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Abstract 
Membrane proteins are structurally and functionally highly diverse and changes in their 

expression pattern are among the first events taking place in pathological conditions. 

Thus, they are a rich source of biomarkers as well as therapeutic targets. Their large-

scale analysis using proteomic strategies has, however, been challenging. Several 

protocols comprising either all membrane proteins expressed in a cell at a given condition 

and time or tailored towards proteins located at the plasma membrane have been 

developed. Still, comparative analyses are only scarcely available. This thesis provides a 

systematic comparison of different plasma membrane isolation strategies for subsequent 

analysis by one-dimensional gel-free liquid chromatography mass spectrometry. 

Moreover, the sulfo-NHS-SS-biotinylation procedure, which overall performed best for the 

monitored criteria, was simplified by a competitive biotin elution strategy that proved to 

be fast, cost-effective and robust empowering the routine evaluation of plasma membrane 

proteomes on a larger scale. Intriguingly, computational analysis using different 

databases and prediction tools indicated a total of over 90 % of the proteins purified with 

the modified sulfo-NHS-SS-biotinylation protocol to be associated with the plasma 

membrane, mostly as interactors. In addition, the cell surface proteomic procedure 

developed within this thesis could be successfully employed to determine genetic and 

drug-induced alterations of the cellular plasma membrane composition. 

At the same time, Triton X-114 phase separation coupled to filter-aided sample 

preparation was established as an equally reproducible and robust protocol for the 

complement of all membrane proteins.  

In summary, the work presented herein not only enables a more routine evaluation of 

membrane and surface proteomes relevant to the functional correlation of transport, 

signaling and drug response properties. The combination of both technologies allows to 

dissect them, ultimately increasing the resolution available for these key sub proteomes. 
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Zusammenfassung 
Membranproteine sind in ihrer Struktur und Funktion höchst unterschiedlich und 

Veränderungen in ihrem Expressionsmuster gehören zu den ersten Ereignissen in 

pathologischen Situationen. Sie sind daher sowohl als Biomarker, als auch als 

therapeutische Ansatzpunkte interessant. Sie im großen Maßstab mittels Proteomik zu 

analysieren, war jedoch bisher eine schwierige Aufgabe. Mehrere Protokolle, die 

entweder alle Membranproteine umfassen, die unter definierten Bedingungen und zu 

einem bestimmten Zeitpunkt in einer Zelle exprimiert werden, oder auf Proteine an der 

Plasmamembran zugeschnitten sind, wurden entwickelt. Dennoch stehen vergleichende 

Analysen kaum zur Verfügung. Die vorliegende Arbeit bietet einen systematischen 

Vergleich verschiedener Plasmamembranisolierungsstrategien zur nachfolgenden 

Analyse durch eindimensionale gel-freie Flüssigchromatographie-Massenspektrometrie. 

Darüber hinaus wurde das Sulfo-NHS-SS-Biotinylierungsverfahren, das innerhalb der 

getesteten Kriterien insgesamt am besten abschnitt, durch eine kompetitive Biotin 

Eluierungsstrategie vereinfacht, die sich als schnell, kosteneffektiv und robust erwies und 

dadurch eine routinemäßige Evaluierung von Plasmamembran Proteomen in einem 

größeren Maßstab ermöglicht. Interessanterweise ergab die computergestützte 

Auswertung verschiedener Datenbanken und Programme zur Vorhersage zellulärer 

Lokalisationen, dass insgesamt über 90 % der mit der modifizierten Sulfo-NHS-SS-

Biotinylierungsmethode identifizierten Proteine mit der Plasmamembran assoziiert sind, 

überwiegend als Interaktionspartner. Des Weiteren konnte das im Rahmen dieser Arbeit 

entwickelte Zelloberflächenproteomikverfahren erfolgreich zur Bestimmung von 

genetischen oder durch Medikamente bedingten Veränderungen in der zellulären 

Plasmamembranzusammensetzung angewendet werden.  

Gleichzeitig wurde Triton X-114 Phasentrennung in Verbindung mit filtergestützter 

Probenvorbereitung als gleichermaßen reproduzierbares und robustes Protokoll zur 

ergänzenden Analyse aller Membranproteine etabliert.  

Insgesamt ermöglichen die hier vorgestellten Ergebnisse nicht nur eine verstärkte 

routinemäßige Evaluierung von Membran- und Zelloberflächenproteomen, die für den 

funktionellen Zusammenhang von Transport- und Signalwegen sowie für das Verständnis 
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der Wirkungsweise von Medikamenten relevant sind. Vielmehr erlaubt die Kombination 

beider Technologien deren gegenseitige Abgrenzung und erhöht so die verfügbare 

Auflösung dieser Schlüsselproteome. 
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1. Introduction 

1.1 Cellular membranes 
Membranes protect and separate cells. While the plasma membrane (PM) as outer 

boundary is a universal feature of all cells, eukaryotic cells – unlike prokaryotes – 

additionally contain internal membranes compartmentalizing their organelles (Tan et al, 

2008). The fundamental phospholipid bilayer determines the structure of cellular 

membranes assembling spontaneously with the aliphatic chains facing each other. 

Glycerophospholipids are the main structural lipids in eukaryotic membranes. Like 

sphingolipids, another major class of structural lipids, variable polar head groups and 

lipidic fatty acid tails attached to their respective backbone, together with the structurally 

different class of sterols, enable the existence of more than 1,000 different lipid species 

in any eukaryotic cell. Furthermore, a cell’s lipid repertoire can adopt defined phases 

allowing the cell to alter membrane properties such as fluidity, thickness, curvature and 

thermal stability (Sud et al, 2007; van Meer et al, 2008). Recently, their sphere of influence 

by functional crosstalk was even extended to major cellular processes (Atilla-Gokcumen 

et al, 2014; Köberlin et al, 2016; Köberlin et al, 2015).  

Biological membranes are typically composed of 50 % lipids by mass. The second half is 

made up of proteins that can be divided into topological or functional subgroups. Lipid 

and protein composition of cellular membranes as well as their ratio vary between distinct 

cell types and organelles and are reciprocally modulated (Almen et al, 2009; Dobson & 

Kell, 2008; Laganowsky et al, 2014; Marsh, 2008; Tan et al, 2008). 

Initially, cellular membranes were described using the “fluid mosaic model” with both, 

proteins and lipids, freely diffusing within the plane of the membrane (Singer & Nicolson, 

1972). It then became clear, however, that membranes are rather compartmentalized into 

different types of subdomains with distinct characteristics and function (Helms & Zurzolo, 

2004). One key discovery were micro domains enriched in specific lipid species and 

proteins, so-called “lipid rafts”, that are now viewed as platforms for signaling, trafficking 

and transport (Simons & Toomre, 2000; Simons & van Meer, 1988; Tan et al, 2008).  
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1.2 Membrane proteins 

1.2.1 Structure of membrane proteins 
Membrane proteins are structurally and functionally highly diverse. They extend well 

beyond proteins displaying at least one transmembrane Į-helix. In fact, pore-forming ȕ-

barrels consisting of alternating polar and non-polar amino acids represent another sub-

type of integral or transmembrane proteins. Moreover, peripheral membrane proteins 

bound to the membrane to various extents and by different moieties belong to these 

common types of proteins (Tan et al, 2008) (Figure 1). 

Integral membrane proteins are further categorized according to the localization of their 

N-terminus and their number of transmembrane domains, respectively. Peripheral 

membrane proteins, on the other hand, can either be lipid-anchored, i.e. bound to the 

membrane by direct interactions with phospholipids mediated by a glycosyl-

phosphatidylinositol (GPI), a hydrocarbon or a fatty acyl moiety, or be associated to the 

membrane by interactions with lipids or integral membrane proteins (Alberts B, 2002; Tan 

et al, 2008) (Figure 1). 

 
Figure 1: Types of membrane proteins 
Schematic representation taken from (Alberts B, 2002). Copyright 2002 Bruce Alberts, 

Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Integral 

membrane proteins either extend across the lipid bilayer as a single Į-helix (1), as multiple Į-

helices (2), or as ȕ-barrels (3). Peripheral membrane proteins are either lipid-anchored (5, 6) or 

attached to the membrane by interactions with lipids (4) or integral membrane proteins (7, 8). 
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1.2.2 Biosynthesis of membrane proteins 
The biosynthesis of membrane proteins starts in the cytoplasm, where a nascent chain 

of amino acids emerges from the ribosome. Like secretory proteins, they carry a signal 

sequence that is bound by the signal recognition particle (SRP). By binding to its receptor 

on the surface of the endoplasmatic reticulum (ER), the ribosome-nascent-chain complex 

gets transferred to the translocon. In eukaryotes, the translocon consists of the Sec61 

heterotrimer, which forms the protein conducting channel and several other proteins, e.g. 

the translocating-chain-associated membrane protein (TRAM) and the oligosaccharyl 

transferase (OST) (Conti et al, 2015; Dudek et al, 2015). While the exact role of TRAM 

remains controversial (Do et al, 1996; Heinrich et al, 2000; Mothes et al, 1997), OST was 

found to add N-linked sugars to the nascent polypeptide chain (Evans et al, 1986; Kelleher 

& Gilmore, 2006; Kelleher et al, 1992). There are different models on how membrane 

proteins are then integrated into the lipid bilayer and structural features play a role in that, 

too (Andersson & von Heijne, 1994; Hessa et al, 2005; Hessa et al, 2007). Specifically, 

the first potential transmembrane helix within the nascent precursor polypeptide chain 

that emerges at the ribosomal tunnel exit can either be inserted into the Sec61 complex 

in a “loop-like” or “head-on” fashion resulting in opposite localizations of the N-terminus. 

Moreover, a subsequent “flip turn” of “head-on” insertions can reverse protein orientations 

yet again (Dudek et al, 2015). Still, membrane proteins with the N-terminus located on 

the luminal side as well as oppositely-oriented membrane proteins are integrated into the 

lipid bilayer through a lateral gate in the protein-conducting channel (Do et al, 1996; 

Martoglio et al, 1995; Zimmermann et al, 2011) (Figure 2a). 

The biosynthesis of multi-transmembrane proteins is less well understood. Mostly, they 

are currently viewed to have multiple hydrophobic signal sequences in the appropriate 

order (Dudek et al, 2015). Yet, this would require a “sewing-like” mechanism, sequentially 

integrating every single transmembrane domain into the ER membrane (High & Laird, 

1997). In addition, complex multi-transmembrane proteins, for example many seven 

transmembrane G protein coupled receptors (GPCRs) lack N-terminal signal peptides for 

membrane insertion and hence do not fit this model (Wirtz, 2013). Some mitochondrial 

membrane proteins with less hydrophobic transmembrane segments even escape ER 

targeting mechanisms altogether (Miyazaki et al, 2005). At the same time, experimental 
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data suggests certain transmembrane segments to be independently integrated into the 

membrane, while the efficient insertion of others relies on cooperative effects between 

neighboring loops and/or transmembrane segments (Enquist et al, 2009; Tu et al, 2000). 

In essence, how important signal sequences are for the biosynthesis of multi-

transmembrane proteins and how the integration of multiple sequential transmembrane 

regions into the lipid bilayer is coordinated, seems to be highly variable and diverse. 

 

Even though most membrane proteins are co-translationally translocated, post-

translational translocation represents an alternative Sec61-independent route (Dudek et 

al, 2015; Kutay et al, 1993; Steel et al, 2002; Yabal et al, 2003).  

One of the first groups of membrane proteins associated with post-translational insertion 

were tail-anchored proteins with a single hydrophobic transmembrane region located at 

or near the C-terminus of the polypeptide. As a result, these polypeptides are released 

from the ribosome before their ER targeting signal gets recognized by cytosolic factors. 

The mechanism of post-translational insertion was suggested to be closely related to the 

co-translational mode, including SRP and its receptor as key players (Abell et al, 2004; 

Leznicki et al, 2010). At the same time, adenosine triphosphate (ATP) was observed to 

stimulate the integration of at least some TA proteins, seemingly contradicting the role of 

guanosine triphosphate (GTP)-dependent SRP (Abell et al, 2004; Kim et al, 1997; Kutay 

et al, 1995). Recently, the TRC40/GET pathway, identified in crosslinking experiments 

with several tail-anchored model proteins, received much attention (Favaloro et al, 2008; 

Shao & Hegde, 2011; Stefanovic & Hegde, 2007; Wang et al, 2014). Still, it is becoming 

increasingly clear that there is not one distinct post-translational insertion pathway, but 

multiple individual mechanisms, whose detailed specificities still need to be determined 

(Denic, 2012; Johnson et al, 2013; Ott & Lingappa, 2002; Rabu et al, 2009) (Figure 2b). 
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Figure 2: Co- and post-translational membrane protein biosynthesis 
Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology 

(Hegde & Keenan, 2011), copyright 2011. a) In the co-translational pathway, a signal 

recognition particle (SRP) mediates transport of the ribosome-protein complex to the 

endoplasmic reticulum (ER). The Sec61 complexes then moves the nascent protein through the 

ER membrane while in the post-translational pathway, membrane proteins synthesized on free 

ribosomes are inserted into the ER membrane by specialized insertion receptors after 

translation has finished (b). 
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1.2.3 Trafficking of membrane proteins 
The distinct membrane-enclosed organelles found in eukaryotic cells require specific and 

regulated transport mechanisms for membrane proteins, following their synthesis and 

insertion into the ER. Conventionally, trafficking starts with the sorting of proteins and the 

formation of vesicular or tubular carriers from donor membranes. Budding vesicles then 

move along microtubules and actin filaments in a well mapped-out way until fusion with 

the acceptor compartment occurs. Conventional exocytosis or secretion refers to 

membrane-bound cargo en route to the cell surface via sequential vesicular membrane 

transport through the ER, the Golgi apparatus and the trans Golgi network (TGN). In detail, 

proteins exit the ER by sequestration into coat protein II (COPII) coated vesicles, often 

having acquired a core N-linked glycosylation. These N-linked carbohydrate groups are 

then modified by glycosyltransferases, while traversing the Golgi and TGN. A couple of 

biochemically different recognition principles such as specific amino acid determinants, 

saturated fatty acid moieties and carbohydrates serve as hierarchical sorting signals 

marking proteins for transport. In addition, dynamic lipid domains play an important role 

in sorting certain membrane-associated proteins (Simons & Ikonen, 1997). Later, 

passage through the Golgi via the conventional exocytic pathway also requires the ADP-

ribosylation factor GTPase-activating protein 1 and the COPI complex. On the other hand, 

certain integral membrane proteins have been shown to use different, less well 

characterized routes of secretion that seem to be independent of COPII-mediated ER 

budding and bypass the Golgi apparatus entirely (Chua et al, 2012; Schotman et al, 2008; 

Yoo et al, 2002). 

Having budded off, vesicles are propelled along the filamentous structures of the 

cytoskeleton by ATP-dependent motor proteins until the transport vesicle and its target 

membrane fuse after mutual recognition (Figure 3). 
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Figure 3: Vesicular transport 
Reproduced with permission 

from (Olkkonen & Ikonen, 

2000), Copyright 

Massachusetts Medical 

Society; showing the vesicular 

transport of membrane proteins 

from a donor to an acceptor 

compartment.  

 

 

 

 

 

 

 

 

 

 

 

The initial interaction between vesicles and their target membrane is known as tethering 

and so-called tethering factors have proven to be essential in linking the two membranes 

together and coordinating the correct assembly of the soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor (SNARE) complex (Chia & Gleeson, 2014). Rab 

proteins are another set of key regulators in vesicle tethering and fusion. They are 

peripheral membrane proteins themselves, reversibly associated with the cytoplasmic 

face via hydrophobic geranylgeranyl groups and their function is tightly connected to the 

likewise membrane-anchored SNARE proteins. Rab proteins are GTPases alternating 

between two conformational states, GDP-bound “off” and GTP-bound “on”, and shift 

between cellular membranes and the cytoplasm with the help of the Rab GDP-
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dissociation inhibitor (GDI) and the Rab escort protein (REP). In humans, more than 60 

members are localized to distinct membranes. Their crosstalk to each other, coat 

components, motor proteins and SNAREs allows the multifaceted organization and 

spatiotemporal regulation of almost any membrane trafficking in eukaryotic cells 

(Olkkonen & Ikonen, 2000; Stenmark, 2009) (Figure 4). 

 

 
Figure 4: Membrane tethering 
Reproduced with permission from (Olkkonen & Ikonen, 2000), Copyright Massachusetts 

Medical Society. Schema of the key regulatory processes and players involved in tethering and 

fusion of vesicles to their target membrane. 
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1.2.4 Functional roles of membrane proteins 
Mining the human proteome using prediction tools for Į-helices led to the allocation of 

most membrane proteins into three functional categories: receptors, transporters or 

enzymes (Almen et al, 2009) (Figure 5).  

 

 
Figure 5: Functional roles of membrane proteins 
Schematic representation of the three main categories of membrane proteins: transporters 

(blue), receptors (red) and enzymes (violet).  

 

 

Features required by the specific subcellular localization contribute to determine the 

function of any membrane protein. Some proteins located at the PM, for example, sense 

a cell´s environment allowing it to respond to external conditions and stimuli. Equally 

important, other proteins at the cell membrane serve as structural anchors for cytoskeletal 

and extracellular matrix proteins. Likewise, proteins of the inner mitochondrial membrane 

are involved in energy production or form part of the apoptotic cascade (Tan et al, 2008). 

Due to their location at the interface of cells or organelles, membrane proteins have 

attracted massive therapeutic interest and currently account for more than two thirds of 
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all known drug targets (Josic et al, 2008; Rucevic et al, 2011; Yildirim et al, 2007). 

Furthermore, identifying differences in membrane proteins between healthy and non-

healthy cells has led to the discovery of biomarker candidates, which prove to be a major 

source of information and prognosis in a variety of cancers (Grimm et al, 2011; Varady et 

al, 2013). Intriguingly, these differences can extend beyond the level of protein sequence. 

Notably, specific glycosylation patterns are recognized as biomarkers in tumors (Drake 

et al, 2010; Meany & Chan, 2011; Pinho & Reis, 2015; Reis et al, 2010) and certain 

diseases caused by parasites, for example malaria (Gilson et al, 2006). Differences can 

manifest on the expression level, too. For instance, specific ATP-binding cassette (ABC) 

transporters, responsible for the efflux of drugs from cells are overexpressed in various 

cancers contributing to chemotherapy resistance (Fletcher et al, 2010).  

To convey an impression of the processes membrane proteins are implicated in, the 

following section describes selected examples and their roles and implications in 

diseases and therapeutics for each of the three main functional categories.  

 

 

Receptors 
Membrane receptors are involved in signaling allowing the cell to communicate with the 

outside world. Many are transmembrane proteins and vary in their membrane localization 

distribution. With over 800 members, GPCRs represent the largest family of membrane 

proteins in the human genome and a unique source for therapeutic approaches (Sheng 

Li, 2015). Despite their broad diversity in ligands and ligand binding domains, the same 

G protein can be activated by different receptors suggesting similar structural changes in 

the receptors upon activation. For rhodopsin and the ȕ2 adrenoreceptor, movements in 

distinct transmembrane domains were found to be such common activation patterns 

(Kobilka, 2007). Structural studies of the μ-opioid receptor that got compared to the active 

ȕ2 adrenoreceptor recently pinpointed packing rearrangements in three conserved amino 

acids to be conformationally linked to the ligand-binding pocket together with an extensive 

network bridging the pocket and the cytoplasmic domains as common signal propagation 

features (Huang et al, 2015).  
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Ligand-induced oligomerization has been thought to mediate signal transduction for some 

receptors, including kinase and cytokine receptors (Heldin, 1995; Maruyama, 2015; 

Schlessinger, 2002). Still, various representatives of these receptors exist in dimeric form 

prior to ligand binding, suggesting an alternative activation mechanism (Livnah et al, 1999; 

Moriki et al, 2001; Pang & Zhou, 2013). Emerging data indicates that receptor 

rearrangements might trigger activation in these cases, too (Dawson et al, 2005; Latz et 

al, 2007; Martin-Fernandez et al, 2002; Maruyama, 2015). Understanding these 

conformational changes in more detail might thus open up dramatically different drug 

design opportunities.  

 

Membrane receptors can also serve as adhesion receptors binding components of the 

extracellular matrix and thereby provide traction for cell motility and invasion. The integrin 

family of cell adhesion receptors are obligate heterodimers. In vertebrates, 18 Į and 8 ȕ 

subunits get combined into 24 distinct integrins with specific ligand recognition patterns 

(Luo et al, 2007).  

Integrins play a critical role in immunity serving as both, direct signaling molecules and 

indirect accessory molecules for the maintenance of cell contacts (Smith, 2008). Hence, 

mutations affecting their expression or function can cause profound disruptions in the 

immune system. Namely, several leukocyte adhesion deficiencies have been reported 

and drugs antagonizing integrins are approved for psoriasis and multiple sclerosis 

(Dunehoo et al, 2006).  

Moreover, integrins control remodeling of the extracellular matrix and proliferation 

(Assoian & Klein, 2008). Their role in regulating several cell types that influence tumor 

progression has made integrins an appealing target for cancer therapy (Mizejewski, 1999; 

Seguin et al, 2015), however, the ways they affect tumor cell survival depend, amongst 

others, on their ligation state and are often contradictory (Desgrosellier & Cheresh, 2010). 

Additionally, their sphere of influence is not restricted to tumor cells, but extends to many 

cell types present in the tumor microenvironment (Avraamides et al, 2008). Crosstalk to 

growth factors and oncogenes in both, tumor cells and tumor-associated cells, represents 

yet another way of their critical implication in cancer (Desgrosellier & Cheresh, 2010). 

Phase II clinical trials with the integrin antagonist cilengitide had initially shown promising 
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results in glioblastoma patients, improving their progression-free and overall survival. 

Conversely, a subsequent study with over 500 patients did not confirm improved overall 

survival of newly diagnosed glioblastoma patients when cilengitide was added to the 

standard care regime (Merck, 2013).  

Alternative approaches do not try to modulate integrins by agonists or antagonists, but 

rather aim to use integrin targeting to deliver other pharmaceutical compounds. For 

example, mutant RAF1 and doxorubicin were successfully delivered to the tumor 

vasculature by anti-integrin nanoparticles (Hood et al, 2002; Murphy et al, 2008).  

 

 

Transporters 
Membrane transport proteins tend to be multi-pass transmembrane proteins that either 

facilitate diffusion or mediate active transport. Correspondingly, they are referred to as 

channels or carriers, respectively. In their open state, channel proteins allow the rapid 

passage of specific molecules. Voltage-gated or ligand-gated ion channels, for instance, 

are crucial to the proper function of neurons and muscles transmitting excitatory or 

inhibitory synaptic and action potentials. Henceforth, they are targeted by drug 

development efforts for psychiatric disorders and diseases of the central nervous system 

such as epilepsy, Alzheimer´s disease and depression (Ryback, 2001). 

Carrier proteins, in contrast, have binding sites through which they interact directly with 

their specific cargo. Upon binding, they undergo a series of conformational changes to 

transfer the bound molecule to the other side of the membrane. With a current count of 

456 members in 52 subfamilies, solute carrier proteins (SLCs) are the largest group of 

membrane transporters and the second-largest family of membrane proteins in the 

human genome (Hediger et al, 2013; Hediger et al, 2004; Hoglund et al, 2011; 

Schlessinger et al, 2010; Schlessinger et al, 2013).  

About 190 SLCs currently have an identified disease link. Yet, only a small fraction thereof 

also has an associated therapeutic compound (Cesar-Razquin et al, 2015; Williams et al, 

2012).  
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At the same time, SLCs have a proven record in being both, drug targets themselves and 

mediators of drug disposition. Serotonin uptake inhibitors target one of the most studied 

SLCs, namely SLC6A4, while dipyridamole is specifically directed against SLC29A1 and 

part of a combination therapy for the secondary prevention of stroke (Leonardi-Bee et al, 

2005).  

The transport and preferential distribution of statins, in contrast, is mediated by SLCO1B1 

and lately SLC35F2 was found to be the main determinant of sensitivity to the clinically 

evaluated anticancer compound YM155 (Winter et al, 2014). 

Furthermore, SLC-mediated transport can influence pharmacokinetic characteristics by 

modulating drug-drug and nutrient-drug interactions. Specifically, naringin from citrus 

fruits was shown to inhibit the enterohepatic transporter SLCO1A2, potentially reducing 

the bioavailability of drugs depending on that transporter like the antihistamine agent 

fexofenadine (Bailey, 2010). Likewise, the clinical development of the JAK2 inhibitor 

fedratinib was stopped after reports of Wernicke's encephalopathy in myelofibrosis 

patients. The thiamine deficiency was traced back to the individual human thiamine 

transporter SLC19A2 being inhibited by fedratinib and highlighted the need to evaluate 

potential nutrient-drug interactions during drug development (Zhang et al, 2014).  

A recent publication revealed SLCs to be the most neglected group of genes in the human 

genome (Cesar-Razquin et al, 2015). Provided that the vast majority of these carriers are 

potentially druggable and highly disease relevant makes it reasonable to expect SLCs to 

ultimately expand the group of therapeutically relevant membrane proteins. 

 

 

Enzymes 
Enzymatic membrane proteins are, in most cases, enzyme-linked receptors or 

transporters and therefore strongly intertwined with the two preceding functional 

categories.  

Coupling to an enzymatic reaction can, for instance, be required if transport is executed 

against a chemical gradient. In the case of ABC transporters, ATP hydrolysis generates 

the driving force to pump their respective substrates across the membrane. Notably, in 
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eukaryotes, this process is almost exclusively unidirectional, i.e. ABC transporters serve 

as exporters only (Rees et al, 2009; Wilkens, 2015). Canonically, they consist of two 

nucleotide-binding domains (NBDs) and two transmembrane domains. Highly conserved 

motifs in the ATP-binding domains mediate ATP hydrolysis activity, while the lack of 

sequence conservation in the transmembrane domains reflects the wide spectrum of 

translocated substrates, ranging from small inorganic molecules to large organic 

compounds (Wilkens, 2015), with the multidrug transporter P-glycoprotein even 

displaying “poly-specificity” (Aller et al, 2009; Loo et al, 2003). Crystal structures of 

isolated NBDs bound to ATP and the fact that nucleotide-free NBDs crystallized as 

monomers or non-physiological dimers in most cases, established nucleotide-dependent 

dimerization of the NBDs to at least partly be driving subsequent conformational changes 

in the transmembrane domains required to complete translocation (Chen et al, 2003; 

Wilkens, 2015). Several models detailing ABC transporter mechanisms based on 

accepted key steps have been developed and it is well conceivable that most of them 

hold true, given the diverse nature of ABC transporters and the currently little evidence of 

them functioning by one sole mechanism (Wilkens, 2015).  

Several genetically-encoded defects in ABC transporters are known and cystic fibrosis is 

probably the most prominent manifestation thereof (Cant et al, 2014; Wilkens, 2015). The 

role of ABC transporters and particularly ABCB1, ABCC1, and ABCG2 in chemotherapy 

resistance was mentioned before. Naturally, their inhibition by selective compounds is 

highly desirable. However, despite many inhibitors being identified (Ivnitski-Steele et al, 

2008; Tarasova et al, 2005), none has found broad application in clinical cancer treatment 

so far (Sharom, 2008; Wilkens, 2015).  
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1.3 Proteomic analysis of membrane proteins 
Although one third of the human genome is currently estimated to encode for membrane 

proteins (Ahram et al, 2006; Almen et al, 2009; Fagerberg et al, 2010), they are 

underrepresented in most proteomic studies (Rabilloud, 2009; Santoni et al, 2000). 

Challenges in their large-scale analysis include their heterogeneous, poorly soluble and 

low abundant nature. Factors contributing to heterogeneity are, for example, the number 

of transmembrane domains and the ratio of hydrophobic transmembrane domains to 

hydrophilic extracellular loops, respectively. Moreover, ratios of proteins to lipids, as well 

as lipid rafts are variable and together with the wide range and degree of post-translational 

modifications (PTMs) further increase the diversity of membrane proteins. In the past 

years, several approaches have been developed that take these characteristics into 

consideration. In particular, various strategies improving enrichment, solubilization and 

subsequent protein detection and identification by mass spectrometry (MS) have been 

suggested.  

While shotgun proteomics, referring to the gel-free enzymatic digestion of proteins into 

more complex peptide mixtures prior to analysis by liquid chromatography coupled to 

mass spectrometry (LCMS), has emerged as the most common procedure on the MS 

side, enrichment and solubilization, but also digestion strategies remain more diverse. 

Furthermore, they can either be tailored to yield the membrane proteome, i.e. the entire 

complement of membrane proteins expressed in a cell at a given condition and time, or 

focus on the PM proteome.  

 

 

1.3.1 Enrichment of membrane proteins 
High pH conditions disrupt sealed membrane compartments, yet maintain their native 

topology favoring the formation of so-called “membrane sheets” with free edges. On the 

other hand, proteinase K cleaves exposed hydrophilic domains of membrane proteins 

(Chandramouli & Qian, 2009). Hence, the combination of high pH and proteinase K 

together with the multidimensional protein identification technology (MudPIT) was 
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described as an optimized global analysis strategy for membrane proteins (Wu et al, 

2003).  

Another way of obtaining crude membrane preparations is by exploiting their poor 

solubility performing repeated extractions of non-membrane proteins from a cell or tissue 

homogenate (Nagaraj et al, 2008; Nielsen et al, 2005). Alternatively, zonal centrifugation 

using different gradient media like Sucrose, Ficoll or Nycodenz has been applied (Cao et 

al, 2006; Stasyk & Huber, 2004) and delipidation of proteins from the membrane bilayer 

by chloroform extraction was presented as an entirely detergent-free method (Mirza et al, 

2007) (Figure 6). 

All of these enrichment strategies are, however, multistep protocols that eventually need 

to be combined to achieve sufficient power, ultimately entailing sample loss and reduced 

robustness. Two-phase partitioning systems and specifically Triton X-114 (TX114) phase 

separation have proven to be simple, yet highly efficient means for routine enrichment 

and purification of membrane proteins (English et al, 2012; Qoronfleh et al, 2003). The 

decisive unique feature of TX114 herein is that it not only solubilizes membrane proteins, 

but also separates them from hydrophilic proteins via phase partitioning at a physiological 

temperature (Bordier, 1981; Qoronfleh et al, 2003). Still, TX114 is a detergent that, even 

in small concentrations, impairs subsequent enzymatic protein digestion, 

chromatographic resolution and mass spectrometry analysis. At the same time, the 

strength of detergents in membrane solubilization is unmet, not least by reducing non-

specific protein-protein interactions (PPIs) and by preventing protein loss due to surface 

adsorptions (Yeung & Stanley, 2010). For this reason, the development of filter-aided 

sample preparation (FASP), which allows the complete removal of detergents from 

solubilized samples represented a tremendous improvement digesting membrane 

proteins with an efficiency similar to that of soluble proteins (Manza et al, 2005; 

Wisniewski et al, 2009b).  
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Figure 6: Membrane protein enrichment strategies 
Reprinted from (Gilmore & Washburn, 2010), with permission from Elsevier depicting different 

approaches for membrane protein enrichment. 

 

 

1.3.2 Enrichment of plasma membrane proteins 
The fact that PM proteins represent a subset of membrane proteins can be exploited for 

their isolation by refining existing membrane purification strategies such as subcellular 

fractionation (Zhang et al, 2005) or two-phase partitioning systems (Schindler et al, 2006). 

Yet, these approaches require high sample loads and often suffer from weak enrichment 
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and contaminations from other membranous compartments (Elschenbroich et al, 2010; 

Schindler et al, 2006; Tan et al, 2008; Weekes et al, 2010).  

At the same time, cell surface proteins have a number of distinct characteristics 

distinguishing them from other membrane proteins that enable more selective purification 

approaches. The first target in that regard are their extracellular domains, which provide 

means for affinity purification enrichment. In particular, the targeted moieties can either 

be primary amines or certain glycosylation patterns (Gilmore & Washburn, 2010; Lu et al, 

2008). 

Sulfo-biotinylation reagents are specifically designed to not penetrate the cell membrane 

allowing the selective modification of lysine residues and protein N-termini displayed on 

the extracellular side. Their biotin moiety is connected to an amine-reactive N-

hydroxysulfosuccinimide (NHS) via a linker containing an internal disulfide bridge. These 

disulfide bonds can later be cleaved to elute proteins or peptides from the 

avidin/streptavidin affinity support (Nunomura et al, 2005; Zhao et al, 2004). Topological 

information such as the identification of domains exposed at the cell surface can be 

deduced from enrichments on the peptide level. Enrichment on the protein level has, 

however, resulted in broader sequence coverage and is therefore applied more frequently 

(Lu et al, 2008) (Figure 7). 

One of the most common PTMs seen in extracellular domains of PM proteins are 

glycosylations. Corresponding affinity purifications are either lectin-mediated (Ghosh et 

al, 2004) or involve chemical derivatization of the carbohydrate side chain by hydrazone 

(Zhang et al, 2003) or oxime ligations (Zeng et al, 2009) (Figure 7). 

Although exogenous labels confer specificity, respective moieties persisting throughout 

protocols are not reliably detected by MS (Schiapparelli et al, 2014; Weekes et al, 2010). 

This may in part reflect varying labeling efficiencies influenced by extracellular regions of 

PM proteins lacking the respective moieties or having them masked by PTMs. Moreover, 

labeling extends to cells that have lost their structural integrity, potentially contaminating 

PM purifications with cytoplasmic components (Lu et al, 2008).  

Surface coating by colloidal silica beads relies on electrostatic interactions between the 

negatively charged phospholipid head groups of the PM and the cationic beads. After an 

initial coating step, beads are attached to the cell surface with a crosslinking agent. The 
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resulting increased PM density allows its subsequent isolation by centrifugation. While 

the technique has been applied for proteomic analyses of the PM in different cell types 

and tissues (Durr et al, 2004; Oh et al, 2004; Rahbar & Fenselau, 2004; Rahbar & 

Fenselau, 2005), the yields in terms of absolute numbers of PM proteins have rather been 

low (Arjunan et al, 2009; Choksawangkarn et al, 2012; Choksawangkarn et al, 2013) 

(Figure 7). 

 

 
Figure 7: Cell surface protein enrichment strategies 
Adapted with permission from (Hörmann et al, 2016). Copyright 2016 American Chemical 

Society. The figure illustrates enrichment strategies based on distinct plasma membrane protein 

features.  
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1.3.3 Digestion techniques for membrane proteomics 
Tryptic digestion is considered the gold standard in shotgun proteomics (Zhang et al, 

2013) displaying high proteolytic activity and cleavage specificity. Moreover, tryptic 

peptides typically have size and charge parameters favoring their detection in MS runs 

(Hanne Kolsrud Hustoft, 2012). The characteristic hydrophobic patches of membrane 

proteins are, however, poor in the basic tryptic cleavage sites arginine and lysine, 

resulting in larger peptide fragments that have a lower detectability by MS (Baldwin, 2004). 

Therefore, a couple of less specific proteases, as well as combinations of several 

digestive enzymes have been tested. While proteinase K has been successfully applied 

to a mammalian membrane proteome using tightly controlled reaction parameters (Wu et 

al, 2003), analyses using other proteases with decreased specificity such as elastase or 

pepsin have so far only been demonstrated to work in bacterial samples (Rietschel et al, 

2009a; Rietschel et al, 2009b). A major complication therein are the large number of 

peptides generated from non-specific proteases that are hard to predict with random 

locations of positive charges directing fragmentation during MS analysis (Gilmore & 

Washburn, 2010). Multiple ways of manipulating charge-directed fragmentation have 

been published, including nicotinylation and N-terminal addition of basic groups to 

peptides (Jansson et al, 2008; Munchbach et al, 2000). Yet, none of them found further 

application in more recent membrane proteomics protocols.  

As far as the combination of several digestive enzymes is concerned, isolated bacterial 

membrane proteins have been subjected to a trypsin/cyanogen bromide or 

trypsin/chymotrypsin mixture, respectively, with the trypsin/chymotrypsin digestion 

achieving distinctly higher sequence coverage of bacterial transmembrane regions 

(Fischer et al, 2006). Still, parallel enzymatic digestions with several enzymes displaying 

distinct cleavage sites lead to an exponential increase in the potentially resulting peptides, 

complicating confident peptide assignments and ultimately protein identifications.  

Conversely, pushing tryptic cleavage specificity at lysine sites by adding Lys-C to the 

digestive solution, decreases both, the number of missed cleavage sites as well as the 

required search space, boosting confidence in the peptide assignments and proteins 

identified (Wisniewski et al, 2009a).  
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1.3.4 Label-free quantification in membrane proteomics 
Quantitative proteomic workflows applied to the large-scale identification of membrane 

proteins can be categorized into labeled and label-free approaches (Figure 8). The first 

group introduces isobaric or isotopic mass tags to proteins or peptides. The resulting 

mass differences allow to decipher intensity signals and to deduce quantitative 

information from MS spectra. By design, this category provides relative quantitation, even 

though adding a synthetic, labeled peptide at known concentration can make the method 

readily accessible for absolute quantification (Vaudel et al, 2010).  

 

 
Figure 8: Quantification strategies in proteomic workflows 

Reused with permission from (Vaudel et al, 2010). Copyright 2010 WILEY VCH Verlag GmbH 

& Co. KGaA, Weinheim depicting commonly used quantification methods sorted by the 

presence or absence of a label, respectively. 

 

 

Label-free quantification, on the other hand, does not use any labels circumventing 

additional labor-intensive and expensive sample processing steps (Bluemlein & Ralser, 

2011). Instead, label-free approaches aim to find indicators of protein abundance directly 

in the MS output. Henceforth, they are technically simple, cover a higher dynamic range 

and allow quantitative comparisons between an unlimited number of samples including 

previously acquired data. Yet, it also means that the quality of the quantifications heavily 



INTRODUCTION 

22 

depends on the accuracy and precision of the data with complex protein mixtures 

requiring high-resolution mass spectrometers and corresponding data processing tools. 

Label-free approaches seem to result in slightly higher coefficients of variation than their 

labeled counterparts. At the same time, however, they have shown higher reproducibility 

between replicate samples and enabled up to 60 % more protein quantification (Liu et al, 

2013). 

There are different metrics used for label-free quantification based on either spectral 

counting or peak intensities. The former approach assumes a linear correlation between 

a protein´s sampling in MS and its relative abundance, which indeed has been 

demonstrated over two orders of magnitude (Liu et al, 2004). Spectral counting depends 

on peptide identifications limiting its accuracy, while reproducibility and quantitative 

proteome coverage have been graded high (Bantscheff et al, 2007; Mosley et al, 2011). 

The spectral counting metric has been adapted in order to account for protein length by 

the so-called protein abundance index (PAI) (Rappsilber et al, 2002), later revised to the 

exponentially modified protein abundance index (emPAI) (Ishihama et al, 2005) or 

peptides shared between different proteins by calculation of distributed normalized 

spectral abundance factors (dNSAFs) (Zhang et al, 2010).  

Label-free quantification based on peak intensities uses a larger amount of the 

information available from high precision mass spectra. The extracted ion chromatograms 

metric, for example, defines a peptide concentration as the total intensity of the 

corresponding precursor on the MS1 level (Wang et al, 2003). Accordingly, quantitative 

comparability strongly depends on reproducible peptide separation and the performance 

of complex, so-called feature finder algorithms that detect precursors in MS1 spectra. 

Altogether, correct data processing of the acquired MS data is still a major limiting factor 

for label-free quantification approaches based on peak intensities (Vaudel et al, 2010).  
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1.4 Aims of this thesis  
The purpose of this thesis was to identify and establish two robust protocols empowering 

the routine evaluation of both, whole membrane proteomes and PM proteomes. To this 

end, several isolation approaches were assessed and systematically compared for their 

enrichment and reproducibility parameters.  

Moreover, the research performed within the framework of this thesis was directed at 

improving existing protocols with particular attention to FASP-free sample preparation in 

light of the conflicting results concerning peptide recovery and sequence coverage in 

quantitative, filter-based experiments (Bereman et al, 2011; Erde et al, 2014; Glatter et 

al, 2015; Leon et al, 2013; Nel et al, 2015).  

Further aims of this thesis were to improve the characterization of non-PM annotated 

proteins commonly co-purified with PM extraction protocols and to benchmark the two 

membrane proteomic workflows using different cell lines and perturbations. 
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2. Results 
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Membrane Protein Purification and Tracking of Genetic and 
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In this article, the three most popular strategies, namely sulfo-NHS-SS-biotinylation, 

aminooxy-biotinylation and surface coating with silica beads to isolate PM proteins for 

subsequent analysis by one-dimensional gel-free LCMS were compared. Assessing 

absolute and relative numbers of PM proteins and reproducibility parameters on a 

qualitative and quantitative level indicated sulfo-NHS-SS-biotinylation as superior for 

most of the monitored criteria. 

The procedure was further simplified by introducing a competitive biotin elution strategy 

that circumvents FASP, yet yields an average PM-annotated protein fraction of 54 % (347 

proteins). Moreover, the non-PM annotated data were found to be extremely enriched for 

interactors of purified PM proteins and computational analysis using additional databases 

and prediction tools jointly suggested over 90 % of the purified proteins to be associated 

with the PM. 

As a validation, changes in the PM proteome composition induced by genetic alteration 

and drug treatment were tracked: GPI-anchored proteins were depleted in PM 

purifications from cells deficient in the GPI transamidase component PIGS; and treatment 
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of cells with the N-glycosylation inhibitor tunicamycin significantly reduced the abundance 

of N-glycoproteins in surface purifications. These results demonstrate that the improved, 

filter-free sulfo-NHS-SS-biotinylation protocol is a specific, effective and reproducible 

method to isolate proteins associated with the PM.  

Altogether, this study combined comparative analyses and technological advancement 

with proteomic-driven data analysis paving the way for high-performance differential PM 

proteomics to become a more widely and routinely used tool in the characterization and 

comparison of different cell types, tissues or disease states. 

 

The author of this thesis contributed to the design and performed all experiments, 

analyzed the data and wrote the manuscript. Alexey Stukalov helped with statistical 

analyses. André C. Müller operated the mass spectrometers and was responsible for 

running the samples. Leonhard X. Heinz gave experimental advice and feedback to the 

manuscript. Giulio Superti-Furga, Jacques Colinge and Keiryn L. Bennett jointly 

determined the experimental design and analysis strategy and provided feedback to the 

manuscript.  
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2.2 Triton X-114 phase separation coupled to FASP for membrane 
proteomics of human cells 

After having successfully established a reproducible purification strategy for the large-

scale analysis of PM proteins, a similar protocol covering the whole membrane proteome 

still needed to be found. Following the pioneering work of Bordier et al. (Bordier, 1981) 

and its first applications in the proteomic analysis of human tissues (Donoghue et al, 2008; 

English et al, 2012), TX114 phase separation was selected for the enrichment of 

membrane proteins. Isolated membrane proteins were then prepared for LCMS via FASP, 

given the much higher number of proteins that had been detected upon its inclusion 

(Wisniewski et al, 2009a). The resulting workflow was validated as a method for the global 

analysis of membrane proteins in the human leukemia cell line KBM7 used in the 

comparative study of surface enrichment strategies before. In particular, absolute and 

relative numbers of identified membrane proteins, their reproducibility and selected 

features, such as their number of transmembrane helices were assessed (Figure 9). 

 

 
Figure 9: Experimental workflow of Triton X-114 phase separation for membrane 
proteomics of human cells 
Hydrophilic and hydrophobic proteins were separated using TX114 phase separation. The 

enrichment was validated via Western blot using selected membrane proteins. Aqueous and 

detergent phases were then analyzed using shotgun MS and the identified proteins assessed 

for enrichment, reproducibility and feature parameters. A, aqueous phase; D, detergent phase. 
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In this approach, the separation of hydrophilic and hydrophobic proteins is achieved by 

simple stepwise centrifugation steps. In detail, heating the samples to 37 °C lets TX114 

reach its cloud point, i.e. the temperature where densely packed micelle groups are 

formed increasing the molecular weight and ultimately resulting in phase separation with 

the aqueous phase hosting the hydrophilic and the detergent phase hosting the more 

hydrophobic proteins (Donoghue et al, 2008). 

However, Western blot analysis probing for a panel of diverse types of membrane 

proteins revealed that they are hardly ever selectively recovered in only one of the phases 

(Table 1) (Figure 10). Yet, the method might still be of great value despite this limitation, 

as long as the composition of the individual fractions and especially the detergent fraction 

can be judged reproducible.  

 
Table 1: Panel of membrane proteins probed for enrichment validation 

Protein  Type 
LAMP2 Single-pass membrane protein 
LAMTOR1 Lipid anchored (N-myristoylated) protein 
SMPDL3B GPI-anchored protein 

 

 
Figure 10: Triton X-114 enrichment validation via Western blot 
Aliquots of detergent (D) and aqueous phases (A) were probed for 

different types of membrane proteins.  

 

 

 

 

Hence, overlaps in protein identifications between two biological replicates were 

determined for both, aqueous and detergent phase. Then, dNSAF were calculated for 

every reproducible protein and plotted. Intriguingly, reproducible protein identifications 

made up at least 86 % of all samples and Spearman’s rank correlation coefficient ȡ 
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indicated high and extremely significant correlations for both phases, whereas the number 

of proteins recurrently detected in both phases remained below 35 % (Figure 11). 

 

 
Figure 11: Reproducibility of Triton X-114 phase separation 
Quantitative reproducibility of proteins detected in the detergent (D; red) and aqueous (A; blue) 

phase. Proteins were quantified by dNSAF and the Spearman correlation coefficient ȡ 

calculated between two biological replicates.  
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Moreover, equal numbers of proteins were identified in both phases. Still, membrane 

proteins and specifically, integral membrane proteins were selectively enriched in the 

detergent phase. Numerically, membrane proteins amounted to 79 % in the detergent, as 

opposed to 50 % in the aqueous phases and integral membrane proteins represented no 

less than 40 % of the detergent versus only 6 % of the aqueous phases, respectively 

(Figure 12). 

 

 

 
Figure 12: Sub composition of aqueous and detergent phases 
GO.CC annotations shown as stacked bar plots. Error bars represent the standard deviation 

between two biological replicates. D, detergent phases; A, aqueous phases. 
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This enrichment was also ascertainable in the phase distribution of major functional 

classes of membrane proteins, namely channels, transporters and receptors (Figure 13).  

 

 
Figure 13: Phase distribution of major functional classes of membrane proteins 
Levelplot indicating the number of proteins per functional class detected in the individual phases 

with each row representing a biological replicate and each column displaying the data of one 

functional class. A, aqueous phase; D, detergent phase.  

 

 

Additionally, predictions about the number of transmembrane helices per protein via the 

combined transmembrane topology and signal peptide predictor Phobius (Kall et al, 2004; 

Kall et al, 2007) indicated the average number of transmembrane helices per protein to 

be twice as high for proteins recovered in the detergent than for those stemming from 

aqueous phase samples (Table 2) (Figure 14).  
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Table 2: Summary of transmembrane topology prediction analysis using Phobius 
Numbers of proteins with at least one predicted transmembrane helix detected in the different 

biological replicates and phases, respectively.  

Number of predicted  
transmembrane  

helices 
D1 D2 A1 A2 

1 285 295 65 63 
2 70 74 18 17 
3 47 47 6 9 
4 57 56 2 3 
5 25 24 1 1 
6 31 26 2 2 
7 37 34 5 1 
8 29 27 3 3 
9 25 25 0 2 

10 17 17 0 0 
11 17 14 0 0 
12 25 24 0 0 
13 6 6 1 1 
14 5 5 1 1 
15 1 1 0 0 
16 2 2 0 0 
17 0 1 0 0 
39 1 1 0 0 

 

 

The most extreme observation in this regard was certainly the Piezo-type 

mechanosensitive ion channel component 1 (PIEZO1), for which 36 out of the 39 

transmembrane helices predicted by Phobius have been manually asserted by Swiss-

Prot as well.  
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Figure 14: Distribution of transmembrane helices predicted by Phobius 
The two panels represent results for aqueous (A; blue) and detergent phases (D; red) and 

proteins ranging between 1 and 17 predicted transmembrane helices by Phobius.  

 

 

The sequence coverage of membrane proteins in MS experiments has been proclaimed 

improvable (Fischer et al, 2006; Wu & Yates, 2003). Yet, peptides detected with the 

experimental workflow depicted in Figure 9 and described in detail under section 4.3 

covered individual proteins to an almost even extent (Figure 15). Likewise, sequence 

coverages did not differ between integral and non-integral membrane proteins (Wilcoxon-

Mann-Whitney test, p-value � 0.05) underlining the protocol’s robustness and reliability 

for membrane proteomics.  



RESULTS 

45 

 
Figure 15: Protein 
coverage of 
detected peptides 
Density plot 

representing data 

from two biological 

replicates of 

detergent phases. 

The relative peptide 

position was defined 

as the start position 

of the respective 

peptide divided by 

the protein length.  

 

 

 

In order to assess to what extent the incorporation of a peptide fractionation step and the 

modification of gradient time and composition could further increase the number of 

identified proteins, aliquots of the detergent phases were separated off-line into 

10 fractions and then analyzed using a prolonged gradient of either the regular 

composition (methanol (MeOH), isopropanol (IPA), formic acid (FA)) or alternatively, 

consisting of 100 % acetonitrile (ACN) (Table 3). Although fractionation consistently 

resulted in higher absolute numbers of identified membrane proteins, relative numbers 

decreased. This general trend was even more pronounced for the subgroup of integral 

membrane proteins suggesting off-line separation to predominantly enhance non-

membrane proteins. Conversely, fractionation did result in a significant increase in 

sequence coverages obtained for integral membrane proteins as opposed to all other 

proteins purified within the detergent phases (Wilcoxon-Mann-Whitney test, p-

value = 3.13×10-11 for the samples run with the MeOH, IPA, FA gradient and p-
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value = 2.954×10-9 for the sample analyzed using the alternative ACN gradient, 

respectively).  

 
Table 3: Comparison of unfractionated and fractionated samples 
Numbers are means of two biological replicates for the unfractionated data and based on one 

biological replicate for the fractionated samples, respectively.  

 Total 
protein 

IDs 

Membrane proteins 
Integral membrane 

proteins 
relative absolute relative absolute 

unfractionated 1672 79 % 1326 40 % 676 

fractionated 
MeOH, IPA, FA 

6424 57 % 3679 25 % 1633 

fractionated 
ACN 

6043 58 % 3516 26 % 1563 

 

 

Finally, the membrane proteomics workflow was applied to two additional leukemic cell 

lines, namely K562 and HL60, and the results compared with previously published global 

proteomics data (Moghaddas Gholami et al, 2013). Intriguingly, the datasets overlapped 

to an almost even degree (83 % for K562 and 82 % for HL60) proving that targeted 

membrane protein isolation coupled to one-dimensional gel-free LCMS analysis is able 

to robustly extend the proteome recovered with two-dimensional global proteomic 

approaches. More specifically, the proteins exclusively detected with the protocol 

presented herein consisted of significantly higher proportions of integral membrane 

proteins than those unanimously identified with both approaches (hypergeometric test, p-

value < 0.05) (Figure 16). 
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Figure 16: Comparative sub composition analysis with global proteomics data 
GO.CC annotations shown as stacked bar plots. Bars labeled as “exclusive” represent proteins 

solely identified with the membrane proteomics workflow, while bars labeled as “shared” 

represent proteins identified in the global proteomics dataset as well.  
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3. Discussion 

3.1 General discussion 
Membrane proteins are located at the interface of living cells and their external 

environments making them key players in signaling and cellular transport processes. 

Most importantly, they represent the vast majority of known protein drug targets. Still, their 

large-scale proteomic analysis is challenging, while deeper insights into this specific sub-

proteome might enable a better understanding of pathologic situations and new 

therapeutic approaches identifying surface markers or transporter specificities.  

 

This thesis aimed to identify two protocols allowing a more routine evaluation of whole 

membrane and cell surface proteins. To this end, shotgun proteomics and specifically 

one-dimensional, gel-free LCMS experiments were applied throughout. As far as whole 

membrane proteomics are concerned, coupling a TX114 phase separation approach to 

FASP identified equal numbers of proteins in the detergent and aqueous phases, 

enabling an unbiased and systematic assessment of reproducibility parameters at an 

unprecedented scale.  

Within the detergent phase extracts, an average of 1672 proteins was identified in a single 

60 min MS run. Thereof, 79 % were annotated membrane proteins, with more than half 

being even annotated as integral membrane proteins. This represents a more than two 

fold enrichment in terms of membrane proteins and a more than six fold enrichment in 

terms of integral membrane proteins compared to control samples subjected to the same 

experimental workflow excluding the phase separation procedure. The aqueous phase 

extracts, on the other hand, showed no evidence of integral membrane protein 

enrichment, even though the relative numbers of membrane proteins were still found to 

be slightly elevated compared to the controls. A fact that is most probably explicable by 

the amphiphilic nature of some membrane proteins, accompanied by their detection in 

both of the phases as documented in the TX114 phase separation enrichment validation 

via Western blot (Figure 10).  

The detergent phases not only consistently hosted more integral membrane proteins, but 

the proteins recovered therein also contained significantly higher numbers of 
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transmembrane helices confirming similar observations in human heart and brain tissue 

samples (Donoghue et al, 2008; English et al, 2012). Namely, proteins identified within 

the detergent phases included pharmacological key targets, such as GPCRs (S1PR4, 

F2RL1, GPR155, GPRC5C) and integrins (ITGB1, ITGB2), a panel of ABC transporters 

covering six of their seven human subfamilies (ABCC4, ABCB7, ABCD3, ABCC1, ABCD1, 

ABCE1, ABCA3, ABCB10, ABCB8, ABCF2) and over 60 distinct SLCs.  

In contrast to English et al., who reported poor overlaps in protein identifications between 

detergent extracts of different biological replicates (English et al, 2012), all indicated 

numbers and enrichments were highly reproducible on both, the qualitative as well as the 

quantitative level. Therefore, the experimental workflow developed within this thesis 

cannot only be deemed reliable and robust, minimizing the number of biological replicates 

required, but also provides further proof of the applicability of label-free quantification in 

membrane proteomics. 

Moreover, the relative and absolute number of membrane proteins recovered in the 

detergent phases exceeded previous results (Donoghue et al, 2008; English et al, 2012), 

even though this may partly be explained by a newer and hence more sensitive 

generation of MS machines running the samples for this thesis. Interestingly, fractionation 

of the detergent phases selectively improved the sequence coverage of integral 

membrane proteins as well as the absolute numbers of membrane proteins identified. 

Relative numbers were however diminished, confirming similar observations for PM 

protein targeted protocols (Ozlu et al, 2014; Weekes et al, 2010). In addition, the tested 

alternative gradient composition did not affect monitored yield parameters, even though 

the effect of e.g. heavily prolonged gradient times remains to be determined. 

The rather low sequence coverage of membrane proteins and specifically the 

underrepresentation of peptides from transmembrane domains has been ascribed to the 

inherent lack of tryptic cleavage sites in these hydrophobic patches together with their 

poor solubility and decreased accessibility to proteases (Tan et al, 2008). Yet, the peptide 

identifications resulting from the workflow introduced within this thesis suggest that the 

combination of TX114 phase separation and FASP effectively overcomes this 

complication, delivering an almost even coverage of all proteins isolated within the 
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detergent phase and extends the data retrieved with global proteomic approaches, while 

keeping the required sample input to a minimum.  

 

With regard to PM proteins, the publication arising from this thesis provides a systematic 

comparison of three PM isolation strategies allowing the scientific community to choose 

a protocol based on their individual needs, i.e. tailored to achieve either a higher absolute 

or relative number of PM protein identifications, as no specific enrichments were detected 

within the sub fractions exclusive to each protocol. Intriguingly, purification efficiencies of 

all tested protocols analyzed as one-dimensional, gel-free LCMS experiments were rather 

high, surpassing similar approaches supplemented with peptide fractionation (Ozlu et al, 

2014; Weekes et al, 2010). 

Reproducibility represents another key feature determining the power of any scientific 

technique. Sulfo-NHS-SS-biotinylation strategies displayed higher numbers of mutual 

protein identifications than samples obtained with the aminooxy-biotin or silica beads 

approaches. Furthermore, they scored equally better in the degree of positive correlation 

on the quantitative level. 

The introduction of FASP and thus, the possibility to use detergents for the solubilization 

of proteins, while allowing their removal via filter-based devices prior to LCMS analysis, 

clearly represented a major breakthrough for the in-depth analysis of membrane 

proteomes (Wisniewski et al, 2009a). Still, there have been opposing results concerning 

peptide recovery and sequence coverage in quantitative, filter-based experiments 

(Bereman et al, 2011; Erde et al, 2014; Glatter et al, 2015; Leon et al, 2013; Nel et al, 

2015). Similarly, switching from sodium dodecyl sulfate (SDS) elution followed by FASP 

to a detergent-free, competitive elution increased the relative number of PM proteins 

purified with sulfo-NHS-SS-biotinylation from 49 % to 54 %, expanded the reproducible 

fraction between independent biological replicates from 55 % to 77 % and strengthened 

the quantitative correlation from 0.83 to 0.93. Contrary to this, the absolute number of 

surface proteins decreased from 650 to 347 and data from the whole membrane 

proteomic approach presented herein that employs FASP has not given any line about 

poor peptide recovery or reproducibility. 
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Another major concern in the application of exogenous labels for PM protein isolation are 

PTMs, especially glycosylations that may hinder the accessibility of residues, mask them 

from derivatization by the reagent and ultimately decrease the labeling efficiency. Indeed, 

efforts to pre-digest cells with PNGaseF to remove N-linked sugars prior to derivatization, 

led to an increase in purification efficiency as well as in the number of proteins identified 

with a biotin moiety. Yet, the two increases were not related. In fact, the subset of PM 

proteins amongst the labeled fraction surprisingly decreased to a comparable degree 

suggesting pre-digestion to compromise cellular integrity.  

In other respects, computational analysis of proteins co-purified with the detergent-free 

PM strategy developed within this thesis, identified the majority of non-PM annotated 

proteins as interactors of the surface annotated set. Despite this finding being solely 

based on PPI data, it was further supported by defining the number of false positive 

interactors, i.e. proteins purified from unlabeled cells subjected to an otherwise 

unchanged protocol, which amounted to less than 5 %. Additionally, a subset of non-PM 

annotated proteins was found to likely be located on the surface further improving purity 

and confidence of the method. This first dissection of the previously poorly characterized 

subset of non-PM annotated proteins might enable future biologically or medically 

relevant deductions. Particularly, given that upon drug treatment with tunicamycin, nearly 

90 % of interactors showed differential patterns that paralleled those observed for their 

N-glycoprotein counterparts. 

The question to which extent the presented PM isolation protocols still offer room for 

optimization might be put forward. As far as sulfo-NHS-SS-biotinylation with biotin elution 

is concerned, results in the morphologically distant, fibroblast-like cell line HAP1 

demonstrated the general utility of the developed protocol. Conversely, adapted 

parameters for the silica bead protocol that had achieved better results in certain cell 

types, failed to do so in my hands. Hence, cell type centered alterations might well not be 

generally applicable optimizations, but rather become overly cell specific. Still, that does 

not preclude the possibility of valuable optimization potential in studies where differential 

surface proteomics are limited to one cell or tissue type. Optimizations on the LCMS side, 

as brought up before, might also apply here. In particular, labeling approaches, 

specifically those where labeling occurs at tryptic cleavage sites, like sulfo-NHS-SS-
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biotinylation might require an even more elevated number of missed tryptic cleavage sites 

allowed during peptide assignments. Yet, this comes at the cost of having to redefine 

subsequent thresholds in order to maintain a defined false discovery rate (FDR). 

 

 

3.2 Conclusion & future prospects 
Altogether, the two experimental workflows developed within this thesis yielded high 

numbers of reproducible membrane and surface proteins providing two independent, yet 

complimentary procedures suited to the routine evaluation of both, whole membrane and 

PM proteomes.  

While it is already important to accomplish a more reliable and in-depth membrane 

centered mapping of cell lines and tissues, combining the two approaches might be 

particularly interesting in the study of trafficking perturbations or selective internalizations 

of surface proteins.  

In general, enabling a more detailed understanding of disease subtypes may pave the 

way for new therapeutic approaches, especially given that it has been shown before that 

membrane proteomic technologies are not limited to human samples, but can well be 

extended to the complementary analysis of human pathogens (Wolff et al, 2008).  

Moreover, empowering routine whole membrane and surface proteomics may further 

progress knowledge on basic biological processes, such as cell cycle progression (Ozlu 

et al, 2014) and stem cell differentiation and reprogramming (Rugg-Gunn et al, 2012).  

Similarly, activation of human T-cells is known to be accompanied by surface remodeling, 

namely, amongst others, the increased surface expression of specific interleukin 

receptors and SLCs (Fazekas de St Groth et al, 2004; Hayashi et al, 2013; Macintyre et 

al, 2014). A more global approach to compose a surface atlas and determine the changes 

induced by T-cell activation in more detail was, however, only published last year and still 

limited to glycoproteins in the proteomic strategy applied (Graessel et al, 2015). Thus, it 

is probable that the two experimental workflows presented herein would greatly refine the 

existing T-cell atlas, aiding in a better understanding of T-cell biology and corresponding 

therapeutic immune targets. 
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Naturally, the characterization of cancer cells and specifically the identification of 

membrane molecules contributing to tumor intravasation, metastasis and drug resistance 

represent another area of medically urging application (Conn et al, 2008; Rahbar & 

Fenselau, 2005; Sun et al, 2014). In the past, different membrane proteomic strategies 

already led to the identification of candidate drug targets (Bock et al, 2012; Hoover et al, 

2015). Therefore, increased sensitivity and robustness of the membrane proteomic 

protocols applied are likely to directly be reflected in the number and quality of identified 

biomarkers and protein targets.  

In addition, recent data indicates that metabolic competition can drive cancer progression 

and that cancer cells selectively reprogram their cellular metabolism to gain evolutionary 

and thermodynamic advantage (Alfarouk et al, 2014; Chang et al, 2015). Differential 

expression of membrane proteins is a key feature allowing tumor cells to cope with highly 

heterogeneous microenvironments. Consequently, assessing such membrane centered 

alterations on an omics scale might unravel further causes of therapy resistance, yet at 

the same time reveal currently hidden Achilles’ heels. 
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4. Materials & Methods 

4.1 Cell culture 
KBM7 and HAP1 cells were grown in Iscove’s modified Dulbecco’s medium (IMDM), while 

K562 and HL60 cells were cultured in RPMI-1640 medium. Both media were 

supplemented with 10 % fetal calf serum (FCS) and 1 % Penicillin-Streptomycin.  

 

4.2 Purification and enrichment of plasma membrane proteins 

4.2.1 Sulfo-NHS-SS-biotinylation and elution with sodium dodecyl sulfate 
Cell surface proteins were isolated according to the instructions provided by the 

manufacturer using the reagents supplied with the “Pierce® Cell Surface Protein Isolation 

Kit” (Thermo Scientific, Rockford, IL). Cells (40×106) were washed twice with ice-cold 

phosphate-buffered saline (PBS) and reconstituted in 4 mL biotin solution (10×106 per 

mL). The mixture was agitated for 30 min at 4ºC, the labeling reaction halted with 200 μL 

quenching solution and the cell pellets washed twice with tris-buffered saline (TBS). The 

cells were re-suspended in 500 μL lysis buffer and lysed by sonication on ice with 5 × 1 s 

pulses. Sonication was repeated twice over a period of 30 min with vortexing of the lysate 

for 5 s every 5 min. The resultant cell lysate was centrifuged at 10,000 × g, for 2 min at 

4ºC and the clarified supernatant used for the subsequent affinity purification. NeutrAvidin 

agarose slurry (500 μL) was added to a SnapCap spin column (Thermo Scientific, 

Rockford, IL), washed three times with wash buffer, incubated with the clarified cell lysate 

for 60 min at room temperature (RT) with end-over-end mixing. After centrifugation at 

1,000 × g for 1 min, the flow-through was discarded and the beads washed three times 

with wash buffer. Proteins were eluted with 400 μL sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) sample buffer containing 50 mM dithiothreitol (DTT) to 

cleave the disulfide bridge in the biotin label. After incubation for 60 min, the proteins were 

collected via centrifugation at 1,000 × g for 2 min and then further prepared for LCMS 

analysis via FASP as originally described (Wisniewski et al, 2009b) using filtration units 

with nominal molecular weight cutoffs of 30,000 Da (Wisniewski et al, 2011). For the pre-
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digestion with PNGaseF (New England Biolabs, Frankfurt am Main, Germany), cells were 

suspended in 1×G7 buffer containing 5,000 U PNGaseF and incubated at 37ºC overnight.  

 

 

4.2.2 Sulfo-NHS-SS-biotinylation and elution with biotin 
Samples were prepared as described in the preceding section, however, the SDS-PAGE 

sample buffer used to elute the proteins was replaced with a solution of 2.5 mM D-biotin 

dissolved in 50 mM HEPES pH 8.0, 150 mM NaCl, 50 mM DTT, 5 mM EDTA, 50 mM NaF, 

1 mM Na3VO4, 1 mM PMSF and protease inhibitors (1:1,000). After incubation and 

collection via centrifugation, the protein concentration was determined. An aliquot of ~20-

30 μg was alkylated by adding iodacetamide to a final concentration of ~55 mM and 

incubation for 30 min in the dark. Samples were adjusted to a pH of 7.5 - 8.5 by adding 

1 M triethylammonium bicarbonate (TEAB) and digested overnight at 37ºC using a 

trypsin:protein ratio of ~1:30 (w/w). The samples were then acidified with 30 % 

trifluoroacetic acid (TFA) and subsequently concentrated and purified by solid phase 

extraction (SPE) using MicroSpin columns (5-60 μg, The Nest Group, Southborough, MA). 

All centrifugation steps for the SPE were performed at 800-1,000 rpm for 1 min. If these 

parameters were not sufficient to force the liquid through the column material, 

centrifugation time and/or speed were slightly increased. SPE columns were activated 

with 200 μL methanol and equilibrated twice with 100 μL stage tip buffer (STB: 0.5 % FA, 

2 % TFA). After loading the digested samples, the columns were washed with 100 μL 

STB buffer. Peptides were eluted with 50 μL elution buffer (0.4 % FA + 90 % ACN) and 

then concentrated in a vacuum centrifuge at 45ºC. For the LCMS analyses, peptides were 

reconstituted in 5 % FA.  
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4.2.3 Aminooxy-biotinylation 
Cell surface sialylated glycoproteins were isolated essentially as described (Weekes et 

al, 2012; Zeng et al, 2009) with minor modifications. Cells (120×106) were washed twice 

with ice-cold PBS and re-suspended in 1 mM sodium meta-periodate, 10 mM aniline and 

250 μM aminooxy-biotin (Thermo Scientific, Rockford, IL). After incubation at 4ºC for 30 

min in the dark, the reaction was quenched by glycerine to a final concentration of 1 mM. 

The cell pellets were washed once each with PBS containing 5 % FCS and PBS 

containing 1 mM CaCl2 and 0.5 mM MgCl2. The cells were lysed in 10 mM Tris-HCl pH 

7.6, 1 % Triton X-100, 150 mM NaCl, protease inhibitors (1 μL/mL), 5 mM iodoacetamide 

(IAA), 0.1 mg/mL PMSF at 4ºC for 30 min. Cell debris and nuclei were removed by 

centrifugation at 4ºC; once at 2,800 × g and twice at 16,000 × g. To isolate labeled 

glycoproteins, 144 μL streptavidin agarose beads (life technologies, Eugene, OR) were 

added to Snap Cap spin columns and incubated with the cell lysate for 2 h at 4ºC. To 

eliminate non-specifically bound proteins, multiple washing steps were performed (20×, 

600 μL followed by centrifugation at 1,000 × g for 1 min). The washing was initiated with 

lysis buffer, followed by PBS supplemented with 0.5 % SDS and 6 M urea in 100 mM Tris-

HCl pH 8.5. Further washes included higher salt solutions (5 M NaCl and 100 mM Na2CO3) 

before completion with PBS and water. The proteins were digested on the beads 

overnight using 2.5 μg trypsin in 50 mM NH4HCO3. The tryptic peptides were collected 

via centrifugation at 1,000 × g for 1 min. The beads were rinsed with 200 μL 50 mM 

NH4HCO3 and tryptic fractions pooled. Peptides were washed three times each with 

300 μL PBS, water and G7 buffer (New England Biolabs, Frankfurt am Main, Germany). 

After incubation at RT for 5 h, glycopeptides were eluted with 15,000 units glycerol-free 

PNGaseF in 200 μL G7 buffer. After the first collection of glycopeptides via centrifugation 

at 1,000 × g for 1 min, the beads were rinsed with 200 μL G7 buffer and the glycopeptide 

fractions combined. For the LCMS analyses, aliquots of tryptic and glycopeptide fractions 

were pooled.  
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4.2.4 Colloidal silica beads 
Samples were prepared as previously described (Kim et al, 2011). Cells (30×106 or 

50×106) were washed three times with ice-cold MES-buffered saline (MBS: 25 mM MES 

pH 6.5, 150 mM NaCl), and then added to a 10 % silica bead solution. The mixture was 

incubated on ice and rocked gently for 10 min to allow the silica beads to attach to the 

cells. The cells were pelleted at 1,000 × g for 5 min at 4ºC and washed three times with 

ice-cold MBS. To crosslink the cells to the silica beads, 0.1 % polyacrylic acid (PAA) in 

MBS was prepared and cells added drop-wise. The samples were incubated on ice for 

10 min and then centrifuged at 1,000 × g for 5 min at 4ºC. The resultant cell pellets were 

washed three times with MBS and lysed in 1 mL 250 mM sucrose, 25 mM HEPES, 20 mM 

KCl, 1 μL/mL protease inhibitor cocktail. Cells were re-suspended and sonicated on ice 

until the solution became cloudy. For the density gradient centrifugation, a discontinuous 

Nycodenz (Axis-Shield PoC, Oslo, Norway) gradient consisting of 1.5 mL layers of 40, 35, 

30 and 27.5 % Nycodenz solutions was prepared. The cell lysate was diluted to a final 

concentration of 25 % Nycodenz in the sample layer and then placed on top of the 

prepared gradient. Lysis buffer (1 mL) was added with care to the gradient and 

ultracentrifugation was performed at 100,000 × g for 1 h at 4ºC. The supernatant was 

discarded and the plasma membrane pellet re-suspended in 500 μL 25 mM Na2CO3. 

After incubation with agitation for 30 min at 4ºC, the pellet was collected at 5,000 × g for 

20 min at 4ºC and the supernatant removed. Proteins were eluted from the silica beads 

and solubilized with 200 μL 8 M urea buffer containing 2 mM DTT by incubation with 

agitation for 30 min at 37ºC. After centrifugation at 5,000 × g for 20 min at 4ºC, the 

supernatant was collected and the protein concentration determined. Proteins were 

alkylated with 8 mM IAA for 30 min at 37ºC and the urea concentration diluted to ~1.5 M 

with 100 mM NH4HCO3. CaCl2 was added to a final concentration of 2 mM, before 

initiating the digestion by adding trypsin at an enzyme-to-protein ratio of 1:50 (w/w). The 

digest was incubated overnight at 37ºC and quenched the following day with 2.5 % TFA. 

For all subsequent desalting steps of the peptides, centrifugation was performed at 

200 × g. MacroSpin columns (The Nest Group, Southborough, MA) were conditioned with 

500 μL ACN and washed twice with ultrapure water. Samples were loaded onto the 

column, washed twice with 0.1 % TFA and eluted with 70 % ACN, 0.1 % TFA in two steps 
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to yield an eluate of 400 μL. The peptides were concentrated in a vacuum concentrator 

at 45ºC and then re-suspended in 5 % FA. 

 

 

4.2.5 Alternative colloidal silica beads protocol 
Since the original publication (Kim et al, 2011), Kislinger et al. had further optimized 

sections of the protocol (personal communication). Firstly, the discontinuous gradient for 

the ultracentrifugation step ranged from 55 to 70 % Nycodenz and centrifugation 

parameters were increased to 130,000 × g for 90 min. Secondly, to improve the removal 

of non-specific proteins, two 150 - 200 μL Na2CO3 wash steps were performed. 

Additionally, elution of the proteins from the beads was extended to a two-step process. 

In the first step, the bead-cell pellet was resuspended in 150 mM NaCl and rotated at 4ºC 

overnight. After centrifugation at 5,000 × g for 20 min at 4ºC, the remaining pellet was 

subjected to the second step of elution with 200 μL 25 mM HEPES, 1 % Triton X-100 and 

a higher salt concentration of 400 mM NaCl. This second step was incubated with 

agitation at 4ºC for a minimum of 1 h, and centrifuged as for the first elution. The resultant 

supernatants were combined and the proteins precipitated with acetone overnight at -

20ºC. The protein pellet was collected by centrifugation and the acetone precipitation 

repeated twice. The final pellet was dried at 37ºC for 30 min, re-suspended in 100 μL 8 M 

urea, 100 mM Tris pH 8.5, 2 mM DTT and agitated for 30 min at 37ºC. The protein 

concentration was determined and the sample prepared for LCMS as described in the 

preceding section.  
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4.3 Purification and enrichment of whole membrane proteins 
TX114 phase separation experiments were performed as described in (Bordier, 1981). 

Briefly, 30×106 cells were harvested, washed once with PBS, resuspended in 500 μL PBS 

and 100 μL 6 % pre-condensed TX114, mixed by pipetting/inversion and incubated for 

15 min on ice. The samples were centrifuged for 1 min at 13,000 rpm, the supernatants 

were transferred to new tubes, the pellets, which correspond to the insoluble fractions, 

were resuspended in 200 μL SDS-PAGE sample buffer by sonication. The supernatants 

were incubated for 5 min at 37 °C to induce phase separation and centrifuged for 1 min 

at 13,000 rpm at room temperature. The upper aqueous phases were transferred to new 

tubes. To wash, the lower, detergent phase was mixed with 500 μL PBS, the upper phase 

with 100 μL 6 % TX114 and incubated for 5 min on ice and for 5 min at 37 °C. Samples 

were centrifuged again and the initial phases were kept for further processing.  

Proteins were precipitated by adding 500 μL MeOH and 125 μL chloroform to the 

aqueous phases and 450 μL PBS, 500 μL MeOH and 125 μL chloroform to the detergent 

phases followed by vortexing. Samples were centrifuged for 4 min at 13,000 rpm, 750 μL 

of the upper phases was removed and 400 μL MeOH was added and mixed by pipetting. 

Samples were centrifuged again for 1 min at 13,000 rpm, supernatants were removed 

and the pellets were dried under the chemical hood. Precipitated proteins were solubilized 

in SDS-PAGE sample buffer by sonication and then either subjected to Western blot 

analysis or further prepared for LCMS via FASP as originally described (Wisniewski et al, 

2009b) using filtration units with nominal molecular weight cutoffs of 30,000 Da 

(Wisniewski et al, 2011). 
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4.4 Reversed-phase liquid chromatography mass spectrometry 
Peptide mixtures were separated by liquid chromatography and analyzed by collision-

induced dissociation (CID) on a hybrid linear trap quadrupole (LTQ) Orbitrap Velos mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA) coupled to an Agilent 1200 high-

performance liquid chromatography (HPLC) nanoflow system (Agilent Biotechnologies, 

Palo Alto, CA) via a nanoelectrospray ion source using liquid junction (Proxeon, Odense, 

Denmark).  

Two solvents were used for the separation of digested samples: solvent A consisted of 

0.4 % FA in water and solvent B of 0.4 % FA in 70 % MeOH and 20 % IPA. Samples were 

stored in a thermostatic microautosampler before being automatically loaded onto a trap 

column (Zorbax 300SB-C18 5 ȝm, 5 × 0.3 mm, Agilent Biotechnologies) by a binary 

pump at a flow rate of 45 μL/min. For loading and washing, 0.1 % TFA was used. After 

washing, peptides were back-flushed onto a 16 cm fused silica analytical column with an 

inner diameter of 50 ȝm packed with C18 reversed-phase material (ReproSil-Pur 120 

C18-AQ, 3 ȝm, Dr. Maisch, Ammerbuch-Entringen, Germany). Peptides were eluted at a 

constant flow rate of 100 nL/min by three subsequent gradients: (1) 3 to 30 % solvent B 

in 27 min, (2) 30 to 70 % solvent B in 25 min and (3) 70 to 100 % solvent B in 7 min 

(Bennett et al, 2011). 

 

For the fractionated samples, peptide mixtures were first separated into 10 off-line 

fractions using a Phenomenex column (150 × 2.0 mm Gemini-NX 3 ȝm C18, 110 Å, 

Phenomenex, Torrance, CA, USA) on an Agilent 1200 series HPLC system (Agilent 

Biotechnologies, Palo Alto, CA) with UV detection at 214 nm. HPLC solvent A consisted 

of 20 mM NH4OH pH 10.5 in 5 % acetonitrile and solvent B consisted of 20 mM NH4OH 

pH 10.5 in 90 % ACN. Peptides were separated at 35 °C with a flow rate of 100 ȝL/min 

and eluted from the column with a 41 min gradient ranging from 0 to 35% solvent B, 

followed by a 4 min gradient from 35 to 70% solvent B and, finally, a 2 min gradient from 

70 to 100 % solvent B (Bennett et al, 2011). 

The 10 fractions were then separated in a second dimension on-line using a Dionex 

UltiMate 3000 LC system (Dionex Corporation, Sunnyvale, CA) before being analyzed on 
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a hybrid quadrupole Orbitrap Q Exactive mass spectrometer (Thermo Fisher Scientific, 

Waltham, MA). Microautosampler, trap column and analytical column parameters were 

the same as described before. However, the total gradient time was extended to 100 min 

and, in addition to the regular composition of solvent B indicated before, an alternative 

composition consisting exclusively of 100 % ACN was employed. Peptides were eluted 

at a constant flow rate of 100 nL/min using the following respective gradients: 

 

ACN  MeOH, IPA, FA 

0 - 3 % 5 min  0 - 3 % 5 min 

3 - 13 % 3 min  3 - 13 % 2 min 

13 - 32 % 47 min  13 - 35 % 43 min 

32 - 45 % 10 min  35 - 70 % 12 min 

45 - 100 % 5 min  70 - 100 % 5 min 

100 % 7 min  100 % 10 min 

100 - 3 % 3 min  100 - 3 % 3 min 

3 % 20 min  3 % 20 min 

 

 

Peptides were identified in a data-dependent acquisition mode using a top 15 collision-

induced dissociation (CID) method. A single lock mass at m/z 445.120024 was chosen 

(Olsen et al, 2005) and selected ions were dynamically excluded for 60 s. Maximal ion 

accumulation times were 500 ms for MS1 and 50 ms for MS2 mode, respectively. To 

prevent overfilling of the ion traps, automatic gain control (AGC) was set to 106 ions for 

MS1 mode and 5,000 for MS2 mode. The threshold for switching from MS1 to MS2 was 

2,000 counts. Peptides were detected with a resolution of 60,000 (m/z 400). All samples 

were analyzed as technical, back-to-back replicates. 
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4.5 Data processing and database searching 
The acquired raw MS data files were processed with msconvert (ProteoWizard Library 

v2.1.2708) and searched against the human Swiss-Prot database (v2013.01, 37,398 

sequences) with the search engines Mascot (v2.3.02, MatrixScience, London, U.K.) and 

Phenyx (v2.5.14, GeneBio, Geneva, Switzerland) (Colinge et al, 2003). A maximum of 

one missed tryptic cleavage site was allowed for the aminooxy-biotin and the silica beads 

approach, whilst a maximum of two missed tryptic cleavage sites was enabled for the 

sulfo-NHS-SS-biotin method. Initial searches were performed with relatively broad mass 

tolerances via a Perl script on both precursor and fragment ions (±10 ppm and ±0.6 Da, 

Mascot only). All precursor and fragment ion masses were recalibrated based on high-

confidence peptide identifications and subsequently subjected to a second search with 

narrower mass tolerances (±4 ppm, ±0.3 Da). Carbamidomethylated cysteine was 

defined as a fixed modification, whilst oxidation of methionine residues was selected as 

a variable modification. For the sulfo-NHS-SS-biotin experiments, the biotin moiety 

conjugated to lysine residues and protein N-termini was added as a variable modification. 

Release of N-linked glycopeptides by PNGaseF treatment deamidates asparagine 

residues to aspartic acid. This was set as additional variable modification as required. 

FDRs of <1 % and <0.1 % were determined for proteins and peptides, respectively, by 

applying the same procedure against a reversed database.  

UniProtKB/Swiss-Prot Gene Ontology cellular component (GO.CC) annotations of the 

identified proteins were retrieved via BioMart (Guberman et al, 2011). For the prediction 

of transmembrane topology and signal peptides, FASTA file formats of proteins were 

downloaded from UniProtKB/Swiss-Prot and then subjected to Phobius at 

http://phobius.sbc.su.se/index.html (Kall et al, 2004; Kall et al, 2007).  

Data are means of two biological replicates from different experimental days unless 

otherwise stated. Abundance data of multiple isoforms were averaged.  
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