of the genome, for many cancers a 
far-reaching interplay between genomic, epigenomic, and transcriptomic changes has been identified. 
While the interplay between genomic and transcriptomic changes mostly involves mutations in genes 
coding for signalling proteins, transcription-factor binding sites, and enhancers (Sur & Taipale, 2016), 
the interplay between genomic and epigenomic changes mostly involves genomic mutations altering 
the function of readers, writers, and erasers of the epigenome (Shen & Laird, 2013). The resulting 
changes to the epigenome can in turn contribute to realizing the hallmarks of cancer, for example by 
aberrantly silencing tumour suppressor genes or activating oncogenes. A prominent example is the 
CpG island hypermethylator phenotype (CIMP) that has been traced back to a certain Isocitrate dehy-
drogenase 1 (IDH1) mutation in gliomas. The mutated IDH1 produces 2-hydroxyglutarate (2-HG) in-
stead of α-ketoglutarate which inhibits DNA demethylases (the TET enzymes) and thereby causes the 
hypermethylator phenotype (Turcan et al, 2012). Further, mutated IDH1 has been found to block nor-
mal differentiation and increase expression of stem cell identity markers, which may explain part of its 
oncogenic potential. However, although 2-HG (the product of mutated IDH1) is generally considered 
an oncometabolite, glioma patients with mutated IDH1 have a better prognosis than those with 
wildtype IDH1, possibly due to increased chemosensitivity (Waitkus et al, 2016). Interestingly, pro-
moter hypermethylation induced reduction in the expression of O-6-methylguanine-DNA methyltrans-
ferase (MGMT) has been described as a predictor of chemosensitivity (Weller et al, 2010). Mechanis-
tically, MGMT is an enzyme that repairs mutagenic DNA lesions and thereby counteracts the effect of 
alkylating chemotherapeutics. Although MGMT promoter hypermethylation is also observed in IDH1 
wildtype tumours, it is more likely to occur in the context of a hypermethylator phenotype. This inter-
play between IDH1 mutation, MGMT promoter hypermethylation, and disease phenotype is a prime 
example for the interdependency between genome, epigenome, and transcriptome in the context of 
malignant disease.  

Apart from modulating expression levels of DNA repair enzymes such as MGMT, the epigenome is 
critically involved in further aspects of maintaining genome integrity. For example, chromatin structure 
is fundamentally shaped by the epigenome, and especially the densely packed heterochromatin ap-
pears to protect the DNA from double-strand breaks as caused for example by ionizing radiation. Ad-
ditionally, protective changes in chromatin structure have been observed when exposing cells to DNA 
damaging agents (Lukas et al, 2011; Venkatesh et al, 2016). Consequently, changes to the epige-
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nome that impair a cell’s capability to establish and maintain certain DNA protective chromatin confor-
mations will lead to increased rates of DNA damage and it has been shown that mutation rates and 
types throughout cancer genomes correlate with chromatin structure (Schuster-Böckler & Lehner, 
2012). A particular role for the protection of the genome from endogenous damage caused by mobile 
genomic elements (i.e. transposons) has been attributed to DNA methylation. The translocation of 
transposons can cause major genomic damage for example by inserting into and disrupting essential 
genes or by destabilizing the DNA through gaps that remain when a transposon leaves its locus. DNA 
methylation of transposable elements, however, appears to drastically reduce transposon mobility and 
thus prevent such damages, while impairment of DNA methylation has been shown to increase trans-
poson mobility (Miura et al, 2001). Although increased transposon mobility does not seem to be in-
volved, also hypomethylation of classical satellite DNA has been linked to chromosomal instability in 
the Immunodeficiency–centromeric instability–facial anomalies (ICF) syndrome especially hampering 
the late phase of B cell development (Jeanpierre et al, 1993; Ehrlich, 2003). Considering that a stable 
genome forms the fundament to stable cellular identity, this genome-stabilizing role of the epigenome 
gains even more importance. 

Given the important role of DNA methylation for protecting genome integrity on the one hand and its 
regulatory functions on the other, both of which are known to be associated with certain DNA se-
quence properties (e.g. repeats) and motifs (e.g.TF binding motifs), it is not too surprising, that DNA 
methylation status can be predicted based on certain genomic features. Several studies have demon-
strated this predictability of DNA methylation status in human, identifying DNA sequence (Bock et al, 
2006; Das et al, 2006) as well as transcription factor binding sites (TFBSs) (Fang et al, 2006) as pre-
dictive genomic features. The interaction between DNA methylation and transcription factor binding 
appears to go in both directions: Some transcription factors (e.g. SP1) prevent DNA methylation at 
adjacent CpGs, while others (e.g. NR6A1) attract DNA methyltransferases and thereby enhance sur-
rounding DNA methylation (Blattler & Farnham, 2013). Conversely, DNA methylation also appears to 
regulate transcription factor binding as has been demonstrated through the example of the transcrip-
tion factor CTCF, where methylation of a certain CpG within the TFBS drastically reduces binding af-
finity (Bell & Felsenfeld, 2000). In line with the described crosstalk between DNA methylation and 
transcription factor binding, DNA methylation based prediction of transcription factor binding has been 
demonstrated using a computational supervised learning approach and appears to be possible across 
different cell types and even across species (human and mouse) (Xu et al, 2015). If this transferability 
of predictive models also holds true across greater evolutionary distances, it would enable the DNA 
methylation based assessment of transcription factor binding in a wide range of non-model organisms 
and thereby contribute to a better understanding of the evolutionary processes shaping the transcrip-
tion factor mediated regulation of cellular identity. 

Comparative analyses between hominids (human, chimpanzee, gorilla, and orangutan) have further 
investigated the interplay between genome and epigenome evolution. These analyses demonstrated 
a close interplay between changes in DNA sequence and DNA methylation state during hominid evo-
lution (assessed in regions of incomplete lineage sorting) (Hernando-Herraez et al, 2015) as well as 
increased nucleotide evolution in the neighborhood of differentially methylated regions (Hernando-
Herraez et al, 2013). Similar analysis across other vertebrate groups or even across the entire verte-
brate tree would allow to determine the generalizability of these findings. However, such endeavors 
are analytically very demanding due to larger evolutionary distances and poorer quality or absence of 
reference genomes. 

 

1.3 High-throughput sequencing enables profound cellular characterization 
As described in the previous chapter, nucleic acid (DNA and RNA) sequences form the molecular ba-
sis of cellular identity. Assessing the sequence of nucleic acids in order to characterize cells has been 
scientific practice ever since it became possible to analyse nucleic acid sequences in the late 60s 
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(Sanger, 2001). The methods used for reading nucleic acid sequences (i.e. sequencing in the broad-
est sense) have been greatly improved especially in the past 10 years. Starting from low resolution 
restriction fragment analysis over low throughput chain-termination (Sanger) sequencing to modern 
high throughput reversible dye-terminator (Illumina) sequencing, sequencing throughput has drasti-
cally increased and costs have severely dropped. Today, high throughput sequencing is a standard 
method in nearly all bio-medical research fields. Accordingly, in the past few years a multitude of spe-
cialized sequencing protocols for the assessment of genome, epigenome, and transcriptome have 
been devised. In particular, single-cell sequencing approaches have opened the door for cellular char-
acterisation in unprecedented detail and resolution. Generally, sequencing strategies fall into two 
groups: Those that are designed to broadly capture “everything” (e.g. whole genome sequencing) and 
those that are optimized to capture in depth only regions of interest (e.g. exome sequencing). There-
fore, when selecting a strategy for a project, one needs to weigh sequencing breadth against se-
quencing depth. For most research questions, sequencing depth will be more beneficial, but for some 
applications, such as genome assembly, sequencing breadth is indispensable. However, if sequenc-
ing cost is not an issue, breadth and depth can be achieved at the same time. This chapter presents a 
selection of commonly used high-throughput sequencing approaches as well as data-analytical strate-
gies. 

 

1.3.1 Genome profiling 
Genome profiling in the context of cellular identity serves two major purposes: Detection of genomic 
variants and genome (de novo) assembly of yet unsequenced species. Detection of genomic variants 
is usually carried out relative to a species-specific reference genome. In order to generate a reference 
genome, the entire genome needs to be sequenced and the resulting sequencing reads need to be 
re-assembled in correct order. The assembly is achieved through detecting unambiguous overlaps 
between reads and therefore significantly facilitated by longer read lengths, especially in repetitive re-
gions. Although one of the most recent de novo assembled vertebrate genome (spotted gar) was still 
sequenced using Illumina technology (Braasch et al, 2016) with a maximal read length of 300 bases, 
recent single-molecule sequencing technologies which can achieve read lengths > 10000 bases are 
increasingly used for de-novo genome assembly (Loman et al, 2015) and also to refine existing as-
semblies (Chaisson et al, 2015). 

For the detection of genomic variants, read lengths between 50 and 100 bases are mostly sufficient 
and sequencing depth, as opposed to breadth, is usually paramount. This means that given a certain 
budget, one would rather invest in sequencing depth to reach at least 30-40x coverage in the loci of 
interest instead of aspiring to cover the entire genome. Especially in genetically heterogeneous can-
cer samples, where a mixture of different cells is assessed, the variant frequency detection limit di-
rectly depends on sequencing depth. A popular method of choice, especially in the clinical setting, is 
exome sequencing, where only the coding and thus easily interpretable part of the genome is se-
quenced (Clark et al, 2011). However, exome enrichment strategies tend to display increased se-
quence coverage bias (i.e. uneven coverage of protein coding regions) and do not allow for the detec-
tion of structural or non-coding variants. Comparable whole genome sequencing (WGS) on the other 
hand is currently two to four times more expensive and computationally more intense (Lelieveld et al, 
2015). Due to sequencing noise, the detection of genomic variants (i.e. variant calling) from high-
throughput sequencing data is intrinsically difficult. In the past years, researchers have created a mul-
titude of different computational tools. The genome analysis tool kit (GATK), due to its comprehen-
siveness and extensive documentation, represents a widely used and well-validated method (Van der 
Auwera et al, 2013). However, concordance between different variant-calling approaches appears to 
be only around 50% with many exclusively detected true positives. It has therefore been proposed to 
use the union of all variants detected by different callers in the discovery phase when sensitivity is 
more important than specificity (O’Rawe et al, 2013). In order to interpret discovered variants in a bio-
logically or medically meaningful way, variants need to be annotated according to their presumed 
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phenotypic effect. The ANNOVAR tool for example takes into account a variants disruptive effect on 
protein expression, degree of conservation, and frequency in the general population in order to esti-
mate its phenotypic effect (Wang et al, 2010).  

Although high coverage (>100x) together with dedicated protocols and suitable bioinformatics make it 
possible to detect variants that occur in only 1% of the cells, standard variant detection at 40x cover-
age in bulk samples has an intrinsic blind spot for variants that occur in less than about 20 % of the 
cells. Furthermore, bulk DNA sequencing does not allow to decipher which combinations of variants 
come from the same cell and therefore cannot appropriately resolve the cellular components within 
the population of sequenced cells. While for many applications such as the detection of germline vari-
ants, which should be present in all cells of a sample, these limitations are tolerable, they are detri-
mental when for example the clonal architecture of a tumour is to be assessed. For such cases, sin-
gle-cell genome sequencing will offer a near to ideal solution once the still high false positive and 
false negative rates can be controlled (Gawad et al, 2016). Technical challenges arise mainly from the 
extremely low amount of input DNA (exactly two copy of the genome in diploid cells), which requires 
whole genome amplification, which in turn is prone to biases and can still not replace parts of the ge-
nome that may have been lost in the process. Nevertheless, variant analysis in single cells has 
proven its usefulness, for example in the assessment of clonal evolution in myeloproliferative neo-
plasms (Hou et al, 2012). 

 

1.3.2 Epigenome profiling 
Profiling of the epigenome can be carried out on several different levels, ranging from the broad as-
sessment of chromatin structure to the precise measurement of epigenetic modifications. Methods 
that assess the DNA accessibility, such as “DNase hypersensitivity sequencing” (DNase-seq) or “As-
say for Transposase-Accessible Chromatin sequencing” (ATAC-seq), allow genome-wide profiling of 
chromatin openness, which is considered a proxy for regulatory activity. The exact genome-wide dis-
tribution of histone modifications can be determined through “chromatin immunoprecipitation followed 
by sequencing” (ChIP-seq) experiments, where histone-modification specific antibodies are used to 
precipitate DNA fragments crosslinked to the respective histones. Similarly, precipitation-based meth-
ods have also been used for the genome-wide assessment of DNA methylation. For example, “meth-
ylated DNA immunoprecipitation followed by sequencing” (MeDIP-seq), precipitates only methylated 
DNA fragments using a 5mC-specific antibody (Down et al, 2008), while “biotinylated CxxC affinity pu-
rification followed by sequencing” (Bio-CAP-seq) precipitates only fragments containing unmethylated 
CpG motifs (Blackledge et al, 2012). However, precipitation-based methods bear the intrinsic short-
coming that absence of signal can signify either a true negative or a false negative call with no possi-
bility for disambiguation. This ambiguity is omitted in bisulfite conversion based approaches, where 
methylated as well as unmethylated sequences are captured. To discriminate between methylated 
and unmethylated CpGs, the DNA is treated with sodium bisulfite, which converts unmethylated cyto-
sines to uracil, while methylated cytosines remain cytosines (Frommer et al, 1992). Due to their rela-
tive robustness, bisulfite based approaches are widely used in basic research as well as in the clinical 
setting (Bock et al, 2016b). Readout of bisulfite converted sequences is possible either through micro-
arrays or high-throughput sequencing (bisulfite sequencing). While microarrays need to be designed 
separately for each genome/application and only capture predefined sets of regions, high-throughput 
sequencing allows species-independent, versatile, genome-wide analysis. Therefore, microarrays 
such as the Infinium 450k array are often used in biomedical research where mainly human samples 
are to be assessed, whereas sequencing is preferred in basic research offering more room for discov-
ery.  

Like genome sequencing, bisulfite sequencing can be performed in a global or targeted manner. In 
whole genome bisulfite sequencing (WGBS) the entire genome is sequenced regardless of whether 
or not a sequence actually contains relevant cytosines (i.e. CpG motifs in vertebrates). On the one 
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hand, this makes sure that every potentially interesting region is captured, but on the other hand, it 
increases, sequencing cost and compute time. In contrast, reduced representation bisulfite sequenc-
ing (RRBS) is designed in a way that  each sequenced DNA fragment should contain at least one 
CpG (Meissner, 2005). This enrichment of relevant sequences is achieved by digesting the DNA with 
CpG methylation insensitive restriction enzymes (e.g. MspI, TaqI) the restriction motif of which con-
tains a CpG, which makes sure that also the resulting read (which originates from the ends of the 
fragment) contains at least this restriction CpG. Furthermore, subsequent fragment size-selection en-
riches for fragments of less than 500 bp length, making sure that fragments originate predominantly 
from CpG-rich regions including CpG islands (Veillard et al, 2016). In human, a typical RRBS library 
covers 70-80% of all promoters (Bock et al, 2010), about 50% of all CpGs that fall into promoter re-
gions and 25-30% of CpGs that fall into further regulatory regions [Fig. 4]. However, pre-fragmenta-
tion of the DNA, as it happens spontaneously in DNA stored at room temperature, during apoptosis, 
or harsh treatments (e.g. formalin fixation), counteracts the enrichment procedure and thereby re-
duces coverage in the desired genomic regions. Nevertheless, the presented characteristics make 
RRBS a viable solution for projects that focus on the regulatory functions of DNA methylation in many 
different samples.  

 

Figure 4 Fraction of CpGs cap-
tured in different genomic re-
gions (y-axis). The data repre-
sent 32 typical human RRBS li-
braries prepared as described 
in (Klughammer et al, 2015) 
and mapped to the human ge-
nome assembly hg19. Ge-
nomic annotations were re-
trieved from RefSeq (Promoter, 
Exonic), UCSC-GB (CpG Is-
land, CpG Shore, Repeats) 
and ENCODE (H3k27ac, TF 
binding, DNase HS). TF: tran-
scription factor; HS: hypersen-
sitive 

 

The analysis of bisulfite sequencing data is generally performed by aligning the sequencing reads to a 
reference genome, taking into account the bisulfite induced cytosine to thymine conversions. Follow-
ing alignment, for each cytosine the percentage of methylated reads covering that cytosine is calcu-
lated, which for example allows the comparison of methylation levels between samples (Bock, 2012). 
In order to omit the necessity of a reference genome for differential DNA methylation analysis, we 
(Klughammer et al, 2015) and others (van Gurp et al, 2016) have developed computational ap-
proaches, that deduce a reference directly from the sequencing reads. These advances now allow the 
assessment of DNA methylation any species independent of whether or not a reference genome is 
available, offering great opportunities for the comparative investigation of DNA methylation. 

An additional advantage of bisulfite sequencing based approaches is that inference of DNA methyla-
tion heterogeneity within the population of sequenced cells is to some degree possible. The assess-
ment of methylation patterns within reads that contain several CpG motifs allows to measure local epi-
allele composition (Li et al, 2014) and calculate local heterogeneity scores such as the proportion of 
discordant reads (PDR) (Landau et al, 2014). Clinical relevance of DNA methylation heterogeneity 
has for example been demonstrated in leukaemias where increased DNA methylation heterogeneity 
was significantly linked to adverse clinical outcome (Landau et al, 2014; Li et al, 2016b). Although 
these computational approaches allow to infer DNA methylation heterogeneity from bulk samples, sin-
gle-cell bisulfite sequencing is needed to resolve the true clonal composition of a population of cells 
and assess DNA methylation patterns individually in each cell. There are single-cell versions of 
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WGBS (Farlik et al, 2015; Smallwood et al, 2014) as well as RRBS (Guo et al, 2013) but they all sig-
nificantly suffer from low coverage especially owing to loss of DNA during bisulfite treatment. This lack 
in coverage results in a reduced number of commonly covered CpGs and thereby reduces compara-
bility between different samples. However, because related regulatory elements all over the genome 
tend to display similar changes in DNA methylation, it is possible to combine DNA methylation meas-
urements across these regions without losing too much information but significantly increasing com-
parability (Farlik et al, 2015; Sheffield & Bock, 2015). 

 

1.3.3 Transcriptional profiling 
In contrast to profiling the genome or epigenome, profiling the transcriptome is performed by as-
sessing the RNA not the DNA. Because RNA is biochemically much more instable than DNA and ad-
ditionally readily digested by omnipresent RNases, RNA-sequencing experiments are intrinsically 
more prone to batch effects than DNA-sequencing experiments. Accordingly, experiments need to be 
planned in a way that technical and biological variability is as little as possible confounded (e.g., case 
and control samples should not be processed in different batches), which allows for computation cor-
rection of technical artefact (batch-effect correction) (Leek et al, 2012). Also, due to the intrinsic insta-
bility of RNA, sequencing is rarely actually performed on RNA, but on DNA copies of the RNA, the 
cDNA. Although conducted by different means, this reverse transcription of RNA into DNA is one of 
the first steps in the process of preparing an RNA-sequencing library. Further, many protocols com-
monly used for transcriptome profiling include steps to prevent inclusion of ribosomal RNA (rRNA), 
which represents the vast majority of RNA, into the sequencing library. Inclusion of rRNA can be pre-
vented through depletion of rRNA or enrichment of poly-adenylated (poly-A) RNAs that include all 
messenger RNAs (mRNA) and some but far from all non-coding RNAs (ncRNA). Poly-A enrichment is 
either achieved by poly-T-bead pull-down or by using poly-T primers to initiate reverse transcription, 
which integrates poly-A enrichment into the workflow and thereby prevents additional steps with po-
tential loss of non-rRNA. Especially single-cell RNA sequencing protocols, where the amount of input 
RNA is extremely low (Kolodziejczyk et al, 2015), but also high-efficiency bulk RNA sequencing proto-
cols such as QuantSeq (Moll et al, 2014) make use of the latter, more economical method. Especially 
when working with low amounts of starting material, libraries need to be amplified by PCR (>15 cy-
cles) in order to increase the concentration of the sequencing library to a level at which it can be han-
dled. To be able to analytically correct for PCR duplicates, short (5 - 6 bp) random DNA sequences 
called unique molecular identifiers (UMIs) can be attached to cDNA fragments before amplification, 
which then after amplification allows to determine reads, that originate from the same cDNA fragment 
(Islam et al, 2014). Removing the PCR duplicates and keeping only one copy each, prevents PCR-
amplification biases and allows more accurate determination of expression levels. 

Transcript expression levels are calculated by counting the number of reads (or UMIs) that map to a 
certain transcript and normalising this number to the total number of reads in the sequencing library. 
This library-size normalisation makes transcript expression levels comparable across different librar-
ies (i.e. samples) and is therefore crucial for differential expression analysis. In order to compare the 
expression levels of different transcripts, for example to determine the most highly expressed gene or 
transcript, it is necessary to also normalise the read count to transcript length, because at the same 
expression level, longer transcripts generally collect more reads than shorter transcripts. Transcript 
expression levels are therefore often presented as reads per kilobase (transcript length) per million 
reads (library size) (RPKM) or related measures (FPKM, TPM) (Conesa et al, 2016). While library-
size normalisation is largely unaffected by any kind of bias there might occur during library prepara-
tion or sequencing, transcript-length normalisation is affected by systematic unevenness in transcript 
coverage, which if neglected leads to systematically underestimating the expression levels of longer 
reads. Therefore, often an effective transcript-length is calculated based on the observed read distri-
bution and used for normalisation instead of simply using the annotated transcript-length.  
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A commonly observed transcript-coverage bias in poly-A enriched libraries is the trend to higher cov-
erage of a transcript’s 3’ end, where the poly-A is situated. This is because selection as well as re-
verse transcription originates from the 3’ end of a transcript and there is a certain propensity for RNA 
breaks as well as interruptions of the reverse transcription, which decreases the probability for a se-
quence to be captured with increasing distance to the 3’ end of the transcript. In poly-A enriched li-
braries, in which reverse transcription is initiated by random priming (instead of poly-T priming) such 
as the Illumina TruSeq protocol (Illumina, 2011) the 3’ bias is negligible, as long as the library is con-
structed from high-quality (not fragmented) RNA. However, protocols that take advantage of combin-
ing the steps of poly-A enrichment and reverse transcription by using poly-T primed reverse transcrip-
tion, intrinsically display a slight 3-prime bias regardless of RNA quality (Adiconis et al, 2013).  

QuantSeq, a protocol for high efficiency bulk RNA sequencing, elegantly turns the 3’ bias into a virtue, 
by deliberately aiming to incorporate only the 3’ ends of a transcript (Moll et al, 2014). Although these 
kind of data do not allow assessment of the entire transcript, they do allow robust quantification of 
transcript expression levels at extremely low sequencing coverage, which is especially useful for 
large-scale screening assays with transcriptomic readout, where with replicates easily hundreds of 
samples need to be assessed. This has been demonstrated for example in a successfully conducted 
reverse genetic screen where pools of 48 samples were sequenced in 50-bp single-read on an Illu-
mina HiSeq 2000 machine yielding only 2-4 million reads per sample (Gapp et al, 2016).  

However, the greatest recent advances in RNA sequencing have been made in the area of single-cell 
RNA sequencing with an ever-increasing number of published studies and methods. For example 
Smart-seq2 is a popular single-cell RNA sequencing protocol that, like its predecessor Smart-seq, at-
tempts to capture the entire transcript at a reasonably homogeneous coverage through template-
switching in the process of cDNA synthesis (Picelli et al, 2014). Having overcome the technical chal-
lenges of producing effective sequencing libraries from minuscule amounts of RNA, the next mile-
stone was to drastically scale up the efficiency of library preparation, so that thousands of single cells 
could be analysed. A first step in that direction was the application of microfluidics as demonstrated 
for example trough the transcriptional profiling and characterisation of 3005 single mouse brain cells, 
discovering so far unknown cell subtypes (Zeisel et al, 2015). This already impressive number of as-
sessed cells can now easily be surpassed by an order of magnitude through a technology that uses 
nanoliter droplets as reaction chambers (Macosko et al; Klein et al, 2015). Each droplet contains one 
cell as well as barcoded reverse transcription primers, through which, during cDNA synthesis, each 
transcript within the droplet is labelled with the same unique cell barcode. Barcoded cDNAs can then 
be released from the droplets and the following steps of the library preparation as well as sequencing 
can be performed in a pooled manner. Through the incorporated barcode, each cDNA can be 
uniquely reassigned to its cell of origin. The scalability of this approach is rapidly sparking the devel-
opment of new single-cell screening approaches such as for example pooled genome-editing 
(CRISPR) screens with transcriptomic readout (Datlinger et al, 2016). 

 

1.3.4 Complementarity of single-cell and bulk sequencing 
Despite the impressive results and new insights that can be obtained through single-cell sequencing, 
be it genome, epigenome, or transcriptome sequencing, single-cell sequencing is not expected to re-
place sequencing of bulk samples. Rather than compete, these two approaches complement each 
other in a powerful way especially for research that involves the profound characterisation of cell pop-
ulations as depicted in Figure 5. Bulk sequencing approaches do not allow the discovery of unknown 
cell types, barely allow the assessment of population heterogeneity, and are not well suited for the 
characterisation of rare cell types (unless they can be purified beforehand). Single-cell sequencing in 
contrast makes all these endeavours possible, however with one crucial drawback: Once a cell has 
been subjected to sequencing, it is destroyed and can no longer be assessed by other means such as 
functional assays, although there are solutions to simultaneously obtain different molecular readouts 
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from the same cell (e.g. DNA and RNA, RNA and Protein, DNA methylation and sequence) (Bock et 
al, 2016a). The combination of several assays, however, is easily possible with bulk samples, where 
the sample can be split and only part of the cells can be subjected to sequencing, while the rest re-
mains available for further assessments. Yet, in order to produce pure bulk samples consisting only of 
the cell (sub) type of interest, cellular characteristics to select by, such as for example marker gene 
expression, need to be available. These cellular characteristics, in turn can be identified through sin-
gle-cell analysis, which closes the circle of discovery [Fig. 5]. 

 

 
Figure 5 Summary of the strengths and weaknesses of single-cell sequencing and bulk sequencing, empha-
sizing the complementary nature of these two approaches. Depicted schematically is the molecular character-
isation of a heterogeneous population of cells by either single-cell (left) or bulk (right) sequencing. The grey 
arrow signifies the application of cell (sub) type markers (represented by an antibody) identified through sin-
gle-cell sequencing, for the purification of cell sub populations for bulk sequencing experiments. 
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2 Aim 
This thesis aims at providing new insights into the complex and fundamental phenomenon of cellular 
identity by integrating physiological as well as pathological states, evolutionary relationships, and mo-
lecular data. 

First, the work presented in this thesis builds a foundation to uncover the evolutionary role of DNA 
methylation for establishing and maintaining cellular identity across invertebrate and vertebrate spe-
cies. To this end, an RRBS-based computational method for reference genome independent differen-
tial DNA methylation analysis (RefFreeDMA) was developed, validated, and applied. 

Second, this thesis assesses cellular identity and its alterations in the pathological condition of a ma-
lignant disease. To that end, DNA methylation and also chromosomal aberrations, and genomic vari-
ants, were measured and analysed in matched (diagnosis, progression) glioblastoma samples from a 
cohort of 112 patients (GBMatch). 

Third, transcriptional aspects of cellular identity under physiological conditions are investigated and 
revealed by identifying and characterizing single human pancreatic islet cells based on their transcrip-
tional profiles (HumanIslet). 
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3 Results 

3.1 RefFreeDMA 
 

Differential DNA Methylation Analysis without a Reference Genome. 
Klughammer J, Datlinger P, Printz D, Sheffield NC, Farlik M, Hadler J, Fritsch G, Bock C.  
Cell Rep. 2015 Dec;13(11):2621-33. doi:10.1016/j.celrep.2015.11.024. 
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SUMMARY

Genome-wide DNA methylation mapping uncovers
epigenetic changes associated with animal develop-
ment, environmental adaptation, and species evolu-
tion. To address the lack of high-throughput
methods for DNA methylation analysis in non-model
organisms, we developed an integrated approach for
studying DNA methylation differences independent
of a reference genome. Experimentally, our method
relies on an optimized 96-well protocol for reduced
representation bisulfite sequencing (RRBS), which
we have validated in nine species (human, mouse,
rat, cow, dog, chicken, carp, sea bass, and zebra-
fish). Bioinformatically, we developed the Ref-
FreeDMA software to deduce ad hoc genomes
directly from RRBS reads and to pinpoint differen-
tially methylated regions between samples or groups
of individuals (http://RefFreeDMA.computational-
epigenetics.org). The identified regions are inter-
preted using motif enrichment analysis and/or
cross-mapping to annotated genomes. We validated
our method by reference-free analysis of cell-type-
specific DNA methylation in the blood of human,
cow, and carp. In summary, we present a cost-effec-
tive method for epigenome analysis in ecology and
evolution, which enables epigenome-wide associa-
tion studies in natural populations and species
without a reference genome.
BACKGROUND

DNA methylation is an epigenetic mechanism that is indispens-

able for animal development (Reik, 2007) and also broadly

relevant for plant biology (Law and Jacobsen, 2010). Defects

in the DNA methylation machinery are associated with wide-

spread changes in cellular identity and interfere with the devel-

opmental potential of stem cells (Jones, 2012). Altered DNA
methylation patterns are ubiquitous in cancer (Baylin and

Jones, 2011; Feinberg and Tycko, 2004), and they have been

observed in numerous other diseases (Portela and Esteller,

2010; Robertson, 2005). Moreover, there is mounting evidence

for associations between DNA methylation patterns and envi-

ronmental factors such as stress, nutrition, toxic exposures,

and substance abuse (Foley et al., 2009; Mill and Heijmans,

2013).

In humans, epigenome-wide association studies (EWASs)

have emerged as a widely used paradigm for linking DNA

methylation to environmental exposures and to diseases (Mi-

chels et al., 2013; Rakyan et al., 2011). A small number of asso-

ciations between the epigenome and the environment have also

been validated in inbred mouse and rat models, for example,

identifying connections between early life exposures and the

propensity to subsequently develop certain diseases and behav-

ioral phenotypes. A widely discussed hypothesis posits that

epigenetic mechanisms provide a mechanistic link between ex-

posures and diseases, thus contributing to the developmental

origins of health and disease in humans (Gillman, 2005; Water-

land and Michels, 2007). Furthermore, DNA methylation can be

transgenerationally inherited at certain genomic loci (Feil and

Fraga, 2011) and may contribute to species evolution (Jablonka

and Raz, 2009).

There is tremendous potential in studying environmental influ-

ences and epigenetic inheritance not only in laboratory animals,

but also in natural populations and non-model organisms. For

example, animals in the wild are often exposed to complex

evolutionary pressures and ecological interactions that cannot

be modeled in the laboratory. Initial studies along these lines

have suggested a role of epigenetics in the evolution of Darwin’s

finches (Skinner et al., 2014) and in speciation amongmarsupials

(O’Neill et al., 1998), and they identified DNAmethylation as a po-

tential source of random variation in natural populations of fish

(Massicotte et al., 2011) and songbirds (Liebl et al., 2013; Schrey

et al., 2012).

However, systematic epigenetic studies in natural populations

and non-model organisms have been hampered by the lack of

methods for high-resolution and high-throughput DNA methyl-

ation analysis that work well across a broad range of species.

To date, most studies of DNA methylation in ecology and
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Figure 1. DNA Methylation Analysis without a Reference Genome

Workflow for reference-genome-independent analysis of differential DNA

methylation using an optimized RRBS protocol and the RefFreeDMA software.

Colored bars represent RRBS sequencing reads, and identical colors indicate

high sequence similarity. Bisulfite-converted MspI restriction sites are shown

at the beginning of each read (CGG for methylated sites and TGG for un-

methylated sites). To derive a deduced genome, reads from all samples are

clustered by sequence similarity, and a consensus sequence is determined.

These deduced genome fragments (black-edged bars) are concatenated into

one deduced genome, to which the RRBS reads for each sample are mapped.

DNA methylation levels are obtained by counting the number of Cs versus Ts

for individual cytosines in the deduced genome (this step typically focuses on

CpG sites, but themethod also supports the analysis of non-CpGmethylation).

Differential methylation analysis is performed by comparing site-specific and

fragment-specific DNAmethylation levels between sample groups. Finally, the

identified differentially methylated fragments are analyzed by cross-mapping

to well-annotated genomes of other species (e.g., mouse or human) and by

motif enrichment analysis (e.g., for identifying enriched transcription factor

binding sites).
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evolution have relied on low-throughput, gel-based assays such

as MS-AFLP (Schrey et al., 2013). Much more powerful assays

are being used for DNA methylation analysis in human, including

the Infinium microarray, whole-genome bisulfite sequencing

(WGBS), and reduced representation bisulfite sequencing

(RRBS). However, none of these assays is directly applicable

for studying DNA methylation in natural populations and non-

model organisms: The Infinium assay requires a commercial mi-

croarray that is only available for the human genome (Bibikova

et al., 2011); WGBS is excessively expensive when studying

more than a handful of samples (Beck, 2010), and RRBS suffers

from the technical complexity of the original protocol (Gu et al.,

2011) and from concerns that the restriction enzyme MspI may

not provide good genome coverage in other species. Further-

more, there is a general lack of bioinformatic methods for

analyzing sequencing-based DNA methylation data in the

absence of a high-quality reference genome and in genetically

diverse populations for which existing reference genomes would

unduly bias the analysis.

Here, we describe an integrated approach for analyzing DNA

methylation at single-base-pair resolution in a broad range of

species. We combine an optimized high-throughput RRBS pro-

tocol with a tailored computational method called RefFreeDMA

in order to detect differential DNA methylation without a refer-

ence genome. RefFreeDMA constructs a deduced genome

directly from RRBS sequencing reads, it maps the sequencing

reads to the deduced genome, performs DNA methylation call-

ing, and identifies differentially methylated cytosines and DNA

fragments (Figure 1).We validated ourmethod by studying blood

cell-type-specific DNA methylation in three species (human,

cow, and carp), benchmarking the reference-free analysis

against a reference-based analysis using the existing reference

genomes. The experimental protocol was also validated in six

additional vertebrate species (rat, mouse, dog, chicken, sea

bass, and zebrafish). We expect that the described method will

be broadly useful for DNA methylation analysis in non-model or-

ganisms, for example, to identify and interpret DNA methylation

differences between samples (e.g., different cell types) or groups

of individuals (e.g., animals that have been exposed to different

environments).



Figure 2. An Optimized RRBS Protocol Validated in Nine Species
(A) Schematic outline of RRBS library preparation and the corresponding

sequencing reads.

(B) Computationally predicted (blue) and experimentally measured (red) frag-

ment length distribution of RRBS libraries in nine vertebrate species. Pre-

dictions were based on in silico MspI restriction digests of the reference

genomes using the BSgenome R package. Experimental results were ob-

tained by electrophoresis (Experion DNA 1k chip). In species with a reference

genome, concordance between predicted and experimentally measured

peaks can be used to confirm successful RRBS library preparation.
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RESULTS

High-Throughput DNA Methylation Mapping in Diverse
Animal Species Using RRBS
RRBS enables genome-scale DNA methylation mapping at sin-

gle-base-pair resolution for a fraction of the cost of WGBS

(Meissner et al., 2005). It exploits the highly characteristic distri-
bution of DNA methylation in vertebrate genomes, which occurs

mainly at CpG dinucleotides. DNA is digested with the restriction

enzymes MspI (restriction site: C^CGG) and/or TaqI (restriction

site: T^CGA), which are insensitive to DNA methylation at the

central CpG, and short size-selected restriction fragments are

subjected to bisulfite sequencing (Figure 2A).

We adapted an existing RRBS protocol (Boyle et al., 2012) and

optimized it for genome coverage and sample throughput (see

Experimental Procedures for details). The optimized protocol in-

creases the number of covered CpG sites from �2.5M to �4M

(human genome, using the MspI enzyme), and it allows a single

person to process up to 192 samples per week. For most verte-

brates, good sequencing coverage can be obtained when 6–12

barcoded samples are sequenced on a single lane of Illumina Hi-

Seq, which makes the protocol approximately 10-fold cheaper

than WGBS. To validate the assay, we generated RRBS libraries

for nine species (human, rat, mouse, cow, dog, chicken, carp,

sea bass, and zebrafish). These libraries showed characteristic

fragment length distributions, which reflect the distribution of

CpG-rich repetitive elements in these species and which provide

a convenient metric for assessing the quality of RRBS libraries

prior to sequencing (Figure 2B).

Using our optimized RRBS protocol, we established a DNA

methylation dataset for the major nucleated cell populations in

peripheral blood of three species (human, cow, and carp), with

four biological replicates per cell type and species. The human

and cow datasets comprise granulocytes, monocytes, and lym-

phocytes, whereas the carp dataset also includes nucleated

erythrocytes and one additional leukocyte population that

morphologically resembles granulocytes and monocytes (Fig-

ure 3A). In total, the dataset comprises 44 blood cell samples

from three species and 789 million sequencing reads (Table

S1). All cell types were fluorescence-activated cell sorting

(FACS) purified based on forward and side scatter alone,

demonstrating the feasibility of separating blood cell types in

species that lack suitable FACS antibodies. The purity of the

sorted cell populations was assessed visually through cytospins,

and it exceeded 95% in all samples. Here, our analysis focuses

on DNAmethylation differences between these cell populations,

but the same sorting strategy can also be used for minimizing the

impact of differences in cell composition between individuals,

which is a major confounder in human EWAS (Houseman

et al., 2012; Jaffe and Irizarry, 2014).

RefFreeDMA: Analyzing Differential DNA Methylation
without a Reference Genome
We devised a workflow for reference-free DNAmethylation anal-

ysis consisting of six main steps (Figure 1): (1) preparation and

sequencing of RRBS libraries, (2) inference of a deduced

genome from the RRBS sequencing reads, (3) read alignment

to the deduced genome, (4) DNA methylation calling, (5) identifi-

cation and ranking of differentially methylated CpGs and

deduced genome fragments, and (6) functional annotation of dif-

ferential DNA methylation. RefFreeDMA is implemented as a

Linux-based software pipeline, supporting small to moderately

sized analyses on a desktop computer (e.g., 40-hr total

runtime for 20 samples), whereas large analyses are efficiently

parallelized on a computing cluster. A detailed overview of the
Cell Reports 13, 1–13, December 22, 2015 ª2015 The Authors 3



Figure 3. Validation of Reference-Free DNA Methylation Mapping

(A) Representative images (Giemsa-stained cytospins at 1003 magnification) of blood cell populations that were purified by FACS using an antibody-inde-

pendent protocol based on forward scatter (x axis) and side scatter (y axis). Gated cell populations are highlighted in different colors, and their DNA was used for

RRBS library preparation.

(B) Percent mapping efficiency (alignment rate) for RRBS reads using the deduced genome versus the reference genome. Mapping rates are expectedly lower

than 100% for the reference-free method because low-confidence reads are used during alignment but not for building the deduced genome.

(C) Percentage of CpGs and sequencing readswith concordantmapping between the two approaches in non-repetitive genomic regions (see Figure S3A for details).

(D) Pearson correlation of DNA methylation levels for the two approaches, compared at the level of CpG sites and deduced genome fragments using

RefFreeDMA’s standard filtering criteria (coverage of least eight and not more than 200 mapped reads).

(E) DNA methylation scatterplots at the level of CpG sites (r, Pearson correlation; N, number of CpGs; cov, minimum and maximum read coverage used for

filtering).
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RefFreeDMA pipeline is provided as a Unified Modeling Lan-

guage (UML) diagram in Figure S1.

A key aspect of RefFreeDMA is the construction of a deduced

genome directly from the RRBS reads. This deduced genome is

not based on classical de novo assembly of bisulfite sequencing

reads, which is computationally expensive and would require

very deep sequencing. Rather, we exploit a specific character-

istic of RRBS with its defined fragment start and end positions

at MspI restriction sites to simplify the problem. RefFreeDMA

constructs the deduced genome by clustering the RRBS reads

from all samples in a given species according to their sequence

similarity, followed by inference of the consensus sequence for

each read cluster. In the consensus sequence, positions with

both cytosines (Cs) and thymines (Ts) among the clustered reads

are retained as Cs (Figure 1), given that they are likely to reflect

genomic cytosines that aremethylated and protected frombisul-

fite sequencing in some but not all samples. We developed an

efficient two-step approach in which all quality-filtered, non-

duplicate sequencing reads are initially clustered in an approxi-

mate and computationally efficient manner, followed by a more

precise and computationally demanding finalization step (see

Experimental Procedures for details). Finally, all consensus

sequences are concatenated with spacer sequences (i.e.,

stretches of Ns) to facilitate computational processing, resulting

in adeducedgenome that is specific for a given species and anal-

ysis but shared among all samples contributing to the analysis.

The subsequent steps of read alignment, DNA methylation

calling, and differential methylation analysis are performed in

much the sameway as for DNAmethylation analysis with a refer-

ence genome (Bock, 2012). Specifically, we use BSMAP/

RRBSMAP (Xi et al., 2012; Xi and Li, 2009) for read alignment

and a custom DNA methylation calling script (Bock et al., 2010)

for calculating the fraction of methylated reads at each CpG po-

sition in the deduced genome. Differentially methylated CpGs

and deduced genome fragments between sample groups are

then identified using a modified t test statistic as described for

the RnBeads software (Assenov et al., 2014). The analysis gives

rise to lists with individual CpGs as well as deduced genome

fragments ranked by their degree of differential methylation.

In a final step, the top-ranking differentially methylated frag-

ments are exported as FASTA/FASTQ files, which provide the

basis for biological interpretation by cross-mapping to well-

annotated genomes and by reference-free motif enrichment

analysis. The principle behind cross-mapping is to link deduced

genome fragments in the analyzed species to orthologous re-

gions in well-annotated genomes of other vertebrate species

and to use the genome annotations that are available in the latter

species (e.g., genes, transcription factor binding sites, histone

modifications, and DNase hypersensitivity sites) for cross-spe-

cies enrichment analysis. This approach is of course limited to

genomic regions that are conserved across species; hence, it

is most powerful for species that are closely related to well-char-

acterized model organisms.

Motif enrichment analysis provides an alternative approach to

biological interpretation that is independent of any reference ge-

nomes. It is based on the observations that transcription factor

binding motifs are highly conserved across all vertebrates (Nitta

et al., 2015) and that DNA methylation levels at motif sequences
have been shown to correlate with cell-type-specific transcrip-

tion factor binding (Bock et al., 2012; Feldmann et al., 2013;

Stadler et al., 2011). By analyzingmotif enrichment among differ-

entially methylated DNA fragments using existing databases

(such as JASPAR; Mathelier et al., 2014) and software tools

(such as AME; McLeay and Bailey, 2010), it is possible to gain

insight into the regulatory mechanisms that distinguish the

studied cell types and sample groups.

Validating Reference-Free DNA Methylation Analysis
across Three Species and 44 Samples
To validate our approach, we performed reference-free analysis

of the RRBS blood cell dataset (Figure 3A) and compared the re-

sults to those obtained by reference-based analysis of the same

data (see Experimental Procedures for details). The fraction of

aligned reads was in the range of 90% to 98% for the deduced

genomes and slightly lower (75% to 95%) for the published refer-

ence genome of each species (Figure 3B; Table S1). The number

of covered CpGs was predominantly species specific (3–4

million for human, �3 million for cow, and 1.5–2 million for

carp) and broadly similar between the reference-based and

reference-free analysis. Average DNA methylation levels at

CpG sites were also similar for both approaches, whereas the

observed C-to-T conversion rates at non-CpG sites were sub-

stantially lower in the reference-free analysis (Table S1). This is

because ubiquitously unmethylated Cs—which in vertebrates

are mostly found in non-CpG context—are counted as Ts by

the reference-free analysis (case 4 in Figure S2) and therefore

do not contribute to high non-CpG conversion rates. To circum-

vent this potential problem our RRBS protocol uses methylated

and unmethylated spike-in controls to monitor bisulfite conver-

sion rates (Table S1), rather than relying on non-CpG conversion

rates. The issue can also be avoided altogether by sequencing a

single RRBS sample without bisulfite conversion and including it

in the analysis. Finally, to assess the comparative performance

of our reference-free method, we benchmarked it against simply

cross-mapping the RRBS reads for carp to the well-annotated

genomes of human, mouse, and zebrafish. The results showed

a one to two orders of magnitude higher genome-wide CpG

coverage using RefFreeDMA than observed for the basic

cross-mapping approach (Table S2).

We also compared the alignment of individual reads, the

coverage of individual CpGs, and the DNA methylation levels

of single CpGs and deduced genome fragments between the

two approaches. To that end, the deduced genome fragments

were aligned to the corresponding reference genome, allowing

us to link most RRBS fragments (human: 1,254,324 out of

1,522,786; cow: 1,276,537 out of 1,521,946; and carp: 455,821

out of 780,757) to their putative position in the reference genome.

More than 75% of reads and CpGs in non-repetitive regions

where concordantly mapped by both approaches (Figure 3C),

whereas the agreement was much lower for repetitive regions

and reads that map to multiple positions in the genome (Fig-

ure S3A). We investigated these discrepancies and identified

four scenarios in which there may be deviations between the

reference-free method and the reference-based method (Fig-

ure S2). Most frequently, a sequencing read maps to multiple

positions throughout the reference genome, and the aligner
Cell Reports 13, 1–13, December 22, 2015 ª2015 The Authors 5
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randomly assigns it to one of these positions. We indeed

observed similarly low concordance rates in repetitive regions

when running the reference-based method twice with different

random seed parameters (Figure S3A). Based on these results,

it might even be argued that the clustering and combining of

highly similar repetitive reads into a single consensus provide a

more appropriate way of handling multimapping reads than their

random assignment in the reference-based analysis, and similar

approaches have successfully been used for studying epigenetic

marks in repetitive regions of the genome (Bock et al., 2010;

Day et al., 2010). Finally, despite these special cases, we

observed excellent agreement between the two approaches

when plotting alignment positions across a representative chro-

mosome (Figure S3B), and the DNAmethylation values obtained

with the two approaches were highly correlated in all samples

and all species—with Pearson correlation coefficients above

0.9 across all CpGs and fragments and above 0.95 for those

CpGs and fragments that have good sequencing coverage (Fig-

ures 3D, 3E, and S3C).

Reference-Free Analysis of Differential DNA
Methylation between Cell Types of the Blood
Importantly, the reference-free method was able to recapitulate

the known biological similarities and differences among the

different blood cell types in almost perfect concordance with

the reference-based method (Figure 4A). Many genes with a

known role in hematopoietic cells were identified by both

methods, as illustrated by the myeloid-specific MPO gene and

the lymphoid-specific LAX1 gene (Figure 4B). There was also

strong correlation (r R 0.95) between the differential DNA

methylation ranks obtainedwith the twomethods in all three spe-

cies (Figure S4A). Furthermore, the vast majority of the top-1,000

differentially methylated fragments identified by the reference-

free method were also among the top-1,000 or top-5,000 differ-

entially methylated regions based on the reference-based

method (Figure S4B). The magnitude of the DNAmethylation dif-

ferences calculated by either method were also highly correlated

(Figure S4C). Furthermore, both methods identified a consistent

and biologically interesting trend toward increased DNA methyl-

ation levels in lymphoid as opposed to myeloid cells, which was

very prominent in human, weaker in cow, and essentially absent

in carp (Figures 4C and S4D), suggesting species-specific differ-

ences in the genome-wide regulation of DNA methylation in the

hematopoietic system.

We pursued two complementary approaches for interpreting

the identified DNA methylation differences without a reference

genome for the target species. First, we cross-mapped the

deduced genome fragments obtained in each species to the

human and mouse genome, for which extensive functional

genomics data exist from projects such as ENCODE (ENCODE

Project Consortium, 2004), IHEC (http://www.ihec-

epigenomes.org/), and BLUEPRINT (Adams et al., 2012).

Cross-species mapping rates were expectedly low, amounting

to �20% for human and cow and �10% for carp at a maximum

mismatch rate of 20%. (Figure S5A). Nevertheless, for those

deduced reference fragments that did map, we were able to

perform enrichment analysis relative to the extensive biological

annotations of the human and mouse genomes. Fragments
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that were less methylated in lymphocytes as compared with

granulocytes (hypermethylated in granulocytes) were often

associated with lymphoid-specific regulatory elements and tran-

scription factor binding mapped by ChIP-seq and similar tech-

nologies (Figures 5A and S5B). The enrichment was not always

consistent between species, but we found recurrent and biolog-

ically meaningful associations. Most notably, the binding sites of

two keymyeloid transcription factors, CEBPA andCEBPB (Akagi

et al., 2010; Rosenbauer and Tenen, 2007), were hypermethy-

lated in both human and cow lymphocytes, and binding sites

of MYB, a transcription factor implicated in lymphocyte and

erythrocyte development (Greig et al., 2008), were hypermethy-

lated in human and cow granulocytes. In contrast, carp appears

to be too evolutionary distant to obtain interesting results by

cross-mapping to mammalian genomes (Figure S5B).

Second, we exploited the fact that transcription factor bind-

ing motifs are much more conserved than most regulatory ele-

ments (Nitta et al., 2015) and performed alignment-free motif

enrichment analysis for those deduced reference fragments

that were most differentially methylated between lymphocytes

and granulocytes. In all three species, there was a higher ratio

of GC-rich and CpG-rich motifs among fragments that are hy-

permethylated in granulocytes (Figures 5B and S5C), which we

corrected for in the motif analysis by using random sequences

with matched base composition as controls (see Experimental

Procedures for details). Those fragments that were less meth-

ylated in lymphocytes (hypermethylated in granulocytes) were

enriched for 29 sequence motifs, of which four were shared

across two species (EGR2, KLF5, KLF1, and RREB1; shown

in Figure S5D). Those fragments that were less methylated in

granulocytes (hypermethylated in lymphocytes) were enriched

for 40 sequence motifs, and four motifs were shared between

all three species (CEBPA, CEBPB, HLF, and JUN) (Figures 5C

and S5D). Three of these transcription factors are well-estab-

lished regulators of myeloid cell differentiation (Akagi et al.,

2010; Orkin, 1995; Rosenbauer and Tenen, 2007), whereas

HLF is associated with hematopoietic stem cells (Gazit et al.,

2013). Finally, we also searched for motifs that were enriched

in lymphocyte-specific as well as in granulocyte-specific differ-

entially methylated fragments (Figures 5C and S5E), and a total

of 27 sequence motifs were identified, of which six were shared

across all three species (BRCA1, FOXL1, PAX4, RREB1,

RUNX1, and RUNX2). Of these, RUNX1 and RUNX2 in partic-

ular are known to play a role in both lymphoid and myeloid

cell differentiation and function (Klunker et al., 2009; Lieber-

mann and Hoffman, 2002; Tenen et al., 1997).

DISCUSSION

We present an integrated experimental and computational

method for DNA methylation analysis and interpretation in non-

model organisms, unsequenced species, and natural popula-

tions. Our method addresses a major bottleneck for epigenome

studies in the context of comparative genomics, ecology, and

evolution, where whole genome bisulfite sequencing is rarely

affordable for sufficiently large cohorts and other widely used

methods such asMS-AFLP are strongly limited in the information

they can provide.

http://www.ihec-epigenomes.org/
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Figure 4. Differential DNA Methylation Analysis without a Reference Genome

(A) Global concordance between reference-free and reference-based DNA methylation analysis illustrated by principal component analysis. Shown are the first

two principal components (x axis and y axis) for the reference-free (circles) and reference-based (triangles) approaches as well as the percentage of variance

explained by these principal components. The inset for carp shows the third and fourth principal components, which provides clearer separation of lymphoid

versus myeloid cell types.

(B) Representative genome browser tracks displaying DNA methylation levels at single CpG sites as determined by the reference-free and reference-based

approach, focusing on genes with known myeloid (MPO) and lymphoid (LAX1) function. The ‘‘Deduced fragments’’ track depicts the mapping between deduced

genome fragments (gray boxes) and the reference genome.

(C) DNAmethylation scatterplots showing differential DNAmethylation in granulocytes (x axis) versus lymphocytes (y axis) based on the reference-free approach.

Means across four biological replicates per cell type are shown, and the green hexagons indicate the top-500most differentially methylated fragments (r, Pearson

correlation; N, number of deduced genome fragments). Matched scatterplots for the reference-based analysis are shown in Figure S4D.
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On the experimental side, our method uses an optimized 96-

well RRBS protocol, which provides an excellent trade-off be-

tween single-base-pair resolution, affordable cost, and practical
feasibility for studies with hundreds (or even thousands) of indi-

viduals. Building upon the track record of RRBS in mouse and

human and the popularity of reduced representation genome
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Figure 5. Biological Interpretation of DNA Methylation Differences

(A) Region enrichment analysis for differentially methylated deduced genome fragments that have been cross-mapped to the human genome (hg19). The top-20

enriched region sets obtained by LOLA analysis are shown. Uncorrected p values are plotted on the y axis, and the number of overlapping regions is indicated by

bubble size. Each dot represents a region set in the database, and the red dashed line indicates p values of 0.05. Similar plots for carp and for cross-mapping to

the mouse genome (mm10) are shown in Figure S5B. Cell-type-specific gene functions are based on literature search and indicated through colored boxes on

the x axis.

(B) Nucleotide frequency differences between the top-500 deduced genome fragments with increased DNAmethylation in granulocytes versus lymphocytes (red)

and vice versa (blue).

(legend continued on next page)
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sequencing assays such as RAD-seq (Baird et al., 2008) and

GBS (Elshire et al., 2011) for research in natural populations

and non-model organisms, we expect our method to be broadly

useful for EWASs in the context of ecology and evolution.

The described method should be applicable to any animal

and plant species with appreciable levels of DNA methylation,

and it is readily adapted to different genome compositions and

sequencingdepthsbyselectinganappropriate restrictionenzyme

(or enzyme combinations). Here we focused on vertebrates,

where DNAmethylation is largely restricted to CpG dinucleotides

and the MspI restriction enzyme is an ideal choice. MspI enriches

for CpG islands and gene promoters, while also providing a broad

sampling of other genomic regions such as enhancers, gene

bodies, CpG island shores, and repetitive elements. Furthermore,

every read contains at least one CpG (at the MspI restriction site),

which increases cost-effectiveness for vertebrate genomes.

Importantly, ourmethodcanbeused tomapnot onlyCpGmethyl-

ation, as we demonstrate here, but also non-CpG methylation

(Ziller et al., 2011), which is widespread among non-vertebrate

species and also present in certain vertebrate cell types.

On the computational side, we developed the RefFreeDMA

method and software to build a deduced genome directly from

the bisulfite sequencing reads, to quantify DNA methylation at

the level of single CpG sites and deduced fragments, and to

detect and rank DNA methylation differences between samples

and sample groups. RefFreeDMA overcomes relevant limitations

of an existing method that uses de novo assembly of MeDIP-seq

reads (Kaspi et al., 2014), namely low resolution, susceptibility to

biases, and lack of quantification, and it is more powerful and

more widely applicable than read mapping to the genome of a

related species (Weyrich et al., 2014), which requires a closely

matched genome and a second, unconverted library. Further-

more, we present two approaches (cross-mapping and motif

enrichment analysis) for interpreting the identified differentially

methylated regions in the absence of a reference genome.

To validate our method, we established and analyzed a cross-

species DNA methylation dataset comprising multiple blood cell

types in two mammalian species (human and cow) and one fish

(carp). All cell types were enriched to >95% purity by a sorting

strategy that is particularly useful for working with non-model

organisms because it does not require any species-specific

antibodies. Bioinformatic analysis in the three species with and

without the respective reference genomes gave rise to consis-

tent and informative results. For example, we observed that

the most differentially methylated fragments in the two mamma-

lian species were predominantly hypermethylated in lympho-

cytes, whereas no such bias was present in carp (Figures 4C

and S4D). We also identified characteristic binding motifs of

lineage-specific transcription factors that were consistently en-

riched among differentially methylated fragments of all three

species (Figure 5C).

Despite the good results that we obtained in our validation of

RefFreeDMA, there are several inherent limitations of refer-
(C) Enrichment of known sequence motifs associated with transcription factor bin

methylation in granulocytes versus lymphocytes (right) and vice versa (left). Them

sequenceswith the samemono- and dinucleotide composition (‘‘shuffled’’) as bac

the complete sets of enriched transcription factor binding motifs are shown in Fi
ence-free DNA methylation analysis that potential users of our

method should keep in mind. First, repetitive elements with

high sequence similarity can get merged into a single deduced

genome fragment, which is why RefFreeDMA tends to report

moderately fewer covered CpGs than we obtained using refer-

ence-based analysis. Second, cytosines that are unmethylated

in all samples of one species will not be represented in the

deduced genome (case 4 in Figure S2), unless one RRBS sample

is sequenced without bisulfite conversion and added to the anal-

ysis. Third, our method does not perform de novo assembly of

deduced genome fragments, which would require substantially

deeper and broader sequencing coverage than is typically

affordable. It can therefore happen that the same CpG is

included twice in two partially overlapping fragments (case 2 in

Figure S2). However, based on our analysis of the validation da-

taset, this type of bias appears to be negligible (Figure S4C).

In summary, we expect that RefFreeDMA in combination with

our optimized RRBS protocol will be useful for researchers who

are interested in analyzing DNAmethylation in non-model organ-

isms without the need of a reference genome. Apart from as-

sessing cell-type-specific DNA methylation as demonstrated

here, other applications of RefFreeDMA may include EWASs

for phenotypic differences in natural populations, agricultural

research on the epigenetic effect of different feeds, drugs, and

rearing conditions, andmeta-epigenome studies of DNAmethyl-

ation in entire ecosystems.

EXPERIMENTAL PROCEDURES

Sample Acquisition

For human, cow, and carp, 5–10 ml of peripheral blood was obtained from two

male and two female individuals, anti-coagulated by 2mg/ml K2EDTA and pro-

cessed within 1 hr after collection. Human blood samples were obtained by

venipuncture from healthy donors by a qualified physician. All donors provided

informed consent. The study was conducted in accordance with the principles

laid down in the Declaration of Helsinki, overseen by the ethics commission of

the Medical University of Vienna. Cow blood samples were obtained post-

mortem from a slaughterhouse. Carp blood samples were obtained post-

mortem from a fish vendor. For the other species (mouse, rat, dog, chicken,

sea bass, and zebrafish), purified DNAwas provided by the collaborators listed

in the Acknowledgments.

Cell Purification

Leukocytes were isolated from whole blood by removing the erythrocytes

through hypotonic lysis. Specifically, 5 ml of whole blood was incubated

with 9 ml ddH2O for 1 min. The lysis was stopped by adding 1 ml of 103

PBS to the sample. Leukocytes were pelleted by centrifuging for 5 min at

550 g. If the pellet was still red, a second round of lysis was initiated by resus-

pending the pellet in 1 ml 13 PBS. Subsequently, 4.5 ml of ddH2O was added

and after 30 s the lysis reaction was stopped by adding 0.5 ml 103 PBS.

Leukocytes were pelleted by centrifuging for 3 min at 550 g. Finally, the pellet

was washed in 1 ml 13 PBS and then resuspended in 500–800 ml RPMI-1640

medium supplemented with 10% fetal calf serum (FCS). The cell suspension

was then filtered into a FACS tube, and cell populations were sorted by

FACS based on their forward and side scatter properties. Sorting was per-

formed on a BD FACS Aria 1 with a 70-mm nozzle, which allowed for a

maximum sorting speed of 30,000 events per second. For each population,
ding sites among the top-500 deduced genome fragments with increased DNA

otif analysis used either the opposing group (‘‘differential’’) or randomly shuffled

kground. The diagram only showsmotifs that were enriched in all three species;

gures S5D and S5E.
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between 500,000 and 3 million cells were obtained. Giemsa stained cytospins

were produced for each sorted cell population, and the purity was assessed at

1003 magnification.

DNA Isolation

The Allprep DNA/RNA Mini kit (QIAGEN) was used for DNA isolation. Cells

were lysed in 600 ml Buffer RLT Plus supplemented with 1% b-Mercaptoetha-

nol and vortexed thoroughly for at least 5 min. The procedure of isolating DNA

and RNA was performed according to protocol. DNA was stored at �20�C.

RRBS Library Preparation

For RRBS, 100 ng of genomic DNAwas digested for 12 hr at 37�Cwith 20 units

of MspI (New England Biolabs, R0106L) in 30 ml of 13 NEB buffer 2. To retain

even the smallest fragments and to minimize the loss of material, end prepa-

ration and adaptor ligation were performed in a single-tube setup. End fill-in

and A-tailing were performed by addition of Klenow Fragment 30 > 50 exo-
(New England Biolabs, M0212L) and dNTP mix (10 mM dATP, 1 mM dCTP,

1mM dGTP). After ligation to methylated Illumina TruSeq LT v2 adaptors using

Quick Ligase (New England Biolabs, M2200L), the libraries were size selected

by performing a 0.753 cleanup with AMPure XP beads (Beckman Coulter,

A63881). The libraries were pooled in combinations of six based on qPCR

data and subjected to bisulfite conversion using the EZ DNA Methylation

Direct Kit (Zymo Research, D5020) with the following changes to the manufac-

turer’s protocol: conversion reagent was used at 0.93 concentration, incuba-

tion performed for 20 cycles of 1 min at 95�C, 10 min at 60�C, and the desul-

phonation time was extended to 30 min. These changes increase the number

of CpG dinucleotides covered by reducing double-strand break formation in

larger library fragments. Bisulfite-converted libraries were enriched using Pfu-

Turbo Cx Hotstart DNA Polymerase (Agilent, 600412). Theminimum number of

enrichment cycles was estimated by qPCR. After a 23 AMPure XP cleanup,

quality control was performed using the Qubit dsDNA HS (Life Technologies,

Q32854) and Experion DNA 1k assays (BioRad, 700-7107). RRBS libraries

were sequenced on the Illumina HiSeq 2000 platform in 50-bp single-read

mode.

Bisulfite Conversion Controls

In order to monitor the efficiency of the bisulfite conversion and to check for

underconversion of unmethylated cytosines as well as overconversion of

methylated cytosines, custom-designed and synthesized methylated and un-

methylated oligonucleotides were spiked into each sample at a concentration

of 0.1%of the genomic DNA. For each sample, sequencing readswere aligned

to the control sequences using Bismark with default settings (Krueger and

Andrews, 2011). Conversion metrics are reported in Table S1.

RRBS Data Preprocessing

Sequencing data were processed with illumina2bam-tools v.1.12, and the

resulting BAM files were converted to fastq format using SamToFastq.jar

(picard-tools v.1.100) with the INCLUDE_NON_PF_READS parameter set to

FALSE. All reads were trimmed for adaptor sequences and low-quality

sequences using trimgalore v.0.3.3 (http://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/) with the following command: trim_galore -q 20–

phred33 -a ‘‘AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC’’–stringency

1 -e 0.1–length 16–output_dir $output_dir $input_fastq.

Derivation of a Deduced Genome

Based on the trimmed RRBS reads for a given species and analysis, a

deduced genome is constructed in six steps: (1) Pre-filtering. To reduce the

number of reads that need to be processed, one representative read is kept

for each read sequence and sample. Furthermore, reads that stand a high

chance of arising from sequencing errors are discarded by requiring that

each read occurs at least twice among four samples after converting all Cs

to Ts. (2) Preliminary read grouping. To be computationally effective, we

perform read grouping initially by exact string matching. Reads that share

the same sequence in their fully converted form (all Cs replaced by Ts) are

combined into one pre-consensus sequence by assigning a C to each position

at which at least 5% of the reads contain a C in their unconverted form.

(3) Consensus building. To combine highly similar but not identical fragments
10 Cell Reports 13, 1–13, December 22, 2015 ª2015 The Authors
into one consensus, the pre-consensus fragments are grouped by sequence

similarity using an all-against-all alignment of the C to T converted fragments

with Bowtie2 v.2.2.3 (Langmead and Salzberg, 2012) using the following

command: bowtie2 -t -q–phred33–end-to-end -N 1 -L 22–norc–n-ceil

‘‘L,0,0.2’’–mp 3–np 0–score-min ‘‘L,-0.6,-0.6’’ -k 300 -D 3–rdg ‘‘20,20’’–rfg

‘‘20,20’’ -p 4 -x $reference -U $fastq -S $out_sam. Fragments that match

with less than 8% maximum mismatch ratio are merged by assigning them

to the largest available group. For each group, a consensus sequence is

deduced by assigning the majority base to each position, while assigning Cs

to all positions at which at least 5%of the fragments contain a C. (4)Consensus

refinement. For those groups in which some fragments exhibit more than 5%

mismatches relative to the consensus, the diverging reads are assigned to

separate groups, and a new consensus is built for the respective groups.

This procedure is repeated until no fragment-to-consensus mismatch rate ex-

ceeds 5%. (5) Merging of reverse complements. After bisulfite conversion,

reads originating from the two strands of the same DNA fragment are often

not identified as reverse complements during the Bowtie2 alignment and are

therefore not automatically merged into one consensus. To overcome this

problem, all reads that start and end with the RRBS restriction site (MspI: 50

[CT]GG – [CT][CT]G 30) are tested for whether they become perfect reverse

complements of each other when all Cs are replaced by Ts and all Gs are re-

placed by As. For each pair to be merged, a consensus is formed by assigning

a C to all T positions in the sequence of the forward partner at which the

reverse-complement partner shows a C. (6) Concatenation into one deduced

genome. In the final step, the merged deduced genome fragments are

concatenated into one deduced genome that can be used for alignment,

DNA methylation calling, and differential methylation analysis in the same

way as a regular reference genome. To avoid creating artificial sequences at

the concatenation sites, spacer sequences consisting of 50 Ns (equaling the

read length) are added between the deduced genome fragments. Of note,

all key parameters in RefFreeDMA have been empirically optimized and can

be changed by the user of the software.
Mapping and DNA Methylation Calling

Bisulfite alignment of the RRBS reads to the deduced genomes and to the

reference genomes, as well as themapping of the deduced genome fragments

to the reference genomes was performed using BSMAP v2.74 (Xi and Li,

2009) with the following command line: bsmap -a $input_fastq -d $ref_

genome_fasta -o $output_bam -D C-CGG -w 100 -v 0.08 -r 1 -p 4 -n 0 -S

1 -f 5 –u. For cross-mapping and alignment to the deduced genomes, the -D

parameter was not set, disabling the RRBS mode to allow mapping of reads

independently of restriction sites. Also, for cross-mapping, the maximum

allowed error rate (-v) was set to 0.2. The human (hg19) and cow (bosTau6)

reference genomes were downloaded from the UCSC Genome Browser,

and the carp reference genome was downloaded from the European Nucleo-

tide Archive (ENA) project PRJEB7241 assembly GCA_000951615.1. For bet-

ter handling, the 9,377 scaffolds of the carp genome were concatenated into

ten artificial chromosomes using stretches of Ns as separators. DNA methyl-

ation calling was performed using the biseqMethCalling.py software (Bock

et al., 2010).
Differential Methylation Analysis

CpG sites exhibiting differential DNA methylation between predefined groups

of samples were identified using hierarchical linear models as implemented in

the limma R package. Multiple testing correction was performed for CpG sites

using the false discovery rate method implemented in R’s p.adjust() function.

To assess the significance of differential DNAmethylation for entire fragments,

multiple testing corrected p values for all CpG sites contained in a fragment

were combined using an extension of Fisher’s method (Makambi, 2003) as im-

plemented in RnBeads (Assenov et al., 2014). Differentially methylated frag-

ments were priority ranked based on statistical significance as well as effect

size, calculating ranks individually for p value, log fold change, and absolute

difference in DNA methylation levels and then selecting the worst of the three

ranks as representative for the fragment. This way, fragments that achieve top

ranks in all of themeasures are favored, whereas fragments that are assigned a

bad rank in one or more of the measures are penalized.

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Software Properties

RefFreeDMA is a Linux-based software pipeline that supports the various

steps of reference genome independent analysis of differential DNA methyl-

ation based on RRBS data. External software requirements are limited to stan-

dard command line tools for next generation sequencing analysis, including

picardtools, samtools, trimgalore, bowtie2, and bsmap. Runtime and memory

usage depend on the number of samples, the number of reads per sample, the

RRBS library complexity, and whether RefFreeDMA’s support for paralleliza-

tion is used. For the presented datasets, which comprise 12 to 20 samples

per species with�18million 50-bp single-end reads per sample, one complete

run using four cores (Intel Xeon E5-2650 processor) takes about 9 hr (wall-

clock time) with parallelization and 40 hr (wall-clock time) without. The peak

memory usage is 15 GB during consensus building. Although this study

focuses onCpGmethylation, our software also supports non-CpGmethylation

(when the nonCpG parameter is set to TRUE). RefFreeDMA is available as

open source under the GPLv3 license: http://RefFreeDMA.computational-

epigenetics.org.

Comparison between Reference-Free and Reference-Based

Analysis

Correspondence between the published reference genomes and the deduced

genomes is determined by mapping the deduced genome fragments to the

corresponding reference genome. The resulting associations between CpG

sites in the deduced genome and the reference genome serve as the basis

for the validations. Figure S2 depicts the correct match between the two ap-

proaches (case 1) as well as four scenarios in which discrepancies between

reference-free and reference-based analysis are expected (cases 2 to 5).

Comparisons between the reference-free and reference-based approaches

are performed at the level of individual CpGs and at the level of deduced

genome fragments.

Cross-Mapping Analysis

In order to establish a connection between deduced genome fragments iden-

tified by RefFreeDMA in one species and well-annotated genomes of other

species, deduced fragments were mapped to the human genome (hg19)

and the mouse genome (mm10) using BSMAP/RRBSMAP with a maximum

allowed mismatch rate of 20% as described in Mapping and DNA Methylation

Calling. Overlaps between the genomic positions of mapped deduced

genome fragments and annotations on the respective genome can then be

used to perform enrichment analysis for the deduced fragments. We assessed

differentially methylated fragments for enrichment of genomic annotations us-

ing LOLA (Sheffield and Bock, 2015). LOLA tests for significant enrichment of

overlap between user-defined genomic regions of interest (i.e., the fragment

mapping positions) and experimentally annotated genomic regions, which

are provided as a database. Thematched genomic regions for the differentially

methylated fragments (mean coverage > 2 and adjusted p < 0.05) of granulo-

cytes or lymphocytes were used as primary input regions (user set), while the

genomic regions of all mapped deduced genome fragments were used as

background (universe). The regions database for human (hg19) consisted of

region sets downloaded from Cistrome, CODEX, ENCODE, and the UCSC

Genome Browser as well as custom sets for DNase hypersensitivity sites

(Sheffield et al., 2013). The region database for mouse (mm10) consisted of re-

gion sets downloaded from CODEX and ENCODE.

Motif Enrichment Analysis

Motif enrichment analysis was performed using the command-line version of

the AME tool (McLeay and Bailey, 2010) from the MEME package. We used

the average odds score as sequence scoring method and the rank-sum test

as motif enrichment test. All motifs were obtained from the JASPAR CORE

(2014) Vertebrates database (Mathelier et al., 2014). Only enrichments with

an adjusted p value lower than 0.05 were reported. In order to find motifs

that are differentially enriched among differentially methylated fragments,

the top-500 differentially methylated fragments (mean coverage > 2 and

adjusted p < 0.05) of one sample groupwere used as primary input sequences,

while the top-500 differentially methylated fragments of the other group were

used as background (control sequences). To correct for motif enrichment due

to base composition bias (Figures 5B and S5C), we performed the same
analysis on random sequences that were constructed to reflect the base

compositions of both groups on single nucleotide and dinucleotide level in

50 iterations each. To this end, the base compositions of the original se-

quences were determined using the fasta-get-markov tool from the MEME

package. The 0th- and 1st-order Markov models for each group were then

used as input for the gendb tool, which constructed 500 random sequences

(length �50 bases) according to the models. This process was repeated 50

times with different random seeds. Finally, for each iteration AME was run

on the shuffled sequences of one group as input and the shuffled sequences

of the other group as background. All motifs that were detected as significantly

enriched in more than 60% of all iterations were identified as false positives

due to base composition bias and removed from the list of differentially en-

riched motifs identified for the original sequences. Furthermore, to identify

motifs that might be enriched in differentially methylated fragments of both

groups, we ran AME using the original sequences as input and the respective

shuffled sequences as background. Onlymotifs that were found to be enriched

in at least 95% of the iterations were reported as truly enriched in the differen-

tially methylated fragments compared with the randomly shuffled sequences.

For each enriched motif, the least significant p value was reported.
ACCESSION NUMBERS

The DNA methylation data reported in this paper have been submitted to the

NCBI GEO and are available under accession number GEO: GSE74026.
SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and two tables and can be

foundwith this article online at http://dx.doi.org/10.1016/j.celrep.2015.11.024.
AUTHOR CONTRIBUTIONS

J.K. and C.B. designed the study. P.D., M.F., and C.B. optimized the RRBS

protocol. J.K. acquired and prepared the samples. J.K., D.P., and G.F. per-

formed FACS sorting. P.D. and J.H. made the RRBS sequencing libraries.

J.K. developed RefFreeDMA and performed the computational analysis with

input from N.C.S. and C.B. J.K. and C.B. wrote the manuscript with input

from all co-authors.
ACKNOWLEDGMENTS

We thank theBiomedical Sequencing Facility at CeMM for assistancewith next

generation sequencing, Fabian M€uller for providing the biseqMethCalling.py

software, and all members of the Bock lab for their help and advice. We also

thank Sylvia Knapp, Denise Barlow, Thomas vanGurp, and Christian Remmele

for comments and suggestions, Marc Mößmer (Biofisch GmbH) for providing
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Figure S1. UML diagram outlining the RefFreeDMA software and analysis workflow, Related to Figure 1 

The diagram illustrates the RefFreeDMA software and its key computational steps for performing reference-free 
analysis of differential DNA methylation, starting from raw RRBS reads and resulting in a ranked list of 
differentially methylated sites and fragments. 



 

 

Figure S2. Sources of discrepancy between reference-free and reference-based analysis, Related to Figure 1 

Case 1 depicts concordance between the two approaches, which applies to the vast majority of non-repetitive 
fragments that are not entirely unmethylated in all samples. All matching CpGs are uniquely assigned to each 
other when aligning the deduced genome fragments to the reference genome. Case 2 depicts a scenario in which 
two deduced genome fragments overlap when aligned to the reference genome. Here, two measurements in the 
deduced genome are represented by only one measurement in the reference genome. Case 3 depicts genomic 
redundancy caused by repetitive sequences in the reference genome. In the deduced genome, these similar or 
sequence-identical regions are represented by one deduced genome fragment. Multiple CpG sites in the reference 
genome are thus represented by only one site in the deduced genome. Case 4 depicts the scenario where all reads 
are completely unmethylated for a given set of CpG sites. Deduced genome fragments covering these sites will 
contain a T instead of a C at the respective position, thereby reducing the number of CpG sites in the deduced 
genome. Case 5 depicts the effect of deduced genome redundancy, which can occur when fragments contain 
sequencing errors that make them too dissimilar to be merged into one consensus. 

  



 

Figure S3. Comparison of reference-free & reference-based DNA methylation analysis, Related to Figure 3 

(A) Concordance of mapped read positions (left) and covered CpG sites (right) between the reference-based and 
reference-free methods. For comparison, the concordance is also shown for the case of aligning the reads twice to 
the reference genome using different seeds for random assignment of reads that map to multiple positions 
(middle). “High confidence” fragments are those that are neither repetitive nor unmethylated in all samples. (B) 
Scatterplots illustrating the concordance of read mapping positions between the reference-free (y-axis) and 
reference-based (x-axis) methods. Representative plots of chromosome 7 are shown for each species (r: Pearson 
correlation; N: number of RRBS reads). (C) Pearson correlation of DNA methylation levels obtained with the two 
approaches, calculated for CpG sites as well as deduced genome fragments (frag.) with (+) and without (-) 
coverage filtering (requiring at least eight and not more than 200 mapped reads per CpG site or fragment). 

  



Figure S4. Valida-
tion of reference-
free analysis of 
differential DNA 
methylation, Re-
lated to Figure 4 

(A) Scatterplots dis-
playing the agree-
ment between dif-
ferential methyla-
tion ranks for dif-
ferentially methyl-
ated fragments (p-
value < 0.05) using 
the two approaches 
(ρ: Spearman corre-
lation coefficient; N: 
number of deduced 
genome fragments). 
(B) Recovery of the 
top-1000 differen-
tially methylated 
deduced genome 
fragments (p-value 
< 0.05, coverage ≥ 8, 
non-overlapping) 
determined by the 
reference-based 
approach in a grad-
ually increasing 
number of top dif-
ferentially methyl-
ated deduced ge-
nome fragments 
using the reference-
free approach (blue). 
The recovery within 
an equal number of 
randomly selected 
deduced genome 
fragments is shown 
for comparison 

(red). (C) Scatterplots showing the difference in mean fragment methylation between granulocytes and lymphocytes 
as determined by the reference-based (x-axis) vs. the reference-free (y-axis) approach for fragments that overlap with 
each other when mapped to the reference genome. Pearson correlations (r) for non-overlapping fragments are indi-
cated in brackets. This plot shows that differential DNA methylation values are not strongly affected by overlapping 
fragments (Case 2 in Figure S2). All fragments were coverage-filtered for at least eight and not more than 200 
mapped reads. (D) DNA methylation scatterplots demonstrating differential DNA methylation in granulocytes (x-
axis) vs. lymphocytes (y-axis) using the reference-based approach. Means across four biological replicates are shown 
for each cell type, and the green hexagons indicate the top-500 most differentially methylated fragments. Matched 
scatterplots for the reference-free analysis are shown in Figure 4C.  



Figure S5: Interpreta-
tion of DNA methyla-
tion differences through 
cross-mapping to anno-
tated genomes and mo-
tif enrichment analysis, 
Related to Figure 5 

(A)	 Mapping of the de-
duced genome fragments 
of human, cow, and carp 
to the reference genomes 
of human (hg19) and 
mouse (mm10). Mapping 
rates are displayed for 
maximum mismatch 
rates of 20% and 25%. 
(B)	 Region enrichment 
analysis for reference-
free deduced genome 
fragments that have been 
cross-mapped to the 
reference genomes of 
human (hg19) and mouse 
(mm10). For each group, 
the top-20 enrichments 
obtained by LOLA anal-
ysis are shown. Uncor-
rected p-values are plot-
ted on the y-axis, and the 
number of overlapping 
regions is indicated by 
bubble size. Each dot 

represents an experiment listed in the database, and the red dashed lines indicate p-values of 0.05. Similar plots for human and cow cross-mapping to the human genome (hg19) are 
shown in Figure 5A. (C) Nucleotide frequency differences between the top-500 deduced genome fragments in granulocytes (dots) and lymphocytes (triangles). (D) Complete list of 
enriched sequence motifs from JASPAR CORE (2014) Vertebrates database among the top-500 deduced genome fragments with increased DNA methylation in granulocytes vs. 
lymphocytes (right) and vice versa (left). The motif analysis used the opposing group as background. (E) Same as in panel D, but using randomly shuffled sequences with the same 
mono- and dinucleotide composition as background. The displayed motifs were identified as significantly enriched in at least 95% of iterations. 



Table S1. Summary statistics for the reference-free and reference-based analysis of DNA meth-
ylation in the blood dataset, Related to Figure 2 

Table showing for each of the analyzed samples and biological replicates the number of total reads, 
mapped reads, and informative reads (i.e., those that give rise to at least one valid DNA methylation 
measurement), mean DNA methylation levels of methylated and unmethylated spike-in controls, mean 
DNA methylation levels across CpG sites, non-CpG conversion rates, as well as the number of CpG 
measurements, number of covered CpGs, and mean informative sequencing coverage per CpG site. 

This table is provided as a separate Excel file.  

 

Table S2. Summary statistics for direct cross-mapping of carp RRBS reads to the human, mouse, 
and zebrafish genome with various choices of alignment parameters, Related to Figure 5 

Table listing for each of the carp samples the number of mapped reads, the percentage of mapped 
reads, and the number of CpGs covered using four different mapping approaches with different 
BSMAP parameters: Maximum mismatch rate of 0.08 with multi-mapping reads; maximum mismatch 
rate of 0.08 without multi-mapping reads; maximum mismatch rate of 0.2 with multi-mapping reads; 
and maximum mismatch rate of 0.2 without multi-mapping reads. 

This table is provided as a separate Excel file 
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Abstract 

Glioblastoma is characterized by widespread genetic and transcriptional heterogeneity, yet little is known 
about the role of the epigenome in glioblastoma disease progression. Here, we present genome-scale maps of 
the DNA methylation dynamics in matched primary and recurring glioblastoma tumors, based on a national 
population registry and a comprehensively annotated clinical cohort. We demonstrate the feasibility of DNA 
methylation mapping in a large set of routinely collected formalin-fixed paraffin-embedded (FFPE) samples, 
and we validate bisulfite sequencing as a multi-purpose assay that allowed us to infer a range of different 
genetic, epigenetic, and transcriptional tumor characteristics. Based on these data, we identified characteristic 
differences between primary and recurring tumors, links between DNA methylation and the tumor microenvi-
ronment, and an association of epigenetic tumor heterogeneity with patient survival. In summary, this study 
provides a Resource for dissecting DNA methylation heterogeneity in genetically diverse and heterogeneous 
tumors, and it demonstrates the feasibility of integrating epigenomics, radiology, and digital pathology in a 
representative national cohort, leveraging samples and data collected as part of routine clinical practice. 

 

Introduction  

Glioblastoma is a devastating cancer with a median age at diagnosis of 64 years1. Even under the best available 
care, the median survival is little more than one year, and very few patients live for more than three years2,3. 
Despite intense efforts, limited therapeutic progress has been made over the last decade, and a series of phase 
III clinical trials with targeted agents have failed to improve overall survival4-6.  

Glioblastoma shows extensive temporal and spatial heterogeneity, which appears to contribute to therapeutic 
resistance and inevitable relapse7-13. Prior research on tumor heterogeneity in glioblastoma has focused mainly 
on the genomic and transcriptomic dimensions7-20, while the dynamic role of the epigenome in glioblastoma 
disease progression is much less understood21. 

Recent data in other cancers have conclusively shown the power of DNA methylation sequencing for analyzing 
epigenetic heterogeneity. For example, DNA methylation heterogeneity has been linked to clonal progression 
in prostate cancer22, low-grade glioma23, esophageal squamous cell carcinoma24, and hepatocellular carci-
noma25; and new measures of DNA methylation heterogeneity such as epi-allele burden, proportion of dis-
cordantly methylated reads (PDR), and DNA methylation inferred regulatory activity (MIRA) have been 
linked to clinical variables in acute myeloid leukemia26, chronic lymphatic leukemia27, and Ewing sarcoma28. 

To investigate the contribution of epigenetics to the temporal and spatial heterogeneity of glioblastoma, we 
performed DNA methylation sequencing on a large cohort of IDH wildtype glioblastoma patients (n = 112) 
with matched samples from primary and recurring tumors (between 2 and 4 time points per patient), and we 
also included multiple subregion samples for a subset of these tumors. Importantly, by using an optimized 
reduced representation bisulfite sequencing (RRBS) protocol28,29 we obtained a high success rate for archival 
formalin-fixed and paraffin-embedded (FFPE) samples, coverage of 3-5 fold more CpGs compared to Infinium 
microarrays30-32, and single-CpG as well as single-allele resolution (in RRBS, each sequencing read captures 
the DNA methylation status of one or more individual CpGs in one single allele from one single cell). 

The presented dataset – comprising 349 RRBS-based DNA methylation profiles, of which 320 were derived 
from FFPE samples – constitutes the largest cohort of FFPE samples that has yet undergone genome-scale 
DNA methylation sequencing, and it conclusively shows the technical feasibility of performing large multi-
center DNA methylation studies based on routinely collected FFPE material. The RRBS data not only identi-
fied epigenetic disease subtypes and quantified epigenetic heterogeneity, but also allowed us to infer transcrip-
tional subtypes, copy number aberration, single nucleotide variants (SNVs), small insertions and deletions 
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(indels), MGMT promoter methylation, and G-CIMP/ IDH mutational status. This study thus highlights the 
power of DNA methylation sequencing in routinely collected clinical FFPE tumor samples. 

Linking DNA methylation profiles to magnetic resonance (MR) imaging, tumor morphology, tumor microen-
vironment, and clinical variables such as patient survival, we obtained a detailed picture of temporal and spatial 
heterogeneity in glioblastoma. We observed characteristic differences in DNA methylation between primary 
and recurring tumors, an association with the tumor microenvironment, and a link between tumor microenvi-
ronment and previously reported clinically relevant MR imaging-based progression types33. DNA methylation 
was highly predictive of the established glioblastoma transcriptional subtypes, and disease progression-asso-
ciated loss of DNA methylation in the promoters of Wnt signaling genes was associated with worse prognosis. 
We also observed across several comparisons that the association with survival was stronger for properties of 
the recurring tumor than for properties of the primary tumor. In summary, our study provides a comprehensive 
resource of the DNA methylation dynamics and heterogeneity in glioblastoma, proof-of-concept for DNA 
methylation sequencing in large FFPE sample sets collected as part of routine diagnostics, and an integrative 
analysis of DNA methylation with various types of clinical and histopathological information. 

 

Results 

DNA methylation sequencing in a cohort of matched primary and recurring glioblastoma samples 

To investigate the DNA methylation dynamics associated with disease progression in glioblastoma, we estab-
lished a richly annotated dataset of patients that underwent tumor resection at diagnosis and at least once upon 
tumor recurrence (Figure 1a). These patients were identified through the population-based Austrian Brain Tu-
mor Registry34, and 112 primary glioblastoma patients (wildtype IDH status) with tumor samples for at least 
two time points (primary tumor and first recurrence) were included in the analysis (Supplementary Fig. 1a). 
Due to the requirement of having undergone at least two tumor resections, the selected patients were on average 
younger (median age at diagnosis of 58 years) and had longer overall survival (median overall survival of 22.4 
months) compared to the unselected population-based cohort (median age at diagnosis 63 years, median overall 
survival of 8 months) (Figure 1b and Supplementary Table 1). 

For each of these tumor samples, we established genome-scale DNA methylation profiles using reduced rep-
resentation bisulfite sequencing (RRBS). The RRBS assay provides single-CpG and single-allele resolution 
with excellent quantitative accuracy even on challenging clinical samples35,36, and it has been successfully used 
to dissect intra-tumor heterogeneity in several cancer types26-28. The RRBS-based DNA methylation data were 
complemented by time-matched MR imaging data as well as quantitative pathology data capturing the mor-
phology, proliferative activity, and tumor microenvironment of the same tumors. All data are available from 
the Supplementary Website (http://glioblastoma-progression.computational-epigenetics.org/). We systemati-
cally integrated these datasets using statistical analysis and machine learning methods (Figure 1a). 

DNA methylation profiling based on routinely collected FFPE material was successful for all samples that had 
adequate tumor cell content, and 95% of the resulting RRBS profiles yielded more than 500,000 covered CpGs 
(Supplementary Table 2). The median number of covered CpGs in FFPE samples (1,880,675) was lower than 
for fresh-frozen samples (4,473,349), but higher than for an alternative ethanol-based fixation method37 
(1,005,828) that was tested by one sample-providing center (Supplementary Fig. 1b and Supplementary Table 
2). The measured bisulfite conversion rates were highly consistent with expectations: 99% of genomic cyto-
sines outside of CpGs were read as thymines, the mean underconversion rate on unmethylated spike-in controls 
was 1%, and the mean overconversion rate on methylated spike-in controls was 2% (Supplementary Fig. 1c 

http://glioblastoma-progression.computational-epigenetics.org/
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and Supplementary Table 2). All DNA methylation profiles showed the expected distribution of DNA meth-
ylation levels across CpG islands, promoters, and genome-wide tiling regions (Supplementary Fig. 1d), with a 
slight tendency toward lower DNA methylation levels in low-quality samples (Supplementary Fig. 1e). 

Comparing DNA methylation levels of 5-kilobase tiling regions between primary and recurring tumors, there 
was a high correlation (r > 0.94) across the genome (Supplementary Fig. 1f). Nevertheless, we observed wide-
spread epigenetic heterogeneity at individual loci (Figure 1c). An example is the promoter of the MGMT gene, 
whose DNA methylation status has been shown to correlate with sensitivity to alkylating chemotherapy38. The 
MGMT promoter was unmethylated in the majority of samples (Supplementary Fig. 1g), and patients with a 
methylated MGMT promoter in their recurring tumors had significantly better progression-free survival (PFS) 
and overall survival (OS) compared to patients with unmethylated MGMT promoters (Supplementary Fig. 1h).  

To compare our IDH-wildtype primary glioblastoma cohort to IDH-mutant brain tumor samples, we also per-
formed RRBS on primary and recurring tumors of 13 IDH-mutant oligodendroglioma/astrocytoma/glioblas-
toma patients from the same population. The DNA methylation profiles of these tumors showed a characteristic 
CpG island methylator phenotype (CIMP) as expected from previous observations39 (Figure 1d), which pro-
vides further validation of the accuracy and robustness of our DNA methylation profiling on FFPE material. 

 

Inference of genomic information from the RRBS data  

All tumor samples were obtained via a national brain tumor registry and reflect routine clinical care in Austria, 
which currently does not include whole genome or whole exome sequencing. We therefore evaluated whether 
certain types of genomic information could be inferred directly from the RRBS data. 

First, we reconstructed genome-wide maps of copy number aberrations (CNAs) from the RRBS data using the 
CopywriteR algorithm40. We detected various CNAs previously described in glioblastoma, including amplifi-
cations of the EGFR locus and deletions of chromosome 10 (Supplementary Fig 2a). In particular, we observed 
that 10q deletions in the recurring tumors (which affect the MGMT gene and have been shown to correlate 
with sensitivity to alkylating chemotherapy41) were associated with longer survival. Based on the CNA data, 
we also verified that none of our primary glioblastoma samples harbored the 1p19q co-deletion, thereby ex-
cluding the presence of any misclassified cases of anaplastic oligodendroglioma (Supplementary Fig. 2c). 

Second, we inferred single nucleotide variants (SNVs) and small insertions/deletions (indels) from the RRBS 
data using the Bis-SNP algorithm42. Although confident SNV and indel detection in RRBS data is limited to a 
relatively small subset of the genome, it allowed us to confirm that none of our samples displayed a hypermu-
tator phenotype and that there was no strong trend toward higher mutational rates in primary or recurring 
tumors (Supplementary Fig. 2d). Furthermore, among the variants with high predicted impact on protein ex-
pression we found multiple genes with known relevance in glioblastoma (Supplementary Fig 2e). 

 

Prediction of transcriptional subtypes in glioblastoma based on DNA methylation 

Recent research defined three transcriptional subtypes of glioblastoma (classical, mesenchymal, and proneu-
ral)43, while a previously included fourth (neural) subtype has been described as an artifact of contaminating 
non-tumor tissue. Because RNA sequencing of FFPE material is challenging and often infeasible, we tested 
whether these transcriptional subtypes can be inferred from DNA methylation data (Figure 2a). Machine learn-
ing classifiers using L2-regularized logistic regression were trained and evaluated on matched DNA methyla-
tion and transcriptional subtype data44,45 from The Cancer Genome Atlas (http://cancergenome.nih.gov/). 
Based on these data, we obtained good prediction accuracies with cross-validated receiver operating charac-
teristic (ROC) area under curve (AUC) values above 0.8 for most samples (Supplementary Fig 3a). 

http://cancergenome.nih.gov/
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Applying the trained classifiers to our DNA methylation dataset, we assigned class probabilities to each tumor 
sample. While these percentage values primarily reflect the confidence with which each sample is assigned to 
each of the transcriptional subtypes, we can also interpret them as an estimate of the relative contribution of 
each of the three subtypes to individual tumor samples, thus providing an initial assessment of intra-tumor 
heterogeneity. We found that all three transcriptional subtypes were common in our cohort of IDH wildtype 
primary glioblastoma (Figure 2b) – in contrast to the IDH mutated tumors, which were as almost always as-
signed to the proneural subtype (Supplementary Fig 3b). 

Predicted transcriptional subtypes were heterogeneous both in space and in time. Most individual tumor sam-
ples showed signatures of more than one transcriptional subtype (Figure 2b), which is consistent with recent 
single-cell RNA-seq data that identified similar heterogeneity within individual samples11. Moreover, five out 
of six patients with multi-sector samples displayed at least two transcriptional subtypes (Figure 2c and Sup-
plementary Fig. 3c-e), and about half of the patients showed different predominant transcriptional subtypes 
between the primary and recurring tumors (Figure 2d). Predicted transcriptional subtypes in the recurring tu-
mor (but not in the primary tumor) were also associated with patient survival (Figure 2e), the mesenchymal 
subtype being associated with the worst prognosis and the classical subtype with the best prognosis. Finally, 
patients whose tumors switched to the mesenchymal subtype displayed the worst PFS and OS (Figure 2e). 

To investigate the epigenetic differences between the three transcriptional subtypes, we compared the DNA 
methylation profiles of those tumors that were most confidently assigned to one specific subtype (class prob-
ability > 0.8) with each other (Figure 2f). Region set analysis of differentially methylated CpGs using LOLA46 
identified a moderate enrichment of chromatin protein binding sites for regions that were specifically hypo-
methylated in the mesenchymal subtype, including EZH2, KDM4A, RBBP5, and SUZ12 (Figure 2g). 

We also calculated ‘DNA methylation inferred regulatory activity’ (MIRA) scores28 for each individual tumor 
sample, where high scores indicate strong local depletion of DNA methylation at specific transcription factor 
binding sites (Figure 2h). We observed significantly higher MIRA scores (corresponding to deeper DNA meth-
ylation dips and increased regulatory activity) for CTCF, EZH2, and KDM4A in the mesenchymal subtype 
(Figure 2i). In contrast, MIRA scores for key regulators of pluripotency (NANOG, SOX2, POU5F1) were 
reduced in the mesenchymal subtype (Figure 2i). To corroborate this observation, we plotted MIRA scores for 
EZH2 and NANOG against class probabilities for the different transcriptional subtypes across all samples (not 
only those with high class probability), and we indeed observed highly significant correlations with mesen-
chymal class probabilities of 0.49 (EZH2) and -0.48 (NANOG) (Supplementary Fig. 3f). 

 

Linking DNA methylation differences to changes in the tumor microenvironment 

To test whether the DNA methylation data captures relevant aspects of the tumor microenvironment, we quan-
tified the abundance of various types of immune cells in the primary and recurring tumors. Specifically, we 
performed single-plex stainings for markers that identified different immune cell types (CD3, CD8, CD80, 
CD68) including anti-inflammatory (CD163, FOXP3) and memory T-cell (CD45ro) subpopulations. We ob-
served significant differences in the immune cell count between the three transcriptional subtypes (Figure 3a-
b), with the highest number of immune cells found in tumors of the mesenchymal subtype. The increased level 
of immune cell infiltration was accompanied by larger necrotic areas, fewer vital tumor areas, lower tumor cell 
proliferation, and lower cell density in tumor tissues (Supplementary Fig. 4a-b). Moreover, high levels of 
CD68 positive cells (macrophages of all types) were associated with poor prognosis in recurring tumors; and 
high levels of CD163 positive cells (anti-inflammatory, tumor-propagating M2 macrophages) were associated 
with poor prognosis in both primary and recurring tumors (Figure 3c). 
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Comparing immune cell infiltration between primary and recurring tumors of the same patients, we observed 
significantly increased levels of inflammatory infiltrates upon recurrence, while the infiltration levels of anti-
inflammatory macrophages and memory T-cells did not change significantly (Figure 3d-f). The increase in 
inflammation in the recurring tumors was accompanied by a decrease in necrotic volume and contrast-enhanc-
ing (active) tumor mass, but an increase in edema according to matched diagnostic MR imaging data (Supple-
mentary Fig 4c-d). Patients with less necrotic or contrast-enhancing (active) tumor mass upon recurrence pre-
sented with a more favorable clinical outcome (Supplementary Fig. 4e). 

When we stratified patients according to prognostically relevant MR imaging-based progression types (i.e., 
classic T1, cT1 relapse / flare-up, and T2 diffuse)33 (Supplementary Fig. 5a), we found that primary and recur-
ring tumors from patients displaying the “cT1 relapse / flare-up” subtype had lower infiltration of pro-inflam-
matory immune cell types (CD3, CD8, CD68) and a lower fraction of proliferating cells (Figure 3g). In con-
cordance with previous work33, cT1 relapse / flare-up patients displayed a slightly more favorable prognosis 
compared to the other two progression types (Supplementary Fig. 5b). 

Several of these characteristics of the tumor microenvironment could be predicted from the DNA methylation 
data using machine learning methods (Supplementary Fig. 5c-d). Differentiating between tumors with a high 
and low level of immune cell infiltration, we observed a high cross-validated prediction performance for 
CD163 (ROC AUC = 0.88), CD68 (0.79), CD45ro (0.93), CD3 (0.87) and CD8 (0.79) (Figure 3h; Supplemen-
tary Fig. 5e). For those immune cell types with high cross-validation accuracy, DNA methylation levels at the 
most predictive genomic tiling regions accurately grouped the samples by their immune cell infiltration levels 
in a hierarchical clustering analysis (Supplementary Fig 5f). As it was recently shown for RNA expression 
profiles20,47, our data support the feasibility of inferring immune cell infiltration from DNA methylation data. 

 

Linking DNA methylation differences to tumor cell-intrinsic properties 

To investigate the relationship between DNA methylation and tumor cell characteristics such as proliferation 
and nuclear morphology, we performed detailed histopathological analysis for the majority of tumor samples. 

Cell proliferation was measured by staining for the cell proliferation marker Ki67 (MIB1) followed by quan-
tification of the relative abundance of MIB1 positive cells. The percentage of proliferating cells showed no 
consistent changes between primary and recurring tumors (Figure 4a). Nevertheless, high proliferation in the 
recurring tumors (but not in the primary tumors) was significantly associated with increased PFS (Figure 4b). 
DNA methylation patterns discriminated with high accuracy between tumors characterized by high versus low 
proliferation rates (ROC AUC = 0.89) (Figure 4c). This was not due to differences in mean DNA methylation 
levels (Figure 4d-e). Rather, highly proliferating tumors showed intermediate DNA methylation levels at dis-
criminatory regions, while low proliferating tumors showed more extreme methylation patterns (Figure 4e). 

Nuclear morphology of tumor cells was measured by the size and eccentricity (a measure of elongated shape) 
of the tumor cell nuclei, and by the variability of the two parameters. None of these measures were significantly 
different between primary and recurring tumors. However, tumors that shifted to a sarcoma-like phenotype 
(i.e., secondary gliosarcoma) upon recurrence had a significant increase in nuclear eccentricity and a decrease 
in its variability (Figure 4f-g), accompanied by an increase in CD8 immune cell infiltration, proliferative rates 
(MIB+ cells), and relative tumor mass in the recurring tumor (Figure 4h). DNA methylation patterns predicted 
nuclear eccentricity (ROC AUC = 0.83) and its variability (0.76) (Figure 4i), and patients with shape-shifting 
tumors (i.e., classic to sarcoma) displayed significantly shorter PFS and a trend towards reduced OS (Figure 
4j), which might be explained by increased tissue infiltration of the spindle-shaped cells. 
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DNA methylation heterogeneity and dynamics between primary and recurring tumors 

To quantify epigenetic tumor heterogeneity in glioblastoma progression, we used two complementary ap-
proaches (Figure 5a). Sub-clonal heterogeneity was measured by epi-allele entropy48, and stochastic DNA 
methylation erosion was measured by the proportion of discordant reads (PDR)27. Both measures identified 
extensive heterogeneity between patients (Supplementary Fig. 6a-b) but no strong trend between primary and 
recurring tumors (Figure 5b).  

Comparing the epi-allele composition of the 20% most heterogeneous and the 20% least heterogeneous sam-
ples (Figure 5b), we found extensive variability between patients and over time (Figure 5c). Samples with high 
epi-allele entropy and high diversity in their epi-allele composition also showed high PDR values, indicating 
that these samples were characterized by broadly increased epigenetic heterogeneity. 

The observed differences in epigenetic heterogeneity were not a side effect of different tumor sizes, as there 
was little to no correlation between the two measures of tumor heterogeneity on the one hand and the tumor 
size as measured by MR imaging on the other hand (Figure 5d). In contrast, we did observe a significant 
association between PDR values and clinical outcome specifically in the primary tumors (Figure 5e and Sup-
plementary Fig. 6c), and we also found that a longer time span between first and second surgery was weakly 
associated with fewer differentially methylated regions (Figure 5f) but not with the extent of epi-allelic shifting 
(Supplementary Fig. 6d). 

To further dissect the temporal dimension of DNA methylation heterogeneity in glioblastoma, we performed 
differential DNA methylation analysis on all matched pairs of primary and first recurring tumors. Focusing on 
gene promoters, we observed high correlation of DNA methylation levels (r = 0.86) and a small number of 
promoters with strong differential methylation in multiple patients (Figure 6a). Most of these promoters 
showed consistent trends toward either gain or loss of DNA methylation upon tumor recurrence, although for 
one gene with known involvement in brain cancer (OTX2) we observed a progression-associated gain of DNA 
methylation in some patients and a loss in others (Figure 6b upper panel). When we classified the patients into 
those that followed the cohort-level trend in differential DNA methylation (trend patients) and those that did 
not (anti-trend patients) (Figure 6b, lower panel and Figure 6c), the trend patients showed worse prognosis 
(Figure 6e), suggesting that some of the observed differences may contribute to disease progression. 

Pathway analysis identified an enrichment of genes involved in development and apoptosis among those genes 
whose promoters gained DNA methylation during disease progression; in contrast, genes whose promoters 
lost DNA methylation were enriched in the Wnt signaling pathway and T cell activation (Figure 6d). Corrob-
orating the latter finding, when we classified all patients according to whether they on average gained or lost 
DNA methylation in the promoters of Wnt signaling genes, we observed a significant association between loss 
of DNA methylation and reduced PFS and OS (Figure 6f).  

 

Discussion 

Focusing on glioblastoma as one of the genetically most complex cancers, we sought to determine the preva-
lence and character of epigenetic tumor heterogeneity in time and space. To that end, we established a com-
prehensive set of DNA methylation profiles covering primary and recurring tumors from the same patients as 
well as multi-sector samples in a subset of patients. A longitudinal cohort of 112 patients with IDH-wildtype 
primary glioblastoma that had undergone at least two (and up to four) tumor resections was assembled based 
on the Austrian Brain Tumor Registry, thus providing a population-scale representation of glioblastoma pa-
tients. An optimized RRBS protocol allowed us to work with minute amounts of FFPE tissue, while providing 
single-CpG and single-allele resolution and insights into epigenetic heterogeneity at single-cell level that 
would be difficult or impossible to obtain using microarray-based methods for DNA methylation profiling. 
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Based on the RRBS dataset, we were able to infer a broad range of tumor properties – including glioblastoma 
transcriptional subtypes, aspects of the tumor microenvironment, and tumor cell-intrinsic attributes such as 
cell proliferation. Our analysis revealed changes in tumor microenvironment between primary and recurring 
tumors and identified the composition of the tumor microenvironment to be a major discriminatory factor 
between transcriptional subtypes as well as MR progression types, suggesting potential clinical applications 
of DNA methylation based prediction of the tumor microenvironment. In line with recent work13,20 we ob-
served co-occurrence of multiple transcriptional subtypes within the same tumor and frequent switching of the 
dominant subtype over time. Moreover, patients whose tumor switched to the mesenchymal subtype had re-
duced survival. Assessing the regulatory basis of the transcriptional subtypes, we identified epigenomic sig-
natures of increased EZH2 activity in glioblastoma of the mesenchymal subtype. In light of the significantly 
worse prognosis of mesenchymal tumors, these results might enable new subtype-specific therapeutic ap-
proaches that exploit the observed regulatory differences, such as the use of emerging EZH2 inhibitors49-51.  

We also observed characteristic trends in DNA methylation between primary and recurring tumors, including 
a demethylation of Wnt signaling gene promoters that was associated with worse prognosis. Aberrant activa-
tion of the Wnt signaling pathway is observed in various cancers including glioblastoma, where hypermethyl-
ation mediated suppression of Wnt signaling inhibitors was identified as a source of aberrant activation of this 
pathway52. We quantified epigenetic tumor heterogeneity in two complementary ways, and DNA methylation 
erosion as measured by the PDR score was associated with survival. Patients whose primary tumors harbored 
higher levels of DNA methylation erosion showed longer PFS and a tendency towards longer OS. These results 
were surprising given that previous studies in hematopoietic malignancies (AML26 and CLL27) had associated 
increased epigenomic heterogeneity with worse prognosis. This discrepancy might be explained by the fact 
that chemotherapy in leukemia is applied to the entire population of malignant cells, while the bulk of glio-
blastoma is surgically removed prior to chemotherapy and radiotherapy. The non-selective bottleneck of tumor 
resection might turn the evolutionary advantage of an heterogeneous population of tumor cells into a disad-
vantage, especially in the case of stochastic and therefore mostly detrimental DNA methylation erosion. 

Finally, we observed that several properties of the recurring tumors were specifically associated with survival, 
while there was no strong association in the primary tumors. This was true for transcriptional subtypes (Figure 
2e), MR-imaging derived necrotic and enhancing tumor volumes (Supplementary Fig. 4e), CD68+ macro-
phage infiltration (Figure 3c), and tumor cell proliferation levels (Figure 4b). These results emphasize the 
potential clinical relevance of repeated biopsy and detailed diagnostic work-up of recurring tumors in order to 
promote more personalized treatment decisions upon glioblastoma recurrence.  

In summary, our study establishes a rich resource describing the DNA methylation dynamics of glioblastoma 
progression in a highly annotated clinical cohort with matched MR imaging and detailed histopathological 
analyses that included the tumor microenvironment. Importantly, all data are openly available through public 
repositories and a detailed Supplementary Website (http://glioblastoma-progression.computational-epigenet-
ics.org/). This study also highlights the feasibility and potential of working with national patient registries and 
large patient cohorts, with FFPE samples, and with clinical data that have been collected as part of routine 
clinical care. Finally, in combination with research that established the accuracy and robustness of DNA meth-
ylation assays for clinical diagnostics54, our data support that DNA methylation sequencing can make a rele-
vant contribution to the clinical assessment of tumor heterogeneity, providing potential biomarkers for im-
proved diagnosis, prognosis, and personalized therapy in glioblastoma and other heterogeneous cancers. 
 
  

http://glioblastoma-progression.computational-epigenetics.org/
http://glioblastoma-progression.computational-epigenetics.org/
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Methods 

Sample acquisition via a population-based registry  

All glioblastoma cases were selected from the Austrian Brain Tumor Registry34, including only patients over 
18 years of age with a first surgery at diagnosis and at least one additional surgery upon recurrence. Tumor 
samples and clinical data were provided by the following partner institutions: Medical University of Vienna, 
Kepler University Hospital Linz, Paracelsus Medical University Salzburg, Medical University of Innsbruck, 
Karl-Landsteiner University Hospital St. Pölten, State Hospital Klagenfurt, State Hospital Wiener Neustadt, 
Hospital Rudolfstiftung Vienna, and the Medical University of Graz. The resulting cohort comprised 159 pa-
tients with matched FFPE samples for the primary tumor and at least one recurring tumor, which were depos-
ited in the neurobiobank of the Medical University of Vienna (ethics vote EK078-2004). After screening for 
sufficient tumor content in both the primary and the recurring tumor, 47 patients were excluded. A total of 112 
patients were retained, each with at least two and up to four time points (283 tumor samples in total, including 
6 patients with multi-sector sampling). The diagnosis of primary glioblastoma, IDH-wildtype was confirmed 
by central pathology review according to the 2016 update of the WHO classification55 including targeted as-
sessment of the IDH R132H mutational status. In addition, 13 patients (32 tumor samples) with IDH-mutant 
oligodendroglioma/astrocytoma/glioblastoma, and 5 patients (5 samples) who underwent temporal lobe sur-
gery due to epilepsy (Medical University of Vienna) were included as controls. Informed consent was obtained 
according to the Declaration of Helsinki, and the study was approved and overseen by the ethics committee of 
the Medical University of Vienna (ethics votes EK550/2005, EK1412/2014, EK 27-147/2015).  

 

DNA isolation from FFPE tumor samples 

Areas of highest tumor cell content were selected based on hematoxylin-eosin stained sections, while any 
samples with tumor cell content below 50% in the region-of-interest were excluded from further analysis. 
Genomic DNA was extracted from FFPE tissues using the QIAamp DNA FFPE Tissue Kit following manu-
facturer’s instructions.  

 

DNA methylation profiling by RRBS 

RRBS was performed as described previously29 using 100 ng of genomic DNA for most samples, while occa-
sionally going down to 2 ng (if not more DNA was available) and up to 200 ng (Supplementary Table 2). To 
assess bisulfite conversion efficiency independent of CpG context, methylated and unmethylated spike-in con-
trols were added in a concentration of 0.1%. DNA was digested using the restriction enzymes MspI and TaqI 
in combination (as opposed to only MspI in the original protocol) in order to increase genome-wide coverage. 
Restriction enzyme digestion was followed by fragment end repair, A-tailing, and adapter ligation. The amount 
of effective library was determined by qPCR, and samples were multiplexed in pools of 10 with similar qPCR 
Ct values. The pools were then subjected to bisulfite conversion followed by library enrichment by PCR. En-
richment cycles were determined using qPCR and ranged from 12 to 21 (median: 16). After confirming ade-
quate fragment size distributions on Bioanalyzer High Sensitivity DNA chips (Agilent), libraries were se-
quenced on Illumina HiSeq 3000/4000 machines in a 50 or 60 basepair single-read setup.  

 

DNA methylation data processing 

RRBS data were processed using a custom pipeline based on Pypiper (http://databio.org/pypiper) and Looper 
(http://databio.org/looper). Adapter sequences were trimmed, and 60 basepair reads were cropped to 50 base-

http://databio.org/pypiper
http://databio.org/looper
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pairs using Trimmomatic56 with the following settings: ILLUMINACLIP:RRBS_adapters.fa:2:40:7 SLID-
INGWINDOW:4:15 MAXINFO:20:0.50 CROP:50 MINLEN:18. Trimmed reads were then aligned to the hu-
man genome build hg38 using BSMAP in RRBS mode57, and DNA methylation calling was performed with a 
custom python script (biseqMethCalling.py) published previously29. To assess bisulfite conversion efficiency, 
unmapped reads were aligned to the spike-in reference sequences using Bismark58, and DNA methylation calls 
for methylated and unmethylated controls were extracted from the alignment file. CpGs in repetitive regions 
according to the UCSC RepeatMasker track were excluded from further analysis. DNA methylation data were 
analyzed at the level of single CpGs or in a binned format with mean DNA methylation values calculated 
across 5-kilobase regions, CpG islands (as defined in the UCSC Genome Browser) or GENCODE promoter 
regions (1 kilobase upstream to 500 bases downstream of the transcription start site). 

 

Identification of copy number aberrations from RRBS data 

Copy number aberrations for each sample were identified using the R/Bioconductor package CopywriteR40 
based on the BSMAP-aligned BAM files and a bin size of 100,000. Data from five normal brain controls were 
merged at the level of aligned bam files to serve as the shared control for all analyses. Each individual sample 
was then normalized either against the merged control or against the cohort median, whichever showed the 
less extreme (i.e., more conservative) value for a given bin. Genomic segments identified by CopywriteR were 
classified as significantly amplified or deleted if their normalized absolute copy number value deviated more 
than one cohort standard deviation (mean standard deviation across all bins in a given segment) from 0. Sig-
nificantly amplified or deleted segments for each sample were then plotted in an overview graph sorted by 
segment length. 

 

Identification of single nucleotide variants from RRBS data 

Single nucleotide variants and small insertions and deletions were identified using Bis-SNP42 based on the 
BSMAP-aligned BAM files, the human reference genome build hg38, and dbSNP build 147. Identified vari-
ants were annotated using SnpEff v4.2. 

 

Annotation of glioblastoma associated genes 

Glioblastoma associated genes were taken from a recent publication59 and annotated for their cancer-linked 
function (oncogene, tumor suppressor gene, drug resistance gene) based on a published classification of cancer 
genes60. Genes not contained in this classification were manually annotated according to their known or sus-
pected molecular functions as described in GeneCards (http://www.genecards.org).  

 

Patient survival analysis 

Survival analysis was performed using the functions survfit() and survdiff() of the R package ‘survival’. For 
continuous variables, patients with the 50% highest values were compared to those with the 50% lowest values 
(unless indicated otherwise). Survival curves were plotted with ggsurvplot() from the R package ‘survminer’. 

 

Inference of transcriptional subtypes from RRBS data 

Glioblastoma transcriptional subtypes43 were predicted from DNA methylation data at the level of single CpGs 
using L2-regularized logistic regression as implemented in the R package ‘LiblinearR’. Classifiers were trained 

http://www.genecards.org/
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and evaluated on Infinium 27k DNA methylation data for glioblastoma tumors44 obtained from the TCGA data 
portal (https://portal.gdc.cancer.gov/). TCGA data were restricted to IDH wildtype, non-G-CIMP samples. 
Furthermore, neural subtype samples were excluded because this subtype of glioblastoma had previously been 
associated with tumor margin and contamination with non-tumor brain tissue61. For each sample in our cohort, 
a classifier was trained and evaluated on the TCGA data, using those CpGs that were covered also in the 
sample of which the transcriptional subtype was to be predicted (1,249 CpGs on average). After performance 
evaluation by 10-fold cross-validation and calculation of the cross-validated receiver operating characteristic 
(ROC) area under curve (AUC) values, a final classifier was built using all selected TCGA samples. This 
classifier was used to predict the transcriptional subtype including class probabilities of the respective sample.  

 

Groupwise differential DNA methylation analysis 

Differentially methylated CpGs between predefined groups of tumor samples were identified with a custom R 
script that uses a two-sided Wilcoxon rank-sum test. Groups containing less than five samples were excluded 
from the analysis, and only CpGs covered by at least five reads per sample in at least 30% of samples were 
included. CpGs in repetitive regions (“RepeatMasker”, “Simple Repeats”, and “WM + SDust” tracks from the 
UCSC Genome Browser, downloaded 6 September 2016) were also excluded. For the retained CpGs, differ-
ential DNA methylation between groups of samples was assessed using the Wilcoxon rank-sum test (wil-
cox.test() in R), and p-values were adjusted for multiple testing using the Benjamini-Hochberg method (p.ad-
just() in R). CpGs with multiple-testing adjusted p-values smaller than 0.05 and with a median difference of 
beta values larger than 0.1 were considered significant. 

 

Region set enrichment analysis using LOLA 

Enrichment of genomic region sets among the differentially methylated regions was assessed using the LOLA 
software46. To reduce potential biases from co-located CpGs, CpGs were merged into 1-kilobase tiling regions 
across the genome prior to LOLA analysis. In LOLA, the hypermethylated or hypomethylated regions were 
used as the query set, and the set of all differentially methylated tiling regions were used as the universe. Only 
regions from astrocytes or embryonic stem cells in the LOLA Core database were included in the analysis for 
better interpretability. P-values were corrected for multiple testing using the Benjamini and Yekutieli method 
(p.adjust() in R), and all enrichments with an adjusted p-value below 0.05 were considered significant. In a 
control experiment, to assess potential effects of imbalance between hypermethylated and hypomethylated 
region sets, the analysis was repeated using the top-N highest ranking regions from both sets. 

 

DNA methylation inferred regulatory activity (MIRA) 

MIRA scores for selected sets of transcription factor binding sites from the LOLA Core database46 were cal-
culated as in the original publication28. Briefly, aggregated DNA methylation profiles around the binding sites 
(2.5 kilobases upstream and downstream, split into 21 bins) were created for each sample and transcription 
factor. MIRA scores were calculated as the log ratio between aggregated DNA methylation values for the 
center bin (bin 0, reflecting the binding site) and the average of two flanking bins (bins -5 and +5). 

 

https://portal.gdc.cancer.gov/
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Immunohistochemistry 

The following antibodies were used for immunohistochemistry: IDH1 (1:60 Dianova #DIA-H09), CD3 (1:200 
Thermo Scientific #RM-9107-S1), CD8 (1:100 Dako Cytomation #M7103), CD45Ro (1:500 Dako Cytoma-
tion #M0742), CD8 (1:100 Dako Cytomation #C8/144B), FoxP3 (1:25 BioLegend #320116), CD163 (1:1000 
Novocastra #NCL-L-CD163), CD68 (1:5000 Dako Cytomation #M0814), HLA-DR (1:400 Dako Cytomation 
#M0775), MIB1 (1:200 Dako Cytomation #M7240), CD34 (1:100 Novocastra #NCL-l-END).  

FFPE blocks were cut at a thickness of 3 μm, and sections were stained on a Dako autostainer system using 
the following primary antibodies MIB1, HLA-DR, CD34, CD45Ro, CD68, CD3, CD8, CD163. Antigens were 
retrieved by heating the sections in 10 mM sodium citrate (pH 6.0) at 95°C for 20 min, followed by incubation 
with primary antibodies for 30 min at room temperature. The Dako Flex+mouse detection system was used 
according to manufacturer´s recommendations. For primary antibodies against IDH1 and FoxP3, a Ventana 
BenchMark automated staining system was used, followed by visualization using the Ultra View detection kit. 
All sections were counterstained with hematoxylin. For each antibody used positive and negative controls were 
used per 30-slide-batch. Negative controls were performed by omitting the primary antibody and by using 
Universal Negative Control rabbit (Dako) for polyclonal rabbit antibodies or purified mouse myeloma IgG1 
(Zymed Laboratories, San Francisco, CA) for monoclonal mouse antibodies. The slides were scanned using a 
Hamamatsu NanoZoomer 2.0 HT slide scanner, and images were analyzed using the NDPview 2 software. 
Whole slide scans were downsampled to 5x magnification and exported as JPEG images. Fiji was used for 
further image processing62. First, the inbuilt Color Deconvolution method was used to separate the hematoxylin 
from the DAB stain. The 8-bit greyscale hematoxylin image was thresholded using Phansalkar thresholding, 
and nuclei were counted using the built-in Analyze Particles algorithm to determine reference cell counts for 
each image. For each antibody stain Phansalkar thresholding parameters were manually optimized, followed 
by automated counting of DAB-positive cells. The inferred counts for antigen-expressing cells and correspond-
ing total nuclei counts were saved as spreadsheet for further statistical analysis. 

 

Histopathological analysis of whole slide scans 

H&E stained slides were scanned using a Hamamatsu NanoZoomer 2.0 HT slide scanner. The Hamamatsu 
NDP.view2 software was used to annotate relevant regions in the slide scans. Areas including hemorrhages, 
necrosis, scars, squeezed tissue, and preexisting brain parenchyma were manually segmented by a specialist 
in neuropathology using the Freehand Region tool. The slide scans were downsampled to 10x magnification 
and exported as jpeg images using the NDPITools plugin of Fiji62-64 along with xml files featuring the annota-
tions (*.ndpa). The JPEG images were loaded into Fiji for further processing.  

To obtain a cell nuclei mask for each slide scan image, the Color Deconvolution method of Fiji was used to 
obtain an 8-bit greyscale image of the hematoxylin stain65. Automated local thresholding based on Phansalkar’s 
method segmented cell nuclei (parameters k = 0.2, r = 0.5, radius = 8)66, followed by the binary Close and 
Open operations. The Watershed method was used to separate clustered nuclei67. To obtain a mask of the gross 
tissue on the slide scan, the original image was first converted to an 8-bit greyscale image followed by global 
thresholding (thresholding values 0-207). The masks were loaded into MATLAB R2014b (MathWorks) for 
further automated image analysis. For each image, the annotation data was fetched from the respective xml 
file and converted into polygons. These polygons were subsequently grouped to form binary masks based on 
their annotation (e.g., a necrosis mask comprising all annotated necrotic areas). The gross tissue was deter-
mined by first loading the previously obtained gross tissue mask into MATLAB, performing the binary Close 
operation (dilating and eroding the binary image by 30 pixels) and then removing all connected components 
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smaller than 1,000 pixels. Pixels that were neither included in the background nor in any of the image annota-
tion masks were assigned to the tumor. Using the pixel-to-area conversion, the areas covered by tumor, necro-
sis and other annotated tissues were calculated.  

Subsequently, the pre-obtained binary nucleus mask was analyzed in blocks of 160 x 160 pixels (~146 µm x 
146 µm). This block size was empirically found to provide a good compromise between spatial resolution and 
nuclear content required for statistical analysis. The centroids of the nuclei were localized and the area and 
eccentricity (which is calculated as the distance between the foci of a fitted ellipse divided by its major axis 
length, with values close to 0 corresponding to circular nuclei and values close to 1 corresponding to spindle-
shaped nuclei) of each localized nucleus was assessed. Next, the number of nuclei per block was calculated 
from the centroid map. From the nucleus areas in each block, the average area and eccentricity as well as the 
standard deviation of the nucleus areas and eccentricities were determined. The coefficient of variation was 
calculated by dividing the standard deviation by the average for each block. For nuclei number, average area 
and eccentricity, standard deviation and coefficient of variation, the data from all blocks were assembled in a 
matrix and saved as grey scale bitmap (.bmp) image as well as color portable network graphics (.png) image. 
Furthermore, using the binary annotation masks, each block was assigned to its corresponding region, given 
that >90% of the pixels in that block were uniformly annotated. Subsequently, for each type of region, the 
mean, standard deviation, coefficient of variation, median, and mode of the aforementioned nucleus charac-
teristics were calculated (e.g., obtaining the mean average nucleus density in tumor tissue). For further statis-
tical processing, the numerical data extracted from the slide scan images were saved into a spreadsheet. 

 

Radiological evaluation of glioblastoma patients 

MR images of glioblastomas at time of first diagnosis and recurrence in sufficient quality were available for 
54 of the glioblastoma patients included in this study, which were contributed by 6 different radiology depart-
ments. Both T1-weighted images with contrast enhancement (CE) and fluid-attenuated inversion recovery 
(FLAIR)/T2-weighted axial images were reviewed for topographic tumor location to assess solitary versus 
multicentric tumors and local versus distant recurrences. Multicentric glioblastomas were defined as at least 
two spatially distinct lesions that are not contiguous with each other and whose surrounding abnormal 
FLAIR/T2 signals do not overlap68. Tumor segmentation was performed with BraTumIA69,70, which uses 
multi-modal MRI sequences for fully automated volumetric tumor segmentation. T1, T1 contrast enhanced, 
T2, and FLAIR sequences were used to segment four tumor tissue types: necrotic, cystic, edema/non-enhanc-
ing, and enhancing tumor. Due to differences in MRI protocols across the study sites, the multi-modal se-
quences were affine registered to the T1 sequence with SPM122 and resampled to 1x1x3mm voxel size prior 
to segmentation. The BraTumIA-derived segmentations were reviewed by an expert radiologist, and errors in 
the automatic segmentation were manually corrected. 

 

Evaluation of MR imaging-based progression phenotypes 

MR imaging-based tumor progression was assessed according to the Response Assessment in Neuro-Oncology 
(RANO) standard71. Serial T1-weighted images with CE and FLAIR/T2-weighted images were available for 
43 patients. Progression subtypes were classified as described previously33,72: (i) Classic T1 (incomplete dis-
appearance of T1-CE during therapy followed by T1-CE increase at progression), (ii) cT1 relapse / flare-up 
(complete disappearance of T1-CE during therapy followed by T1-CE reoccurrence at progression), (iii) Pri-
mary non-responder (increase and/or additional T1-CE lesions at first MR imaging follow-up after start of 
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therapy), (iv) T2-circumscribed (bulky and inhomogeneous T2/FLAIR progression, no or single faintly speck-
led T1-CE lesions at progression), and (v) T2-diffuse (complete decrease in T1-CE during therapy but exclu-
sive homogeneous T2/FLAIR signal increase with mass effect at progression). 

 

DNA methylation based prediction of tumor properties 

Tumor properties such as the immune cell infiltration and tumor cell morphology were predicted from DNA 
methylation data using a machine learning approach that was based on the R package ‘LiblinearR’. The DNA 
methylation data were prepared by calculating for each sample the mean DNA methylation levels in 5-kilobase 
tiling regions across the genome. Tiling regions covered in less than 90% of the samples were excluded from 
the analysis, and the filtered data matrix (samples x tiling regions) was subjected to imputation using the func-
tion impute.knn() from the R-package ‘impute’, with the parameter k (i.e., the number of nearest neighbors 
considered) set to 5. Tumor properties represented by continuous response variables were converted into cat-
egorical variables by setting the 20% highest values to ‘high’, the 20% lowest values to ‘low’, and the remain-
ing samples to ‘NA’. Imputed beta values were used to train and evaluate the classifiers using LiblineaR(). In 
the confirmatory hierarchical clustering based on the most predictive features identified by the classifiers, the 
beta values were scaled across samples for better visualization and comparability. LiblineaR() was set to use 
support vector classification by Crammer and Singer as model type, and the appropriate cost parameter was 
estimated from the imputed data matrix using the function heuristicC() from the same package. For each tumor 
property, the performance of the classifiers was determined through leave-one-out cross-validation, and 10 
control runs with randomly shuffled labels were included to detect potential overfitting. ROC curves and ROC 
AUC values were determined using the functions prediction() and performance() of the R-package ‘ROCR’. 
Finally, we trained a classifier on the entire dataset using the selected model and cost parameter, which was 
then used for further analysis including the extraction of the most predictive features, hierarchical clustering, 
and the prediction of additional samples (for the transcriptional subtypes). 

 

Estimation of DNA methylation heterogeneity 

The epi-allele entropy as a measure of sub-clonality within a tumor was calculated using a slightly modified 
version of methclone48. We calculated epi-allele entropies separately for each of the samples and, inde-
pendently, for each matched pair of primary and recurring tumors. Input files to methclone were created by 
aligning the trimmed RRBS reads to the human reference genome build hg38 using Bismark58. As in the orig-
inal publication, methclone was set to require a minimum of 60 reads in order to consider a locus, and loci 
with a combinatorial entropy change below -80 were classified as epigenetic shift loci (eloci) between primary 
and recurring tumors48. For each pair, we then calculated epi-allele shifts per million loci (EPM), dividing the 
number of eloci by the total number of assed loci normalized to 1 million loci48. 

The proportion of discordant reads (PDR) as a measure of local erosion and DNA methylation disorder was 
calculated as described in the original publication27. Briefly, the number of concordantly or discordantly meth-
ylated reads with at least four valid CpG measurements was determined for each CpG using a custom python 
script. The PDR at each CpG was then calculated as the ratio of discordant reads compared to all valid reads 
covering that locus. CpGs at the end of a read were disregarded to remove potential biases due to the end-
repair step of RRBS library preparation. Because the PDR and epi-allele entropy calculation is highly sensitive 
to differences in the read composition of the underlying RRBS library, we focused this analysis on RRBS 
libraries with a similar number of enrichment cycles (13-15) to ensure high consistency between samples 
(Supplementary Fig. 6a). 
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Sample-wise PDR and epi-allele entropy values were calculated by averaging across promoters that were cov-
ered in more than 75% of the samples. Promoter regions were defined as the genomic region 1 kilobase up-
stream to 500 basepairs downstream of a given transcription start site as annotated by GENCODE73. 

 

Pairwise differential DNA methylation analysis 

Differentially methylated CpGs between sample pairs (i.e., primary tumor versus matched recurring tumor) 
were identified with a custom R script that uses Fisher’s exact test. This test was applied to the methylated and 
unmethylated read counts derived from the BSMAP-aligned reads by the biseqMethCalling.py script. P-values 
were adjusted for multiple testing using the Benjamini-Hochberg method. To obtain promoter-wise differential 
DNA methylation calls, p-values were combined using a generalization of Fischer’s method74 as implemented 
in RnBeads75. Promoter methylation levels for each sample were calculated as the mean of all CpGs in the 
promoter region. Promoter regions were defined as the genomic region 1 kilobase upstream to 500 basepairs 
downstream of a given transcription start site as annotated by GENCODE73. 

 

Pathway enrichment analysis 

Enrichment analysis for gene sets and pathways was performed using enrichR76,77 through an R interface 
(https://github.com/definitelysean/enrichR) querying the Panther_2016 database (http://www.pantherdb.org/) 
for enrichments with an adjusted p-value below 0.05. 

 

Data and code availability 

All data are available through the Supplementary Website (http://glioblastoma-progression.computational-ep-
igenetics.org/). Genome browser tracks facilitate the locus-specific inspection of the DNA methylation data, 
and a d3.js based graphical data explorer enables interactive analysis of associations in the annotated dataset 
(Supplementary Fig. 7). The Supplementary Website also hosts the raw and segmented image data from the 
histopathological analysis as well as the raw and segmented MR imaging data. The processed DNA methyla-
tion data will also be available for download from NCBI GEO (accession number: GSE100351, reviewer link: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100351, login token: ufahcwkajrqnhef), and the 
raw sequencing data will be available from EBI EGA. Finally, in the spirit of reproducible research78 the Sup-
plementary Website makes the source code underlying the presented analyses publicly available. 
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Figures 

Figure 1. DNA methylation landscape of glioblastoma disease progression 

A: Integrative analysis of longitudinal DNA methylation data (RRBS) with matched magnetic resonance (MR) 
imaging data (morphology, segmentation), clinical annotation data (e.g., treatment, progression, IDH mutation 
status), and histopathological data (segmentation, morphology, immunohistochemistry) using statistical meth-
ods and machine learning. TMZ: Temozolomide; RTX: Radiation therapy; PC: Palliative care. 

B: Patient cohort overview summarizing the disease courses of 112 primary glioblastoma patients with IDH-
wildtype status, ordered by time of first surgery. 

C: DNA methylation profiles for primary and recurring tumors at three relevant gene loci (BCL2L11, SFRP2, 
and MGMT). Genes and ENCODE histone H3K27ac tracks were obtained from the UCSC Genome Browser.  

D: DNA methylation levels at CpGs indicative of the CpG island methylator phenotype (CIMP), shown sepa-
rately for IDH mutated control samples (which are CIMP-positive) and the IDH wildtype primary glioblastoma 
samples from the study cohort (which are CIMP-negative). The fold change of DNA methylation levels be-
tween IDH mutated and wildtype samples is indicated based on data from a previous study39. 

 

Figure 2. Glioblastoma transcriptional subtypes inferred from DNA methylation 

A: Overview of the machine learning approach for classifying tumor samples by their transcriptional subtypes 
using DNA methylation data. Classifiers were trained on DNA methylation data (Infinium 27k assay) of TCGA 
glioblastoma samples with known transcriptional subtype, using only CpGs shared by RRBS. All classifiers 
were evaluated by tenfold cross-validation on the TCGA samples and then applied to the RRBS profiles, pre-
dicting class probabilities that indicate the relative contribution of each transcriptional subtype. 

B: Transcriptional subtype heterogeneity within cohort samples, as indicated by class probabilities of the sub-
type classifier. Samples are grouped and ordered by their dominant subtype. 

C: Distribution of class probabilities across different regions of the same tumor (indicated by Roman numbers) 
and across different surgeries (indicated by Arabic numbers) for two patients with multisector samples. 

D: Riverplot depicting transitions in the predicted transcriptional subtype between primary and recurring tu-
mors. The number of samples in each state is indicated. Only patients whose primary and recurring tumors 
were classified with high accuracy (ROC AUC > 0.8) were included in this analysis. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified by predicted transcriptional subtypes (left) and switching from a non-mesenchymal to mes-
enchymal subtype during disease progression (right). Only tumor samples that were classified with high accu-
racy (ROC AUC > 0.8) were included in this analysis. 

F: Heatmap displaying the DNA methylation levels of the most differential CpGs between the three transcrip-
tional subtypes. Only tumor samples that were classified with high class probabilities (>0.8) were included in 
this analysis. 

G: LOLA region-set enrichment analysis of differentially methylated CpGs between the different transcrip-
tional subtypes (binned into 1-kilobase tiling regions). Adjusted p-values (Benjamini & Yekutieli method) are 
displayed for all significantly (adjusted p-value < 0.05) enriched region sets (binding sites, x-axis) measured 
in astrocytes or embryonic stem cells (ESCs). 

H: Schematic depicting the calculation of ‘DNA methylation inferred regulatory activity’ (MIRA) scores. 
DNA methylation profiles are combined across centered genomic regions of interest (e.g., transcription factor 
binding sites) for each sample and each region set. The MIRA score is then calculated as the ratio of DNA 
methylation levels at the flank to DNA methylation levels at the center (binding site) of the combined DNA 
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methylation profile. High MIRA scores therefore reflect local demethylation at the binding site, which indi-
cates high regulatory activity of the respective factor. 

I: DNA methylation profiles (upper row) and corresponding MIRA scores (lower row) for three region sets 
enriched in CpGs that are hypomethylated in the mesenchymal subtype (CTCF binding in astrocytes, EZH2 
binding in astrocytes, and KDMA binding in ESCs) as well as three region sets of key regulators of pluripo-
tency measured in ESCs (POUF1, NANOG, SOX2). The significance of differences between the three tran-
scriptional subtypes was assessed using a two-sided Wilcoxon rank sum test: * p-value < 0.05, ** p-value < 
0.01, *** p-value < 0.001, ns: not significant. 

 

Figure 3. DNA methylation and the tumor microenvironment 

A: Comparison of tumor-infiltrating immune cell levels between different transcriptional subtypes as measured 
by quantitative immunohistochemistry for the indicated marker proteins. 

B. Immunohistochemical stainings for FOXP3 and CD45ro in selected samples assigned to each of the three 
transcriptional subtypes. 

C: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified according to the level of CD163-positive and CD68-positive immune cell infiltration in their 
primary and recurring tumors. 

D, E: Differences in the relative proportion of tumor-infiltrating pro-inflammatory (D) and anti-inflammatory 
or neutral (E) immune cells between tumor samples originating from the patients’ first surgery (primary tu-
mor), second surgery (recurring tumor), or third surgery. 

F: Comparative immunohistochemical stainings between primary and recurring tumors for three selected 
markers (CD68, CD8, CD163). 

G: Comparison of the levels of tumor-infiltrating immune cells (cells positive for CD3, CD8, or CD68) and 
proliferating cells (MIB-positive cells) between the different progression types based on magnetic resonance 
(MR) imaging: Classic T1 (claT1), cT1 relapse / flare-up (cT1), and T2 diffuse (T2). Primary (left panel) and 
recurring (right panel) tumors were analyzed separately. 

H: ROC curves for the DNA methylation based prediction of immune cell infiltration levels, as determined by 
leave-one-out cross-validation. ROC curves and the ROC area under curve (AUC) are indicated for the actual 
prediction (blue) and for background predictions with randomly shuffled labels (grey). 

All significance tests comparing groups of samples in this figure were performed using a two-sided Wilcoxon 
rank sum test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, ns: not significant. 

 

Figure 4. DNA methylation and histopathological tumor characteristics 

A. Comparison of the fraction of proliferating (MIB-positive) cells between first surgery (primary tumor), 
second surgery (recurring tumor), and third surgery. 

B. Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified according to the fraction of proliferating (MIB-positive) cells in the primary and recurring 
tumor. 

C: ROC curves for the DNA methylation based prediction of levels of proliferating (MIB positive) cells, as 
determined by leave-one-out cross-validation. 
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D: Hierarchical clustering based on column-scaled DNA methylation levels of the most predictive genomic 
regions from the classifier predicting the fraction of proliferating (MIB-positive) cells (5-kilobase tiling re-
gions). 

E: Distribution of DNA methylation levels of the most predictive genomic regions from the classifier predict-
ing the fraction of proliferating (MIB-positive) cells, displayed separately for samples with high (red) or low 
(blue) fractions and for features with positive (top) or negative (bottom) weights assigned by the classifier.  

F: Comparison of the average nuclear eccentricity (AVG) and its coefficient of variation (COV) between tu-
mors that shift to a sarcoma-like phenotype during disease progression and those that retain a stable histological 
phenotype. 

G: Hematoxylin and eosin stains of matched primary and recurring tumors, illustrating the morphological 
changes observed when tumors shift to a sarcoma-like phenotype during disease progression. 

H: Comparison of additional tumor properties between tumors that shift to a sarcoma-like phenotype during 
disease progression and those that retain a stable histological phenotype. 

I: ROC curves for the DNA methylation based prediction of average nuclear eccentricity and its coefficient of 
variation. 

J: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for pa-
tients stratified according to whether their tumors shift to a sarcoma-like phenotype during disease progression 
(green) or retain a stable histological phenotype (orange). 

All significance tests comparing groups of samples in this figure were performed using a two-sided Wilcoxon 
rank sum test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, ns: not significant. 

 

Figure 5. DNA methylation heterogeneity in glioblastoma disease progression 

A. Illustration of epi-allele entropy (EPY) and proportion of discordant reads (PDR) as two complementary 
measures of epigenetic tumor heterogeneity. Individual loci can have high values for one but not for the other 
measure (locus 1 and 2), or the measures can agree with each other (locus 3). Loci that undergo extensive 
changes in their epi-allele composition (locus 2 and 3) have been termed eloci48. ‘=’: no change in heteroge-
neity between primary and recurring tumor; ‘>’ increased heterogeneity in the recurring tumor. 

B. Comparison of mean sample-wise PDR and epi-allele entropy values between first surgery (primary tumor) 
and second surgery (recurring tumor). The samples with the 20% highest and lowest heterogeneity values are 
color-coded and form the basis for the analyses presented in panels C to E. 

C: Relative epi-allele frequencies in promoter regions for each of the color-coded samples from panel B (bot-
tom) as well as the distribution of high and low heterogeneity samples along the gradient defined by their 
relative epi-allele composition (top). For clearer visualization, the “0000” majority epi-allele with a frequency 
of 70% to 80% is not displayed. 0: unmethylated, 1: methylated 

D: Correlation between intra-tumor heterogeneity and enhancing (active) tumor mass as determined by MR 
imaging. r: Pearson correlation. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified according to their PDR and epi-allele entropy values. 

F: Correlation between the number of differentially methylated promoters during progression per million as-
sessed promoters (DPM) and the time between first and second surgery. r: Pearson correlation. 
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Figure 6. DNA methylation differences between primary and recurring tumors 

A. Scatterplot depicting the relationship of promoter DNA methylation between primary and recurring tumors. 
Promoters that were differentially methylated between primary and recurring tumors in at least 5 patients are 
highlighted (DNA methylation difference greater than 75%, adjusted p-value below 0.001, and average RRBS 
read coverage greater than 20 reads). r: Pearson correlation. 

B. Barplots (top) depicting the number of patients that show significant gain or loss of DNA methylation in 
the differentially methylated promoters highlighted in panel A; scatterplots and line plots (bottom) showing 
the change in DNA methylation associated with disease progression (measured as percentage points, pp) for 
patients following the cohort-trend (red) or not (blue). Trend lines were calculated using the loess method. 

C. Definition of “trend” and “anti-trend” patients based on the Manhattan distance between the maximal trend 
at differentially methylated promoters (DNA methylation values of 0% or 100%) and the observed difference 
in DNA methylation for each patient. “Trend” patients are those whose DNA methylation profiles are similar 
to the maximal trend (low normalized Manhattan distance); “Anti-trend” patients are those whose methylation 
profiles are most different from the maximal trend (high normalized Manhattan distance). 

D: Pathway enrichment analysis of those genes that recurrently lose DNA methylation during disease progres-
sion and those that recurrently gain DNA methylation during disease progression. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified by whether they followed the cohort trend of differential promoter DNA methylation (trend 
patients) or not (anti-trend patients), according to the definition in panel C. 

F: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified into the top-30% patients with increasing or decreasing average DNA methylation levels at 
the promoters of Wnt signaling genes during disease progression. 
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Supplementary Tables 

Supplementary Table 1. Patient summary table 

Supplementary Table 2. RRBS summary table 

 

 

Supplementary Figures 

Supplementary Figure 1. RRBS profiling in a population-based glioblastoma cohort 

A: Overview of the clinical centers that contributed to this study. The numbers of IDH wildtype and IDH 
mutated patients are indicated for each center.  

B: Scatterplots summarizing the RRBS sequencing data. The proportion of randomly fragmented reads (i.e., 
reads not starting with the expected RRBS restriction sites) reflect the degree of pre-fragmentation of the input 
DNA. The different sample types (FFPE: formalin-fixed paraffin-embedded; Frozen: fresh-frozen, RCL: eth-
anol-based conservation) are indicated by color. 

C: DNA methylation levels of methylated and unmethylated synthetic spike-in control sequences. Dashed lines 
indicate DNA methylation levels of 5% and 95%. 

D, E: Distribution of DNA methylation levels across different genomic regions (covered by more than 10 reads 
per CpG) and for the different sample types (D) and quality tiers (E) defined by the number of unique CpGs 
detected in each RRBS library (tier 1: more than 3 million; tier 2: between 2 and 3 million; tier 3: between 1 
and 2 million; tier 4: below 1 million). 

F: Scatterplots depicting the relationship of DNA methylation levels in 5-kilobase tiling regions (containing 
more than 25 CpGs and covered by more than 10 reads per CpG) between primary and recurring tumors for 
the three different sample types. r: Pearson correlation. 

G: Mean MGMT promotor methylation levels averaged across two CpGs (cg12434587 and cg12981137)53. 
Error bars indicate the maximum and minimum detected methylation levels in each samples. The dashed line 
indicates the threshold (36%) below which samples are considered unmethylated. 

H: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified by MGMT promoter methylation status as depicted in panel G. 

 

Supplementary Figure 2. Inference of genetic information from RRBS data 

A: Overview of the RRBS-based inference of copy number aberrations (CNAs) in the glioblastoma cohort. 
The horizontal red and green lines represent the aberrations identified in each of the samples. The genomic 
position of genes with reported relevance in glioblastoma are indicated.  

B: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified by chromosome 10q deletion status as depicted in panel A. 

C: Assessment of 1p/19q co-deletion status in the IDH wildtype primary glioblastoma samples as well as the 
13 oligodendroglioma samples from 6 patients with known 1p/19q co-deletion as positive controls. The size 
of the bubbles represents the mean fraction of the respective chromosome arms that are affected by the indi-
cated CNAs. 

D: Scatterplot displaying the relationship of normalized RRBS-derived mutation calls (SNPs and InDels) be-
tween primary and recurring tumors. 
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E: Cohort-wide mutational profile of genes with known relevance in glioblastoma. Only mutations with high 
predicted impact on protein function are displayed. Each dot represents a tumor sample in which the indicated 
mutation was detected. Variant qualities above 100 were set to 100. 

 

Supplementary Figure 3. Prediction of glioblastoma transcriptional subtypes from RRBS data 

A: Sample-wise ROC AUC values as a measure for the accuracy of transcriptional subtype prediction from 
RRBS data. Dashed line: ROC AUC = 0.8 

B: Transcriptional subtype distribution for IDH mutated samples. The number of samples assigned to each 
subtype is indicated. 

C, D, E: Distribution of class probabilities across different regions of the same tumor (indicated by Roman 
numbers) and across different surgeries (indicated by Arabic numbers) for four out of six patients with multi-
sector samples (C) and the remaining two patients (D,E) accompanied by matched hematoxylin and eosin 
stains to display the tumor regions from which the multi-sector samples originated. Section III of the primary 
tumor of patient 44 did not yield enough CpGs to support confident classification. 

F: Scatterplots displaying the relationship between MIRA scores for the indicated factors and the class proba-
bilities of the indicated transcriptional subtypes. r: Pearson correlation, p: p-value. 

 

Supplementary Figure 4. Association of histopathological and MR imaging-derived tumor properties 
with transcriptional subtypes and disease progression 

A: Segmented hematoxylin and eosin stains illustrating the quantification of the histopathological tumor prop-
erties (red: hemorrhage, green: necrosis, yellow: meningeal scarring).  

B: Comparison of histopathological tumor properties between the different transcriptional subtypes (Cla: clas-
sical, Mes: mesenchymal, Pro: proneural). 

C: Comparison of histopathological tumor properties between first surgery (primary tumor) and second surgery 
(recurring tumor). 

D: Segmented MR imaging pictures illustrating the quantification of the different MR imaging-derived tumor 
properties. Heatmap intensity overlays indicate the extent of necrosis, contrast-enhancing (active) tumor vol-
ume, and edema in the entire cohort. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified according to the level of necrotic and contrast-enhancing (active) tumor volume as derived 
from MR imaging in primary and recurring tumors. 

All significance tests comparing groups of samples in this figure were performed using a two-sided Wilcoxon 
rank sum test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, ns: not significant. 

 

Supplementary Figure 5. MR imaging progression types and DNA methylation based prediction of tu-
mor properties 

A: T1-contrast enhanced and T2/FLAIR MR sequences at each follow-up visit illustrating the three MR im-
aging progression types in this cohort (cT1 relapse / flare-up, classic T1, T2 diffuse). ‘*’: tumor recurrence. 

B: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified according to their MR imaging progression types. 
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C: Schematic illustrating the machine learning approach (including the data pre-processing) used to assess the 
predictability of various tumor properties from RRBS DNA methylation data. White squares indicate missing 
values; grey squares indicate imputed values. 

D: ROC curves showing high prediction accuracy based on DNA methylation data for two features with high 
expected predictability (IDH mutation status, patient sex). 

E: ROC curves evaluating the DNA methylation based prediction of several histopathologic tumor properties. 

F: Hierarchical clustering based on the column-scaled DNA methylation values of the most predictive features 
(5-kilobase tiling regions) as identified by the machine leaning classifiers built to predict the infiltration levels 
of the indicated immune cell types (cells positive for CD163, CD68, CD45ro, CD3, or CD8) or the extent of 
indicated tumor properties (cells positive for CD34 or HLA-DR). 

 

Supplementary Figure 6. Analysis of DNA methylation heterogeneity in primary and recurring tumors 

A: Scatterplots displaying the relationship between PCR enrichment cycles during RRBS library preparation 
and the indicated measures of DNA methylation heterogeneity. In order to reduce the effect of technical vari-
ability, we limited the analysis of epigenomic heterogeneity to samples that fall into a defined narrow range of 
PCR enrichment cycles (13-15 cycles, indicated by black boxes). 

B: Degree of epi-allelic shifting between normal brain control and primary or recurring tumors, as well as 
between primary and recurring tumors measured by the relative number of loci that show high changes in epi-
allele composition (EPM: eloci per million assessed loci). ***: p-value < 0.001 (two-sided Wilcoxon rank sum 
test) 

C: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 
patients stratified according to their degree of epi-allelic shifting (as measured by EPM) between primary and 
recurring tumors. 

D: Correlation between epi-allelic shifting during progression (as measured by EPM) and the time between 
first and second surgery. r: Pearson correlation. 

 

Supplementary Figure 7. Illustration of the graphical data explorer on the Supplementary Website 
(http://glioblastoma-progression.computational-epigenetics.org/) 

A: Comparison between two continuous variables. 

B: Comparison between one continuous and one categorical variable. 

C: Comparison between two categorical variables. 

D: Hovering over an individual data point shows information about the specific data point and also highlights 
all matched samples from the same patient. 

E, F: Clicking on a data point locks the highlighting (E) to follow the selected data point through additional 
analyses (F). 
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Abstract

Pancreatic islets of Langerhans contain several specialized endo-
crine cell types, which are commonly identified by the expression
of single marker genes. However, the established marker genes
cannot capture the complete spectrum of cellular heterogeneity in
human pancreatic islets, and existing bulk transcriptome datasets
provide averages across several cell populations. To dissect the
cellular composition of the human pancreatic islet and to establish
transcriptomes for all major cell types, we performed single-cell
RNA sequencing on 70 cells sorted from human primary tissue. We
used this dataset to validate previously described marker genes at
the single-cell level and to identify specifically expressed transcrip-
tion factors for all islet cell subtypes. All data are available
for browsing and download, thus establishing a useful resource
of single-cell expression profiles for endocrine cells in human
pancreatic islets.
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Introduction

Located within the pancreas, the islets of Langerhans are composed

of endocrine cells expressing glucagon (alpha cells), insulin (beta

cells), somatostatin (delta cells), pancreatic polypeptide (PP cells),

and ghrelin (epsilon cells). Furthermore, they are heavily vascular-

ized and innervated, and in contact with the surrounding acinar and

ductal cells of the exocrine pancreas. Pancreatic islets function as

highly specialized micro-organs that monitor and maintain blood

glucose homeostasis. While damage to beta cells causes diabetes,

the other pancreatic cell types may also contribute to pathogenesis

in ways that are not well understood. Recent studies showed that

both alpha [1] and delta cells [2] have the potential to replenish beta

cell mass in animal models.

Development of diabetes correlates with global changes in the

transcriptome of pancreatic islets [3]. These gene expression changes

could reflect alterations in the cell subtype composition of the islet

and/or changes in the transcriptomes of beta cells or other individual

cell types. Analyzing islet cell-specific gene expression changes has

the potential to shed light on the etiology of diabetes. Recently, alpha

and beta cell purification protocols from human [4–6] and mouse

islets [7,8] have yielded initial maps of cell type-specific transcrip-

tomes. The available transcriptome datasets further comprise primary

mouse and human alpha cells, beta cells, and delta cells, a number of

rodent alpha and beta cell lines, and one human beta cell line [4,9–

12]. Despite the rapid progress in this field, a comprehensive tran-

scriptome database for individual human islet cell types is still miss-

ing, and no transcriptome data are currently available for PP cells.

Recent advances in next-generation sequencing and library

preparation enabled for the first time the transcriptome characteriza-

tion of single cells from primary tissue. For example, this approach

was successfully used to establish transcriptome profiles and dissect

cell type heterogeneity for primary tissue obtained from the lung

[13], the spleen, and the brain [14,15].

Here, we used single-cell RNA-seq to establish a comprehensive

transcriptome database for the cell types that are present in primary

human pancreatic islets. Principal component analysis in combina-

tion with visualization as biplots identified alpha cells, beta cells,

delta cells, PP cells, acinar cells, and pancreatic duct cells directly

from the single-cell transcriptome profiles. We illustrate the utility

of this resource by discovering novel cell type-specific marker

genes, and we identified human-specific expression patterns in

alpha and beta cells. All data are readily available for user-friendly

online browsing and download to foster research on pancreatic islet

biology and diabetes-related mechanisms in human.
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Results and Discussion

Single-cell transcriptomes recapitulate pancreatic endocrine
cell types

Primary human pancreatic islets of Langerhans were disassociated

into single cells, and these cells were sorted into individual wells of

a 96-well plate by FACS [16]. The Smart-Seq2 protocol [17] was

then applied to obtain single-cell transcriptomes. Following the

generation and amplification of cDNA, we determined the levels of

beta-actin expression by qRT–PCR and selected all cell-containing

wells for library preparation and next-generation sequencing

(Fig 1A). Seventy cells were sequenced in total, of which 64 cells

passed quality control (see Materials and Methods) and were

included in the analysis (Fig EV1A and B, and Dataset EV1). We

obtained an average of 12.7 million high-quality reads per single

cell, of which 62.9% aligned to the human reference genome. RNA

expression levels were calculated using the BitSeq software which

uses RPKM normalization and corrects for non-uniform read distri-

bution along the transcripts (e.g., 3-prime bias) [18]. Data quality

was validated by assessing the relation between expression level

and transcript length in native RNA (Fig EV1C) as well as ERCC

spike-in controls (Fig EV1D). While transcript length and expression

level were not correlated in the ERCC spike-in controls, we detected

a negative correlation (r = �0.405) in the native RNA which was in

the range of what had been previously reported as biologically

significant finding [19]. However, a potential bias due to transcript

length normalization cannot be completely excluded; therefore,

comparing expression levels of different transcripts/genes should be

performed with caution. To define global similarities among the

single cells and the marker genes that drive these similarities, we

performed principal component analysis (PCA) on the transcriptome

dataset and displayed the results as biplots. PCA on the full dataset

separates a group of 18 cells based on high glucagon (GCG) and

transthyretin (TTR) expression and a group of 9 cells expressing

pancreatic polypeptide (PPY) from a heterogeneous group of 37 cells

(Fig 1B). In a second PCA on the 37 yet undefined cells, we identi-

fied a group of 12 cells with high insulin (INS) expression, a group

of 11 cells characterized by PRSS2, CTRB2, REG3A, REG1A, and

REG1B and a group of two somatostatin (SST)-expressing cells. In a

third PCA on the remaining 12 undefined cells, a group of 8

cells was characterized by keratin18 (KRT18) and keratin8

(KRT8). Based on the expression profiles of the identified marker

genes, we were able to uniquely assign 60 out of 64 single-cell

transcriptomes to the alpha, beta, delta, PP, acinar, or ductal cell

type (Fig 1C).

As an additional validation of our cell type classification, we

visualized the global transcriptional similarity of individual

pancreatic cells by multidimensional scaling (MDS), where each

single-cell transcriptome was colored by the cell type derived from

PCA (Fig 1D). When mapped upon the MDS plot, the known cell

type-specific marker genes INS, GCG, PPY, SST, REG1A, and KRT8

show the expected expression patterns, with different amounts of

variability within the subgroups (Fig 1E). The validity of our single-

cell RNA-seq dataset was further confirmed in direct comparison to

an external dataset consisting of bulk RNA-seq data for whole islet,

beta, and acinar cells [20]. Using MDS, we show high transcrip-

tional similarity between the corresponding cell types of both data-

sets (Fig EV1E). The expression information of individual cells and

merged expression values for each cell type is available in Dataset

EV2.

To rule out technical reasons as a major source of gene expres-

sion variability, we identified presumably pure alpha and beta cells

among the assessed single cells (Fig EV2A). Their transcription pro-

files were used to simulate transcriptomes with defined percentages

of alpha and beta cell contribution (Fig EV2B). Individual alpha and

beta cells were then compared to these virtual transcriptomes to

estimate upper limits for potential cross-contamination (Fig EV2C–E).

All beta cell transcriptomes were found to be free from any alpha

cell contribution, whereas beta cell profiles could explain a small

proportion (< 3%) of the variance observed in 8 of the 18 alpha

cells studied. However, given that these alpha cells further show

higher unexplained variance, it is likely that they are characterized

by high inherent variability rather than cross-contamination from

beta cells. We conclude that the differences between alpha and beta

cell heterogeneity are in line with biological rather than technical

effects which supports the hypothesis that alpha cells might be more

plastic than beta cells [4].

The heterogeneity within the different cell types was further

explored by separate PCAs for each cell type (Appendix Fig S1).

Particularly for endocrine cells, heterogeneity was mainly driven by

expression differences of marker genes as identified in the initial cell

type classification by PCA, suggesting that these cell types are char-

acterized by a spectrum of marker gene expression levels. While this

analysis provides evidence for transcriptional heterogeneity, more

cells are needed to thoroughly characterize subgroups within the

different cell types.

A transcriptome resource to reveal marker genes of human
pancreatic cell types

To maximize the utility of our dataset for the identification of cell

type-specific expression patterns, we generated a resource of

genome browser tracks of all individual cells as well as cumulative

tracks for the cell type clusters identified by PCA (http://islet-tran-

scriptome.computational-epigenetics.org/). One interesting use of

▸Figure 1. Single-cell transcriptomes recapitulate the major pancreatic cell types.

A Workflow for obtaining and analyzing single-cell RNA-seq data from human pancreatic islets.
B Iterative PCA/biplot-based approach for the identification of cell types and cell type-defining transcripts from single-cell RNA-seq data.
C Expression (scaled RPKM values) of cell type-defining genes as identified in (B) across all single cells. Transcripts and single cells are grouped by cell type as identified

in (B).
D Display of transcriptional similarity between all single cells by MDS. The coloring scheme is based on the cell types as identified in (B).
E Relative expression (scaled RPKM value) of canonical marker genes for the 6 identified pancreatic islet cell populations represented by bubble size and projected onto

the MDS profile.
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this resource is the analysis of master regulatory transcription

factors, which are fundamental for the development and the mainte-

nance of different pancreatic cell types based on animal models and

human genetics. The genome browser tracks illustrate the beta cell-

specific expression of PDX1, a master regulatory transcription factor

directly controlling insulin expression. In contrast, the alpha

lineage-defining factor ARX is expressed in both alpha and some PP

cells (Fig 2A and Appendix Fig S2). Other transcription factors that

are important for pancreas development have different degrees of

cell type-specific expression in mature human islets, including pan-

endocrine (PAX6), beta cell-specific (PAX4), and duct/delta (HHEX)

patterns (Fig 2B). While MAFA is transcribed in beta cells specifi-

cally, we observed robust MAFB expression in alpha, beta, and delta

cells. Half of the beta cells studied expressed MAFA and MAFB

concomitantly. In addition to these previously described factors, we

also observed cell type-specific expression for transcriptional regula-

tors, which have not yet been extensively characterized in the endo-

crine pancreas. For example, MORF4L1 shows a similar pan-

endocrine pattern to the canonical islet cell marker NEUROD1

(Fig 2C). A subset of alpha cells express IRX2 (Fig 2D), some beta

cells show high expression of polycomb ring finger oncogene (BMI1)

(Fig 2E), and PP cells can be characterized by the transcription

factors ETV1 and MEIS1 (Fig 2F).

We further performed pairwise correlation analysis on transcript

level to identify genes, of which the expression profiles correlate

highly (r > 0.9) with those of the endocrine marker genes INS, GCG,

SST, and PPY (Fig EV3). While several highly correlated genes could

be identified for INS and SST (e.g., zinc transporter SLC39A4 and

Notch pathway component DLK1 for INS and transcription factors

NKX6-3, ZNF430 for SST), the expression profiles of GCG and PPY

did not show high correlation with any other genes.

To extend our analysis beyond transcription factors and known

marker genes, we performed pairwise comparisons of cell type-

specific transcriptomes by gene set enrichment analysis (Dataset

EV3). Interestingly, we observed strong enrichment of a gene set

containing the REST-binding motif in all endocrine cell types

compared to acinar and ductal cells (Fig 3A). Most genes that

contain the REST motif in their promoters are expressed in alpha,

beta, delta, and PP cells, whereas they are repressed in ductal and

acinar cells (Fig 3B). The transcriptional repressor REST targets the

REST-binding motif. In line with the target gene expression pattern,

REST is specifically expressed in ductal and acinar cells (Fig 3C and

Appendix Fig S3).

Finally, based on pairwise differential expression analysis

between the pancreatic cell types, genes with highly specific expres-

sion patterns were identified (Fig EV4 and Appendix Fig S4,

Datasets EV4 and EV5). We then used these data to assess islet cell

type-specific expression in two areas of high relevance for diabetes

research–diabetes risk genes and mouse–human species differences.

Genomewide association studies (GWAS) have identified

genomic loci conferring increased risk for the development of

diabetes. We examined whether any of the diabetes-related genes

predicted by GWAS were specifically expressed in one of the pancre-

atic islet cell types and genes differentially expressed between the

endocrine and exocrine cell types (Fig EV5A). For both type 1 and

type 2 diabetes, we identified GWAS genes with beta cell- and

endocrine-specific expression. Other genes show broader expression

patterns, emphasizing the complexity of functional annotation of

diabetes GWAS results. Furthermore, key MODY (Mature Onset of

Diabetes in Young) [21] genes PDX1, PAX4, INS, HNF1A, GCK are

predominantly specific to beta cells (Fig EV5B).

To investigate species-specific differences of alpha and beta cell

transcriptomes, we assessed the degree to which the previously

identified differentially expressed mouse genes [7,9] are also dif-

ferentially expressed in human islets and vice versa (Appendix Fig

S5). We found that the human alpha cell-specific gene group-

specific component (vitamin D binding protein) GC and the human

beta cell-specific gene DLK1 (Fig 3D) displayed opposite expression

patterns as to what had been reported in mouse islet cells. To

confirm the cell type-specific expression of DLK1 and GC, we

performed immunofluorescence staining on both human and mouse

pancreatic tissue sections. In human islets, DLK1 was specifically

expressed only in insulin-positive cells (Fig 3E), whereas this

protein was observed in glucagon-positive cells in mouse tissue

(Fig 3F). Similarly, GC expression showed alpha cell specificity in

human tissues (Fig 3G), whereas it was co-expressed with insulin

in mouse tissues (Fig 3H). These results suggest that two of the

most differentially expressed cell type-specific marker genes for

human alpha and beta cells have opposite expression patterns in

mouse islets.

Pancreatic islets comprise different cell types with characteristic

transcriptomes, which confounds transcriptome studies that focus

on whole pancreatic islets in physiological and pathological condi-

tions. Lineage-labeled transgenic mice have made it possible to

obtain transcriptomes for highly pure alpha and beta cell popula-

tions in mouse. For human islets, however, cell type-specific

enrichment strategies depend on the availability of specific antibod-

ies. Efforts have been made to measure the transcription of individ-

ual genes in single human islet cells by qRT–PCR [22], but our

dataset is the first to provide genomewide transcriptional informa-

tion of human islets at single-cell resolution. Using single-cell data,

we also for the first time defined the transcriptomes of human delta

cells and PP cells, thereby providing reference transcriptomes for

all major endocrine cell types in human pancreatic islets.

We illustrated the practical utility of our resource and dataset by

three case studies. First, after confirming the cell type specificity of

the major transcription factors involved in pancreatic endocrine

lineage determination, we identified transcripts encoding transcrip-

tion factors expressed in islet cells. These include the pan-endocrine

marker MORF4L1, alpha cell-specific IRX2, beta cell-specific BMI1,

and PP cell-specific MEIS1 and ETV1. These data can provide the

basis for future functional studies in the roles of these transcription

factors in the pancreas and in diabetes.

In a second example, we analyzed cell type-specific enrichment

of previously characterized gene sets. The specific expression of

REST-motif-containing genes in the endocrine cell types led us to

identify the specific expression of the transcriptional repressor REST

in the exocrine pancreas. REST recruits a large complex of chro-

matin regulators, including many factors that allow pharmacological

modulation like histone deacetylases and the histone demethylase

LSD1. REST repression in non-endocrine cells activates the promot-

ers of important beta cell transcription factors, including PAX4 and

PDX1 and is a key step in reprogramming to insulin-producing cells

[23–26]. Future studies will show whether REST is critical in

restricting ductal differentiation potential and may be a target for

inducing beta cell neogenesis from duct cells.
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Figure 2. Expression of cell type-specific transcription factors at single-cell resolution.

A Merged UCSC Genome Browser tracks for the PDX1 and ARX loci. The respective tracks for all single cells are presented in Appendix Fig S2.
B Relative expression (scaled RPKM value) of important transcription factors represented by bubble size and projected onto the MDS profile.
C–F Cell type-specific expression of pan-endocrine (C), alpha cell (D), beta cell (E), and PP cell (F) transcription factors (red bar: mean expression). The statistical

significance of the differential gene expression is presented in Appendix Fig S6.
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Figure 3. Single-cell transcriptomes reveal unique features of human islets.

A Heatmap displaying the P-values obtained by pairwise Gene Set Enrichment Analysis (GSEA) for the REST-binding motif.
B Relative expression (scaled RPKM value) of genes contained in the REST-binding motif gene set.
C Merged UCSC Genome Browser tracks for REST. The respective tracks for all single cells are presented in Appendix Fig S3.
D Expression of DLK1 and GC in human islet cell types (red bar: mean expression). The statistical significance of the differential gene expression is presented in

Appendix Fig S6.
E–H Co-staining of DLK1 (E, F) or GC (G, H) with insulin and with glucagon in representative human (E, G) and mouse (F, H) islets.
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Finally, in a third example, we focused on differences between

mouse and human islets. Previous studies have noticed such dif-

ferences regarding the overall architecture and specific physiological

properties [7,27]. Our human islet single-cell transcriptomes confirm

that the expression of hormones and canonical transcription factors

is conserved between human and mouse. However, two genes—GC

and DLK1—that are among the most characteristic for human alpha

and beta cells, respectively, are expressed in opposite patterns in

the mouse. Both DLK1 and GC are relevant to diabetes [5,28], and

further research is necessary to dissect their roles in both human

and mouse islet biology.

These examples highlight the utility of the current single-cell

transcriptome database for islet biology. In addition, we expect

future growth of our resource with the addition of single-cell expres-

sion data from diabetic donors and from islets treated with drugs

and metabolites ex vivo, contributing to the utility of the presented

resource for studies on all aspects of human islet biology. In

summary, our study establishes a transcriptional dataset for all the

cell types in human pancreatic islets with single-cell resolution and

defines distinctly human features in the patterns of alpha and beta

cell-expressed genes.

Materials and Methods

Reagents

Antibodies used in this project are directed against insulin (Sigma

I8510), glucagon (Abcam ab92517), DLK1 (R&D MAB1144-100),

and GC (Abcam ab81307). The sequences of primers for actin have

been published recently [29]. All the fluorescently labeled secondary

antibodies were purchased from Life Technologies Corporation. The

reagents used for the Smart-seq2 protocol for cDNA synthesis,

amplification, and sequencing library preparation have been

published recently [17].

Cell culture

Human islets were provided through the JDRF award 31-2012-783

(ECIT: Islet for Research program). They were from a 37-year-old

male donor whose BMI was 22. Islets were cultured in CMRL

medium (Life Technologies) supplemented with 10% FBS, 2 mM

glutamine, 100 U/ml penicillin, and 100 lg/ml streptomycin. Islets

were collected following overnight culture after receiving them. To

disassociate islets into single cells, islets were incubated in Accutase

(Life Technologies) in 37°C for 20 min, neutralized by CMRL

medium. Purification of single cells was performed by flow cytome-

try cell sorting on a Moflo AstriosEQ (Beckman Coulter, Miami) as

previously described in [16].

Immunofluorescence

The human pancreatic histology slides were ordered from Abcam

(ab4611). The mouse pancreatic histology slides from 129SV mice

were gifts from Patrick Collombat. The staining followed a published

protocol [30]. Briefly, the paraffin was removed from the tissues.

Afterwards, rehydration and antigen retrieval was performed. The

tissues were blocked by 3% BSA for half an hour and incubated

overnight at 4°C with primary antibodies in 1:1,000 dilutions. After

washing with PBST, tissues were incubated with secondary antibod-

ies and Hoechst 33342 for half an hour. Finally, the slides were

mounted and sealed with nail polish and images were taken with

Leica CRT6000.

Single-cell RNA-seq sample and sequencing library preparation

cDNA synthesis and enrichment were performed following the

Smart-seq2 protocol as described Picelli et al [17]. ERCC spike-in

RNA (Ambion) was added to the lysis buffer in a dilution of

1:1,000,000. Library preparation was conducted on 1 ng of cDNA

using the Nextera XT library preparation kit (Illumina) as described

Picelli et al [17]. Sequencing was performed by the Biomedical

Sequencing Facility at CeMM using the 50 bp single-read setup on

the Illumina HiSeq 2000/2500 platform.

qRT–PCR

After the cDNA was synthesized and amplified from single cells,

quantitative PCR was performed with Power SYBR Green PCR

Master Mix (Applied Biosystems) on a LightCcycler 480 qPCR

instrument (Roche).

Single-cell RNA-seq data processing

The raw sequencing data were processed using a custom bioinformat-

ics pipeline which consists of the following main steps: (i) trimming

of contaminating sequencing adapter sequences, (ii) alignment of

the trimmed reads to the human transcriptome as well as genome,

(iii) calculation of expression estimates for each transcript, differen-

tial expression analysis and visualization as genome browser tracks.

Trimming of adapter sequences was performed with trimmo-

matic (v 0.32). Only reads with a minimum length of 25 bp after

adapter trimming were included in the downstream analysis. Align-

ment of the trimmed reads to the human transcriptome (hg19

GRCh37 ftp://ftp.ensembl.org/pub/release-74/fasta/homo_sapiens/

cdna/Homo_sapiens.GRCh37.74.cdna.all.fa.gz) was performed with

bowtie1 (v 1.1) [31] recording up to 100 different mapping positions

for each read which takes into account that one read might originate

from any of the different transcripts of one gene. Alignment to the

human genome (hg19/GRCh37) was performed using Tophat

(v 2.0.13) [32]. These genomic alignments were purely performed

for the purpose of visualization in genome browser tracks. Conver-

sion of the alignment files to the files needed to display the data as

genome browser tracks (bigWig) was performed with RSeQC

(v 2.3.9) bam2wig.py followed by UCSC tools’ wigToBigWig. Calcu-

lation of normalized transcript-wise expression estimates (rpkm

values) as well as differential expression analysis was performed

based on the transcriptome alignments using the R (v 3.1.2) package

BitSeq (v 1.10.0) [18]. In order to correct for potential biases in the

read distribution, the BitSeq function getExpression() was run with

the “uniform” option disabled.

Quality filtering

The minimal number of reads needed to obtain reliable RPKM

values as estimates of gene expression was determined by taking
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advantage of a synthetic RNA mix consisting of 92 RNAs covering a

106-fold concentration range (ERCC spike-in controls) that had been

carried along through the entire library preparation and sequencing

process with each single cell. Starting from ~25 reads per transcript,

we observed the expected linear relationship between ERCC tran-

script abundance and measured RPKM values (Fig EV1B). For the

purpose of noise reduction, we defined transcripts covered by less

than 25 reads as “not expressed” and set their RPKM values to a

minimal value. Furthermore, 6 samples showed less than 500 (arbi-

trary cutoff) reliably covered transcripts and were excluded from the

analysis (Fig EV1A).

Grouping the single cells based on their gene expression profiles

In order to determine groups of cells with similar expression profiles

and at the same time identify the primary defining genes for each

group, we performed a stepwise principal component analysis

(PCA) based on the quality-filtered expression values. PCA was

performed using the function prcomp() in R. The results were

displayed as a biplots showing samples (cells) as dots and the most

highly loaded variables (transcripts) as vectors. Biplots were

constructed using a slightly modified version of the R function ggbi-

plot() (https://github.com/vqv/ggbiplot).

External data

External RNA-seq raw data (next-generation sequencing reads) for

bulk samples of human acinar cells, beta cells, and islet cells were

obtained from ArrayExpress (E-MTAB-1294: https://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-1294/samples/) [20]. We used

the samples HI10 (islet), HI25 (islet), HI32 (islet), HIE1 (beta cells),

HIE2 (beta cells), and acinar tissue donor (acinar cells). External

data were processed using the same pipeline as the single-cell

data. For the comparison of external and single-cell as well as

500 cell data by multidimensional scaling, batch effect correction

was performed using the function ComBat() of the R package

sva.

Defining cell type-specific gene expression profiles

Cell type-specific gene expression profiles were defined by perform-

ing pairwise differential expression analysis between all previously

defined groups of cells. Differential expression analysis was

performed using the function estimateDE() of the R package BitSeq.

For each cell type in each comparison, the specificity of the expres-

sion of each transcript was deduced under consideration of effect

size (absolute difference and log2 fold change) as well as statistical

significance (probability of positive log ratio, PPLR) of the measured

differential expression. Technically, for each comparison, all tran-

scripts were ranked by absolute difference in gene expression, log

fold change of gene expression, and probability of positive log ratio

and a combined rank for each transcripts was produced by selecting

the worst (i.e., highest) of these three ranks as a representative

rank. Finally, the representative ranks from all comparisons for

each cell type were again combined by selecting the worst rank

for each transcript (Appendix Fig S7). Therefore, the lower the

combined rank, the more specific the expression of the respective

transcript for the assessed cell type. To identify the cell type for

which the expression of a given gene is most specific, we

compared the assigned combined ranks between all cell types and

selected the cell type that showed the lowest combined rank for

this gene.

Assessing cross-contamination between cell types

We assessed potential cross-contamination between two cell types

using a four-step approach: (i) selection of cell type-specific genes

(profile genes), (ii) selection of the purest single cells for each cell

type (profile cells), (iii) calculation of pure and increasingly contam-

inated gene expression profiles in silico (mix profiles), and (iv) iden-

tification of the mix profiles that best match the expression profile

of each single cell.

As profile genes, we selected all genes among the top 500 cell

type-specific genes for each of the two cell types that showed an abso-

lute mean expression difference of greater than 0.5 and a relative

mean expression difference of at least twofold. This selection resulted

in 233 profile genes for alpha cells and 252 profile genes for beta cells.

To identify the purest cells of each cell type, we calculated a

weighted mean of scaled expression values (sample-wise, scale 0 to

1; lower percentile: 0.05, upper percentile: 0.95) for both groups of

profile genes for each single cell (profile scores). We used a rank-

based weighting system in order to give more power to more cell

type-specific profile genes. All single cells were then plotted accord-

ing to their profile scores, and per cell type, the three cells with the

most cell type-specific profile scores (highest distance to the diago-

nal) were selected as profile cells (Fig EV2A).

Pure expression profiles consisting of both groups of profile

genes were calculated as the mean expression values of the three

profile cells. We then used these two cell type-specific profiles to

artificially construct expression profiles that represented different

degrees of contamination by computationally mixing the two pro-

files in different ratios. Specifically, we calculated weighted means

of the two pure expression values for each profile gene, with the

weight increasing from 0 to 100 in steps of 1 for one of the pure pro-

files and at the same time decreasing from 100 to 0 for the other

pure profile. This resulted in 100 profiles, two pure (cell type speci-

fic) and 98 mixed profiles (Fig EV2B).

We then calculated the Pearson correlation of each of the arti-

ficial 100 profiles with the actual expression profiles of each of

the single cells (Fig EV2C) and selected the highest correlating

mix profile for each single cell. These selected mix profiles repre-

sent the fraction of variance in profile gene expression that is

explained by either of the two cell type-specific profiles as well

as the fraction of variance that remains unexplained (Fig EV2D

and E).

Gene set enrichment analysis

Binding motif analysis was done with Gene Set Enrichment Analysis

(GSEA) [33,34]. For each single cell, the most highly expressed tran-

script was selected as representative for the respective gene. Finally,

gene expression values for each cell type were found by calculating

the median across all cells of a particular cell type. These median

expression values were used as input for GSEA. Genes that were not

found to be expressed in any of the cell types were removed from

the input dataset. Pairwise comparisons were done among all six
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assigned cell types except the “undefined” amounting to 30 compar-

isons in total. The REST-binding motif was significantly enriched

(P < 0.05, FDR < 25%) in all of the comparisons between endocrine

cell types and exocrine cell types.

GWAS analysis

GWAS results relevant for diabetes (search for “diabetes”) were

downloaded from the GWAS catalog (https://www.ebi.ac.uk/gwas/).

We categorized the reported traits into type 1 and type 2 diabetes

according to whether “1” or “2” appeared in the trait description.

Each gene that was identified as significant in a GWAS (reported

gene) was assigned to the cell type for which it was identified as

most specific (see “Defining cell type-specific gene expression pro-

files”). Because in this analysis specificity among the endocrine cells

(alpha cells, beta cells, delta cells, PP cells) and among the exocrine

cells (acinar cells, duct cells) was not paramount, cell type speci-

ficity was determined only in comparison with cell types of the

other group. This approach was chosen in order to not dismiss

genes as unspecific if they are endocrine or exocrine specific but not

necessarily cell type specific. The eight MODY genes were taken

from [21].

Data deposition

Sequencing datasets described in this work have been deposited in

the Gene Expression Omnibus (GEO) repository under accession

number GSE73727.

Expanded View for this article is available online.
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Expanded View Figures

▸Figure EV1. Statistical analysis of single-cell RNA-seq data.
A Number of detected transcripts and total aligned reads for each single cell. The red line denotes 500 transcripts, below which samples were excluded from the

analysis.
B Scatter plots displaying the correlation between the number of input ERCC RNA molecules and measured RPKM values in four representative single cells. The Pearson

correlation (r) is noted in the upper left corner.
C Scatter plots correlating raw read counts (left) and RPKM normalized expression values (right) with transcript length. All adequately covered transcripts (> 25 reads)

of all 64 samples were included in this analysis. The observed negative correlation after RPKM normalization lies in the range of what had been reported previously
[19].

D Raw counts and RPKM normalized expression values for 10 groups of ERCC spike-in controls. The amount of molecules spiked into the sequencing reaction is
constant within one group, whereas the length of the transcripts varies considerably. Within each group, equal expression values across different transcript lengths
thereby confirm that RPKM normalization does not systematically penalize longer transcripts in the assessed ERCC transcript length range of ~200 to 2,000 bp. ERCC
spike-in controls covered by more than 25 reads are indicated in blue and those with ≤ 25 reads in red.

E MDS displaying transcriptional similarity between corresponding cell types of a published dataset [20] (prefix: ext) and the current dataset.
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▸Figure EV2. Assessing cross-contamination between alpha and beta cells.
A Scatter plot displaying single alpha and beta cells, 500-cell islet samples, as well as bulk islet and beta cell samples from published datasets according to their

weighted mean of scaled expression values in alpha and beta cell-specific profile genes. The three selected profile cells for each cell type are indicated by their sample
ID.

B Pure and mixed expression profiles consisting of 233 alpha cell-specific genes and 252 beta cell-specific genes. Alpha and beta cell-specific profiles are calculated
based on the expression values of the three selected profile cells only, while profile genes were selected based on all single cells classified as alpha or beta cells,
which is why the expression gradients in the mix profiles do not always follow the same direction.

C Profile correlation curves for each individual sample. The maximum of each curve defines the maximum variance that can be explained (y-axis) by the corresponding
mix profile (x-axis) providing a measure for the composition of the respective sample.

D Diagram explaining the transition from profile correlation curves to sample composition estimates. The profile composition that explains most variance is linearly
scaled to the maximum variance explained.

E Sample composition estimates for each assessed sample. The differences between the 500-cell islet samples and bulk samples might be explained by technical effects
that enrich for alpha cells during islet cultivation, disassociation, and FACS purification.
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Figure EV3. Assessing pairwise correlation of
endocrine marker genes.
Correlation matrix displaying all genes (y-axis) that
are highly correlated (r > 0.9) with at least one of the
endocrine marker genes (x-axis). Different transcripts
of the same gene are indicated by “Tx”.

▸Figure EV4. Specific expression of selected marker genes.
Relative expression (scaled RPKM value) of interesting genes across all single cells represented by bubble size and projected onto the MDS profile as displayed in Fig 1D.
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▸Figure EV5. Assessing cell type specificity of genes identified in diabetes-related GWAS.
A Cell type specificity for genes reported in diabetes-related GWAS. Each gene reported in a diabetes-related GWAS (search for “Diabetes” on GWAS Catalog) was

assigned to the pancreatic cell type in which it was found to be most specifically expressed. Ranking was performed as described in Appendix Fig S7B and Dataset
EV6.

B Heatmap showing mean expression values for the most cell type-specific diabetes-associated GWAS genes in the different here identified human islet cell types.
Specifically, only genes with a specificity rank lower than 500 (dashed line in panel A) are listed, and genes with equal expression in multiple cell types are not shown.
The numbers in the colored boxes indicate the number of studies in which the respective gene has been reported. Heatmaps are colored by mean ln(RPKM), the
mean of the natural logarithm of the RPKM values across all cells of the respective cell type.
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Appendix Figure S1: Assessment of heterogeneity within each identified human islet cell type 
Separate biplots for each of the six identified human islet cell types show considerable variability within cell 
types. Only the most loaded eigenvectors (transcripts) are displayed. The coefficient of variance (CV) was 
calculated per cell type based on all transcripts that were expressed in at least one of the single-cells of the 
respective cell type. 
  



Appendix Figure S2: Single cell expression of PDX1 and ARX 
UCSC Genome Browser tracks of PDX1 and ARX for all single-cells as well as merged tracks for each cell 
type. The scales for individual cells are 0-250 counts for PDX1 and 0-50 counts for ARX. 



Appendix Figure S3: Single cell expression of REST 
UCSC Genome Browser tracks of REST for all single-
cells as well as merged tracks for each cell type. The 
scales for individual cells are 0-10 counts. 
  



 
Appendix Figure S4: Identification of cell type specific transcripts  
Heatmap displaying the expression patterns (scaled RPKM values) across all single cells for the top five cell 
type specific genes as determined by pairwise differential expression analysis. 
 
  



 
Appendix 
Figure S5: 
Comparing 
alpha cell and 
beta cell 
specific genes 
between 
human and 
mouse 
(A) Log fold 
change in RNA 
expression 
between human 
alpha and beta 
single-cells for 
genes identified 
as the 60 most 
alpha or beta 
cell specific 
genes in mouse. 
(B) Log fold 
change in RNA 
expression 
between mouse 
alpha and beta 
cells for genes 
identified as the 
60 most alpha or 
beta cell specific 
genes in human 
single-cells. 
PPLR: 
probability of 
positive log 
ratio; FDR: false 
discovery rate. 
 
  



 
Appendix Figure S6: Statistical significance of differential gene expression 
Matrix showing the scaled probability of positive log-ratio (pplr: lower left) and log2 fold change (log2(fc): 
upper right) of pairwise differential expression analysis for individual genes displayed in Fig. 2C-F and Fig. 
3D. “Other” signifies the comparison to all other cell types taken together. 



 
Appendix Figure S7: Rank-based approach for defining cell type specific genes 
Illustration of the rank based approach of defining cell type specific genes and assigning cell types to genes.  
PPLR: Probability of Positive Log Ratio; FC: Fold Change (expression); Diff: absolute difference 
(expression). 
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4 Discussion 
The research presented in this thesis aims at advancing the understanding of the fundamental con-
cept of cellular identity. By focusing on different aspects of cellular identity, each of the presented pro-
jects adds to an increasingly holistic perception of cellular identity, which is however far from com-
plete. Taken together, the presented projects integrate evolutionary and molecular approaches with a 
focus on DNA methylation (5-methyl-cytosine) as a prominent epigenomic mechanism and RNA ex-
pression as a crucial means for realizing genomic and epigenomic information. This final chapter 
seeks to place the presented results into their broader context.  

4.1 General discussion 
The most elementary questions surrounding the concept of cellular identity are those addressing the 
evolutionary processes that led to the emergence of the sophisticated molecular mechanisms that we 
identify today as crucially involved in the determination of cellular identity. Addressing these questions 
is not only necessary for the understanding of the living world as it is today, but also for the anticipa-
tion of how life might develop in the future. With the recent advances in genome as well as epige-
nome editing (CRISPR/Cas9) (Hilton et al, 2015) it is just a matter of time until these tools will allow to 
artificially manipulate and shape the identity of cells, the building blocks of life, in an accelerated and 
directed fashion.  

4.1.1 Evolutionary epigenomics of cellular identity 
From an evolutionary perspective in the context of cellular identity, DNA methylation is a very interest-
ing epigenomic mechanism. While DNA methylation is indispensable for establishing and maintaining 
cellular identity in some branches of life (e.g. vertebrates), it is absent in others (e.g. some insects), 
and displays fundamentally different genome-wide patterns in different phyla (especially vertebrates 
vs. invertebrates). Given that maintaining cellular identity in multicellular organisms is essential but 
DNA methylation can apparently be dispensable, the seemingly conserved and crucial role of DNA 
methylation across vertebrates is rather surprising. In fact, a recent study of DNA methylation across 
41 insect species detected high variability of DNA methylation levels even within the same orders and 
the absence of DNA methylation in one order (Diptera) (Bewick et al, 2016), making a conserved role 
of DNA methylation across all vertebrates appear even more extraordinary. Furthermore, evidence for 
a diverging role of DNA methylation between cold- and warm-blooded vertebrates has been pre-
sented through research attributing unique transcription regulatory functions of CGIs to the evolution 
of warm-blooded vertebrates (Sharif et al, 2010). On the other hand, studying experimentally defined 
non methylated CpG islands (NMIs) in seven diverse vertebrate species, revealed an unexpected de-
gree of conservation of the regulatory role of NMIs at gene promoters (Long et al, 2013). Acknowledg-
ing that CGIs and NMIs are functionally distinct genomic features especially in cold-blooded verte-
brates, a computational study based on the same experimental data found that although DNA se-
quence context is highly predictive for DNA methylation status in all vertebrates, CG-rich DNA fea-
tures are more predictive in warm-blooded vertebrates, while AT-rich features are more predictive in 
cold-blooded vertebrates (Huska & Vingron, 2016). Taken together, the evidence to date suggests a 
highly conserved general role of DNA methylation across all vertebrate species but subtle subgroup 
specific differences in the final implementation. These subtle differences might be the clue needed to 
understand how and why DNA methylation acquired its unique role in vertebrates. Given that studies 
so far have mostly only assessed one species per vertebrate class, a study assessing DNA methyla-
tion in many more species and thereby more truthfully representing vertebrate diversity seems a 
promising way to better understand the driving forces that apparently fixated DNA methylation as a 
central mechanism of stabilizing cellular identity in vertebrates. 

However, genome-wide assessment of DNA methylation has been limited by the availability of refer-
ence genomes and relatively high sequencing costs. While sequencing costs have rapidly declined in 
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the past years, the availability of assembled reference genomes is only increasing slowly. To over-
come this limitation and to enable the genome-wide profiling of DNA methylation in virtually any spe-
cies, we have developed a computational approach termed RefFreeDMA that deduces an ad-hoc ref-
erence directly from RRBS sequencing reads and can thereby perform differential DNA methylation 
analysis without the need of a previously assembled reference genome. This approach allows to de-
termine global DNA methylation levels, the sequence context in which certain DNA methylation pat-
terns are found, and differences in DNA methylation between different tissues or cell types 
(Klughammer et al, 2015). Despite some inherent limitations such as the fact that the sequence con-
text is limited to the length of a read (typically 50 bp) and that gene annotations are generally not 
available, we have shown that biological interpretation of the data is nevertheless possible. Without 
using a reference genome we have investigated differential DNA methylation between granulocytes 
and lymphocytes in two mammalian (human and cow) as well as one fish (carp) species and found 
differentially methylated fragments to be characterized by distinct sequence compositions and en-
riched for binding sites of lineage specific (lymphoid/myeloid) transcription factors in all three species. 
These confirmatory experiments encourage the undertaking of larger studies assessing more species 
and more different cell types or tissues. Such large scale studies assessing tissue specific DNA meth-
ylation with 100s of species will allow more confident conclusions with regards to the role of DNA 
methylation across vertebrates and most importantly provide the statistical power to detect also subtle 
differences or trends. 

4.1.2 Epigenomic assessment of cellular identity in a malignant disease 
Although with the availability of more and more reference genomes DNA methylation is being as-
sessed in a broader spectrum of species, our knowledge about DNA methylation in vertebrates has 
been mainly gained in two mammalian species: Human and mouse. With the discovery of the biomed-
ical relevance of DNA methylation, researchers and society have naturally focused their attention on 
understanding the role of DNA methylation in human physiology and pathology. Apart from investigat-
ing the transgenerational heritability of DNA methylation and assessing the role of DNA methylation in 
reproduction and development, studying DNA methylation in the context of cancer has been a major 
research focus. Interestingly, DNA methylation aberrations are found in most if not all cancers, but the 
uncertainty of cause or consequence is difficult to resolve. Cancerous cells are characterized by un-
controlled, invasive growth and a loss of cellular identity (Roy & Hebrok, 2015). Depending on their 
specific genomic and epigenomic aberrations, but also depending on their cell type of origin, cancer-
ous cells can display different degrees of differentiation, where less differentiated cancers are usually 
the more aggressive ones. Apart from the degree of differentiation, also tumour heterogeneity is being 
more and more recognized as a crucial factor in anticipating the course of malignant diseases. Tu-
mour heterogeneity, meaning that malignant cells from the same entity display heterogeneous 
(epi)genotypes and phenotypes, is particularly relevant with regards to therapy resistance and early 
disease progression. Tumour cells that have acquired the molecular setup to evade therapy are a ma-
jor cause for the typically early relapses observed in glioblastoma, the deadliest and most common 
tumour of the adult central nervous system. Although progress has been made in understanding mo-
lecular processes involved in glioblastoma and the administration of targeted therapies such as for 
example treatment with the anti-angiogenetic drug Bevacizumab (Narita, 2015), time to progression is 
still disappointingly low (~ 10 months). In order to prevent relapses, understanding tumour progres-
sion on a molecular level and studying not only the primary, but also the recurring tumour, seems in-
dispensable. However, because of the rapid and fatal course of disease, large scale progression stud-
ies assessing primary and recurring tumours in glioblastoma are difficult to conduct and to date 
largely missing from the research landscape. To fill this gap we assembled an Austria-wide cohort of 
>110 primary glioblastoma patients with formalin-fixed, paraffin embedded (FFPE) samples of the pri-
mary and at least the first recurring tumour. Reduced representation bisulfite sequencing (RRBS) 
yielded DNA methylation maps for all samples and allowed profound molecular characterisation of gli-
oblastoma progression. Comparing DNA methylation profiles between primary and recurring tumours 



113 

showed that genes that recurrently lose DNA methylation during progression are enriched for Wnt sig-
nalling pathway genes and that demethylation in those genes was associated with earlier progression. 
Complementarity, aberrant activation of Wnt signalling has been previously described in glioblastoma 
and amongst others lead back to hypermethylation of Wnt signalling inhibitors such as the DKK gene 
(Lee et al, 2015). 

We further assessed two measures of DNA methylation based tumour heterogeneity in primary and 
recurring samples: DNA methylation erosion (Landau et al, 2014) and epi-allelic shifting (Li et al, 
2014). Although these two measures of tumour heterogeneity are closely related, they each yield 
complementary information about the epigenetic state of a tumour sample. While DNA methylation 
erosion has been described as a stochastic process of locally disordered DNA methylation, epi-allelic 
shifting directly assesses the clonal composition and changes thereof. Of note, DNA methylation ero-
sion is a prerequisite to, but does not necessarily entail the formation of epi-alleles. This somewhat 
asymmetric relationship implies that although DNA methylation erosion primarily measures the cells’ 
inability to maintain proper DNA methylation it also indirectly informs about the clonal structure of a 
sample. Surprisingly, we found that higher DNA methylation erosion was associated with favourable 
clinical outcome. These results stand in contrast to previous research assessing DNA methylation 
erosion in CLL (Landau et al, 2014) and epi-allelic shifting in AML (Li et al, 2016b), where both studies 
reported a negative association between the respective heterogeneity measures and progression-free 
survival. Both studies suggested increased epigenetic plasticity as explanations for their observations, 
hypothesising that increased epigenetic plasticity allows the tumour to adapt to environmental pres-
sures such as (chemo) therapy. The discrepancy to our results might be explained by the fundamen-
tally different disease courses of solid tumours such as glioblastoma and hematopoietic malignancies 
such as CLL and AML. While in glioblastoma the majority of the tumour cells is removed surgically 
and will never encounter chemotherapy, in hematopoietic malignancies the entire pool of malignant 
cell is exposed to chemotherapy in order to eradicate them. Furthermore, it is plausible to assume 
that DNA methylation erosion is generally detrimental but in rare cases can give rise to advantageous 
phenotypes. In light of the evolutionary bottleneck that is applied on glioblastomas through surgery, it 
seems likely that the few tumour cells that remain after surgery are less fit and less resistant to chem-
otherapy if they originate from a tumour with high levels of DNA methylation erosion. In CLL however, 
where no such indiscriminately externally imposed bottleneck is applied, a single cell that has ac-
quired an advantageous phenotype through stochastic DNA methylation erosion might give rise to a 
therapy resistant clone, thereby leading to early relapse. These results highlight the importance of 
DNA methylation derived tumour heterogeneity for tumour progression, but also the necessity to eval-
uate these measures in an appropriate medical context. 

In contrast to epigenetic heterogeneity in glioblastoma, which is a relatively new branch of research, 
clinically relevant transcriptional subgroups of glioblastoma (classical, mesenchymal, and proneural) 
have already been described nearly 10 years ago in the context of ‘The Cancer Genome Atlas’ 
(TCGA) project (Verhaak, 2009). Using machine learning, we were able to extract subtype specific 
DNA methylation signatures from published and annotated TCGA data and we used those signatures 
to predict the transcriptional subtypes of our glioblastoma samples based on the RRBS data. In con-
cordance with a single-cell transcriptomics study in glioblastoma (Patel et al, 2014), we found that tu-
mours displayed extensive heterogeneity with most tumours containing variable proportions of all 
three transcriptional subtypes. We went on to characterize the transcriptional subtypes by their epige-
nome regulatory properties and found that the mesenchymal subtype displayed DNA methylation sig-
natures of stronger EZH2 activity and weaker activity of stemness conferring transcription factors 
(NANOG, SOX2, OCT4) compared to the other subtypes. In concordance with the original publication 
(Patel et al, 2014), the mesenchymal subtype also showed a high rate of immune infiltration and a 
lower fraction of proliferating cells. Survival analysis further revealed that patients with recurring tu-
mours of the mesenchymal subtype had worse clinical outcome while the transcriptional subtype of 
the primary tumour was clinically irrelevant. Our results link the established transcriptional subtypes to 
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novel characteristic epigenome regulatory signatures and thereby provide evidence in support of pre-
vious efforts to investigate EZH2 inhibitors as promising new glioblastoma therapeutics (Suva et al, 
2009) especially in the treatment of glioblastomas of the mesenchymal subtype. Furthermore, by be-
ing able to recapitulate the transcriptional subtypes on the epigenomic (DNA methylation) level we 
corroborate the original suggestion that the transcriptional subtypes represent distinct neural cell 
types (classical: astrocytes, mesenchymal: immortalized astroglia, proneural: oligodendrocytes) (Patel 
et al, 2014) instead of only transient transcriptional states. 

4.1.3 Transcriptional assessment of cellular identity 
DNA methylation, as a relatively stable representation of cellular identity, is a powerful mark to dis-
criminate different cell types while preventing the confusion of persisting cell types and short-term 
transcriptional states. However, assessing marker gene expression, as a representation of a cell 
type’s function, can be extremely helpful when it comes to the identification and functional characteri-
sation of different cell types. Furthermore, transcriptomic changes usually precede epigenomic 
changes in short-term stimulations or changes of cellular identity (i.e. trans-differentiation) and tran-
scriptional states within certain cell types might also be the actual focus of interest. For these reasons, 
certain investigations regarding cellular identity clearly prefer transcriptional profiling to epigenomic 
(DNA methylation) profiling. 

With this in mind, we used single-cell RNA sequencing to define accurate transcriptional profiles for 
healthy human pancreatic islet cells as a resource for the investigation of human islet biology and dia-
betes research (Li et al, 2016a). Being primarily defined by the hormone they produce, the major cell 
types making up human pancreatic islets have been known for a long time (Gersell et al, 1978; Orci et 
al, 1976). However, only transcriptional profiling on the single-cell level has allowed a sufficiently high 
resolution necessary to detect subtle changes and heterogeneity within cell populations, paving the 
way for new insights in molecular processes relevant for diabetes and their exploitation for potential 
therapies. Our initial study (Li et al, 2016a) revealed novel cell type specific transcription factors (al-
pha cells: IRX2, beta cells: BMI1, PP cells: MEIS1 and ETV1) and a transcription factor (REST) ex-
pressed exclusively in cells of the exocrine pancreas that might be a target for inducing the trans-dif-
ferentiation of ductal cells to insulin producing beta cells. Furthermore, comparing our human data to 
published mouse data, we surprisingly found that two of the genes most specifically expressed in hu-
man alpha or beta cells (GC in alpha cells and DLK1 in beta cells) showed an opposite expression 
pattern in mouse, highlighting the importance of acknowledging species specific differences in islet 
biology. Finally, our exploratory analysis of human islet single-cell transcriptomes also yielded precise 
transcriptional profiles for all major human pancreatic islet cell types, representing a reference point 
for subsequent studies such as the induction of trans-differentiation from alpha to beta cells using Ar-
temisinins, a class of GABAa receptor agonist small molecules, commonly used for malaria treatment 
(Li et al, 2017). Although, treatment of human pancreatic islets with Artemisinins for up to 72 hours did 
show robust effects on alpha cells including the downregulation of alpha cell specific genes, it did not 
completely alter the cell type specific transcriptional profiles, and treated alpha cells were more similar 
to untreated alpha cells than to beta cell on a global transcriptomic scale. Thus, although treated al-
pha cells showed clear signs of de- or trans- differentiation they had not yet lost their alpha cell iden-
tity when treatment was stopped due to the temporal limitation of ex-vivo experiments, indicating that 
a complete de- or trans-differentiation, if at all possible in human, would take longer than 72 hours. In 
fact, long-term treatment of diabetic mice with GABA induced the conversion of alpha like cells to 
functional, insulin secreting beta like cells, leading to a remarkable replenishment of previously miss-
ing beta cell mass (Ben-Othman et al, 2017). In spite of the known species specific differences in islet 
cell biology, these results allow cautious optimism that drug-induced, in situ replacement of lost beta 
cells might also be possible in diabetic humans. Apart from the potential medical impact, trans-differ-
entiation experiments in (human) pancreatic islet cell types also yield valuable insights in the plasticity 
of cellular identity (van der Meulen & Huising, 2015). Tracking cell type conversions in this relatively 
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well understood cellular system using single cell transcriptional and epigenomic profiling would pro-
vide a better understanding of the molecular dynamics involved in changing the identity of a cell. In 
particular, it would be interesting to see, if expression patterns rather change gradually or in a discrete 
fashion and at which point in the trans-differentiation process epigenomic changes appear and con-
solidate. 

 

4.2 Conclusion & future prospects 
Since the realisation that cells are the basic units of life on earth about 180 years ago, an immense 
amount of knowledge and insight elucidating the determination of cellular identity has been gener-
ated. Importantly, science has managed to translate many of these insights into medical advance-
ments ranging from the treatment of diseases such as cancer or diabetes to assisted reproduction 
(i.e. in vitro fertilisation). The work presented in this thesis contributes to this existing pool of biological 
and medical knowledge but also demonstrates the power of recent technological advances in high 
throughput sequencing. The plethora of nucleic acid sequencing approaches available today already 
allow detailed and efficient molecular characterisation of all major determinants of cellular identity (ge-
nome, epigenome and transcriptome) and applied on single cells these methods already allow the 
identification of previously unknown cellular subtypes as demonstrated most recently for dendritic 
cells and monocytes (Villani et al, 2017). Of course, this unprecedented sensitivity poses new chal-
lenges such as to discriminate whether an observed deviation from known molecular characteristics 
really represents a biologically relevant new cell type or just a certain transient cell state. Here, tech-
nologies for parallel transcriptome and epigenome profiling of single cells (Angermueller et al, 2016; 
Hu et al, 2016) might provide the evidence needed to increase the confidence in a presumably newly 
discovered cell type. 

Humanity has now acquired the knowledge and technical ability to identify and characterize every cell 
type to be found in even the most complex organisms, promising considerable advances in under-
standing physiology, pathology and the evolutionary basis of our existence. For human, a consortium 
of leading biomedical scientists has already envisioned this ambitious endeavour and named it “The 
Human Cell Atlas” (www.humancellatlas.org). 
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