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1    ZUSAMMENFASSUNG 

Die Weiterentwicklung der RNA Sequenzierung hat unser Verständnis von Säugetier-

genomen grundsätzlich verändert. Große Teile unseres Genoms wurden lange Zeit nicht 

beachtet und als “junk DNA” bezeichnet, sie werden tatsächlich aber häufig in nicht-

kodierende RNA transkribiert. Tausende lange nicht kodierende (lnc)RNAs sind mittlerweile in 

den Genomen von Mensch und Maus annotiert und eine faszinierende Frage ist, ob all diese 

lncRNAs funktionell sind. Einige Dutzend lncRNAs sind bereits ausgiebig erforscht worden 

und es herrscht nun Einigkeit, dass viele davon die Expression von Genen steuern können 

und damit auf die Entwicklungsbiologie sowie die Entstehung von Krankheiten Einfluss 

nehmen. Ähnliche lncRNAs wurden in bestimmte Kategorien eingeteilt um mögliche 

Funktionen besser prognostizieren zu können. Die bekanntesten dieser Kategorien sind 

intergenische, bidirektionale, antisense und enhancer lncRNAs und jeder davon wurden 

bestimmte RNA Biologie Eigenschaften und Funktionen zugesagt. Es wurde bereits 

spekuliert, dass die RNA Biologie jeder lncRNA eine Voraussetzung oder Folge einer 

bestimmten Funktion sein könnte. Nachdem der Großteil der publizierten RNA Biologie 

Experimente jedoch mit unterschiedlichen lncRNA Annotationen, abweichenden Methoden 

und in verschiedenen Zelltypen gemacht wurden, können diese nur schwer miteinander 

verglichen werden. Daher habe ich Experimente durchgeführt um die drei RNA Biologie 

Merkmale RNA Stabilität, nukleärer Export und Spleißeffizienz gemeinsam in zwei Zelltypen 

genomweit untersucht. Ich habe embryonale Stammzellen und embryonale Fibroblasten der 

Maus als Modelle gewählt und nach RNA Sequenzierung und bioinformatischer Analyse 

herausgefunden, dass die RNA Biologie von lncRNAs zelltypspezifisch reguliert wird und sehr 

unterschiedlich zu mRNAs ist. Weiters zeige ich, dass die vier derzeitigen lncRNA Kategorien 

überraschenderweise sehr ähnliche Eigenschaften haben und weder durch ihre RNA Biologie 

noch durch ihre genomischen Transkripteigenschaften unterscheidbar sind. Ich habe daher 

alle lncRNAs nach ihrer RNA Biologie kategorisiert und sechs Gruppen definiert, jede mit 

einem einzigartigen RNA Biologie Muster. Ich habe dabei herausgefunden, dass etwa die 

Hälfte ähnliche Eigenschaften wie mRNAs hat und die andere Hälfte ineffizient gespleißt wird, 

instabil ist und kaum aus dem Nukleus exportiert wird. Zusätzlich habe ich alle Experimente 

in den entsprechenden Zelltypen der Ratte wiederholt und dabei entdeckt, dass die RNA 

Biologie Eigenschaften weitgehend zwischen Maus und Ratte konserviert sind. Wie die 

einzelnen RNA Biologie Eigenschaften von der Zelle reguliert werden ist großteils unbekannt, 

jedoch zeige ich, dass sie mit einigen genomischen Transkripteigenschaften signifikant 

korrelieren. Insgesamt habe ich in dieser Studie 76 RNA Sequenzierungsbibliotheken erstellt 

und 4,1 Milliarden Reads generiert die ich mit 2,3 Milliarden weiteren publizierten Reads 

analysiert habe. Diese tief sequenzierten und gut kontrollierten Datensätze werden für die 

wissenschaftliche Gemeinschaft außerordentlich hilfreich sein um lncRNA Forschung voran 

zu bringen. 
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1 ABSTRACT 

Recent advances in RNA-sequencing changed our perception of mammalian genomes and 

established that major parts of the previously disregarded “junk DNA” are transcribed into 

non-coding RNA. Thousands of long non-coding (lnc)RNAs have since been annotated in 

human and mouse genomes and the most intriguing question is whether they are functional. 

A few dozen lncRNAs have been studied in detail and they are now increasingly recognized 

as important gene regulators in development and disease. Similarly to the field of proteomics, 

related lncRNAs were divided into classes to be able to extrapolate functions. The most 

prominent classes of intergenic, bidirectional, antisense and enhancer lncRNAs have been 

assigned certain RNA biology features and functions. It has been speculated that RNA 

biology might be a prerequisite for or consequence of function. However, the majority of RNA 

biology experiments was carried out using different lncRNA annotations, variable protocols 

and different cell types and therefore they are not comparable. Therefore, I conducted 

experiments to assay the three RNA biology features RNA stability, nuclear export and 

splicing efficiency of lncRNAs genome-wide using two cell types. I have chosen mouse 

embryonic cells as the primary model as they express a wealth of lncRNAs and selected 

embryonic fibroblasts as a second cell type. After RNA-sequencing, bioinformatic analyses 

and rigorous quality filtering, I find that lncRNA biology is cell type specifically regulated and 

markedly different from mRNAs. I show that the four current lncRNA classes have very similar 

features as they are neither distinguishable by their RNA biology features nor by their 

genomic transcript features. I therefore clustered lncRNAs based on their three RNA biology 

features and define six clusters, each having a unique RNA biology signature. I find that half 

of lncRNAs have mRNA-like RNA features whereas the other half is inefficiently spliced, 

rather unstable and less efficiently exported to the cytoplasm. Additionally, I repeated all 

experiments in the corresponding cell types of the rat and find that RNA biology features are 

largely conserved between mouse and rat. How each of the three RNA biology features is 

regulated by the cell remains unknown, however, they significantly correlate with certain 

genomic transcript features. All together, I prepared 76 RNA-seq libraries for this study and 

generated 4.1 billion reads which were analyzed alongside with 2.3 billion reads from 

published RNA-seq experiments. These deeply sequenced and well controlled datasets will 

be a valuable and comprehensive resource for the research community to investigate the 

expression states and RNA features of lncRNAs genome-wide. 
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2 INTRODUCTION 

2.1 LncRNAs are pervasively transcribed in eukaryotic genomes 

A fascinating question in biology is how organisms use and regulate their genomes to sustain 

their life cycle and respond to internal and external signals. While only 1.5% of the human 

genome code for proteins, the remaining 98.5% of intergenic space were often dismissed as 

“junk DNA” (Ohno, 1972; Zuckerkandl, 1992). The Human Genome Project nevertheless 

sequenced the whole genome and laid the foundation to genome-wide analysis of genes and 

their corresponding RNA transcripts. Mammalian genomes contain ~20,000 protein-coding 

genes that are dispersed with largely repetitive sequences. The conventional view that the 

intergenic space contains mainly nontranscribed sequences changed dramatically with the 

advent of genome-wide transcriptome studies such as cDNA sequencing, tiling arrays and 

massively parallel sequencing. The number of non-coding (nc)RNAs soon exceeded the 

number of mRNAs and it became evident that large parts of mammalian genomes are 

transcribed (Carninci et al., 2005; Djebali et al., 2012; ENCODE Project Consortium et al., 

2007). The central dogma “DNA makes RNA and RNA makes protein” (Crick, 1970) has 

since been enriched by non-coding RNAs that do not need to encode proteins but can be 

functional by themselves (Wang and Chang, 2011). While it is now accepted that the genome 

is pervasively transcribed, it has remained an open question whether all ncRNAs are 

functional or whether many of them represent just spurious transcription that arises from 

accessible chromatin or in order to keep it accessible (Clark et al., 2011). The classification 

and nomenclature of ncRNAs is inconsistent, they can be grouped by size (e.g. small RNA, 

short interfering RNA, micro RNA, long ncRNA), by their interaction partners (e.g. piwi-

interacting RNAs), by their cellular localization (e.g. small nucleolar RNA), by their position 

relative to mRNAs or genetic elements (e.g. bidirectional, antisense, intergenic and enhancer 

RNA) or by the way they function (e.g. cis-acting and trans-acting RNA). Non-coding RNAs 

are broadly classified into small (<200nt) and long (>200nt) ncRNAs, a rather arbitrary cutoff 

that is based on the limitations of current RNA isolation procedures. In this study, I only 

focused on the group of long non-coding (lnc)RNAs. The known functions of lncRNAs are 

manifold and beside the fact that many lncRNAs exhibit structural functions, they are now 

increasingly recognized as a crucial layer of gene regulatory networks (Guttman et al., 2011; 

Ulitsky and Bartel, 2013; Vance and Ponting, 2014). These regulatory lncRNAs can be 

grouped into cis-acting lncRNAs regulating genes on the same chromosome from where they 

are expressed and trans-acting lncRNAs regulating genes genome-wide by leaving the site of 

expression and associating with chromatin modifiers and other proteins (Rinn and Chang, 

2012). LncRNAs evolved extremely rapidly between the closely related species mouse and 

rat and up to 61% of lncRNAs have been shown to be unique to the Mus genus (Kutter et al., 

2012). In the last decade, the methods to annotate lncRNAs genome-wide have significantly 

improved and accelerated lncRNA research substantially. 
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2.2 Genome-wide methods to annotate lncRNAs 

2.2.1 Transcript mapping by expressed sequence tags (ESTs) 
The Sanger sequencing of cDNA libraries yielded enormous amounts of expressed sequence 

tags (ESTs) that have been instrumental to the discovery of genes in multiple organisms 

(Nagaraj et al., 2007). ESTs are with 200-800bp relatively short and represent parts of cDNAs 

that were reverse transcribed from RNA molecules of a particular cell type and organism. 

When the genome sequence of the organism was available, the ESTs were aligned and the 

gene structure assembled from many ESTs. Generation of ESTs and computational analysis 

have improved over the years and allowed more sensitive annotation of transcripts (Dias Neto 

et al., 2000). The possible applications of ESTs grew with their abundance in databases and 

soon included gene structure predictions, analysis of alternative splicing, investigation of 

tissue or disease-specific expression and the discovery and characterization of SNPs 

(Buetow et al., 1999; Kan et al., 2001; Modrek et al., 2001; Schmitt et al., 1999). In 2003, the 

FANTOM2 consortium published a mouse full-length cDNA encyclopedia containing 70,000 

transcription units that were derived from 1.44 million 3’-end sequences and 0.54 million 5’-

end sequences (Carninci et al., 2003). 55% to 65% of these ESTs could be attributed to 

known protein-coding genes by the BLAST algorithm, however, the majority of the remaining 

ESTs was attributed to lowly expressed non-coding RNA. The FANTOM3 consortium 

enhanced EST-based transcript mapping by incorporating cap-analysis gene expression 

(CAGE) tags to map proper 5’-ends (Carninci et al., 2005). This method yielded ~102,000 

cDNAs of which ~34,000 lacked protein-coding sequence and were therefore defined as non-

coding RNA, however, many of those were single-exon transcripts. They found many of those 

ncRNAs being conserved across species, although on average slightly less than 5’ or 3’ 

UTRs. In a first conclusion about ncRNA functions, they hypothesize that ncRNA transcription 

is either important for or a consequence of the underlying genomic location, and that the 

transcript itself might function by sequence-specific interactions with the DNA sequence from 

which it is derived (Carninci et al., 2005). 

 

2.2.2 Tiling arrays detect transcribed regions 
Tiling arrays are a subtype of microarrays that function by hybridizing chemically labeled RNA 

or DNA sequences with probes being fixed on glass slides. In contrast to traditional 

microarrays that are used to investigate known sequences, tiling arrays have been 

extensively exploited to characterize transcription in particular genomic regions, 

chromosomes and even genome-wide (Bertone et al., 2004; Cheng et al., 2005; Kampa et al., 

2004). A tiling array study interrogating the transcriptomes of human chromosomes 21 and 22 

in eleven cell lines found that more than 90% of transcribed nucleotides were located outside 

of annotated mRNAs (Kampa et al., 2004). They estimated that ten times more genomic DNA 

was transcribed into RNA as had been known and proposed a re-evaluation of the term 
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“gene” to incorporate the steadily increasing class of ncRNAs. The first genome-wide human 

tiling arrays detected ~10,600 previously unknown sequences, many of which were located in 

intergenic regions (Bertone et al., 2004). A more detailed view on the human transcriptome 

was provided by high-density tiling arrays (5-nucleotide-resolution) that were probed with 

polyadenylated and nonpolyadenylated RNA as well as nuclear and cytoplasmic RNA 

(Kampa et al., 2004). Their main conclusions were that the human transcriptome consists of 

heavily interlaced transcripts that form complex networks and that approximately 50% of all 

transcribed sequences are not polyadenylated. Despite unprecedented sensitivity, the main 

challenge of tiling arrays is definitely to confidently map proper transcript boundaries as well 

as exon models and to distinguish cross hybridizing sequences, e.g. from pseudogenes, from 

sequences originating from this position.  

 

2.2.3 Massively parallel RNA-sequencing and transcriptome assembly 
RNA-sequencing (RNA-seq) is a recently developed method that allows the detailed study of 

transcriptomes by using deep sequencing (also known as massively parallel sequencing or 

next-generation sequencing) of cDNA libraries. These libraries can be generated from RNA of 

virtually all organisms, RNA of particular cell types or dedicated RNA subsets. Three RNA-

seq platforms (Illumina sequencing, Applied Biosystem SOLiD and Roche 454 Life Sciences) 

have been established, of which Illumina sequencing is by far the most widely used 

technology (Wang et al., 2009). For a typical Illumina RNA-seq experiment, the RNA sample 

of choice is fragmented and reverse transcribed into short cDNAs. After the addition of 

adaptors, the fragments are hybridized onto glass slides and bridge-amplified to give rise to 

clusters of ~1,000 clonal fragments. In a “sequence-by-synthesis” approach, each fragment is 

extended nucleotide-by-nucleotide from one side using fluorescently labeled nucleotides 

while high-throughput cameras capture the fluorescence of the clusters after each cycle 

(Pettersson et al., 2009). The sequence of each cluster is called by an algorithm that converts 

the sequence of fluorescent colors into a string of nucleotides. Each cluster gives one read 

and the number of sequencing cycles determines the length of the read. A single-end read is 

derived from only one end of the cDNA fragment while a paired-end read consists of two 

paired reads that come from both ends of the cDNA fragment. The cost of sequencing per 

base has steadily decreased over the last twenty years, with an even accelerated decrease 

after 2008 (Hayden, 2014). This price drop increased possible applications of RNA-seq and 

made it possible to use RNA-seq to compare the transcriptomes of thousands of healthy 

people and patients with a previously unprecedented depth. To increase the coverage of 

lowly abundant lncRNAs in RNA-seq experiments, tiling arrays were used to capture lncRNAs 

by hybridization and subsequent elution to enrich them ~380-fold (Mercer et al., 2012). The 

number of possible RNA-seq applications is ever increasing and includes now, among others, 

gene fusion detection, alternative splicing analysis, identification of disease relevant RNAs 

and single-cell transcriptomics (Ozsolak and Milos, 2011). 
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The generation of large RNA-seq datasets required the development of dedicated and 

sophisticated software solutions to process, quality-test and analyze data. Typically, RNA-seq 

data is aligned to a reference genome and expression levels quantified for a reference 

annotation. For each step, multiple algorithms are available and testing multiple parameters 

of numerous programs can be cumbersome. Over the years, few programs were more 

frequently used than others and became the standard for most applications. The alignment 

program Bowtie (Langmead et al., 2009) has frequently been used for short reads, however, 

with the increase of read length ultrafast programs such as TopHat (Trapnell et al., 2009) and 

STAR (Dobin et al., 2013) allowed de novo splice junction annotation. The assembly of 

aligned reads into transcripts is done by programs such as Scripture (Guttman et al., 2010) 

and more commonly Cufflinks (Trapnell et al., 2010, 2013), which can also directly estimate 

transcript abundances and calculate differential expression. Packages such as RSeQC help 

to analyze RNA-seq quality, strand specificity, GC bias, coverage uniformity and can also be 

used to estimate transcript abundances (Wang et al., 2012).  

The first RNA-seq mouse transcriptome was generated from ~140 million 25bp reads of three 

mouse tissues (Mortazavi et al., 2008). While the overall coverage was low, they detected 

previously unknown mRNA promoters, exons and 3’ UTRs as well as novel lncRNAs bearing 

miRNAs. In order to annotate lncRNAs, several pipelines were developed to filter out 

transcripts with protein-coding potential, however, most of them were based on assaying 

sequence features and reading frames (Kong et al., 2007) and protein-coding potential across 

multiple species (Washietl et al., 2011). The first genome-wide lncRNA annotation from RNA-

seq data was generated from three mouse cell types (Guttman et al., 2010). Since then, 

RNA-seq significantly accelerated the progress of lncRNA research and within a few years 

lncRNA annotations of dozens of organisms were generated (Ulitsky and Bartel, 2013). RNA-

seq experiments further helped to investigate different lncRNA classes, lncRNA biology and 

genome-wide transcriptome changes within development and disease as well as upon 

perturbations by drugs, genetic knock-outs and other treatments. Huge consortia such as 

ENCODE extensively used RNA-seq to show that 74.7% of the human genome is transcribed 

in any of the 15 investigated cell types (Djebali et al., 2012) and to evaluate lncRNA structure, 

evolution and expression (Derrien et al., 2012). The most common way to classify lncRNAs 

today is based on their position relative to genetic elements such as mRNAs and enhancers, 

however, the functions and RNA biology of these lncRNA classes might not be as 

homogenous as previously assumed. 

 

2.3 LncRNAs are currently classified by position relative to mRNAs 

2.3.1 Intergenic lncRNAs 
The class of intergenic lncRNAs (also known as large intervening (linc)RNAs) has first been 

defined by two landmark papers that used H3K4me3 and H3K36me3 chromatin maps to 
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annotate ~1,600 intergenic lncRNAs in four mouse cell types (Guttman et al., 2009) and 

~3,300 intergenic lncRNAs in six human cell types (Khalil et al., 2009). While this approach 

could not resolve exact exon structures and transcript boundaries, RNA-seq data in 

combination with advanced bioinformatic tools was later able to reconstruct complete 

transcriptomes with exact exon models ab initio. This powerful technique yielded thousands 

of novel and known intergenic lncRNAs across three mouse cell types (Guttman et al., 2010) 

and ~8,000 intergenic lncRNAs across 24 human tissues (Cabili et al., 2011). In these 

studies, the class of intergenic lncRNAs basically constitutes all assembled non-coding 

transcripts that are not in the vicinity of mRNAs (Figure 1). While this approach was useful to 

avoid complex loci with overlapping transcription and to simplify downstream bioinformatic 

analysis, it did not recapitulate the full spectrum of lncRNAs. Intergenic lncRNAs are therefore 

considered as a “catch-all class” that is “defined more by what they are not than by what they 

are” (Ulitsky and Bartel, 2013).  

While dozens of lncRNAs classes with distinct functions, RNA biology features and 

expression patterns may exist, this intergenic subclass long served as a prototype for 

lncRNAs and insights from the study of intergenic lncRNAs were often projected to be true for 

all lncRNAs. Intergenic lncRNAs were largely annotated from fully processed polyA+ RNA, 

which led to the perception that they are frequently spliced (Moran et al., 2012; Ulitsky and 

Bartel, 2013). While intergenic lncRNAs were early declared to be evolutionary conserved 

and therefore considered as functional (Guttman et al., 2009; Khalil et al., 2009), it seems that 

sequence conservation has been overestimated for most of them (Ulitsky and Bartel, 2013). It 

is now accepted that exons of intergenic lncRNAs are more conserved than random 

intergenic regions but significantly less than mRNA exons (Derrien et al., 2012; Ulitsky and 

Bartel, 2013).  

Several subsets of intergenic lncRNAs have been defined based on size and functions. For 

example, more than 2,000 very long intergenic (vlinc)RNAs with lengths from 50kb to 700kb 

were annotated in healthy and cancerous human cells, many of which are expressed from 

retroviral promoters (St Laurent et al., 2013). Cis-acting enhancer-like lincRNAs were found 

by RNAi knock-downs of seven transcripts from a set of ~3,000 manually curated human 

lincRNAs (Ørom et al., 2010). While it is certainly convenient to study the diverse class of 

intergenic lncRNAs as a whole, it seems that uncovering the full spectrum of functions and 

features will require a more differentiated approach and a more sophisticated way of analysis. 
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Figure 1: LncRNAs are currently classified by their position relative to mRNAs 
Depicted is a schematic representation of the four currently used lncRNA subclasses. Intergenic 
lncRNAs are transcribed from the intergenic space and therefore do not overlap mRNAs. Bidirectional 
lncRNAs are expressed from a bidirectional promoter shared with an mRNA. Enhancer of mRNAs are 
often transcribed and give rise to enhancer lncRNAs. Antisense lncRNAs overlap mRNAs in antisense 
orientation. Details see text. Enh, enhancer. 

 

2.3.2 Bidirectional lncRNAs 
Bidirectional lncRNAs are transcribed from shared mRNA promoters in antisense orientation 

to the respective mRNA (Neil et al., 2009; Seila et al., 2008) (Figure 1). The transcript start 

sites of lncRNA and mRNA within this bidirectional CpG island promoter are thereby less than 

1kb apart. Bidirectional promoters are abundant in mammalian genomes and have been 

suggested to provide a mechanism of endogenous gene regulation (Trinklein et al., 2004). 

Since the discovery that bidirectional promoters most frequently consist of one mRNA and 

one lncRNA (Katayama et al., 2005), it has been discussed whether bidirectional lncRNAs 

are involved in the regulation of their corresponding mRNA partner by keeping the chromatin 

accessible or whether they represent transcriptional noise being generated as a consequence 

of open chromatin (Brosius, 2005; Kowalczyk et al., 2012). In mouse ES cells it has been 

shown that divergently transcribed mRNA/lncRNA pairs are coordinately regulated through 

differentiation (Sigova et al., 2013). These lncRNAs have a median length of 2.7kb, are 

capped as well as polyadenylated and only half of their loci contained spliced transcripts. 

GRO-seq data indicated that transcription levels of paired mRNAs and lncRNAs are similar, 

however, the reduced stability of bidirectional lncRNAs led to ~10-fold lower steady-state 

levels. A detailed study of four bidirectional lncRNAs indicated that they are regulated by the 

positive transcription elongation factor (P-TEFb) and that they are rapidly degraded by the 

exosome (Flynn et al., 2011). It has also been shown that mRNAs that share their promoters 

with lncRNAs exhibit reduced noisy expression (Wang et al., 2011b). The explanation is that 

the bipromoter architecture enables transcription of the mRNA and the lncRNA to facilitate a 

constantly open chromatin and transcription factor binding. This allows more constant 

transcription compared to transcriptional bursts when previously inactive chromatin suddenly 

becomes active. In terms of gene regulatory functions, most studies detected a co-regulation 

of divergently transcribed mRNAs and lncRNAs, thereby establishing a gene-activating 

function for the majority of bidirectional lncRNAs (Uesaka et al., 2014). The transcription of 

bidirectional lncRNAs could be the cause for accessible chromatin or the consequence, in 

Enh 
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both cases the transcript itself might not be functional. Bidirectional lncRNAs could also tether 

chromatin modifiers or RNAPII to regulate local chromatin and transcription in cis, thereby 

making the RNA molecule the functional entity. However, as an exception to proposed cis-

acting mechanisms, the bidirectional lncRNA Six3OS has been found to modulate retinal 

development by concordantly regulating the neighboring mRNA Six3 in trans (Rapicavoli et 

al., 2011). In conclusion, bidirectional lncRNAs are mostly considered unstable and both the 

act of divergent lncRNA transcription and the bidirectional lncRNAs themselves could be 

functional. 

 

2.3.3 Enhancer lncRNAs 
Enhancer lncRNAs (also know as eRNAs) are generated by transcription of enhancer 

elements (Figure 1) and seem to be a hallmark of most active mammalian enhancers (Core et 

al., 2008; Seila et al., 2008). They are not to be confused with enhancer-like lncRNAs that 

form a group of intergenic lncRNAs and have been shown to activate the expression of 

neighboring mRNAs (Ørom et al., 2010). Enhancer lncRNAs were first described in mouse 

neuronal cells (Kim et al., 2010) and activated mouse macrophages (De Santa et al., 2010). 

In the former study, neuronal activity-regulated enhancers were defined by binding of the 

transcriptional co-activator p300/CBP and H3K4me1, which marks active chromatin regions 

such as enhancers and promoters. To remove uncharacterized promoters, genetic elements 

with H3K4me3 marks were removed. ChIP-seq data indicated RNAPII binding at ~3000 

(25%) of these enhancer elements and RNA-seq data verified that ~2000 of them are actually 

bidirectionally transcribed, giving rise to transcripts with <2kb length. Transcription of these 

non-polyadenylated eRNAs was co-regulated with the expression of nearby target genes. The 

second study detected low-level intergenic transcription upstream of activated genes and 

found that they correspond to enhancer elements defined by p300 peaks, high H3K4me1 and 

low H3K4me3 (De Santa et al., 2010). These eRNAs are polyadenylated and were estimated 

to have a median length of ~500nt. Actinomycin D treatment indicated that they are very 

unstable and it was suggested that the exosome degrades them. Another study detected 

eRNAs in androgen-sensitive human prostate cancer cells at enhancers that regulate 

expression changes upon androgen stimulation (Wang et al., 2011a). It was soon speculated 

that these eRNAs are functional parts in the gene regulatory networks (Orom and 

Shiekhattar, 2011).  

Enhancer lncRNAs were also detected by GRO-seq in human MCF7 cells after induction of 

estrogen signaling (Li et al., 2013b). Knock-downs of three eRNAs by miRNAs and locked 

nucleic acids (LNAs) reduced eRNA levels post-transcriptionally while nascent transcription 

levels were unchanged, which significantly impaired the activation of the neighboring target 

gene. The GAL4-Box-b tethering based reporter assay (Wang et al., 2011c) was used to 

independently verify that the RNA molecule is the functional entity in activating target gene 

expression rather than the process of transcription. In an attempt to elucidate the mechanism 
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of action, they show that eRNAs function primarily in cis by contributing to the generation and 

stabilization of Cohesin-mediated chromosomal loops between the estrogen-responsive 

enhancers and the promoter of the target mRNA genes (Li et al., 2013b). Enhancer lncRNAs 

have also been shown to activate gene expression by establishing chromatin accessibility of 

distinct regulatory regions (Mousavi et al., 2013) and to be required for p53-dependent 

enhancer activity (Melo et al., 2013). A recent study proposes that eRNAs could be involved 

in the transition of paused to elongating RNAPII complexes (Schaukowitch et al., 2014). This 

step is usually inhibited by the negative elongation factor (NELF) complex, which contributes 

to the genome-wide regulatory mechanism of RNAPII pausing. Enhancer RNAs were shown 

to directly bind the NELF complex and remove it from the RNAPII complex, thereby enabling 

its transition to productive RNA elongation. Knock-down of eRNAs did reduce target gene 

expression in cis but did not abolish chromosomal looping between the enhancer and the 

promoter. 

While eRNAs are now accepted to mark active enhancers, the question is still whether all 

eRNAs have a function themselves or whether many of them represent transcriptional noise 

of open chromatin. This model proposes that chromosomal looping brings together the 

enhancer and the target promoter with high concentrations of RNAPII, thereby leading to 

random bidirectional transcription of the accessible enhancer. Open for debate is also the 

question whether the RNA product or the progression of RNAPII with its associated enzymes 

is important for enhancer function. Most probably, the class of eRNAs is not a homogenous 

functional class but there are numerous different functions of eRNAs. To reflect different 

properties, enhancer lncRNAs were subclassed into unidirectionally transcribed and 

polyadenylated eRNAs termed 1D-eRNAs and the bidirectionally non-polyadenylated 

transcribed 2D-eRNAs (Natoli and Andrau, 2012).  

 

2.3.4 Antisense lncRNAs 
Antisense lncRNAs overlap mRNAs in antisense orientation and have by definition a 

transcript complementarity to mRNAs (Figure 1). They are also called cis-natural antisense 

transcripts (cis-NATs) in order to distinguish them from exogenous antisense transcripts such 

as siRNAs and components of the trans-acting RNAi machinery. Antisense lncRNAs and 

mRNAs can overlap themselves by their 5’-ends (head to head), by their 3’-ends (tail to tail) 

or one can overlap the other completely. These sense/antisense pairs have very early 

sparked interest as they may provide a mechanism to regulate mRNA translation and mRNA 

stability (Mizuno et al., 1984). Among the first examples that antisense lncRNAs regulate the 

expression of their overlapped mRNAs was the imprinted lncRNA Airn (Sleutels et al., 2002). 

The first genome-wide analysis of antisense transcription from the FANTOM3 consortium 

identified thousands of sense/antisense pairs and expression profiling indicated that pairs can 

be concordantly or discordantly regulated (Katayama et al., 2005). Coexpression of mRNA 

and lncRNA would require that they use the same enhancer while differential expression can 
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be explained by separate regulation of mRNA and lncRNA or when one regulates the other. 

Another systematic study created sense/antisense libraries from HeLa cells, cloned and 

sequenced these self-hybridized sequences and found the lncRNA p15AS (also known as 

ANRIL) to overlap and epigenetically silence p15 in leukemia (Yu et al., 2008). The early 

RNA-seq studies mostly dismissed antisense lncRNAs due to their often complex overlap 

with mRNAs and rather focused on intergenic lncRNAs that were easier to study (Cabili et al., 

2011; Guttman et al., 2009). The RNA biology of mouse or human antisense lncRNAs as a 

group has, to my knowledge, never been thoroughly investigated. The mechanisms how 

antisense lncRNAs regulate their overlapped mRNAs are manifold, in the case of Airn it has 

been shown that Airn transcription through the overlapped Igf2r promoter represses Igf2r 

(Latos et al., 2012). The transcription factor PU.1 (encoded by the SPI1 gene) has been 

shown to be regulated by antisense lncRNAs that modulate mRNA translation (Ebralidze et 

al., 2008). In a similar example, the nuclear localized antisense lncRNA UCHL1-AS1 

becomes exported upon Rapamycin treatment to promote the translation of UCHL1 in 

dopaminergic neurons (Carrieri et al., 2012). UCHL1-AS1 exert its function in the cytoplasm 

and is a perfect example of how cellular localization of lncRNAs is specifically regulated. The 

tumor suppressor gene p21 has been shown to be repressed by its antisense lncRNA p21-AS 

by directing Ago1-dependent H3K27me3 to the p21 promoter (Morris et al., 2008). In 

summary, antisense lncRNAs are a heterogeneous group that only share positional antisense 

overlap with mRNAs, however, their mode of gene regulation is very diverse. 

 

2.4 LncRNAs are important gene regulators 

2.4.1 LncRNAs are involved in genomic imprinting 
The discovery that most imprinted regions express at least one lncRNA early raised questions 

whether they are implicated in the regulation of genomic imprinting (Koerner et al., 2009). The 

four imprinted lncRNAs Xist, Airn, Kcnq1ot1 and Nespas have been shown to epigenetically 

repress mRNA genes in cis and were, together with H19, among the first confirmed functional 

lncRNAs. Their extensive study unraveled not only different silencing mechanisms but also 

provided details about lncRNA regulation and RNA biology.  

The Xist lncRNA (18kb cDNA in mouse) in involved in the female process of dosage 

compensation which limits the expression of X-linked genes to only one of the two X 

chromosomes. In female ES cells and embryos prior to X inactivation, Xist is lowly expressed 

from both X chromosomes and rapidly degraded (Sheardown et al., 1997). Upon 

differentiation, the Xist lncRNA from the future inactive X chromosome is stabilized and 

spreads in cis across it by exploiting the three-dimensional structure of the X chromosome 

(Engreitz et al., 2013). Xist thereby recruits the polycomb repressive complex 2 (PRC2) to 

establish a transcriptionally silent nuclear compartment that is heavily enriched for the 

repressive histone modification H3K27me3 to silence the whole chromosome (Plath et al., 
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2003). Xist is exclusively localized to the nucleus and is also well spliced, the latter of which 

could be a consequence of its evolution from a protein-coding gene that pseudogenized 

(Duret et al., 2006). The RNA half life of Xist is tightly regulated and lies between ~30min in 

XX ES cells and 5-7h in XX somatic cells with established X chromosome inactivation 

(Sheardown et al., 1997). The function of Xist therefore strongly correlates with its RNA 

stability. Xist is overlapped by the antisense lncRNA Tsix. In mice, but not in humans, Tsix 

induces repressive chromatin at the Xist promoter on the active X chromosome to prevent 

Xist expression and X chromosome inactivation as a means of generating paternal specific or 

imprinted X chromosome inactivation in some mouse extra-embryonic tissues (Sado et al., 

2005). 

The imprinted lncRNA Airn is expressed from the paternal chromosome and overlaps the 

Igf2r promoter in antisense orientation (Figure 2A). On the maternal chromosome, a 

repressive methylation imprint generated in the oocyte prevents Airn expression. Airn is an 

atypical RNA transcript as it is ~118kb long and mostly unspliced (Seidl et al., 2006). Only 

~5% of nascent and ~35% of steady-state RNA levels are spliced (to ~1kb) and exported to 

the cytoplasm, while the unspliced isoform remains in the nucleus. Furthermore, unspliced 

Airn is unstable and has a half life of only ~90min, in contrast to the ~16h half life of the 

spliced products. Airn has been shown to repress paternal expression of Igf2r in all cell types 

and the two upstream genes Slc22a2 in all and Slc22a3 in some extra-embryonic tissues. 

The replacement of the Airn promoter with a constitutive promoter did not abolish silencing 

properties or alter the RNA biology of Airn, indicating that the functional regions are located 

within the Airn gene body (Stricker et al., 2008). Truncation experiments stopping Airn 

transcription after it had passed the Igf2r promoter also did not stop Igf2r repression, 

however, when Airn transcription was truncated before it reaches the Igf2r promoter, Igf2r 

was re-expressed from the paternal chromosome (Latos et al., 2012). In a final experiment, 

the Airn promoter was moved next to the Igf2r promoter and Igf2r was still silenced. This 

established that the RNA sequence is dispensable for Igf2r silencing and that the act of Airn 

transcription through the Igf2r promoter is sufficient to repress Igf2r (Latos et al., 2012). It has 

been hypothesized that the lack of Airn splicing, export and stabilization is explainable by the 

fact that its transcription is functional rather than the RNA molecule (Guenzl and Barlow, 

2012; Pauler et al., 2007; Santoro and Pauler, 2013). 
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Figure 2: Imprinted lncRNAs repress neighboring mRNAs in cis 
(A) The lncRNA Airn overlaps the promoter of the Igf2r mRNA in antisense orientation. Expression of 
Airn on the paternal chromosome leads to a repression of Igf2r expression in cis. Slc22a2 and Slc22a3 
are not overlapped by Airn and are paternally repressed only in some extra-embryonic tissues. (B) The 
lncRNA Kcnq1ot1 is expressed from the paternal chromosome from an intron of the mRNA gene Kcnq1. 
Kcnq1ot1 silences Kcnq1 and several neighboring genes in cis. (C) The lncRNA Nespas is expressed 
from the paternal chromosome antisense to Nesp and represses Nesp expression in cis by a yet 
unknown mechanism. Details see text. Clusters are not drawn to scale. Red boxes: imprinted 
expression from the maternal chromosome. Blue boxes: imprinted expression from the paternal 
chromosome. Genes that are bi-allelically expressed are depicted as black boxes. Open colored boxes: 
genes with multi-lineage imprinted expression. Colored boxed with black stripes: genes whose imprinted 
expression is restricted to the extra-embryonic lineage. Genes above the line are expressed from the (+) 
strand, genes below the line are expressed from the (-) strand. Arrows show transcriptional direction. 
Solid arrows indicate strong transcription whereas dashed arrows indicate weak transcription. LncRNAs 
are shown as wavy lines. See key for further details. ICE, imprint control element. Figure modified from 
Guenzl and Barlow, 2012. 

 

The imprinted lncRNA Kcnq1ot1 is expressed from the paternal chromosome and is located 

in antisense orientation within an intron of Kcnq1 (Figure 2B). On the maternal chromosome, 

a repressive methylation imprint generated in the oocyte prevents Kcnq1ot1 expression. 

Similar to Airn, Kcnq1ot1 is mostly unspliced (~83kb), nuclear localized and has a relatively 
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short half life of <4h (Mohammad et al., 2010). It silences in cis the overlapped gene Kcnq1 

and the three upstream genes Cdkn1c, Slc22a18 and Phlda2 in multiple tissues and 

additional six genes in extra-embryonic tissues only (Mancini-Dinardo et al., 2006). In extra-

embryonic tissues, Kcnq1ot1 has been shown to interact with the histone methyltransferase 

G9a and the PRC2 complex in a lineage-specific manner to deploy repressive H3K9me3 and 

H3K27me3 chromatin modifications throughput the cluster (Pandey et al., 2008). However, as 

these repressive marks are not found at imprinted genes in the embryo (Mager et al., 2003; 

Wagschal et al., 2008), it could be that Kcnq1ot1 also functions by transcriptional interference 

of cis-regulatory elements (Koerner et al., 2009). In fact, post-transcriptional depletion of 

Kcnq1ot1 by RNAi did not affect imprinting maintenance in stem cells, further arguing that the 

RNA molecule might be dispensable for the regulation of imprinted genes (Golding et al., 

2011). 

The imprinted lncRNA Nespas is expressed from the paternal chromosome in antisense 

orientation to the mRNA gene Nesp (encoded by the Gnas gene) (Figure 2C). Similar to Airn 

and Kcnq1ot1, the maternal Nespas promoter carries a repressive methylation imprint 

established in the oocyte (Williamson et al., 2002). Nespas has been shown to repress Nesp 

in multiple tissues. The Nespas gene produces spliced isoforms (~2.2kb) as well as unspliced 

isoforms (~30kb), however, the ratio is unknown so far. It is functioning in the nucleus and its 

RNA stability is unknown. It is still unclear whether the act of Nespas transcription or the 

Nespas lncRNA itself is functional in repressing Nesp expression (Williamson et al., 2011). 

The imprinted lncRNA H19 is expressed from the maternal chromosome and is markedly 

different from the previously described imprinted lncRNAs. It is very mRNA-like as it is 

efficiently spliced to give rise to a ~2.2 kb lncRNA, exported to the cytoplasm and stable 

(Brannan et al., 1990). H19 expression on the paternal chromosome is repressed by a DNA 

methylation imprint acquired in the sperm. H19 is one of the most abundant and most 

conserved lncRNAs and it has been shown to be deregulated in numerous cancers. 

Furthermore, it acts as a growth repressor to limit the growth of the placenta before birth and 

has been suggested to have tumor suppressor activity (Hao et al., 1993). While the H19 

lncRNA is dispensable for imprinted expression of Igf2, it hosts miR-675 which is rapidly 

released in response to stress to inhibit cell proliferation (Keniry et al., 2012). 

Meg3 and Rian are two imprinted lncRNAs located in the Dlk1 cluster and expressed from the 

maternal chromosome (Miyoshi et al., 2000). Meg3 contains 12 exons and gives rise to 

several alternatively spliced isoforms that are cell type specific (Zhang et al., 2010). The 

ENCODE consortium found Meg3 to be one of the most nuclear-enriched lncRNAs (Derrien 

et al., 2012). Its expression is implicated in growth suppression and activation of the p53 

pathway and is therefore lost in most human tumor cell lines. In addition to these trans-acting 

functions, Meg3 has been shown to control expression of the neighboring and oppositely 

imprinted Dlk1 gene by recruiting PRC2 in cis (Zhao et al., 2010). Rian contains 20 exons and 

gives rise to alternatively spliced isoforms with a length of ~3.6kb. It is nuclear localized and a 



Philipp Günzl  INTRODUCTION 

 - 15 - 

CRISPR/Cas9 mediated deletion has shown that it negatively regulates Dlk1 in brain where it 

is most highly expressed but not in heart or ovary (Han et al., 2014). Rian binds several 

chromatin modifiers such as PRC1, PRC2, JARID1B and JARID1C and is supposed to be 

implicated in gene regulatory networks controlling pluripotency and differentiation (Guttman et 

al., 2011; Zhao et al., 2010). Interestingly, it has been shown that Meg3 and Rian are 

aberrantly silenced in many induced pluripotent stem (iPS) cell clones which failed to 

generate viable mice (Stadtfeld et al., 2010). Treatment of these cells with histone 

deacetylase inhibitors reactivated the locus and led to viable all-iPSC mice. This established 

that the expression state of a single locus can be used to identify fully reprogrammed ESC-

like iPSC clones. 

 

2.4.2 LncRNAs act in trans to regulate gene expression genome-wide 
Many lncRNAs have been shown to regulate genes in trans. Strictly speaking, most likely 

every cytoplasmic RNA molecule exerts at least minor trans-effects by offering microRNA 

binding sites (Figure 3A). MicroRNA binding, whether specific or unspecific, reduces available 

microRNAs from the intracellular pool and could lead to expression changes of other 

microRNA targets. The resulting large-scale regulatory network forms the basis for the 

competing endogenous (ce)RNA hypothesis (Salmena et al., 2011). While many of these 

regulations may be unspecific, it has been shown that pseudogenes use this mechanism to 

specifically regulate their coding counterpart (Poliseno et al., 2010) and a lncRNA has also 

been shown to sponge specific microRNAs to regulate transcription factors involved in muscle 

differentiation (Cesana et al., 2011). However, many lncRNAs also exert trans-effects by 

recruiting chromatin modifiers and targeting them to distant loci to modify local chromatin 

environment and thereby gene expression (Figure 3B) (Khalil et al., 2009; Zhao et al., 2010). 

Genome-wide investigations of lncRNAs using RNA immunoprecipitation (RIP)-Chip (Khalil et 

al., 2009) and RIP-Seq (Zhao et al., 2010) found that hundreds of lncRNAs recruit PRC2, a 

chromatin modifying complex primarily involved in establishing repressive H3K27me3 marks, 

to repress multiple genes in trans. LncRNAs have also been shown to extensively bind active 

chromatin modifiers, such as WDR5, a component of the MLL histone methyltransferase 

complex driving H3K4me3 (Yang et al., 2014). While all of these studies suggest trans-

effects, only one study excludes possible cis-effects by checking expression levels of at least 

10 neighboring genes of respective lncRNAs in either direction (Khalil et al., 2009). Well-

studied examples of trans-acting regulatory lncRNAs involved in fundamental cellular 

processes include among others HOTAIR, PCAT-1, MALAT1, Braveheart, Fendrr, lincRNA-

p21 and Firre. 
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Figure 3: LncRNAs act in trans to regulate mRNAs 
(A) A lncRNA and an mRNA share microRNA response elements (MREs, colored ovals) and therefore 
compete for the same microRNAs. If microRNAs preferentially bind the lncRNA, the mRNA will not be 
repressed any longer. (B) A lncRNA being expressed from chromosome 2 binds chromatin modifiers 
and targets them to an mRNA locus on chromosome 7 to regulate its expression in trans. Details see 
text. 

 

Human HOTAIR is a 2.2kb spliced transcript and was among the first examples of lncRNAs 

that exert genome-wide regulatory effects in development and disease (Gupta et al., 2010; 

Rinn et al., 2007). HOTAIR is expressed from the HOXC cluster and represses via PRC2 

targeting multiple HOXD genes spread across 40kb in trans (Rinn et al., 2007). During breast 

cancer progression, HOTAIR has been shown to be increasingly upregulated and a powerful 

predictor for metastasis and death (Gupta et al., 2010). Forced HOTAIR overexpression 

induced PCR2 occupancy and H3K27me3 at >800 genes, of which 39% showed altered gene 

expression levels. A handful of them were previously described to inhibit breast cancer 

progression and were downregulated upon HOTAIR overexpression. HOTAIR also served as 

a prototype for the hypothesis that lncRNAs can act as molecular scaffolds binding multiple 

chromatin modifiers to affect chromatin environment at target genes (Tsai et al., 2010). While 

the 3’ domain binds the LSD1/CoREST/REST complex and the 5’ domain of HOTAIR binds 

PRC2, this coupled recruitment of chromatin modifiers leads to coordinated H3K4me3 

demethylation and gain of H3K27me3, respectively. However, unexpectedly, mouse Hotair is 

poorly conserved and a deletion of Hotair along with eight Hoxc genes did not lead to 

expression changes or altered chromatin patterns in Hoxd genes (Schorderet and Duboule, 

2011). A targeted deletion of Hotair led to marginal de-repression of Hoxd genes and weak 

skeletal malformations (Li et al., 2013a). This discrepancy argues that lncRNAs might have 

different functions in mouse and humans or that a battery of genetic tests is required to 

confidently determine lncRNA functions (Bassett et al., 2014). The intergenic lncRNA PCAT-1 

was identified as one of 121 prostate cancer associated lncRNAs (PCATs) in a large-scale 
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RNA-seq study of 102 prostate tissues and cell lines (Prensner et al., 2011). Expression of 

PCAT-1 is repressed by PRC2 but was upregulated in metastatic cancers and activated cell 

proliferation. The expression pattern of the 121 PCATs could distinguish benign, localized 

cancers and metastatic cancers and it was hypothesized that they could further be used to 

stratify patients by urine-based assays (Prensner et al., 2011). 

MALAT1 is an ~8kb mostly unspliced nuclear lncRNA and belongs to the most highly 

abundant lncRNAs. Its half life ranges from ~9h to >12h and is conferred by the formation of a 

stabilizing triple helix (Brown et al., 2014; Tani et al., 2010). It is highly conserved across 33 

mammalian species and has been first identified in lung adenocarcinomas (Ji et al., 2003). 

MALAT1 is localized to nuclear speckles by two sequence elements (Miyagawa et al., 2012) 

and has been shown to be cleaved by RNase P at the 3’ end to give rise to a small 

cytoplasmic tRNA-like RNA (Wilusz et al., 2008). Furthermore, MALAT1 interacts with several 

splicing factors in nuclear speckles to regulate alternative splicing of pre-mRNAs (Tripathi et 

al., 2010). A systematic approach investigating Malat1-binding RNAs genome-wide confirmed 

binding of pre-mRNAs, however, it seems to be an indirect interaction mediated by proteins 

(Engreitz et al., 2014). MALAT1 is frequently mutated, deleted or overexpressed in numerous 

human tumor entities, as reflected by its name "metastasis associated lung adenocarcinoma 

transcript 1" (Gutschner et al., 2013a). It has been shown that MALAT1 binds PRC1 to 

modulate the three-dimensional localization of genes in the nucleus (Yang et al., 2011a) and 

it is indeed a potent regulator binding to hundreds of genomic loci, preferentially active genes 

(West et al., 2014). Knock-down of MALAT1 in a human lung tumor cells using zinc finger-

mediated RNA destabilization resulted in impaired migration and less tumor formation in 

mouse xenografts. In vivo knock-down of MALAT1 using antisense oligonucleotides (ASOs) 

prevented metastasis formation after tumor implantation and was suggested to serve as a 

potential therapeutic approach (Gutschner et al., 2013b). However, despite numerous 

described functions for MALAT1, a knockout in human cells did not show an obvious 

phenotype and two Malat1 knockout mouse models indicated that Malat1 is dispensable for 

pre- and post-natal development (Eißmann et al., 2012; Zhang et al., 2012). This surprising 

results shows that genetic tests are required to confidently determine lncRNA functions 

(Bassett et al., 2014). 

The intergenic lncRNA Braveheart is a spliced ~0.6kb RNA and has been shown to be 

required for cardiac lineage commitment in the mouse (Klattenhoff et al., 2013). It directly 

interacts with Suz12 of PRC2 to regulate a cardiovascular gene network in trans. A 

bidirectional lncRNA named Fendrr is implicated in the regulation of mouse heart and body 

wall development (Grote et al., 2013). It associates with the complexes PRC2 and TrxG/MLL 

to modulate in trans the expression of transcription factors that control cardiac mesoderm 

differentiation. Mutant Fendrr mice exhibit severe developmental defects and Fendrr loss has 

been shown to be perinatal lethal in mice due to multiple organ defects (Grote et al., 2013; 

Sauvageau et al., 2013). Together, Braveheart and Fendrr are among the first characterized 
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lncRNAs to have critical roles in lineage commitment and mammalian development by 

regulating multiple target genes in trans (Srivastava and Cordes Metzler, 2013). 

LincRNA-p21 is a 3.1kb spliced and stable (half life >6h) RNA being transcribed ~15kb 

upstream of the cell cycle regulator Cdkn1a (also known as p21). It is induced by p53 upon 

DNA damage and has been shown to interact with the heterogenous nuclear 

ribonucleoprotein (hnRNP-K) through its 5’ end to transcriptionally repress multiple genes in 

trans to facilitate apoptosis (Huarte et al., 2010). LincRNA-p21 also associates with the RNA 

binding protein HuR to post-transcriptionally repress mRNA translation (Yoon et al., 2012). 

Additionally, a cis-regulatory function to activate expression of p21 has also been described 

for lincRNA-p21 and will be discussed in the next chapter (Dimitrova et al., 2014). 

The intergenic lncRNA Firre is an alternatively spliced and strictly nuclear RNA that forms 

expression foci and remains stable for >6h (Hacisuleyman et al., 2014). Firre escapes X 

chromosome inactivation and interacts with the nuclear matrix factor hnRNPU through a 

156bp repeating sequence, which is also required for nuclear localization. Firre localizes to a 

~5mb domain on the X chromosome in cis and to five other chromosomal loci in trans, all of 

which reside in spatial proximity to the Firre locus. Deletion of Firre resulted in a deregulation 

of >1000 genes, mouse ESC growth defects and increased Tgfβ signaling, the latter of which 

is consistent with previous findings that Firre strongly represses adipogenesis in mouse 

preadipocytes (Sun et al., 2013). This is the first known example of a lncRNA that modulates 

three-dimensional nuclear architecture. 

 

2.4.3 LncRNAs act in cis to regulate neighboring gene expression 
As already introduced in chapter 2.4.1, several well-studied imprinted lncRNAs have 

repressive cis-regulatory functions on neighboring genes, either by the transcript or by the 

mechanism of transcriptional interference. LncRNAs might also exert their cis-regulatory 

functions on neighboring genes by the act of transcription to keep chromatin accessible, 

however, they could also represent mere byproducts of open chromatin. Several lncRNA 

classes such as enhancer lncRNAs (Kim et al., 2010; Wang et al., 2011a) and upstream 

antisense RNAs (Core et al., 2008; Seila et al., 2008) correlate positively with expression of 

nearby mRNAs and are supposed to be the cause or consequence of open chromatin. The 

class of enhancer-like intergenic lncRNAs has been shown to increase expression of 

neighboring genes in cis by chromosome-looping and recruitment of the Mediator complex 

(Lai et al., 2013; Ørom et al., 2010). Well-studied examples of cis-acting regulatory lncRNAs 

involved in fundamental cellular processes include among others Hottip, Mira, DBE-T, ANRIL, 

BACE1-AS, ZEB2-AS and lincRNA-p21. 

The human lncRNA HOTTIP is 3.8kb long, spliced and expressed from the 5’ tip of the HOXA 

locus and activates the expression of several HOXA genes in cis (Wang et al., 2011c). It is 

mostly nuclear localized and single molecule RNA-fluorescence in situ hybridizations (RNA-
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FISH) indicated low expression with ~0.3 estimated transcripts per cell. HOTTIP recruits the 

MLL1 complex by binding to WDR5 and targets it to the HOXA locus by chromosomal looping 

to facilitate H3K4me3 deposition and activation of HOXA genes. Interestingly, ectopic 

expression of HOTTIP did not recapitulate this effect, arguing for a need of HOTTIP 

transcription near its target genes (Wang et al., 2011c). This is one of the first examples of 

how a lncRNA exploits a tethering mechanism and chromosomal looping to bring activating 

chromatin modifiers to its target genes in cis. In mouse embryonic stem cells the intergenic 

lncRNA Mira exploits a similar mechanism to activate Hoxa6 and Hoxa7. Mira is ~0.8kb long, 

unspliced and targets the Mll1 complex and thereby H3K4me3 to the two Hoxa genes by 

intrachromosomal looping (Bertani et al., 2011).  

The human intergenic lncRNA DBE-T is a chromatin-associated nuclear RNA and has been 

the first described activatory lncRNA to be involved in a human genetic disease (Cabianca et 

al., 2012). Facioscapulohumeral muscular dystrophy (FSHD) is a common myopathy that is 

caused by deletions that reduce the copy number of a 3.3kb repeat. In healthy individuals, 

these repeats normally recruit PRC2 and its repressive mark H3K27me3, which also 

represses neighboring FSHD-causing genes. A reduction of repeat copy numbers below 11 

units leads to decreased H3K27me3 levels and thereby expression of DBE-T, which recruits 

the TrxG protein Ash1L and its associated mark H3K36me2 to de-repress FSHD-causing 

genes in cis and induce the disease (Cabianca et al., 2012). 

ANRIL (also known as p15AS) is an antisense lncRNA that spans over 126kb, is inefficiently 

spliced and nuclear localized. It has been first detected in familial cancers, is transcribed in 

antisense orientation to the INK4b-ARF-INK4a tumor suppressor gene cluster and completely 

overlaps p15/INK4a (Pasmant et al., 2007). While the three tumor suppressor genes are not 

expressed in normal cells, they become rapidly upregulated in senescent and oncogenic cells 

and are frequently deleted in various cancers. ANRIL has been shown to silence p15/INK4a 

in human leukemias through heterochromatin formation but not DNA methylation (Yu et al., 

2008). It therefore interacts with CBX7 within PRC1 and SUZ12 within PCR2 to recruit 

H3K27me3 and repress the whole locus in cis (Kotake et al., 2011; Yap et al., 2010). A 

knock-down of ANRIL using shRNA or antisense oligonucleotides resulted in 4- to 8-fold 

upregulation of p15/INK4a expression and decreased proliferation. Anril knock-out in mice 

indicated a direct cis-repressor activity towards p15/INK4a and p16/INK4b (Visel et al., 2010). 

The importance of ANRIL is further underlined by genome-wide association studies that 

identified it as a susceptibility locus for coronary disease, intracranial aneurysm and type 2 

diabetes (Pasmant et al., 2011). 

BACE1-AS is a conserved and ~2kb long antisense lncRNA to BACE1 in mouse and humans 

(Faghihi et al., 2008). BACE1 is a crucial enzyme in the development of Alzheimer’s disease 

as it cleaves the amyloid precursor protein to give rise to 42bp long amyloid-β peptides that 

accumulate in the brain and form plaques. As a consequence of cellular stress, BACE1-AS is 

upregulated, and forms an RNA duplex with its sense partner BACE1. This leads to BACE1 
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mRNA stabilization, increased BACE1 protein levels and enhanced amyloid-β production. A 

follow-up study could show that this antisense lncRNA-mediated stabilization of BACE1 

mRNA is due to a masking of a specific microRNA binding site (Faghihi et al., 2010). In vivo, 

levels of BACE1-AS were elevated in Alzheimer’s disease patients as well as mice transgenic 

for the amyloid precursor protein, which is consistent with its proposed role as a driver for 

Alzheimer’s disease. Another example of an antisense lncRNA regulating its sense partner is 

Zeb2-as, which forms a duplex with Zeb2 mRNA and masks the 5’ splice site of an intron 

(Beltran et al., 2008). The retained intron contains a ribosome entry site that facilitates 

translation and an increase of Zeb2 protein levels. As a consequence, Zeb2 transcriptionally 

represses E-cadherin and epithelial-mesenchymal transition (EMT) is triggered. 

As already discussed in chapter 2.4.2, the intergenic lincRNA-p21 post-transcriptionally 

represses translation of multiple mRNAs in trans but has also been shown to exhibit cis-

regulatory effects on its neighboring gene p21. A deletion of the promoter and first exon of 

lincRNA-p21 led to differential expression of 143 genes in unchallenged MEFs and 904 genes 

in DNA damaged MEFs (Dimitrova et al., 2014). However, the predominant target of lincRNA-

p21 seems to be p21 as lincRNA-p21 associates with hnRNP-K to act as a coactivator for 

p53-dependent p21 transcription. The trans-deregulation of hundreds of genes could be 

secondary due to diminished p21 levels rather than a direct consequence of lincRNA-p21 

depletion. These findings suggest that lincRNA-p21 affects global gene expression by 

primarily regulating its neighboring gene p21 in cis. 

 

2.5 RNA biology features of lncRNAs 

2.5.1 RNA splicing 
Maturation of RNA precursors consists of the four processes capping, splicing, 3’ cleavage 

and polyadenylation, all of which happen simultaneously as the RNA is transcribed (Bentley, 

2014). RNA splicing is the process in which the introns of nascent pre-mRNA are excised and 

the exons are joined to form the mature mRNA. It exists in all kingdoms of life although with 

major differences. While eukaryotes predominantly splice mRNAs and to a lesser extent non-

coding RNAs, splicing in prokaryotes is much more rare (Rogozin et al., 2012). Three splicing 

pathways exist in eukaryotes with the spliceosomal pathway being the most important one 

followed by self-splicing and tRNA splicing. The spliceosome operates in the nucleus and 

consists of small nuclear (sn)RNAs and a range of associated proteins. It assembles new at 

each pre-mRNA and detects the 5’ and 3’ splice sites of the introns and a branch point 

sequence in the middle of the intron. Three canonical splice sites exist, of which GT-AG is 

most widely used (>99%) followed by GC-AG and AT-AC. Most RNAs are co-transcriptionally 

spliced, however, splicing is often completed post-transcriptionally (Bentley, 2014; Tilgner et 

al., 2012). While the majority of mRNAs is spliced, several single-exon mRNAs do not depend 

on splicing. Many lncRNAs such as Airn, Kcnq1ot1 and Malat1 have been shown to be 
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predominantly unspliced while others such as H19 and Braveheart are efficiently spliced. It is 

currently unknown why lncRNAs are less efficiently spliced compared to mRNAs. As many 

lncRNAs are not processed properly (Cheng et al., 2005; Yang et al., 2011b), it could be that 

a general lack of efficient RNA processing also leads to a lower splicing efficiency. However, 

also polyadenylated lncRNAs can be inefficiently spliced (Seidl et al., 2006). One study found 

that co-transcriptional splicing is inefficient for lncRNAs (Tilgner et al., 2012), however, post-

transcriptional RNA splicing of the steady state RNA population has to my knowledge never 

been thoroughly investigated genome-wide. 

 

2.5.2 RNA export 
The cellular localization of RNA molecules is crucial to their functions and therefore tightly 

regulated. Messenger RNAs need to be exported to the cytoplasm to become translated while 

lncRNAs have described functions in either the cytoplasm or the nucleus, or both. 

Cytoplasmic functions of lncRNAs include regulation of mRNA translation, direct regulation of 

mRNA stability and regulation of the miRNA pool as a competing endogenous (ce)RNA 

(Fatica and Bozzoni, 2014; Salmena et al., 2011). Nuclear lncRNAs predominantly have gene 

regulatory functions, however, structural functions are also described, e.g. for Malat1 and 

Neat1 in the organization of nuclear bodies such as paraspeckles (Bond and Fox, 2009; West 

et al., 2014) and for Firre in the modulation of nuclear architecture (Hacisuleyman et al., 

2014). Nuclear gene regulatory functions of lncRNAs can be broadly classified into cis-acting 

and trans-acting functions. Three models are known how cis-acting lncRNAs regulate mRNAs 

on the same chromosome, all of which strictly happen in the nucleus: (i) lncRNAs bind 

chromatin modifiers while still being tethered to the nuclear transcription machinery and target 

them to neighboring mRNA loci (e.g. HOTTIP (Wang et al., 2011c)). (ii) lncRNAs induce the 

formation of repressive chromatin to regulate dosage compensation and genomic imprinting 

(e.g. Xist and Kcnq1ot1 (Pandey et al., 2008; Terranova et al., 2008; Umlauf et al., 2004). (iii) 

lncRNAs also regulate genes by the act of transcription through genetic elements or 

promoters (e.g. Airn (Latos et al., 2012)).  

The regulation of RNA export into the cytoplasm is complex and requires RNA to associate 

with proteins to form ribonucleoprotein complexes. Subsequently, these complexes are 

targeted to and translocate through nuclear pore complexes (NPC) that are contained in the 

nuclear envelope (Carmody and Wente, 2009). Proteins binding the polyA tail facilitate 

nuclear export and RNA binding proteins harbor nuclear retention signals that keep RNAs in 

the nucleus or induce their immediate transport back into the nucleus once they are shuttled 

to the cytoplasm. Each of the four RNA processing events capping, splicing, 3’ cleavage and 

polyadenylation that give rise to mature RNAs trigger the recruitment of proteins that facilitate 

nuclear export. Inefficiently processed RNAs are not exported but will instead be targeted for 

degradation by the exosome (Carmody and Wente, 2009). It is still unknown whether or how 

lncRNAs are actively retained in the nucleus to fulfill their functions or whether many of them 
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lack mRNA properties such as RNA processing and recruitment of specific proteins and 

therefore exhibit decreased nuclear export efficiency. 

 

2.5.3 RNA stability 
The abundance of RNA molecules in cells is a prerequisite for function and is determined by 

two factors: the rate of RNA transcription and RNA stability. While the rate of transcription for 

each gene can be determined using global run-on sequencing (GRO-seq) (Core et al., 2008), 

the RNA stability can be examined using transcription inhibitors or RNA labeling followed by 

RNA-seq. In general, RNA degradation is a necessary cellular function to eliminate RNA 

molecules that are not useful to the cell anymore and this process has to be tightly controlled. 

The three major classes of RNA-degrading enzymes include endonucleases (cut RNA 

internally) as well as 5’ exonucleases (hydrolyze RNA from the 5’ end) and 3’ exonucleases 

(hydrolyze RNA from the 3’ end) (Houseley and Tollervey, 2009). Most of RNA degradation 

activities can be attributed to RNA processing in which excised introns and spacer fragments 

are recycled. RNA degradation also plays a role in surveillance pathways that monitor RNA 

quality and targets defective RNAs for nonsense mediated decay (NMD). The third role for 

RNA degradation involves the constitutive turnover of mRNAs and lncRNAs and is a key 

factor in the control of gene expression (Houseley and Tollervey, 2009). Polyadenylated 

transcripts such as mRNAs and many lncRNAs undergo progressive deadenylation and 

degradation by the exosome in the nucleus and the cytoplasm, a process that is specific for 

each different RNA species and determines their life spans.  

The regulation of lncRNA stability is important to retain lncRNAs with housekeeping functions 

and eliminate lncRNAs that are unfavorable for the cell, e.g. because they are defective or 

they have potent regulatory functions that were only needed for a limited time span to react to 

a stimulus. The stability of lncRNAs has long been studied in order to evaluate possible 

functions. Single lncRNAs such as Airn (half life ~2h) (Seidl et al., 2006) and Kcnq1ot1 (half 

life <4h) (Redrup et al., 2009) as well as lncRNA classes such as cryptic unstable transcripts 

(CUTs, half life 3-10min) (Wyers et al., 2005) in yeast and promoter upstream transcripts 

(PROMPTs, “highly unstable”) (Preker et al., 2008) in humans have been shown to be rather 

unstable. A class of highly unstable cryptic antisense lncRNAs thought to be a byproduct of 

RNA polymerase II activity has recently been shown to be specifically degraded by the 

exonucleolytic RNA exosome (Core et al., 2008; Preker et al., 2008). The first genome-wide 

studies on lncRNA stability using microarrays (Clark et al., 2012) and RNA-seq (Tani et al., 

2012) showed that many lncRNAs are unstable and that the diversity of lncRNA stability is 

increased compared to mRNAs.  
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2.6 Is RNA biology indicative for lncRNA function? 

It seems that lncRNA functions can be split into the three major categories of (i) trans-acting 

lncRNAs that function by interacting with proteins, (ii) cis-acting lncRNAs that function by 

acting as tethers to recruit chromatin modifiers and lastly (iii) cis-acting lncRNAs that regulate 

neighboring genes by the act of transcription (Batista and Chang, 2013). A novel lncRNA can 

easily be grouped in any of the four well-studied classes of intergenic, bidirectional, enhancer 

and antisense lncRNAs (see chapter 2.3), however, these classes will give little information 

about possible functions and mechanisms of action. It was suggested that RNA biology could 

be an initial predictor for function and could provide a good start for further in-depth functional 

validation (Guenzl and Barlow, 2012; Kornienko et al., 2013). Intuitively, this makes sense, as 

lncRNAs that interact with proteins would need to be rather stable to reach certain abundance 

levels in order to fulfill their functions. Conversely, lncRNAs that are a byproduct of a 

functional transcriptional process do not necessarily need to be stabilized or otherwise 

processed. Due to a lack of functional data for the majority of lncRNAs, this hypothesis will 

await verification for some time. However, in the meantime one could look at the few known 

lncRNAs that have been assigned functions and mechanisms of actions or use conservation 

of RNA biology between closely related species as a proxy to estimate the importance of 

RNA biology for function. The drawback is that for many lncRNAs full information about RNA 

biology features is missing and if these features are known, they are not comparable as they 

had been assayed in different cell types, species and often with different techniques. A 

genome-wide dataset combining the three RNA biology features export, stability and splicing 

for the same lncRNA annotation in multiple cell types is clearly needed to unravel possible 

connections between RNA biology and function. 

A combination of functional and RNA biology data is lacking for most lncRNAs. The unusual 

RNA biology of imprinted lncRNAs such as Airn and Kcnq1ot1 (see chapter 2.4.1) early 

raised questions how they function despite the low stability and inefficient processing of their 

RNA transcripts (Pauler et al., 2007). The term “macro lncRNA” was coined to emphasize 

their RNA biology and distinguish them from mRNA-like lncRNAs (Guenzl and Barlow, 2012). 

It was suggested that macro lncRNAs could function by transcriptional overlap of mRNA 

promoters or enhancers, which would render the RNA molecule dispensable (Koerner et al., 

2009; Pauler et al., 2012). Indeed, Airn represses Igf2r by transcriptional overlap (Latos et al., 

2012). However, the RNA molecules of Airn as well as Kcnq1ot1 have also been reported to 

interact with the H3K9 histone methyltransferase G9a to regulate distant neighboring genes in 

extra-embryonic tissues (Nagano et al., 2008; Pandey et al., 2008). This indicates that 

lncRNAs could employ two different mechanisms to regulate overlapped and distant genes in 

respective tissues. Other lncRNAs such as Braveheart and Hotair that interact with proteins 

are often spliced and stable and have an mRNA-like RNA biology. It has never been 

investigated whether “macro” lncRNAs are more widespread in the mouse genome than 

previously anticipated and whether they can be distinguished from mRNA-like lncRNAs.  
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If RNA biology indeed correlates with function, one would expect that when the function of a 

particular lncRNA is conserved also the RNA biology features are conserved. LncRNAs 

evolve rapidly, a third of all human lncRNAs is assumed to have arisen only in the primate 

lineage (Derrien et al., 2012). Between the closely related species mouse and rat up to 61% 

of lncRNAs have been shown to be unique to the Mus genus (Kutter et al., 2012). Those 

lncRNAs that are expressed in multiple species can therefore be assumed to have conserved 

(yet unknown) functions. Investigating the RNA biology of these conserved functional 

lncRNAs might reveal key insights into the connection between RNA biology and function. As 

an example, a lncRNA that is mRNA-like in mouse and rat has probably a similar function in 

both species and further argues that RNA biology is important for function. If, however, the 

majority of lncRNAs exhibit a different RNA biology in mouse and rat this could point towards 

the fact that RNA biology is irrelevant for function. In essence, knowledge of the RNA biology 

of lncRNAs together with secondary structures, protein-binding motifs and other features in 

multiple cell types and species would contribute to the functional characterization of lncRNAs 

(Mercer and Mattick, 2013). The interrogation of all these features genome-wide, rather than 

for individual lncRNAs, will provide a powerful platform to extrapolate functions for related 

lncRNAs, similar to large-scale proteomic studies, which might also be interesting for the 

pharmaceutical industry to develop lncRNA based therapeutics.  

 

2.7 Aim of this study 

The major aim of this study was to investigate the RNA biology (stability, export and splicing) 

of mouse lncRNAs genome-wide in order to gain more knowledge about possible connections 

between RNA biology, genomic transcript features and functional implications. I created 

genome-wide datasets for RNA stability, RNA export and RNA splicing in two cell types of the 

mouse and the rat and found that approximately half of all lncRNAs have an mRNA-like RNA 

biology while the other half is non-mRNA like. Furthermore, I show that current lncRNA 

classes are not distinguishable by RNA biology. As an alternative, I clustered lncRNAs by 

their RNA biology and show that the RNA biology of each cluster is evolutionary conserved in 

the rat. Additionally, this study reveals that certain genomic transcript features such as cDNA 

size and average exon size strongly correlate with RNA biology features. These datasets will 

be a valuable resource for the research community and will help to classify lncRNAs by their 

RNA biology features.  

 

N.B.: Work from this thesis contributes to a manuscript that is currently prepared by myself 

and Florian Pauler (Guenzl et al., manuscript in preparation). Furthermore, I have published 

one review article for which I wrote the text and prepared figures (Guenzl and Barlow, 2012) 

and contributed text for a second review article (Kornienko et al., 2013). Both reviews are 

included in the appendix. 
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3 MATERIAL AND METHODS 

3.1 Materials 

3.1.1 Cell lines 
Table 2: Cell lines 

Cell Lines Source 
CCE mouse embryonic stem cells (mESC) Provided by Erwin Wagner (CNIO, Madrid, Spain) 
Primary mouse embryonic fibroblasts (MEF) Self-established from FvB/N strain 
Rat embryonic stem cells (rESC) Obtained from the Rat Resource & Research Center 
Primary rat embryonic fibroblasts (REF) Self-established from Him:OFA strain 

 

3.1.2 Cell culture reagents 
Table 3: Cell culture reagents 

Cell Culture Reagent Company 
Fetal calf serum PAA 
Gentamycin Invitrogen 
L-glutamine Invitrogen 
DMEM Invitrogen 
DMSO Sigma 
Trypsin 0,25% EDTA, red Invitrogen 
GS1-R Rat Pluripotent Stem Cell Culture Media StemCells, Inc. 

 

3.1.3 Chemicals 
Table 4: Chemicals 

Chemicals Company 
GoTaq DNA polymerase Fermentas 
5x GoTaq flexi buffer Fermentas 
Proteinase K Applichem 
Actinomycin D Sigma 
Agarose Biozym 
BCP MRC 
dNTP Mix 10mM Fermentas 
Ethanol 96% Merck 
Ethidiumbromide Applichem 
Glycogen Roche 
HCl Merck 
Isopropanol Merck 
MgCl2 25mM Fermentas 
RNA storage solution Ambion 
RNase Zap Spray Ambion 
RNase Zap Wipes Ambion 
Sodium acetate 3M Ambion 
TRI reagent Sigma 
Tris Applichem 
Betaine 5M Sigma 
AMPure XP beads Beckman Coulter, Inc. 
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3.1.4 Kits 
Table 5: Kits 

Kit Company 
DNA-free Kit Ambion 
RevertAid First Strand cDNA Synthesis Kit Fermentas 
Mesa Green qPCR Mastermix Plus Eurogentec 
Ribo-Zero rRNA Removal Kit (H/M/R) Low Input Epicentre 
Ribo-Zero rRNA Removal Kit (H/M/R) Epicentre 
ScriptSeq RNA-Seq Library Preparation Kit Epicentre 
ScriptSeq v2 RNA-Seq Library Preparation Kit Epicentre 
ScriptSeq Index PCR Primers (Set 1) Epicentre 
TruSeq RNA Sample Prep Kit v2 Illumina 
MinElute PCR Purification Kit Qiagen 
MinElute Gel Extraction Kit Qiagen 
RiboMinus Eukaryote Kit for RNA-seq Life Technologies 
Wizard SV Gel and PCR Clean-up System Promega 

 

3.1.5 Equipment 
Table 6: Equipment 

Equipment Company 
NanoDrop 1000 Spectrophotometer Thermo Scientific 
Bioanalyzer 2100 Agilent Technologies, Inc. 
Experion Automated Electrophoresis System Bio-Rad Laboratories GmbH 
HiSeq2000 Illumina, Inc. 
cBot Illumina, Inc. 
AbiPrism 7000 Sequence Detection System Applied Biosystems 
Thermal cycler PCT-200 MJ Research 
Microcentrifuge 5415R Eppendorf 
Megafuge 1.0R Heraeus 
Avanti J-26 XP Centrifuge Beckman Coulter 
Qubit 1.0, 2.0 Invitrogen 
RNA 6000 Nano Kit Agilent Technologies, Inc. 

 

3.1.6 PCR primers 
Table 7: PCR primers 

PCR assay Primer name Sequence (5’-3’) Reference 

YMT2/B 
(mouse) 

YMT2/B-F CTGGAGCTCTACAGTGATGA 
(Capel et al., 1999) 

YMT2/B-R CAGTTACCAATCAACACATCAC 

Myog  
(mouse) 

Myog-F TTACGTCCATCGTGGACAGCAT 
(Capel et al., 1999) 

Myog-R TGGGCTGGGTGTTAGTCTTAT 

Sry  
(rat) 

Sry-F CATCGAAGGGTTAAAGTGCCA 
(Buehr et al., 2008) 

Sry-R ATAGTGTGTAGGTTGTTGTCC 

Il-2  
(rat) 

Il-2-F CTAGGCCACAGAATTGAAAGATCT 
(Buehr et al., 2008) 

Il-2-R GTAGGTGGAAATTCTAGCATCATCC 
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3.1.7 qPCR primers 
Table 8: qPCR primers 

PCR assay Primer name Sequence (5’-3’) Reference 

5S rRNA 
(human) 

5S-F CTACGGCCATACCACCCT 
(Zhang et al., 2011) 

5S-R GGTATTCCCAGGCGGTCT 

5.8S rRNA 
(human) 

5.8S-F CTTAGCGGTGGATCACTCG 
(Zhang et al., 2011) 

5.8S-R AAGCGACGCTCAGACAGG 

18S rRNA 
(human) 

18S-F TCCTTTGGTCGCTCGCTCCT 
(Zhang et al., 2011) 

18S-R TCGCTCTGGTCCGTCTTGC 

28S rRNA 
(human) 

28S-F TTCGGGATAAGGATTGGCTCTA 
(Zhang et al., 2011) 

28S-R GGCTGTGGTTTCGCTGGAT 

Gapdh  
(mouse) 

Gapdh-F CATGGCCTTCCGTGTTCCTA 
self-designed 

Gapdh-R TGTCATCATACTTGGCAGGTTT 

Myc 
(mouse) 

Myc-F GAGCCCCTAGTGCTGCAT 
self-designed 

Myc-R CCACAGACACCACATCAATTTCTT 

Airn 
(mouse) 

Airn-F GACCAGTTCCGCCCGTTT 
self-designed 

Airn-R GCAAGACCACAAAATATTGAAAAGAC 

Kcnq1ot1 
(mouse) 

Kcnq1ot1-F GCCCAAACCTTAGTCCTCCAT 
self-designed 

Kcnq1ot1-R GAAAGCACTCCTCCCCATTT 

 

3.2 Cells and Cell Culture 

3.2.1 Ethics statement 
According to the Austrian Laboratory Animal Act no animal experiments were performed in this 

study. The humane killing of laboratory animals is not defined as animal experimentation under 

the Austrian Laboratory Animal Act (Animal Experiments Act, Federal Law Gazette No. 

501/1989). Therefore, approval of the study by an institutional ethics committee was not 

required. Mice were bred and housed at The Research Institute of Molecular Pathology, Dr. 

Bohr-Gasse 7, 1030 Vienna, Austria in strict accordance with national recommendations 

described in the “IMP/IMBA Common Institutional policy concerning the care and use of live 

animals” with the permission of the national authorities (Laboratory Animal Facility Permit 

MA58-0375/2007/4). Mouse and rat embryos and mouse tissues were obtained after humane 

killing of animals in a CO2 chamber. 

 

3.2.2 Mouse embryonic stem cells (mESC) 
Undifferentiated CCE mESC are feeder independent and were grown in ES cell medium at 

37°C in 5% CO2 atmosphere on gelatinized dishes. Medium was replaced daily and cells were 

passaged every second or third day. ES cell medium contained HEPES-buffered DMEM 

medium supplemented with 15% FCS, 50µg/ml gentamicin, 2mM L-glutamin, 1x MEM (non-

essential amino acids), 1mM sodium pyruvate, 0.1mM β-Mercaptoethanol and LIF. 
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3.2.3 Primary mouse embryonic fibroblasts (MEF) 
Primary MEF cell lines were generated from E12.5 embryos from one FVB/N litter. 11 Embryos 

were dissected, the head and all organs removed and the remainings repeatedly passed 

through a 20G needle (dissection help from Quanah J. Hudson). Cells were cultured on 10cm 

dishes in MEF media (DMEM supplemented with 10% FCS, 2mM L-Glutamin and 50µg/ml 

Gentamycin) and split 1:3 every third day for 3 passages. The head was used for DNA 

isolation to sex-type all MEF cell lines. Two female MEF cell lines (#1 and #3) were used as 

biological replicates for all experiments. 

 

3.2.4 Rat embryonic stem cells (rESC) 
High and low-passage rESC (p37 & p23) were obtained from the Rat Resource & Research 

Center and expanded for three passages on irradiated MEF feeder layers in GS1-R Rat 

Pluripotent Stem Cell Culture Media (by Florian Pauler). I washed off rESC colonies by 

repeatedly pipetting media over the cells. High and low-passage rESC were used as biological 

replicates for all experiments. The mouse feeder contamination was assessed by PCR and 

Sanger sequencing. 

 

3.2.5 Primary rat embryonic fibroblasts (REF) 
Primary REF cell lines were generated from E13.5 embryos from one Him:OFA litter. 12 

Embryos were dissected, the head and all organs removed and the remainings repeatedly 

passed through a 20G needle (dissection help from Quanah J. Hudson). Cells were cultured 

on 10cm dishes in MEF media and split 1:3 every third day for 3 passages. Because some cell 

lines were growing slowly, 30-50% conditioned media was used. The head was used for DNA 

isolation to sex-type all REF cell lines. Two female REF cell lines (#4 and a pool of #6, #10 and 

#12) were used as biological replicates for all experiments. 

 

3.2.6 Sex typing of MEFs and REFs 
Mouse and rat embryo heads were lysed in 1ml of a standard lysis buffer at 55°C. After 

addition of 300µl saturated NaCl solution and centrifugation (10min, 16,100xg, RT), the 

supernatant was added to 600µl Isopropanol. The precipitated DNA was pelleted by 

centrifugation (10min, 16,100xg, RT), the pellet washed once in 1ml 70% EtOH and 

resuspended in TE buffer. The concentration of the DNA samples was adjusted to be 

approximately 100ng/µl. For MEFs, PCR was carried out with primers specific for the Y-

chromosomal locus YMT2/B and for the autosomal gene Myogenin as an internal control 

(Capel et al., 1999). For REFs, PCR was carried out with primers specific for the Y-

chromosomal gene Sry and the autosomal gene Interleukin-2 as an internal control (Buehr et 

al., 2008). 
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3.2.7 Quantification of mouse feeder contamination of rESC 
DNA was isolated from TRIreagent samples after completion of RNA isolation according to the 

manufacturer’s procedure. PCR was carried out with primer specific for a genomic region in the 

Myc gene bearing three SNPs between mouse FvB/N and rat Him:OFA. As a control, FvB/N 

mouse DNA and rESC DNA from a feeder-independent clone was used. PCR products were 

gel-purified and sent to Microsynth for Sanger sequencing. Nucleotide intensities were read out 

from the chromatograms and a ratio for each SNP calculated. For each sample, the three SNP 

ratios were averaged. After subtraction of background, the mouse feeder contamination of 

rESC was calculated to be in average 5.2% with a range from 2.0-13.0%. Two samples of the 

rESC RNA stability dataset with a contamination of 18% and 25% were not used for pooling of 

technical replicates. 

 

3.2.8 FACS Sorting of B and T cells 
B and T cells were harvested from mouse lymph nodes together with Martina Minnich (Group 

Meinrad Busslinger, IMP Vienna) and sorted by Fluorescence-activated cell sorting (FACS) 

with the help of Thomas Lendl in the Flow Cytometry Core Facility of IMP/IMBA. Approximately 

ten lymph nodes were each harvested from three female 6-week-old C57BL/6 mice into cold 

FACS buffer and mashed through a nylon mesh. After centrifugation (5min, 1500rpm, 4°C), the 

cells were washed with cold FACS buffer and counted in as CasyCounter. After another 

centrifugation (5min, 1500rpm, 4°C), cells were resuspended in 500µl cold FACS buffer and 

1µl Fc block (1:500 of 2mg/ml solution) added for 10min to prevent unspecific antibody 

staining. Cells were divided into two fractions and stained using a set of antibodies specific for 

B cells or CD4+/CD8+ T cells (see Table 9 and Table 10). I prepared 2x antibody dilutions and 

incubated 250µl cell suspension with 250µl antibody dilution for 30min at 4°C in the dark. In the 

meantime, antibody controls were prepared the same way for each antibody used. After 30min, 

the cells were washed with FACS buffer, centrifuged (5min, 1500rpm, 4°C) and resuspended 

in 1ml FACS buffer. FACS sorting was done using a FACS Aria III sorter by first checking each 

dye against each other to see whether colors shine into other detectors. Then, for each of the 

two antibody stainings all three biological replicates were sorted into buffer, cells were pelleted 

and immediately resuspended in TRIreagent. As RNA concentrations were low after DNaseI 

treatment, I decided to pool RNA from biological replicates before RNA-seq. 

 

Table 9: Antibodies for B cell staining 

Conjugate Antibody Specificity Conc. Dilution Clone Company 
FITC B220 anti-mouse 0.5mg/ml (1:2,500) RA3-6B2 Biolegend 
PE IgD anti-mouse 0.2mg/ml (1:25,000) 11-26 eBiosciences 
APC CD19 anti-mouse 0.2mg/ml (1:2,500) 1D3 eBiosciences 
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Table 10: Antibodies for CD4+ and CD8+ T cell staining 

Conjugate Antibody Specificity Conc. Dilution Clone Company 
FITC CD8a anti-mouse 0.5mg/ml (1:10,000) 53-6.7 BD Biosciences 
FITC CD8b anti-mouse 0.5mg/ml (1:10,000) 53-5.8 BD Biosciences 
PE TCRb anti-mouse 0.2mg/ml (1:2,500) H57-597 eBiosciences 
PE-Cy5 CD4 anti-mouse 0.2mg/ml (1:10,000) GK1.5 Biolegend 
APC CD3e anti-mouse 0.2mg/ml (1:2,500) 145-2C11 eBiosciences 

 

3.3 RNA localization: nuclear and cytoplasmic RNA extraction 

The protocol for the extraction of nuclear and cytoplasmic RNA was adapted from Sambrook 

and Russel, Molecular Cloning, Third Edition. Briefly, cells were washed 3x with ice-cold PBS 

and scraped off into a glass Corex tube. After centrifugation (5min, 2,000xg, 4°C), cells were 

resuspended in ice-cold Lysis buffer and underlayed by an equal volume of Lysis buffer 

containing sucrose and NP-40. After centrifugation (20min, 10,000xg, 4°C) the heavier intact 

nuclei formed a pellet at the bottom of the tube while the cytoplasm stayed above the sucrose 

gradient. The cytoplasm phase was taken to another tube and an equal volume of 2x 

Proteinase K buffer added. The nuclei pellet was washed five times with ice-cold PBS, 

resuspended in Lysis buffer and an equal volume of 2x Proteinase K buffer was added. The 

nuclei were sheared by repeatedly passing them through a 19G needle. The cytoplasmic as 

well as the nuclear sample was incubated for 30min at 37°C to degrade proteins. A 

phenol/chloroform extraction removed contaminants and the RNA was precipitated by addition 

of 2.5V 96% EtOH and 0.1V 3M NaAc and an incubation for at least 1h at -20°C. The RNA 

was recovered by centrifugation (30min, 13,000xg, 4°C), the pellet washed once with 75% 

EtOH and the RNA dissolved in RSS. The efficiency of separation was quantified by qPCR for 

Gapdh and nuclear localized Air or Kcnq1ot1. 

 

3.4 RNA stability: Actinomycin D treatment 

To assess the stability of RNA transcripts, cells were treated with the transcription inhibitor 

Actinomycin D. Actinomycin D was dissolved in 96% EtOH to a stock concentration of 4µg/µl 

and added to cell culture media to a final concentration of 10µg/ml (1:400). Cells were treated 

for 0h, 1h or 4h with Actinomycin D or the vehicle control 96% EtOH in two technical replicates 

that were pooled after quality control by qPCR. The experiment was repeated within one week 

with cells of a different passage number or another cell line to have biological replicates that 

both were used for RNA-seq. 
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3.5 RNA isolation & DNase I treatment 

3.5.1 RNA isolation 
RNA was isolated using TRI Reagent with some modifications to the vendor’s protocol. Briefly, 

cell culture media was removed and cells were lysed in TRI Reagent. After 5min of incubation, 

the cell homogenate was immediately used for RNA isolation used or stored at -20°C for later 

processing. Per 1.0ml of TRI Reagent 0.1ml BCP phase separation reagent was added. After 

15s of shaking and incubation for 10min at RT, the sample was centrifuged (15min, 16,100xg, 

4°C). The upper aqueous phase was transferred to a new 1.5ml tube, 0.5ml Isopropanol was 

added and the mixture was gently mixed by repeatedly inverting the tube. The RNA was 

allowed to precipitate for 10min at RT and pelleted by centrifugation (15min, 16,100xg, 4°C). 

After removal of the supernatant, the RNA pellet was washed with 1ml of 75% EtOH and again 

centrifuged (10min, 16,100xg, 4°C). The RNA pellet was allowed to air-dry for 5-10min and 

resuspended in appropriate amounts of RNA Storage Solution (Ambion). RNA was stored at -

20°C and RNA concentration and purity was measured using a NanoDrop. RNA quality was 

assessed by running an RNA Nano Chip (Agilent Technologies, Inc.) on a 2100 Bioanalyzer 

and an RNA integrity number (RIN) >8 was required. 

 

3.5.2 DNase I treatment 
RNA was DNaseI treated using the DNA-free kit (Ambion) according to the vendor’s protocol. 

Briefly, per reaction 10µg RNA was diluted with RNase-free water to 44µl and 5µl 10x buffer 

and 1µl DNaseI was added. The mixture was incubated for 30min at 37°C in a thermal heater. 

Then 5µl of the Inactivation Reagent were added, the sample 2x mixed during a 2min 

incubation step at RT and subsequently centrifuged (2min, 10,000xg, RT). The supernatant 

was carefully taken off and transferred to a new 1.5ml tube and precipitated by adding 2.5V 

96% EtOH and 0.1V 3M NaAc. After an incubation at -20°C for at least 1h, the RNA was 

pelleted by centrifugation (30min, 16,100xg, 4°C) and washed with 1ml of 75% EtOH and 

again centrifuged (10min, 16,100xg, 4°C). The RNA pellet was allowed to air-dry for 5-10min 

and resuspended in appropriate amounts of RNA Storage Solution (Ambion). 

 

3.6 Quantitative real-time PCR (qPCR) 

3.6.1 Reverse transcription 
1-2µg of total RNA were reverse transcribed using the RevertAid First Strand cDNA Kit 

according to the vendor’s protocol. The RT-program was as follows: 10min 25°C, 60min 42°C 

and 10min 70°C. 
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3.6.2 Quantitative real-time PCR (qPCR) 
Reverse transcription reactions were diluted 1:10 with embryo water and 5µl added to 20µl 

Mesa Green qPCR MasterMix Plus for SYBR Assays (Eurogentec) containing 100nM of 

primers. To control for DNA contamination, reverse transcription reactions without reverse 

transcriptase were prepared and assayed in parallel. A difference of >7 qPCR cycles between 

+RT and -RT reactions indicated no significant DNA contamination. 

 

3.6.3 Primer design 
qPCR primers were designed online using primer-blast on the NCBI website 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and the following parameters: PCR product 

size 70-150bp, primer melting temperature 58-60°C (59°C optimal), primer size 15-30 (20 

optimal), GC content 30-80%, 3’GC clamp of 0 residues and amplicon maximal temperature 

85°C. 

 

3.7 Purification and fragmentation of RNA 

3.7.1 Removal of ribosomal RNA (Ribo-Zero) 
Ribosomal RNA was removed from total DNaseI treated RNA using the Ribo-Zero rRNA 

removal kit (Human/Mouse/Rat) (Epicentre) according to the vendor’s protocol. Briefly, 1-4µg 

DNaseI treated RNA were diluted with RNase-free water to 26µl and 4µl 10x buffer and 10µl 

RNA Removal Solution was added. After an incubation step at 68°C for 10min and an 

incubation step at RT for 15min, the mixture was added to resuspended and previously 

washed microsphere beads supplemented with RNase inhibitor and incubated for 10min at RT 

with occasional vortexing. After a final incubation at 50°C for 10min, the mixture was applied 

onto Microsphere Removal Filter Units and centrifuged (1min, 10,000xg, RT). The flow-through 

contained the non-ribosomal RNA and after an addition of 80µl RNase-free water it was 

precipitated with 18µl 3M NaAc, 2µl Glycogen (10mg/ml) and 600µl of 96% EtOH and 

incubated at -20°C for at least 1h. The non-ribosomal RNA was pelleted by centrifugation 

(30min, 16,100xg, 4°C), washed with 1ml of 75% EtOH, briefly air-dried and resuspended in 

1µl of RNase-free water. 19.5µl of Elute, Prime, Fragment Mix from the TruSeq RNA Sample 

Prep Kit v2 (Illumina) were added and the reaction incubated at 94°C for 8min. After the 

incubation, 17µl of total non-ribosomal RNA were transferred to a new 2ml low-bind tube and 

directly used for library preparation. 

 

3.7.2 Enrichment of polyA+ RNA 
PolyA+ RNA was enriched from total DNaseI treated RNA using the TruSeq RNA Sample Prep 

Kit v2 (Illumina) according to the vendor’s protocol. Briefly, 1-4µg DNaseI treated RNA were 
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diluted in PCR tubes with RNase-free water to 50µl, 50µl of RNA Purification Beads were 

added and the mixture incubated for 5min at 65°C in a PCR machine. The reaction was 

transferred to a 2ml low-bind tube and put onto a magnetic stand for 5min. After removal of the 

supernatant containing most of the contaminants, the magnetic beads were washed with 200µl 

of Bead Washing Buffer. 50µl of Elution Buffer was added and the reaction incubated in a PCR 

tube for 2min at 80°C in the PCR machine to elute the enriched RNA from the magnetic beads. 

The RNA was transferred to a 2ml low-bind tube tube and 50µl of Bead Binding Buffer were 

added to allow specific rebinding of polyA+ RNA to the magnetic beads. After incubation for 

5min at RT, the reaction was put onto a magnetic stand for 5min and the supernatant 

containing residual rRNA discarded and the beads washed with 200µl of Bead Washing Buffer. 

The polyA+ RNA was eluted by addition of 19.5µl of Elute, Prime, Fragment Mix and an 

incubation step at 94°C for 8min. After 5min on the magnetic stand, 17µl polyA+ RNA were 

transferred to a new 2ml low-bind tube and directly used for library preparation. 

 

3.8 Strand-specific library preparation and RNA-seq 

3.8.1 Epicentre’s ScriptSeq (v1) RNA-Seq Library Preparation kit 

3.8.1.1 RNA fragmentation 

50-250ng of Ribo-Zero treated RNA were chemically fragmented for 5min at 85°C and the 

cDNA synthesis primer (random hexamers with tagging sequence) randomly annealed by 

putting the sample on ice. 

3.8.1.2 cDNA synthesis 

cDNA synthesis is initiated by the addition of the StarScript Reverse Transcriptase in the 

presence of dNTPs, RNase inhibitor and a StarScript buffer. The reactions were incubated for 

5min at 25°C and for 20min at 45°C. 1µl Finishing Solution I was added to stop the reaction 

followed by a 3min incubation step at 95°C. The cDNA is now tagged at its 5’ end. 

3.8.1.3 3′-Terminal tagging of cDNA 

The next step adds a tagging sequence to the 3’ end of the cDNA, giving rise to di-tagged 

cDNA. Therefore, a master mix containing terminal-tagging oligos, Dithiothreitol and DNA 

polymerase was added and the mixture incubated for 15min at 37°C and for 3min at 95°C. 1µl 

Finishing Solution II was added to stop the reaction followed by a 10min incubation at 37°C 

and a 3min incubation step at 95°C. 

3.8.1.4 Purification of the di-tagged cDNA 

The di-tagged library was cleaned using the MinElute PCR Purification Kit (Qiagen) according 

to the manufacturer’s procedure and eluted in 18µl EB buffer. 
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3.8.1.5 PCR amplification and addition of barcodes 

The PCR amplification step generates the second strand of cDNA and incorporates the 

barcodes to be able to multiplex RNA-seq. PCR was carried out using 1.25U of the proof-

reading FailSafe PCR Enzyme in presence of FailSafe PCR PreMix E, forward primer and the 

barcode-specific reverse primer. The PCR program was as follows: 95°C for 1min, 10-12 

cycles of: 95°C for 30s, 55°C for 30s, 68°C for 3min and a final elongation step at 68°C for 

7min, 10°C hold. Excess PCR primers were removed by incubating the reaction with 1µl 

Exonuclease I for 15min at 37°C. 

3.8.1.6 Purification of the library 

The libraries were purified using the MinElute PCR Purification Kit (Qiagen) according to the 

manufacturer’s procedure or gel electrophoresis. For the latter, 50µl PCR product were 

supplemented with 10µl 6x loading dye and run for 2h at 80V in a 2% Agarose TAE gel 

containing 12µl SYBR Gold. Bands from 200-600bp were excised and libraries cleaned using 

the MinElute Gel Extraction Kit (Qiagen) according to the manufacturer’s procedure. 

 

3.8.2 Epicentre’s ScriptSeq (v2) RNA-Seq Library Preparation kit 
The ScriptSeq v2 RNA-Seq Library Preparation kit (Epicentre) was only used once to produce 

two RNA-seq libraries for a direct comparison against the dUTP/TruSeq protocol in the library 

preparation test (see Figure 6) and then discontinued. These libraries were prepared according 

to the manufacturer’s procedure. 

 

3.8.3 Illumina’s TruSeq kit and its modifications 
Strand-specific RNA-seq libraries from Ribo-Zero or polyA+ RNA were prepared using the 

TruSeq RNA Sample Prep Kit v2 (Illumina) according to the vendor’s protocol with some 

modifications to preserve strand information. These modifications are published and include a 

filter step to remove unincorporated dNTPs after first-strand cDNA synthesis, the incorporation 

of dUTP instead of dTTP during second-strand cDNA synthesis and a final step to degrade the 

dUTP containing second-cDNA strand after adapter ligation using the enzyme Uracil-DNA 

Glycosylase (Sultan et al., 2012).  

3.8.3.1 First-strand cDNA synthesis 

8µl of First-Strand Master Mix (containing 1µl Superscript II per 9µl Master Mix) were added to 

17µl of rRNA depleted or polyA+ RNA and shortly vortexed. The reverse transcription program 

was as follows: 10min 25°C, 50min 42°C, 15min 70°C, 4°C hold. 



Philipp Günzl  MATERIALS AND METHODS 

 - 35 - 

3.8.3.2 Clean-up of first-strand cDNA reaction 

MicroSpin G-50 columns were centrifuged (1min, 700xg, RT) and washed twice with 500µl 

1mM Tris-HCl pH 8.0. 5µl of Elution Buffer was added to the 25µl of first-strand cDNA reaction, 

the whole reaction applied onto the MicroSpin G-50 columns and centrifuged (1min, 700xg, 

RT). The volume of the eluate was measured and RNase-free water added to a total volume of 

52µl. 

3.8.3.3 Second-strand cDNA synthesis 

23µl second-strand master mix were prepared per sample using the following reagents: 1µl RT 

buffer, 15µl 5x Second-Strand Synthesis Buffer, 1µl 50mM MgCl2, 1µl 100mM DTT, 2µl dNTP 

mix (10mM each dATP, dCTP, dGTP, dUTP), 0.5µl E.coli DNA ligase (10U/µl), 2µl DNA 

Polymerase (10U/µl) and 0.5µl RNase H (2U/µl). After addition to the cleaned first-strand 

cDNA reaction, the reaction was incubated for 2h at 16°C. The reaction was cleaned by adding 

135µl of magnetic AMPure XP beads and incubating the reaction for 15min at RT. After 5min 

on the magnetic stand, the supernatant was taken off and the beads washed twice with 200µl 

80% EtOH. The beads were allowed to air-dry for 15min, resuspended in 52.5µl Resuspension 

Buffer and incubated for 2min at RT. After 2min on the magnetic stand, 50µl of the supernatant 

containing the purified cDNA were transferred to a new 2ml low-bind tube. 

3.8.3.4 End repair 

40µl End Repair Mix were added and the reaction incubated for 30min at 30°C. The reaction 

was cleaned as described above using 160µl of magnetic AMPure XP beads and eluting in 

20µl Resuspension Buffer. 

3.8.3.5 Adenylation of 3’ends 

12.5µl A-Tailing Mix were added and the reaction incubated for 30min at 37°C and additionally 

for 5min at 70°C to remove adapter dimers and concatemers. 

3.8.3.6 Adapter ligation 

2.5µl Resuspension Buffer, 2.5µl Ligation Mix and 2.5µl of the desired RNA Adapter Index 

were added and the reaction incubated for 10min at 30°C. 5µl Stop Ligation Buffer were then 

added to stop the ligation. The reaction was cleaned twice as described above using 42µl of 

magnetic AMPure XP beads and 52.5µl Resuspension Buffer and for the second clean-up 50µl 

of magnetic AMPure XP beads and 22.5µl Resuspension Buffer. 

3.8.3.7 Uracil-DNA glycosylase treatment 

2.3µl of 10x UDGase buffer and 1µl of UDGase (5U/µl) were added to 20µl of cleaned adapter-

ligated cDNA and incubated for 30min at 37°C. 
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3.8.3.8 Library enrichment by PCR 

5µl of PCR Primer Cocktail and 25µl PCR Master Mix were added to 22.3µl of UDGase treated 

cDNA. The PCR program was as follows: 98°C for 30s, 8 cycles of: 98°C for 10s, 60°C for 30s, 

72°C for 30s and a final elongation step at 72°C for 5min, 10°C hold. 

 

3.8.4 Quantification, quality control and pooling of libraries 
The RNA-seq libraries were quantified using the Qubit dsDNA Assay kit on a Qubit 1.0 or 2.0 

Fluorometer. The quality and length distribution was assessed by running an Experion DNA 1K 

Analysis Chip on an Experion Automated Electrophoresis System. The molarity of each library 

was calculated by using the formula 𝑛𝑀 = (𝑐𝑜𝑛𝑐 ∗ 10!)/(𝑠𝑖𝑧𝑒 ∗ 660), in which conc is the library 

concentration in ng/µl, size is the average size of the library (350bp for Ribo-Zero libraries, 

400bp for polyA+ libraries) and 660 is the weight of a DNA basepair. 5µl of the library were 

diluted to 2nM using EB buffer containing 0.1% Tween-20. This 2nM dilution was quantified by 

Qubit and libraries were pooled with their actual measured molarities adjusted accordingly. 

Care was taken to only pool compatible barcodes as indicated in the Illumina manual. The final 

pooled library was quantified by Qubit and submitted to the Biomedical Sequencing Facility 

(BSF) at CeMM. 

 

3.8.5 RNA-sequencing 
RNA-seq was done by the biomedical sequencing facility (BSF) at CeMM. Briefly, 12-14pM of 

the library were loaded per lane of the flowcell and clonal clusters were generated from single 

molecules of cDNA using the cBot system. The flowcell was then loaded into the HiSeq 2000 

and the clusters sequenced 50bp single-end (50SE) or 100bp paired-end (100PE). After the 

run, basepairs were called and barcodes demultiplexed. Raw RNA-seq data was provided as 

fastq files. 

 

3.9 Basic analysis of RNA-seq data 

3.9.1 Public data tracks used 
For the analysis of RNA-seq data the following public data tracks were used (see Table 11). 

Table 11: Public data tracks used in this study 

Data track Date of download from UCSC 
RefSeq annotation (mm10) 08.03.2014 
RefSeq annotation (rn5) 27.04.2014 
Repeatmasker (mm10) 23.12.2013 
Repeatmasker (rn5) 27.04.2014 
mm10_chromInfo Downloaded from UCSC 
rn5_chromInfo Downloaded from UCSC 
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3.9.2 Assessment of RNA-seq quality 
The quality of RNA-seq data was assessed using the tool FastQC (available at 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Data was checked for sequence 

quality per base, quality score per sequence, GC content per base, sequence duplication 

levels and overrepresented sequences. No dramatic differences were noticed. 

 

3.9.3 Assessment of strand-specificity 
The strand rule and strand-specificity of RNA-seq data was calculated using 

infer_experiment.py from the RSeQC package (Wang et al., 2012) with the following 

parameters:  

infer_experiment.py -r transcript_annotation.bed12 -i 
RNAseq_alignment.bam -s 1000000 

 

3.9.4 Alignment of RNA-seq reads 
RNA-seq reads were aligned to the mouse genome assembly mm10 or the rat genome 

assembly rn5 using the aligner STAR (version 2.3) (Dobin et al., 2013) with standard 

parameters and the following modifications: maximum intron size = 100kb (--alignIntronMax 

100000), consider only canonical splice sites (--outFilterIntronMotifs RemoveNoncanonical). 

These options prevented the assembly of artifact transcripts that have either enormous introns 

>100kb thereby extending transcripts over multiple gene loci or were defined by non-canonical 

splice sites. The output of STAR is stored in a binary alignment map (BAM) file containing the 

aligned reads. 

 

3.9.5 Preparation of data tracks for the UCSC genome browser 
In order to visualize RNA-seq data on the UCSC genome browser (Fujita et al., 2011) the BAM 

files containing the aligned reads were first sorted and indexed using the functions sort and 

index from the SAMtools package (Li et al., 2009). Then, the BAM files were converted into two 

strand-specific wiggle (WIG) files using the script bam2wig.py from the RSeQC package 

(Wang et al., 2012). As WIG files are usually too large to directly load to UCSC they were 

further converted to BigWig (BW) files using the UCSC wigToBigWig tool. Bigwig files were 

loaded to a server and directly accessed by UCSC. 

bam2wig.py -i RNAseq_alignment.bam -d strand-rule -o output -s 
mm10_chromInfo.txt 

wigToBigWig strandspecific_normalized.wig mm10_chromInfo.txt 
strandspecific_normalized.bw -clip 
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3.9.6 RPKM calculation 
The expression of transcripts from RNA-seq data was calculated using the script 

RPKM_count.py from the RSeQC package (Wang et al., 2012) using the following parameters: 

RPKM_count.py -r transcript_annotation.bed12 -i 
RNAseq_alignment.bam -d strand-rule -o output_prefix --skip-
multiple-hits --only-exonic 

 

3.9.7 Analysis of RPKM saturation (RPKM error) 
The accuracy of RPKM strongly depends on the sequencing depth, e.g. an RPKM of 10 can be 

inaccurate with 1 million reads whereas an RPKM of 0.5 can be very precise with 500 million 

reads. Instead of using only a strict RPKM cutoff and thereby ignoring different sequencing 

depths, I decided to use the method of read downsampling to judge whether a calculated 

RPKM is reliable or not. Therefore, RPKM saturation was calculated using the script 

RPKM_saturation.py from the RSeQC package (Wang et al., 2012) using the following 

parameters: 

RPKM_saturation.py -r RefSeq_mm10.bed12 -d strand-rule -i 
RNAseq_alignment.bam -o output_prefix 

This script calculates 20 RPKM values for each of the transcripts of a given annotation using 

randomly downsampled reads starting from 5% to 100% of total reads (in 5% increments). An 

RPKM is considered stable (or saturated) when increased read depth does not alter the RPKM 

significantly, however, more than 100% of reads is not available. Hence, as a proxy, read 

numbers are reduced to see whether RPKM are stable with less reads. I calculated for each of 

the 20 RPKM values the RPKM error spread to the final RPKM being calculated with 100% of 

reads using the following formula, in which X is the percentage of downsampled reads (5%-

100% of total reads). 

𝑅𝑃𝐾𝑀_𝐸𝑟𝑟𝑜𝑟(𝑋) =
|  𝑅𝑃𝐾𝑀!% − 𝑅𝑃𝐾𝑀!""%  |

𝑅𝑃𝐾𝑀!""%
 

An RPKM is considered accurate when it is stable irrespective of whether 70%, 80%, 90% or 

100% of reads are used. I calculated the final RPKM error for each transcript locus by 

averaging the RPKM error of five RPKM values (70%, 75%, 80%, 85% and 90%). In analyses 

that require stable RPKM (such as developmental regulation in chapter 4.2.7 and the RNA 

biology features in chapters 4.3 and 4.4) I filtered out transcripts that had an average RPKM 

error > 5%, in other words, I discarded transcripts whose RPKM error of five different RPKM 

calculated with 70-90% of reads was on average more than 5% different than the final RPKM.  
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3.9.8 Analysis of gene-body coverage 
The gene-body coverage was analyzed using the script geneBody_coverage.py from the 

RSeQC package (Wang et al., 2012) using the following parameters: 

geneBody_coverage.py -r RefSeq_mm10.bed12 -i 
RNAseq_alignment.bam -o output_prefix 

 

3.9.9 Analysis of splice junction coverage 
The coverage of known RefSeq and novel splice junctions was calculated using the script 

inner_distance.py from the RSeQC package (Wang et al., 2012) using the following 

parameters: 

junction_saturation.py -r RefSeq_mm10.bed12 -i 
RNAseq_alignment.bam -o output_prefix 

 

3.9.10 Analysis of the inner distance of paired-end RNA-seq reads 
The inner distance of paired-end RNA-seq reads was analyzed using the script 

inner_distance.py from the RSeQC package (Wang et al., 2012) using the following 

parameters: 

inner_distance.py -r RefSeq_mm10.bed12 -i RNAseq_alignment.bam -
o output_prefix 

 

3.10 The lncRNA annotation 

3.10.1 Public RNA-seq data used for lncRNA annotation 
The following published polyA+ RNA-seq datasets (Merkin et al., 2012) were used to annotate 

mouse and rat lncRNAs and to calculate RPKMs (see Table 12). Mouse heart RNA-seq data 

from Merkin et al. was only available with short reads and was therefore only used for RPKM 

calculation to enable comparable analyses. Mouse heart RNA-seq data from the Sanger 

Institute (Keane et al., 2011) was available with 76PE and substituted the short reads from 

Merkin et al. for transcriptome assembly, however, this data is not stranded. Direction of 

assembled transcripts from unstranded data was inferred from directional splice junctions. 

 

Table 12: Public RNA-seq data used to annotate lncRNAs and calculate RPKMs 

Dataset Accession Nr. Read type Nr of Reads Strandedness 
Mouse Brain SRR594402 80x80 PE 118,824,353 0.9814 
Mouse Colon SRR594403 80x80 PE 87,447,334 0.9916 
Mouse Heart (*) SRR594395 36x36 PE 51,144,587 0.9930 
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Mouse Heart (*) SRR594412 40SE 
Mouse Heart (**) ERR032227-31, 38 76x76 PE 158,165,171 unstranded 
Mouse Kidney SRR594404 80x80 PE 118,885,190 0.9870 
Mouse Liver SRR594405 80x80 PE 134,045,721 0.9943 
Mouse Lung SRR594406 80x80 PE 62,362,901 0.9930 
Mouse Sk. muscle SRR594407 80x80 PE 117,171,737 0.9942 
Mouse Spleen SRR594408 80x80 PE 114,814,142 0.9762 
Mouse Testis SRR594409 80x80 PE 116,525,147 0.9954 
Rat Brain SRR594428 80x80 PE 96,368,839 0.9955 
Rat Colon SRR594429 80x80 PE 73,664,290 0.9912 
Rat Heart SRR594430 80x80 PE 67,008,998 0.9953 
Rat Kidney SRR594431 80x75 PE 116,656,722 0.9947 
Rat Liver SRR594432 80x80 PE 131,658,529 0.9966 
Rat Lung SRR594433 80x80 PE 84,087,214 0.9948 
Rat Sk. muscle SRR594434 80x80 PE 65,129,431 0.9914 
Rat Spleen SRR594435 80x75 PE 112,500,969 0.9833 
Rat Testis SRR594436 80x75 PE 114,820,645 0.9651 

(*) Mouse heart RNA-seq data from Merkin et al. was used for RPKM calculation 
(**) Mouse heart RNA-seq data from Keane et al. (Sanger Institute) was used for transcript assembly 
 

3.10.2 Self-generated RNA-seq data used for lncRNA annotation 
The following RNA-seq datasets were generated for transcriptome assembly and RPKM 

calculations (see Table 13). 

Table 13: Self-generated RNA-seq data used to annotate lncRNAs and calculate RPKMs 

Dataset Read Type Nr of Reads Strand Specificity 
mESC_pA 100PE 90,300,424 0.8687 
MEF_BR1_pA 100PE 46,374,323 

0.9091 
MEF_BR2_pA 100PE 43,421,110 
rESC_pA 100PE 88,268,828 0.9331 
REF_BR1_pA 100PE 42,939,061 

0.9270 
REF_BR2_pA 100PE 48,349,412 

 

3.10.3 Generation of the lncRNA annotation 
The lncRNA annotation used in this study was generated by Florian Pauler. Shortly, transcripts 

were assembled from aligned RNA-seq reads from eleven tissues using the program cufflinks 

(version 2.1.1.) (Trapnell et al., 2013). The two parameters --min-isoform-fraction 

(default 0.10) and --pre-mrna-fraction (default 0.15) normally suppress lowly abundant 

splice isoforms and intra-intronic transcripts were set to 0 to increase lncRNA detection. To 

remove mRNAs, transcripts overlapping RefSeq mRNAs in sense (by 1bp) or antisense (by 

20% of their cDNA) were filtered out. To remove remaining transcripts with potential protein-

coding potential, a two step pipeline was employed: in step 1, the program RNAcode detects 

conserved protein patterns in multiple species alignments (Washietl et al., 2011) and in step 2 

the program Coding Potential Calculator (CPC) analyzes six nucleotide sequence features 

(Kong et al., 2007). 
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3.10.4 Classification of lncRNAs 
The grouping of lncRNAs into known subclasses was automated by Florian Pauler. 

Bidirectional lncRNAs were defined by starting from the same promoter (transcription start site 

+/- 1kb) as an mRNA and being transcribed in antisense direction. Overlapping lncRNAs were 

defined by a full, partial or intronic overlap of an mRNA in antisense direction. Enhancer RNAs 

were defined by an overlap of the lncRNA promoter (TSS +/- 1kb) within an H3K4me1 peak, 

an H3K27ac peak or a p300 peak in the tissue with highest expression. As public ChIP-seq 

data from the eleven tissues used is not available for rat, eRNAs could only be classified for 

the mouse annotation. Remaining transcripts were classified as intergenic lncRNAs. 

 

3.10.5 Addition of RefSeq mRNAs to final lncRNA annotation  
The final lncRNA annotation was complemented by the multi-exonic RefSeq mRNA annotation 

in order to have one combined annotation of mRNAs and lncRNAs for all downstream 

analyses. I refrained from using the assemblies to define mRNAs by myself as the non-coding 

pipeline is slow and can not handle tens of thousands putative mRNAs with an average of 

eleven exons, compared to three exons for lncRNAs. Alternatively, mRNAs could be defined 

from the assemblies by RefSeq mRNA overlap, however, this would also include unstable 

splice variants, fragments or fusion transcripts. 

 

3.11 Analysis of RNA stability 

3.11.1 Self-generated RNA-seq datasets 
 

Table 14: Self-generated RNA-seq data used to calculate RNA stability 

Dataset Read Type Nr. of Reads Strand Specificity 
mESC_0h_BR1 50SE 30,501,857 0.9620 
mESC_0h_BR2 50SE 36,695,011 0.9437 
mESC_1hActD_BR1 50SE 33,308,966 0.9630 
mESC_1hActD_BR2 50SE 37,514,855 0.9517 
mESC_1hEtOH_BR1 50SE 37,548,799 0.9674 
mESC_1hEtOH_BR2 50SE 37,999,601 0.9534 
mESC_4hActD_BR1 50SE 38,052,467 0.9554 
mESC_4hActD_BR2 50SE 37,918,832 0.9317 
mESC_4hEtOH_BR1 50SE 38,519,837 0.9542 
mESC_4hEtOH_BR2 50SE 36,631,094 0.9567 
MEF_0h_BR1 50SE 39,113,461 0.9471 
MEF_0h_BR2 50SE 36,525,575 0.9574 
MEF_1hActD_BR1 50SE 36,737,814 0.9539 
MEF_1hActD_BR2 50SE 39,268,481 0.9491 
MEF_1hEtOH_BR1 50SE 35,433,267 0.9393 
MEF_1hEtOH_BR2 50SE 37,254,483 0.9570 
MEF_4hActD_BR1 50SE 42,179,393 0.9503 
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MEF_4hActD_BR2 50SE 42,439,924 0.9449 
MEF_4hEtOH_BR1 50SE 34,467,192 0.9720 
MEF_4hEtOH_BR2 50SE 38,851,303 0.9593 
rESC_0h_BR1 50SE 25,787,240 0.9428 
rESC_0h_BR2 50SE 32,088,572 0.9382 
rESC_1hActD_BR1 50SE 34,632,018 0.9344 
rESC_1hActD_BR2 50SE 29,623,153 0.9330 
rESC_1hEtOH_BR1 50SE 28,526,438 0.9288 
rESC_1hEtOH_BR2 50SE 33,382,747 0.9350 
rESC_4hActD_BR1 50SE 32,778,668 0.9329 
rESC_4hActD_BR2 50SE 29,087,533 0.9302 
rESC_4hEtOH_BR1 50SE 26,010,647 0.9401 
rESC_4hEtOH_BR2 50SE 32,621,010 0.9402 
REF_0h_BR1 50SE 34,352,856 0.9343 
REF_0h_BR2 50SE 38,653,134 0.9490 
REF_1hActD_BR1 50SE 35,734,464 0.9501 
REF_1hActD_BR2 50SE 40,221,945 0.9502 
REF_1hEtOH_BR1 50SE 39,700,369 0.9202 
REF_1hEtOH_BR2 50SE 38,182,997 0.9442 
REF_4hActD_BR1 50SE 43,322,613 0.9531 
REF_4hActD_BR2 50SE 40,178,646 0.9431 
REF_4hEtOH_BR1 50SE 36,226,698 0.9486 
REF_4hEtOH_BR2 50SE 39,033,144 0.9421 

RNA-seq reads of biological replicates were combined before alignment. 

 

3.11.2 Normalization of RNA stability data 
Treatment of cells with Actinomycin D leads to a stalling of RNA PolII and an inhibition of RNA 

synthesis. Short-lived RNA molecules are rapidly degraded while other RNA molecules can be 

stable for 24h and more. Analysis of RNA populations after Actinomycin D treatment to 

estimate RNA stability needs to be done carefully as it leads to a phenomenon that can 

dramatically skew data interpretation. As short-lived RNAs are degraded and removed from the 

RNA pool the total amount of RNA is reduced. The abundance of remaining RNAs is therefore 

relatively increased in the reduced pool compared to the larger pool before Actinomycin D 

treatment. I tried to correct this bias by normalizing the RPKMs of all transcripts to a basket of 

10 stable housekeeping genes. I have chosen 15 commonly used housekeeping genes for 

mouse and rat and eliminated 5 for mouse (Gapdh, Ppia, Ubc, Tubb4b, Uba52) and rat (Hprt, 

Rplp1, Rps14, Tubb4b, Ubc) due to either too low expression or decrease upon ActD 

treatment. This left me with 10 housekeeping genes for both mouse (Actb, B2m, Cnbp, Gusb, 

Rplp0, Rplp1, Rplp2, Rps14, Tmsb4x, Hprt) and rat (ActB, B2m, Cnbp, Gapdh, Gusb, Ppia, 

Rplp0, Rplp1, Tmsb4x, Uba52) cell types.  

 

3.11.3 Calculation of RNA stability 
After normalization, RNA stability was calculated in two steps: Equation #1 shows the 

calculation of the intermediate RNA stability by normalizing the 4h Actinomycin D RPKM to the 
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0h untreated control RPKM. Equation #2 shows the calculation of the final RNA stability by 

normalizing the intermediate RNA stability to the 4h EtOH control treatment RPKM. Similarly, 

the RNA stability after 1h Actinomycin D treatment was calculated, however, the 1h 

Actinomycin D treatment was too short to yield a good enough resolution of RNA stability (see 

Figure 21C, 2nd lanes, compared to 4th lanes). As a result, for each transcript a specific RNA 

stability value was given representing percent of RNA that was left after 4h of Actinomycin D 

treatment relative to corresponding 0h untreated control and relative to EtOH control treatment.  

 

Equation #1: 𝑅𝑁𝐴!"#$%&%"'  (!"#$%&$'!(#$) =
!"#!!"!"#$∗!""

!"#!!"
 

 

Equation #2: 𝑅𝑁𝐴!"#$%&%"' =
!"!!"#$%&%"'  (!"#$%&$'!(#$)∗!""

!"#!!"!"#$
 

 

3.11.4 Applying RPKM and RPKM saturation cut offs 
For analysis of RNA stability I applied two filter steps to remove transcript loci that are not 

stably detected. First, a cutoff required each loci to be expressed with an RPKM > 0.1 in the 

untreated control. Second, an RPKM saturation filter step removed loci whose RPKM stability 

(see chapter 3.11.3) was not stably detected. Therefore, I calculated RPKM saturation (see 

chapter 3.9.7) and calculated RNA stability as indicated in chapter 3.11.3 also for 20 samples 

with differing read numbers (5% to 100%). If the RPKM error of RNA stability of the 70-90% 

samples relative to the 100% sample was on average >5%, the whole locus was removed from 

further analysis, thereby ensuring that only stably detected RPKMs are further analyzed. 

 

3.11.5 Quality control of RNA stability data 
I checked the RNA stability data by visually inspecting stable und unstable RNAs in the UCSC 

genome browser (Fujita et al., 2011). Additionally, I plotted the RNA stability of expressed 

RefSeq mRNAs in heatmaps using the R function pheatmap to show the fraction of unstable 

mRNAs, the difference between 1h Actinomycin D and 4h Actinomycin D treatment and the 

largely unaffected EtOH control treatments. 
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3.12 Analysis of RNA export 

3.12.1 Self-generated RNA-seq datasets 
 

Table 15: Self-generated RNA-seq data used to calculate RNA export 

Dataset Read type nr of reads Strand specificity 
mESC_cyt 50SE 121,078,769 0.9577 
mESC_nuc 50SE 80,006,456 0.9606 
MEF_cyt_BR1 50SE 39,753,442 0.9589 
MEF_cyt_BR2 50SE 40,964,526 0.9587 
MEF_nuc_BR1 50SE 35,191,578 0.9499 
MEF_nuc_BR2 50SE 40,815,555 0.9430 
REF_cyt 50SE 94,602,675 0.9121 
REF_nuc 50SE 90,941,801 0.9647 

cyt, cytoplasmic; nuc, nuclear; BR, biological replicate 

 

3.12.2 Calculation of RNA export 
RNA export was calculated for each transcript by the following equation and expressed as 

percent of total RNA detected in the cytoplasm: 

 

𝑅𝑁𝐴_𝑒𝑥𝑝𝑜𝑟𝑡 =
𝑅𝑃𝐾𝑀_𝑐𝑦𝑡 ∗ 100

𝑅𝑃𝐾𝑀_𝑐𝑦𝑡 + 𝑅𝑃𝐾𝑀_𝑛𝑢𝑐
 

 

3.12.3 Applying RPKM and RPKM saturation cut offs 
For analysis of RNA export I applied two filter steps to remove transcript loci that are not stably 

detected. First, a cutoff required each loci to be expressed with an RPKM > 0.1 in either the 

cytoplasmic or the nuclear fraction. Second, an RPKM saturation filter step removed loci 

whose RPKM export (see chapter 3.12.2) was not stably detected. Therefore, I calculated 

RPKM saturation (see chapter 3.9.7) and calculated RNA export as indicated in chapter 3.12.2 

also for 20 samples with differing read numbers (5% to 100%). If the RPKM error of RNA 

export of the 70-90% samples relative to the 100% sample was on average >5%, the whole 

locus was removed from further analysis, thereby ensuring that only stably detected RPKMs 

are further analyzed. 

 

3.12.4 Quality control of RNA export data 
I checked the RNA export data by visually inspecting nuclear und cytoplasmic RNAs in the 

UCSC genome browser (Fujita et al., 2011). 
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3.13 Analysis of RNA splicing 

3.13.1 Self-generated RNA-seq datasets 
 

Table 16: Self-generated RNA-seq data used to calculate RNA splicing 

Dataset Read Type Nr of Reads Strand Specificity 
mESC_RZ (*) 100PE 134,089,235 0.9274 
MEF_RZ_BR1 100PE 61,108,202 0.9597 
MEF_RZ_BR2 100PE 56,901,263 0.9614 
rESC_RZ_BR1 100PE 45,535,600 0.9476 
rESC_RZ_BR2 100PE 57,584,616 0.9340 
REF_RZ_BR1 100PE 37,869,122 0.9526 
REF_RZ_BR2 100PE 51,653,271 0.9618 
4x mESC_RZ (**) 100PE 125,802,515  0.9448 
4x MEF_RZ (**) 100PE 213,227,892 0.9406 

RZ, Ribo-Zero; BR, biological replicate 
(*) pool from four libraries of hydrolysis experiment (see chapter 4.1.4) 
(**) data from Daniel Andergassen & Quanah Hudson, libraries prepared by me 
 

3.13.2 Calculation of RNA splicing 
I created a splice junction annotation from the combined lncRNA and mRNA annotation in 

which for every single splice junction two 45bp blocks were present: one block 5bp away from 

the annotated junction on the exon side, and one block 5bp away from the annotated junction 

on the intron side (see Figure 22B,C). If the exon or intron was shorter than 50bp, the block 

size was reduced accordingly, but had to have a minimum length of 10bp. In total, 743,556 

junctions were essayed and for each an exonic and an intronic RPKM were calculated. For 

RPKM calculation, I combined my mouse Ribo-Zero RNA-seq data with Ribo-Zero RNA-seq 

data of four biological replicates of undifferentiated primary E3.5 mESC and four biological 

replicates of primary E12.5 MEF, both isolated from Cast/FvB crosses (Daniel Andergassen & 

Quanah Hudson, manuscript in preparation). Increased mESC and MEF read numbers 

resulted in enhanced read coverage and thereby higher accuracy of splicing estimation. 

Percent RNA splicing was calculated for each junction by the following formula: 

 

𝑅𝑁𝐴!"#$%$&! = 100 − (
𝑅𝑃𝐾𝑀!"#$%" ∗ 100

𝑅𝑃𝐾𝑀!"#$
)   

 

3.13.3 Applying RPKM and RPKM saturation cut offs 
If the intron RPKM and the exon RPKM where equal and >1, RNA splicing was zero. If the 

intron RPKM was higher than the exon RPKM (i.e. RNA splicing had a negative value), RNA 

splicing was set to zero. If the intron RPKM or the exon RPKM was zero, the corresponding 

other RPKM had to be >1. Non-informative junctions (both RPKM are zero or >1) were 
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discarded from further analysis. Additionally, an RPKM saturation filter step removed junctions 

whose RNA splicing value (see chapter 3.13.2) was not stably detected. Therefore, I calculated 

RPKM saturation (see chapter 3.9.7) and calculated RNA splicing as indicated in chapter 

3.13.2 also for 20 samples with differing read numbers (5% to 100%). If the RPKM error of 

RNA splicing of the 70-90% samples relative to the 100% sample was on average >10%, the 

junction was removed from further analysis, thereby ensuring that only stably detected 

junctions are further analyzed. 

 

3.13.4 Averaging splicing values over transcripts and loci 
Splicing values of remaining junctions were averaged for each transcript. Splicing values of 

transcripts were averaged for each locus, giving rise to a robust RNA splicing value for each 

locus. 

 

3.14 Clustering of lncRNAs by RNA biology 

LncRNAs and mRNAs were clustered according to their three RNA biology features (stability, 

export, splicing) using the popular clustering algorithm k-means (Hartigan and Wong, 1979). 

To make the clustering reproducible, a seed was set beforehand using the R function 

set.seed(300). The clustering itself was carried out using the R function kmeans() with the 

parameters centers=6, iter.na=500 and nstart=10. The number of clusters was 

empirically tested and six clusters seemed most suitable to represent the diverse RNA biology 

of lncRNAs and mRNAs. Fewer clusters led to reduced resolution by combining fundamentally 

different RNAs and more clusters resulted in the artificial splitting up of single clusters giving 

rise to very similar clusters. 

 

3.15 Conservation of RNA biology 

In order to assay the conservation of RNA biology, I first had to define mouse and rat RNAs 

that are annotated in syntenic regions. Therefore, the rat annotation (genome build rn5) was 

lifted over to the mouse genome build mm10 using the UCSC tool liftover with the following 

commands: 

liftOver -minMatch=0.3 -minBlocks=0.3 -fudgeThick 
rat_annotation.bed rn5ToMm10.over.chain.gz 
rat_annotation.mm10.bed12 rat_annotation.unmapped.bed12 

Using these parameters, I find mouse homologs for 99.35% of rat mRNAs and for 84.47% of 

rat lncRNAs. Next, I tested whether mm10 RNAs and rn5->mm10 RNAs overlap each other 

(meaning that they are annotated in the same syntenic region) and isolated those that overlap 

each other by >30% using intersectBed: 
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intersectBed -wao -s -f 0.3 -a rat_annotation.mm10.bed6 -b 
mouse_lncRNAs.bed6 > intersect_out.bed 

I find that 1,964 mouse lncRNA loci (21.50%) and 14,543 mouse mRNA loci (97.30%) have 

annotated RNAs in syntenic rat regions. I compared the RNA biology features of these 

conserved RNAs between mouse and rat. 

 

3.16 RNA-seq data used for developmental regulation of lncRNAs 

The following self-generated RNA-seq data derived from ScriptSeq v1 libraries were used to 

calculate developmental regulation of lncRNAs: 

 

Table 17: Self-generated RNA-seq data used to calculate developmental regulation 

Dataset Read Type Nr of Reads Strand Specificity 
Adult Heart 51PE 65,341,797 0.9702 
Fetal Heart BR1 51PE 71,857,811 0.9814 
Fetal Heart BR2 51PE 60,916,788 0.9815 
Adult Liver 51PE 64,915,207 0.9801 
Fetal Liver BR1 51PE 48,766,733 0.9644 
Fetal Liver BR2 51PE 67,562,979 0.9774 
Adult Spleen BR1 51PE 64,703,965 0.9537 
Adult Spleen BR2 51PE 63,940,635 0.9536 
Adult Spleen BR3 51PE 69,318,167 0.9527 
B cells 51SE 260,046,325 0.9387 
CD4+ T cells 51SE 251,421,559 0.9379 
CD8+ T cells 51SE 261,429,795 0.9408 

 

3.17 Analysis of ChIP-seq data to annotate enhancer lncRNAs 

3.17.1 Public ChIP-seq datasets used 
The following published H3K4me1, H3K4me3, H3K27ac and p300 ChIP-seq datasets of 18 

mouse tissues (Shen et al., 2012) were used to map enhancers in order to annotate enhancer 

RNAs (eRNAs).  

 

Table 18: Public ChIP-seq datasets used in this study 

Histone modification Tissue Read Type Aligned Reads Nr of Peaks 
Input Bone Marrow 36SE 13,835,996 - 
Input Cerebellum (Brain) 36SE 16,967,638 - 
Input Cortex (Brain) 36SE 18,750,599 - 
Input Embryonic Brain 36SE 28,182,051 - 
Input Embryonic Heart 36SE 12,693,848 - 
Input Embryonic Limb 36SE 16,757,607 - 
Input Embryonic Liver 36SE 18,581,229 - 
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Input Heart 36SE 15,871,588 - 
Input Intestine (Colon) 36SE 29,229,438 - 
Input Kidney 36SE 16,658,461 - 
Input Liver 36SE 17,576,197 - 
Input Lung 36SE 10,005,668 - 
Input Olfactory Bulb 36SE 31,125,180 - 
Input Placenta 36SE 17,893,882 - 
Input MEF 36SE 19,259,220 - 
Input mESC 36SE 15,730,741 - 
Input Spleen 36SE 11,700,231 - 
Input Testis 36SE 7,466,083 - 
H3K4me1 Bone Marrow 36SE 26,363,871 29,506 
H3K4me1 Cerebellum (Brain) 36SE 20,955,568 75,052 
H3K4me1 Cortex (Brain) 36SE 35,152,810 41,683 
H3K4me1 Embryonic Brain 36SE 45,269,644 79,665 
H3K4me1 Embryonic Heart 36SE 25,547,373 64,861 
H3K4me1 Embryonic Limb 36SE 16,872,321 75,763 
H3K4me1 Embryonic Liver 36SE 27,775,925 56,342 
H3K4me1 Heart 36SE 33,876,588 58,551 
H3K4me1 Intestine (Colon) 36SE 18,953,493 66,681 
H3K4me1 Kidney 36SE 18,295,701 57,889 
H3K4me1 Liver 36SE 16,585,927 83,388 
H3K4me1 Lung 36SE 18,717,952 45,542 
H3K4me1 Olfactory Bulb 36SE 13,524,927 65,125 
H3K4me1 Placenta 36SE 10,220,560 36,987 
H3K4me1 MEF 36SE 20,180,338 96,225 
H3K4me1 mESC 36SE 18,682,778 66,060 
H3K4me1 Spleen 36SE 9,133,039 58,696 
H3K4me1 Testis 36SE 21,972,808 31,808 
H3K4me3 Bone Marrow 36SE 22,926,986 19,859 
H3K4me3 Cerebellum (Brain) 36SE 22,262,180 22,725 
H3K4me3 Cortex (Brain) 36SE 16,142,643 24,110 
H3K4me3 Embryonic Brain 36SE 37,583,123 21,896 
H3K4me3 Embryonic Heart 36SE 22,900,122 21,782 
H3K4me3 Embryonic Limb 36SE 44,675,164 21,251 
H3K4me3 Embryonic Liver 36SE 24,509,946 19,995 
H3K4me3 Heart 36SE 14,965,378 23,945 
H3K4me3 Intestine (Colon) 36SE 38,627,598 27,214 
H3K4me3 Kidney 36SE 18,873,578 21,404 
H3K4me3 Liver 36SE 27,648,883 20,889 
H3K4me3 Lung 36SE 15,790,217 21,308 
H3K4me3 Olfactory Bulb 36SE 14,577,172 18,190 
H3K4me3 Placenta 36SE 23,954,349 30,306 
H3K4me3 MEF 36SE 19,950,704 21,698 
H3K4me3 mESC 36SE 22,131,262 15,622 
H3K4me3 Spleen 36SE 9,964,841 21,281 
H3K4me3 Testis 36SE 34,721,899 35,529 
H3K27ac Bone Marrow 36SE 23,409,037 30,006 
H3K27ac Cerebellum (Brain) 36SE 15,554,055 31,526 
H3K27ac Cortex (Brain) 36SE 12,623,031 36,895 
H3K27ac Embryonic Brain 36SE 15,991,870 36,916 
H3K27ac Embryonic Heart 36SE 17,327,725 40,788 
H3K27ac Embryonic Limb 36SE 14,784,293 35,470 
H3K27ac Embryonic Liver 36SE 17,735,247 34,600 
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H3K27ac Heart 36SE 18,117,256 43,404 
H3K27ac Intestine (Colon) 36SE 15,329,666 43,939 
H3K27ac Kidney 36SE 16,965,342 46,004 
H3K27ac Liver 36SE 19,967,447 41,975 
H3K27ac Lung 36SE 7,877,134 44,446 
H3K27ac Olfactory Bulb 36SE 13,522,059 42,954 
H3K27ac Placenta 36SE 12,733,402 31,630 
H3K27ac MEF 36SE 15,135,913 40,390 
H3K27ac mESC 36SE 21,171,342 44,055 
H3K27ac Spleen 36SE 15,342,277 28,916 
H3K27ac Testis 36SE 13,630,097 23,907 
p300 Heart 36SE 16,909,148 45,320 
p300 Kidney 36SE 6,079,062 13,112 
p300 Liver 36SE 9,223,591 7,268 
p300 Lung 36SE 10,595,179 22,368 

 

3.17.2 Alignment 
ChIP-seq data was aligned to the mouse genome mm10 using bowtie (version 2.0.6) 

(Langmead et al., 2009) and the following commands: 

bowtie2 -x bowtie2_index --very-sensitive-local -U 
reads.fastq.gz --no-unal -p4 -k1 

The numbers of aligned reads for each tissue and histone modification are listed in Table 18. 

 

3.17.3 Peak calling 
ChIP-seq peaks were called by the program MACS (version 1.4.) (Zhang et al., 2008) using 

the following commands:  

macs14 --treatment ChIP.sorted.bam --control Input.sorted.bam --
format BAM -g mm --name ChIP_tissue 

The numbers of detected peaks for each tissue and histone modification are listed in Table 18. 

For each histone modifications a combined track was prepared by concatenating respective 

peaks from all tissues. Peaks were merged when the distance of peaks was smaller than 

1000bp. An enhancer track was prepared by concatenating H3K4me1, H3K27ac and p300 

peaks from all tissues. Enhancers had to be at least 1kb away from H3K4me3 peaks. The final 

enhancer track listed 255,281 enhancers being defined by H3K4me1, H3K27ac or p300 

binding and being devoid of H3K4me3. 

 

3.18 Statistical analyses 

Statistical analysis and plots were done in R statistical environment (r-project.org), if no 

package name is specified analyses were carried out using the base package. Boxplots depict 
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the median (bold line), the 25th and 75th percentile (lower and upper box end) and the 1.5-fold 

interquartile range (IQR) (whiskers). Outliers lying outside the 1.5-fold IQR are plotted 

individually. Notches around the median illustrate a rough estimate of the significance of the 

difference between the medians. If the notches of two boxes do not overlap, there is strong 

evidence (95% confidence interval) that the medians differ significantly (Graphical Methods for 

Data Analysis, John M. Chambers, 1983). The notches are calculated by the 1.58-fold IQR 

divided by the square root of the numbers of observation, thereby being sensitive to the 

number of observations. Correlation coefficients were calculated by Pearson’s analysis, unless 

otherwise noted. 
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4 RESULTS 

4.1 Optimization of RNA-seq workflow 

4.1.1 The Ribo-Zero kit efficiently removes abundant rRNA species 
Ribosomal RNA species account for 95-98% of a cellular transcriptome and to improve 

sequencing coverage of mRNAs and the less abundant lncRNAs they have to be removed 

from the RNA preparation prior to RNA-seq. The RiboMinus Eukaryote Kit for RNA-Seq (Life 

Technologies) was the first commercially available kit to remove rRNA but when we analyzed 

RNA-seq data derived from RiboMinus treated RNA we found that 46-73% of the reads still 

mapped to rRNA species (Huang et al., 2011). At the end of 2010, the Epicentre company 

launched the Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) as an alternative and I tested 

its efficiency by qPCR. Total DNaseI treated HeLa RNA was subjected to Ribo-Zero rRNA 

removal according to the protocol. Samples that were rRNA depleted and untreated control 

samples were reverse transcribed into cDNA and rRNA abundance measured by qPCR. The 

four rRNA species 5S, 5.8S, 18S and 28S were efficiently removed in the Ribo-Zero treated 

HeLa samples as rRNA levels were reduced by >99% relative to the untreated controls 

(Figure 4). I used this kit for human, mouse and rat RNA samples and found consistent 

performance. RNA-seq results of many libraries I prepared for internal and external 

collaborations indicated that after rRNA removal using the standard Ribo-Zero kit 

approximately 4-5% of RNA-seq reads remained that aligned to rRNA. The low input version 

Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) Low Input was more effective with only 

0.5-1% of RNA-seq reads aligning to rRNA species after rRNA removal (data not shown). 

 

Figure 4: The Ribo-Zero kit efficiently removes abundant rRNA species 
2µg of HeLa RNA were subjected to rRNA removal using the Ribo-Zero kit. Levels of 5S, 5.8S, 18S and 
28S rRNA species were measured by qPCR in cDNA from Ribo-Zero treated samples and untreated 
control samples. Expression levels were normalized to the mRNA of the ribosomal protein Rplp0. 
Expression levels in total RNA were set to 100 and Ribo-Zero treated samples relative to it. Data is 
log10 transformed and depicted as mean, error bars represent variation of three technical replicates. 
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4.1.2 The ScriptSeq kit produces strand-specific libraries with 500ng input 
The first RNA-seq libraries in the Barlow lab were made from double-stranded cDNA, a 

method that does not preserve strand specificity. As many non-coding RNAs overlap protein-

coding genes in antisense orientation (e.g. Airn overlaps Igf2r), I strove to conduct strand-

specific RNA-seq in order to be able to distinguish overlapping transcripts. The company 

Epicentre launched the ScriptSeq RNA-seq Library Preparation Kit (referred to as ScriptSeq 

v1 kit within this thesis) that allowed to prepare strand-specific RNA-seq libraries in half a day. 

I tested two parameters of the kit: the amount of RNA input (500ng vs. 1000ng) before Ribo-

Zero treatment and the final library purification method (gel vs. column). The decision to test 

total RNA input instead of testing different amounts of Ribo-Zero treated RNA was made 

because Ribo-Zero treatment typically removes ~90-95% of an RNA sample, which makes 

accurate RNA quantification after Ribo-Zero treatment difficult. I used 500ng and two samples 

of 1000ng of mouse E14.5 fetal head total RNA that were Ribo-Zero treated and ScriptSeq 

libraries prepared with them. One of the 1000ng reactions was cleaned using a column while 

the second 1000ng reaction plus the 500ng reaction were cleaned using a gel. The libraries 

were sequenced (conditions: 50bp, single-end) and 65 million reads were taken from each 

dataset for a comparable analysis. In terms of gene expression, the samples with two 

different input amounts are well correlated (r=0.993) (Figure 5A, left), as are the samples with 

the two different library purification methods (r=0.979) (Figure 5A, right). The overall gene-

body coverage was higher in the gel-cleaned samples, however, unexpectedly for total RNA, 

the gene-body coverage of all three ScriptSeq v1 libraries showed a strong 5’end bias (Figure 

5B). The strand-specificity was similarly good for all samples, ranging from 94.51% to 95.58% 

of all reads mapping to the correct strand (data not shown), however, the number of 

unmapped reads was considerably higher in the column-cleaned samples compared to the 

gel-cleaned sample (8.78% vs. 2.93%) (Figure 5C). Taken together, these results established 

that RNA input can be as low as 500ng of total RNA and that library purification by gel is the 

preferred method. I then used the ScriptSeq v1 kit to prepare RNA-seq libraries for this study 

(see chapter 4.2.7 and 4.2.8) and also internal (Huang et al., 2011; Koerner et al., 2012) as 

well as external collaborations (Bürckstümmer et al., 2013). 
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Figure 5: The ScriptSeq v1 kit produces strand-specific libraries with 500ng input 
65 million reads (50bp, single-end) of mouse E.14.5 fetal head RNA-seq were used from each 
ScriptSeq v1 dataset to compare the influence of RNA input and library purification method. (A) RPKM 
of RefSeq transcripts (n=33,092) are plotted for two libraries with different input amounts (left) and two 
libraries with different library purification method (right). RPKM are log10 transformed. The Pearson 
correlation coefficient is indicated in the bottom right corners. (B) Gene-body coverage of the RefSeq 
annotation (n=33,092) was calculated for all three ScriptSeq v1 RNA-seq datasets. The gene-body of all 
transcripts was divided into percentiles to normalize for different transcript lengths. (C) Alignment 
statistics depicting the number of unmapped, multiply mapped and uniquely mapped reads of three 
ScriptSeq v1 libraries. 

 

4.1.3 The dUTP/TruSeq protocol produces superior libraries for transcript 
assembly 

In all the above-mentioned projects and collaborations, ScriptSeq v1 RNA-seq data was used 

to calculate gene expression. However, when I first started to assemble transcriptomes, I 

found that RNA-seq coverage from ScriptSeq v1 libraries across genes was variable and the 

read distribution indicated strong regional biases (Figure 6A, peaks in red tracks). In this 

study, I used RNA-seq data to estimate splicing efficiency of lncRNAs (see Figure 9 for an 

overview) and these biases invalidated splicing analysis and hindered transcriptome 

assemblies. Therefore, I tested two alternative methods to prepare strand-specific libraries. 

The company Epicentre launched an improved version of its original ScriptSeq v1 kit 

(ScriptSeq™ v2 RNA-Seq Library Preparation Kit, referred to as ScriptSeq v2 within this 

thesis) with a streamlined protocol, lower input (0.5-50ng RNA) and improved hexamer 

design to facilitate more even transcript coverage. The TruSeq™ RNA Sample Prep Kit 
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libraries strand-specific (Sultan et al., 2012). Specifically, these two steps are replacement of 

dTTP by dUTP during second-strand synthesis and a digestion by Uracil-DNA Glycosylase 

(New England Biolabs) at the end of library preparation to remove the dUTP containing 

second strand before PCR. I prepared libraries from the same adult spleen RNA sample 

using the ScriptSeq v2 kit (test of 8 vs. 12 PCR cycles) and the modified dUTP/TruSeq 

protocol (test of 0.5 vs. 4µg input) and sequenced the four libraries (conditions: 50bp, single-

end). The Pearson correlation of RefSeq RPKM within the two dUTP/TruSeq or the two 

ScriptSeq v2 libraries is very good (r=0.982 and r=0.994, respectively) (Figure 6B). The 

correlation between a ScriptSeq v2 library (8 cycles) and a dUTP/TruSeq library (4µg) is less 

pronounced (r=0.667), indicating differences between the two library preparations (Figure 6C, 

left). The correlation between a ScriptSeq v1 library and a dUTP/TruSeq library (4µg) 

(r=0.482) is even lower and shows that a direct comparison of gene expression between 

these libraries could be flawed (Figure 6C, left). The gene-body coverage of the 

dUTP/TruSeq libraries is much higher and more evenly distributed compared to the ScriptSeq 

v2 libraries (Figure 6C) and also known splice junctions are better detected in the 

dUTP/TruSeq libraries (Figure 6D). When RNA-seq data of the four libraries is displayed on 

the genome browser UCSC (Figure 6E, green tracks for ScriptSeq v2 libraries, blue tracks for 

dUTP/TruSeq libraries) it becomes evident that the dUTP/TruSeq protocol produces superior 

libraries. The inefficiently spliced lncRNA Malat1 is evenly covered in the dUTP/TruSeq tracks 

(blue tracks) whereas the ScriptSeq v2 tracks show spikes of reads (green tracks), similar to 

ScriptSeq v1 data (red tracks). Six of the peaks in the ScriptSeq v1 and v2 libraries go 

beyond the cutoff as high as 25,000 (Figure 6E, indicated by arrows). Based on the data 

presented in Figure 6, I concluded that the modified dUTP/TruSeq protocol is better suited for 

transcriptome assembly, however, for gene expression purposes RNA-seq data generated 

with the ScriptSeq v1 and v2 kits is still useful.  
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Figure 6: The dUTP/TruSeq protocol produces superior libraries for transcript 
assembly 
25 million reads (50bp, single-end) of mouse adult spleen RNA-seq were used from each library test 
dataset to compare the ScriptSeq v2 kit (test of 8 vs 12 PCR cycles) and dUTP/TruSeq libraries (test of 
0.5µg vs. 4µg input). (A) RNA-seq data of five libraries for Malat1 is displayed in the UCSC genome 
browser. Chromosome and genomic coordinates are displayed on top. Two tracks are displayed for 
every sample, the upper one corresponding to the forward strand the lower one corresponding to the 
reverse strand. The RefSeq annotation of Malat1 is displayed at the bottom. Arrows indicate regions of 
unusually high read coverage in the ScriptSeq v1 and v2 tracks. (B) RPKM of RefSeq transcripts 
(n=33,092) are plotted for two dUTP/TruSeq (left) and two ScriptSeq v2 libraries (right). The Pearson 
correlation coefficient is indicated in the bottom right corner. (C) RPKM of RefSeq transcripts (n=33,092) 
are plotted for ScriptSeq v2 (8 cycles) vs. dUTP/TruSeq (4µg) libraries (left) and ScriptSeq v1 vs 
dUTP/TruSeq libraries (right, visceral endoderm RNA-seq data taken from Kulinski et al., submitted) (D) 
Gene-body coverage of RNA-seq reads was calculated for all four library test datasets for the complete 
RefSeq annotation (n=33,092) (E) Depicted are the numbers of known (RefSeq) and novel splice 
junctions detected in the four RNA-seq datasets.  
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4.1.4 RNA hydrolysis time has only marginal influence on transcript 
assembly 

While the ScriptSeq kits use full-length RNA as input, the dUTP/TruSeq protocol requires 

RNA hydrolysis prior to cDNA synthesis. The TruSeq protocol suggests 8min of hydrolysis, 

which should yield RNA fragments with a median length of 155bp. In case such a library is 

sequenced 100bp paired-end, 45bp in the middle of the fragment would be covered by both 

reads of the read pair, i.e. sequenced twice. To reduce this overlap, I tested three different 

hydrolysis times and determined the degree of read overlap and its influence on the number 

of splice junctions and on transcript assembly (Figure 7). I used DNaseI and Ribo-Zero 

treated RNA from undifferentiated CCE ES cells as input and prepared four libraries with 

hydrolysis times of 1min, 3min (2 replicates) and 8min, all of which were sequenced 100bp 

paired-end. In order to have a comparable analysis, I randomly sampled 19 million reads from 

each dataset before analysis. As can be seen in Figure 7A, the overlap of paired reads is 

reduced with shorter hydrolysis times. A negative inner distance indicates read overlap (in 

bp), while a positive inner distance indicates the distance (in bp) between two paired 100bp 

reads. The median overlap is reduced from 53bp (8min) to 33/38bp (3min replicates) and to 

18bp (1min hydrolysis). I hypothesized that a greater overlap will lead to a reduced detection 

of splice junctions and as a consequence to poor transcript assembly. However, the number 

of splice junctions is only marginally affected by hydrolysis time (Figure 7B), as there is no 

clear trend visible between the three timepoints. In line with this finding, the transcript 

assembly is also very comparable, the median number of exons per assembled transcript 

comes in all samples very close to the RefSeq annotation (Figure 7C), a well annotated set of 

reference transcripts serving as the gold standard. One problem that arose was that it 

seemed that the longer the fragments are the lower their probability is to get sequenced. The 

four libraries were carefully quantified and pooled in equimolar ratios, however, the number of 

RNA-seq reads decreased approximately from 46 million (for 8min hydrolysis sample) to 

37/31 million (for 3min hydrolysis replicates) and to 19 million (for 1min hydrolysis sample) 

reads. In order to overcome problems with decreased read numbers, I decided to use 3min of 

hydrolysis for all future RNA-seq experiments as it reduced the read overlap by ~20bp but still 

yielded enough RNA-seq reads. 
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Figure 7: The RNA hydrolysis time has only marginal influence on transcript assembly 
19 million reads (100bp, paired-end) of mouse undifferentiated CCE ES cell RNA-seq were used from 
each dataset with hydrolysis times of 8min, 3min (2 replicates) and 1min. (A) Analysis of the inner 
distance of sequenced cDNA fragments between the two read pairs in the four datasets. A negative 
inner distance indicates overlap of the two read pairs (in bp), a positive inner distance refers to the 
number of base pairs between the ends of the paired reads. (B) Depicted are the numbers of known 
(RefSeq) and novel splice junctions detected in four hydrolysis datasets. (C) Boxplots are showing the 
distribution of exon numbers of assembled transcripts of the four RNA-seq datasets. Exon numbers are 
derived from the cufflinks transcript files. The RefSeq mRNA annotation (n=29,122) serves as a 
reference. Single-exon transcripts were removed from assembled transcripts as well as the RefSeq 
annotation prior to the analysis.  

 

4.1.5 100bp paired-end RNA-seq allows assembly of full-length transcripts 
Now that the library preparation kit was established and the hydrolysis time optimized, the 

next question was which RNA-seq read type is most cost-effective to assemble transcripts. 

For this analysis I used 19 million 100bp paired-end reads from the 3min hydrolysis (replicate 

1) dataset from above. Bioinformatically, I either removed the second read of the read pairs to 

give rise to a 100bp single-end dataset or trimmed the reads to give rise to a 50bp paired-end 

dataset. I then analyzed the number of detected splice junctions and assembled the 

transcriptome with cufflinks to determine the influence of the read type on transcript assembly 

(Figure 8). The transcriptome assembly relies on splice junctions and the more splice 

junctions are detected, the better lowly expressed and long transcripts are assembled. The 

number of detected known RefSeq splice junctions was comparable between all three 

datasets, however, the number of novel splice junctions increased by ~2.8 fold (50bp paired-

end compared to 100bp single-end) and ~4 fold (50bp paired-end compared to 100bp paired-

end) (Figure 8A). While the first increase is due to an increase in read length (at same 

sequencing depth), the second increase is a function of both increased read length and 
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increased coverage by read pairs. As a consequence of increased splice junction detection, 

the transcript assembly is also most effective with 100bp paired-end reads (Figure 8B). The 

numbers of exons per assembled transcript show almost the same distribution as the 

numbers of exons per transcript in the RefSeq annotation serving as the gold standard, that is 

why I decided to use 100bp paired-end RNA-seq for assembling transcripts throughout this 

study. 

 

Figure 8: 100bp paired-end RNA-seq allows assembly of full-length transcripts 
19 million reads (100bp paired-end) of mouse CCE ES cell RNA-seq were used to generate three 
datasets with the read types 50bp paired-end (50PE), 100bp single-end (100SE) and 100bp paired-end 
(100PE). (A) Depicted are the numbers of known (RefSeq) and novel splice junctions detected in each 
of these three RNA-seq datasets. (B) Boxplots are showing the distribution of exon numbers of cufflinks 
assembled transcripts of the three RNA-seq datasets. Exon numbers are derived from the cufflinks 
transcript files. The RefSeq mRNA annotation (n=29,122) serves as a reference. Single-exon transcripts 
were removed from assembled transcripts as well as the RefSeq annotation prior to the analysis.  

 

4.2 Characterization of mouse and rat lncRNAs 

4.2.1 Overview of annotation and analysis pipeline 
The mouse and rat lncRNA annotations used in this study were generated by Florian Pauler 

(see chapter 3.10.1 for details). He assembled transcriptomes from my self-generated RNA-

seq data from undifferentiated ES cells and primary embryonic fibroblasts (100bp paired-end, 

polyA, stranded) and published RNA-seq data from nine adult tissues (80bp paired-end, 

polyA, stranded) (Merkin et al., 2012) and applied several filter steps to obtain the final 

lncRNA annotations (Figure 9, left panel). The pipeline was set up for mouse RNA-seq data 

and then, with minor modifications (see methods section), also applied to rat RNA-seq data. 

RNA-seq data was aligned using STAR (Dobin et al., 2013) and transcriptomes were 

assembled using Cufflinks (Trapnell et al., 2013). After several filter steps to remove 

potentially coding transcripts and transcript artifacts, the assembled lncRNAs were grouped 

into loci representing transcriptional units. The lncRNA annotation was complemented with 

RefSeq mRNAs and then used in the second step to investigate RNA stability, RNA 

localization and RNA splicing (Figure 9, right panel). For each of these three RNA biology 

features, self-generated RNA-seq datasets of mouse and rat ES cells and embryonic 

fibroblasts were analyzed. 
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Figure 9: Overview of annotation and analysis pipeline 
For this study, self-generated and public RNA-seq datasets of eleven cell types were used by Florian 
Pauler to generate novel and comprehensive lncRNA annotations for mouse and rat (left panel, see 
chapter 3.10.1 for details). The mouse and rat lncRNA annotations were complemented with RefSeq 
mRNAs and in the second step used to analyze RNA stability, RNA localization and RNA splicing (right 
panel). For each of these three RNA biology features self-generated RNA-seq datasets of ES cells and 
embryonic fibroblasts of mouse and rat were used. Abbreviations: mESC, mouse ES cells; MEF, mouse 
embryonic fibroblasts; rESC, rat ES cells; REF, rat embryonic fibroblasts; 100PE, 100bp paired-end 
RNA-seq; 50SE, 50bp single-end RNA-seq; mm10, mouse reference genome; rn5, rat reference 
genome; CPC, Coding Potential Calculator. 

 

4.2.2 Statistics of read numbers, assembly and filtering 
The mouse and rat lncRNA annotations generated by Florian Pauler are each derived from 

two self-generated and nine published RNA-seq datasets. Figure 10A shows the numbers of 

uniquely aligned, multiply aligned and unaligned reads of all mouse and rat datasets used for 

transcriptome assembly. All tissues were deeply sequenced, ranging from ~60 million reads 

for lung to ~160 million reads for heart (in mouse) and from ~60 million reads for skeletal 

muscle to ~130 million reads for liver (in rat). Throughout all tissues, ~80-90% of all reads 

were uniquely aligned, ~5-10% were multiply aligned and ~3-6% could not be aligned. The 

cufflinks transcriptome assembly generated between 100,000 and 250,000 multi-exonic 

transcripts per tissue (Figure 10B). In heart and skeletal muscle the fewest transcripts could 

be assembled in both species, while in testis, ES cells and embryonic fibroblasts the most 

transcripts were assembled. Transcripts overlapping RefSeq mRNAs on the sense strand (by 

1bp of cDNA) or on the antisense strand (>20% of cDNA) were systematically filtered out 

(Figure 10C), as these transcripts have a high likelihood to be coding or contain coding 

sequence. This step ultimately removed ~90-95% of all assembled transcripts for eight of the 

eleven tissue. In the three remaining tissues testis, ES cells and embryonic fibroblasts of 
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mouse and rat ~35-60 million transcripts passed the sense mRNA filter, which is ~5 times 

higher than for the other tissues. While testis indeed expresses a wealth of putative lncRNAs, 

the number of transcripts in ES cells and embryonic fibroblasts decreased to similar levels as 

in the other tissues after applying the antisense mRNA filter. The reason for this phenomenon 

is that RNA-seq data of ES cells and embryonic fibroblasts is not as strand-specific as the 

remaining tissues, hence, highly expressed mRNAs are also assembled on the opposite 

strand and are only removed by the antisense mRNA filter. The filtered putative non-coding 

transcripts from all tissues were merged to give rise to ~93,000 mouse transcripts and 

~119,000 rat transcripts (Figure 10D). A two-step pipeline including RNAcode (Washietl et al., 

2011) and Coding Potential Calculator (Kong et al., 2007) stringently filtered out transcripts 

with estimated coding potential, reducing the number of lncRNAs to ~60,000 in mouse and 

~88,000 in rat. A final filter step removed transcripts that were assembled antisense to highly 

expressed lncRNAs (due to incomplete strandedness, as for mRNAs) and transcripts that 

were derived from unmapped or random chromosome pieces. In total, this pipeline identified 

36,578 mouse lncRNA transcripts in 7,815 loci (on average 4.68 lncRNAs per locus) and 

46,041 rat lncRNA transcripts in 9,921 loci (on average 4.64 lncRNAs per locus) (Figure 

10D). 
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Figure 10: Statistics of read numbers, assembly and filtering 
(A) Number of total RNA-seq reads per tissue for mouse (left) and rat (right). Total reads were split into 
uniquely aligned, multiply aligned and unaligned reads after STAR alignment. (B) Number of assembled 
multi-exonic transcripts per tissue for mouse (blue) and rat (red). (C) Number of assembled multi-exonic 
transcripts after removal of transcripts overlapping RefSeq mRNA in sense (by 1bp, blue) and after 
removal of transcripts overlapping RefSeq mRNA in antisense (by >20% of their cDNA, red) for mouse 
(left) and rat (right). (D) Number of assembled multi-exonic transcripts for mouse (blue) and rat (red) 
after merging of non-mRNA-overlapping transcripts from eleven tissues, after filtering of transcripts with 
predicted coding potential by the non-coding pipeline and after applying final filters (see method section 
for details). The last bars represent the final number of mouse and rat lncRNA loci after grouping of 
lncRNAs into loci. Abbreviations: skm, skeletal muscle; ESC, ES cells; EF, embryonic fibroblasts. 

 

4.2.3 Intergenic lncRNAs are the most abundant class of lncRNAs 
The lncRNA annotations of mouse and rat were complemented by the addition of multi-exonic 

RefSeq mRNAs, Figure 11A shows the number of lncRNA and mRNA loci in the mouse (left) 

and the rat genome (right). In rat, more lncRNA loci were annotated, however, with a reduced 
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number of mRNA loci the total number of gene loci is still lower than in mouse (27,877 mouse 

loci vs. 25,157 rat loci). The mouse lncRNAs were classified into the four major classes 

intergenic, antisense, enhancer and bidirectional lncRNAs (see chapter 3.10.4 for details). 

For rat, it was not possible to classify enhancer RNAs as no public ChIP-seq data was 

available for the eleven tissues used to map rat lncRNAs. In mouse, intergenic lncRNAs form 

the most abundant subclass representing almost 58% of all lncRNAs, whereas the remaining 

classes are equally distributed with each approximately 14% (Figure 11B, left). In rat, due to 

the lack of eRNAs, approximately 78% of all lncRNA belong to intergenic lncRNAs, while 

overlapping lncRNAs have a comparable share as in mouse and bidirectional lncRNAs are 

halved (Figure 11B, right). 

 

 

Figure 11: Intergenic lncRNAs are the most abundant class of lncRNAs 
(A) Ring plots showing the number and percentages of assembled lncRNA loci and added mRNA loci 
for mouse (left) and rat (right). (B) Ring plots showing the number and percentages of lncRNA 
subclasses for mouse (left) and rat (right). Rat enhancer lncRNAs could not be defined due to a lack of 
public ChIP-seq data for the tissues that were used to map lncRNAs.  

 

4.2.4 LncRNAs have unusual genomic transcript features 
I calculated six genomic transcript features and compared lncRNAs to mRNAs as well as 

lncRNA subclasses among themselves. In general, these features can be grouped in two 

broader characteristics: transcript length (defined by the features exon count, cDNA size and 

locus size) and transcript composition (defined by average exon size, exon/intron ratio and 

exonic repeat coverage). I find that mouse lncRNAs are very different from mRNAs in terms 

of their genomic transcript features. They are significantly shorter than mRNAs, as indicated 

by three of the six features: the median number of exons per lncRNA is substantially lower 

than per RefSeq mRNA (3 vs 8 exons per transcript), as is the median cDNA size (1.47kb vs 
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2.58kb) and the median locus size (8.78kb vs 20.57kb) (Figure 12A). Mouse lncRNAs also 

have an unusual transcript composition as indicated by larger average exon sizes (254bp vs. 

144bp), a higher exon/intron ratio (23.09% vs. 12.42%) and a dramatically increased exonic 

repeat coverage (26.55% vs. 1.67%) compared to mRNAs (Figure 12A). The results are very 

similar for the rat (Figure 12B). Taken together, lncRNAs are markedly different from mRNAs 

in terms of genomic transcript features, which may reflect their different evolution, 

conservation and function.  

Within the four lncRNA subclasses, the differences are not as pronounced (Figure 12A, B). 

The exon count, cDNA size and locus size is very similar throughout all lncRNA subclasses in 

mouse and rat. In terms of average exon size and exon/intron ratio, bidirectional lncRNAs 

have slightly longer exons and a higher exon/intron ratio in both species. The exonic repeat 

coverage is similar in all lncRNA subclasses, only antisense lncRNAs tend to have less 

repeats in mouse and rat. This is most probably explainable by the fact that they overlap 

mRNAs and coding regions, which exhibit reduced repeat content. The four mouse lncRNA 

classes also exhibit similar steady-state RNA levels with a maximum difference of ~2-fold 

between intergenic and bidirectional lncRNAs (Figure 12C). In summary, this establishes that 

neither genomic transcript features nor abundance levels distinguish any of the currently used 

mouse lncRNA classes. 
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Figure 12: LncRNAs subclasses have very similar genomic transcript features 
(A), (B) Six genomic transcript features were calculated for mouse and rat transcripts and averaged (by 
median) for each locus. Features of lncRNAs (white boxes) and mRNAs (left grey boxes) were plotted 
separately for (A) mouse and (B) rat. Additionally, lncRNAs were further divided into the subclasses 
intergenic, bidirectional, enhancer and antisense lncRNAs (shaded grey boxes). The exonic repeat 
coverage was calculated using the UCSC repeatmasker track, all other features were directly calculated 
from the annotation bed file. Statistical significance for lncRNA vs. mRNA comparisons was calculated 
using the R function wilcox.test() and the p-value was found in all six cases to be < 2.2e-16. 
Numbers of loci for each box can be found in Figure 11. C) RPKMs calculated from polyA+ RNA-seq 
data are plotted in log2 scale for four mouse lncRNA classes in MEF and mESC. Int, intergenic lncRNA; 
as, antisense lncRNA; eRNA, enhancer lncRNA; bid, bidirectional lncRNA. 
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4.2.5 LncRNAs are lowly expressed 
While single lncRNAs can be very highly expressed, it is known that lncRNAs are on average 

considerably lower expressed than mRNAs (Cabili et al., 2011). The density plots in Figure 13 

depict the distribution of log10 transformed RPKMs for mouse (Figure 13A) and rat (Figure 

13B) lncRNAs (left) and mRNAs (right). As can be seen, the majority of expressed lncRNAs 

tend to have RPKMs between 0.01 and 1 while most of the expressed mRNAs have an 

RPKM of ~10. LncRNAs are therefore on average approximately 10-1000 fold lower 

expressed than mRNAs. In terms of lncRNA expression, testis is an outstanding tissue as it 

expresses a wealth of lncRNAs with an RPKM of ~1.23 (in mouse) and ~1.52 (in rat) (peaks 

of black lines) and thereby considerably higher than any other tissue (Cabili et al., 2011; 

Necsulea et al., 2014). 

 

 

Figure 13: LncRNAs are lowly expressed 
RPKMs were calculated for the mouse and rat annotation for eleven tissues. LncRNAs (left) and 
mRNAs (right) were plotted separately for mouse (A) and rat (B). RPKMs were log10 transformed and 
RPKM densities were calculated using the R function density(). 
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4.2.6 LncRNAs are tissue-specifically expressed 
Although some structural and essential lncRNAs are known to be ubiquitously expressed, 

many lncRNAs are actually expressed only in one tissue (Cabili et al., 2011). In order to 

estimate the degree of tissue-specific expression of lncRNAs in my catalog, I calculated 

RPKMs from the eleven tissues and asked how much of the RPKM sum of all tissues is 

coming from each single tissue. Figure 14A depicts these fractional densities of 5,973 

expressed lncRNAs and 18,177 expressed mRNAs of the mouse. Fractional densities were 

sorted in decreasing order and densities >0.5 (representing 50% of the RPKM sum coming 

from only one tissue) were considered as tissue specific expression. It becomes evident that 

74.77% of all lncRNAs are expressed primarily from only one tissue, in contrast to 35.99% of 

all mRNAs. The remaining transcripts are expressed in more than one tissue with many of 

them being ubiquitously expressed in all tissues. Also in rat, 78.15% of lncRNAs are 

expressed primarily from one tissue in contrast to 32.98% of mRNAs (Figure 14B). In an 

attempt to further quantify that result, I sorted the RPKMs of each locus from the highest 

expressing tissue to the lowest expressing tissue. Figure 14C (left panel) shows that mouse 

mRNAs reach median expression levels of ~50% and ~30% in the second and third highly 

expressing tissue relative to the highest expressing tissue, respectively, while mouse 

lncRNAs reach only ~10% and ~3%. This trend of tissue-restricted expression of lncRNAs is 

also evident in rat (Figure 14C, right panel).  
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Figure 14: LncRNAs are more tissue-specifically expressed than mRNAs 
RPKMs were calculated for the mouse and rat annotation for 11 tissues. An expression cut-off was 
applied to keep only loci that were stably detected with an RPKM>1 in at least one of the eleven tissues. 
(A,B) Fractional densities of mouse and rat lncRNAs (left) and mRNAs (right) were calculated by 
determining the fraction of the RPKM from each single tissue relative to the RPKM sum of all tissues. 
Loci with a fractional density of >0.5 (corresponding to >50% of the total expression of all tissues is 
coming from a single tissue) were considered as tissue-specifically expressed (red blocks). (C) RPKMs 
of the 11 tissues were sorted for each locus from lowest to highest expressing tissue (set to 100). The 
boxplots depict the RPKMs of lncRNAs and mRNAs in all tissues relative to the highest expressing 
tissue for mouse (left) and rat (right). 
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(adult vs. fetal #1 and adult vs, fetal #2). As can be seen for heart development, 23.62% of 

expressed lncRNAs are >2-fold upregulated in the adult heart (11.30% of mRNAs) relative to 

the fetal heart whereas 41.24% are downregulated (29.5% of mRNAs). In liver this trend is 

also evident as 25.56% of lncRNAs are upregulated (15.39% of mRNAs) and 58.18% are 

downregulated (52.2% of mRNAs) during liver development. The reason why lncRNAs are 

more developmentally regulated than mRNAs in liver and heart development remains 

enigmatic, however, it fits well to the high degree of tissue-specific expression of lncRNAs 

(see Figure 14). As lncRNAs are considerably lower expressed than mRNAs (see Figure 13), 

care has to be taken that low expression does not lead to more variable RPKM and thereby to 

an overestimation of differential regulation. Therefore, I used two cut-offs to only include 

reliably detected transcripts. First, I demanded each transcript to be detected in at least one 

of the three (one adult, two fetal) samples with an RPKM > 1. Second, I calculated RPKM 

errors and kept only transcripts that have a RPKM error < 5% in at least one of the three 

samples (see chapter 3.9.7). This cut-off ensures that only those transcripts are further 

analyzed that are stably detected at the current sequencing depth and even if the sample is 

deeper sequenced does not change its final RPKM by more than 5% (see method section for 

details). Figure 15B shows the distribution of RPKM errors in the up- and down regulated 

lncRNAs and mRNAs in heart and liver. It becomes evident that lncRNAs are in fact less 

stably detected than mRNAs, however, their RPKM errors are mostly below 10% and 

therefore can not be the sole reason for increased developmental deregulation defined by a 

2-fold change. As expected, genes higher expressed in the adult sample tend to have low 

RPKM errors in the adult sample but higher errors in the fetal samples (where they are lower 

expressed) whereas genes higher expressed in the fetal samples genes show the opposite 

pattern. The relative sequencing errors are similar between heart samples (Figure 15B, left) 

and liver samples (Figure 15B, right). Additionally, as a control, I compared the two biological 

replicates of the fetal samples of liver and heart and found that few transcripts are 

differentially expressed between the two replicas (grey lines, Figure 15A), indicating that the 

developmental regulation of lncRNAs can not be attributed to only increased variability of 

lowly expressed lncRNAs. 
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Figure 15: LncRNAs are developmentally regulated in liver and heart 
(A) RPKMs were calculated for one adult (6 weeks) and two fetal samples (E14.5) of mouse heart (left) 
and mouse liver (right). Stably detected loci were chosen by RPKM > 1 and RPKM error < 5% cut-offs in 
at least one of the three samples. Fold-changes of adult over fetal samples (adult vs. fetal #1 and adult 
vs fetal #2) are plotted for lncRNAs (blue lines) and mRNAs (red lines). The comparisons between the 
two fetal samples (grey lines) serve as a control to rule out increased lncRNA variability as a major 
source for differential regulation. Numbers indicate the average percentages of lncRNAs and mRNAs 
that are up- or downregulated in the adult over the two fetal samples. (B) Distributions of RPKM errors 
are plotted for up- and down-regulated mRNAs and lncRNAs in heart (left figures) and liver (right 
figures). As an example, transcripts >2-fold upregulated in the adult over the fetal sample are obviously 
higher expressed in the adult than the fetal sample, hence, their relative sequencing error is low in the 
adult sample and higher in the fetal sample. Abbreviations: fet, fetal; ad, adult. 
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explicitly included in the range of tissues used for transcript assembly. The annotation 

pipeline therefore seems to be sensitive enough to annotate transcripts from rare cell types 

that infiltrated other organs. Mature B cells constitute a large portion of the spleen, whereas T 

cells are much more rare there. This physiologic situation is reflected in the heatmaps, as B 

cell specific lncRNAs also show expression in spleen (light red block) whereas T cell specific 

lncRNAs show much less expression in spleen (white block). Interesting is also the 

observation that B cell lncRNAs are mostly not found in T cells, and vice versa, whereas 

lncRNAs from T cells are in most cases found in CD4+ as well as CD8+ T cells. In order to 

estimate robustness of lncRNA expression I sequenced RNA from three biological replicates 

of mouse spleen and calculated fold change of lncRNAs and mRNAs between all three 

possible pairwise combinations (Figure 16B). After averaging the number of differentially 

expressed (> 2-fold) transcripts between the three pairwise comparisons, only less than 1% of 

lncRNAs and mRNAs are differentially expressed between three biological replicates of 

spleen. This shows that most lncRNAs are robustly detected by our sequencing pipeline and 

if differential expression is detected it can be attributed to the biological context rather than 

spurious variance of sequencing data. This finding further validates differential expression 

data from Figure 15A and Figure 16A. I further plotted fractional densities of expressed 

lncRNAs and mRNAs (as in Figure 15) for all ScriptSeq datasets (Figure 16C). It can be seen 

that most of the tissue specific lncRNAs are primarily expressed from the adult tissue of heart, 

liver and spleen from which they were assembled. Interestingly, while many lncRNAs 

primarily expressed in adult heart are also lowly expressed in fetal heart, and vice versa, adult 

liver and fetal liver share much less lncRNAs. In summary, this data shows that many 

lncRNAs are developmentally and tissue specifically expressed, which argues that they might 

have cell type specific functions such as the regulation of transcription factors or key signaling 

pathways. 
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Figure 16: LncRNAs are differentially expressed in B, CD4+ and CD8+ T cells 
RPKM of mouse lncRNAs and mRNAs were calculated for the heart and liver adult and fetal samples, 
for FACS sorted B cells, CD4+ and CD8+ T cells and for adult spleen. These RNA-seq datasets are all 
derived from ScriptSeq libraries and are therefore only compared among themselves. (A) An expression 
cut-off was applied to keep only loci that were stably detected with an RPKM>1 in at least one of the 
four indicated tissues. Fractional densities of lncRNAs (left) and mRNAs (right) were calculated by 
determining the fraction of the RPKM that comes from each single tissue relative to the RPKM sum of all 
tissues. Loci with a fractional density of >0.5 (corresponding to >50% of the total expression of all 
tissues is coming from a single tissue) were considered as tissue-specifically expressed (red blocks). 
(B) Stably detected loci were chosen by RPKM > 1 and RPKM error < 5% cut-offs in at least one of the 
three spleen replicates. Fold-changes of pairwise comparisons are plotted for lncRNAs (blue shades) 
and mRNAs (red shades). Numbers indicate the average percentages of lncRNAs and mRNAs that are 
up- or downregulated in the three pairwise comparisons. (C) as in (A) but with eight indicated tissues. 
Abbreviations: BR, biological replicate; fet, fetal; ad, adult. 

 

4.3 Investigation of lncRNA biology (export, stability, splicing)  

4.3.1 Cellular fractionation efficiently separates nuclear and cytoplasmic RNA 
In order to investigate the cellular localization of lncRNAs, I incubated cells in a mild lysis 

buffer to disrupt cell membranes while keeping the nucleus intact (Figure 17A). After sucrose 
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from the intact heavier nuclei that formed a pellet below the sucrose. A qPCR analysis 

confirmed efficient separation of the nuclear and cytoplasmic RNA fractions. The left panel in 

Figure 17B shows the enrichment of the nuclear localized lncRNA Airn (Seidl et al., 2006) in 
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the nuclear fraction and its reduction in the cytoplasmic fraction of MEF cells compared to the 

Gapdh mRNA in two biological replicates. As Airn is not expressed in mouse ES cells, I 

decided to use the nuclear localized lncRNA Kcnq1ot1 (Redrup et al., 2009) as a marker for 

ES cells, leading to similar results (Figure 17B, right panel). I prepared RNA-seq libraries from 

nuclear and cytoplasmic RNA fractions and sequenced them 50bp single-end. RNA-seq data 

of mESC and MEF loaded onto the UCSC genome browser shows that fourteen clustered 

histone mRNAs are efficiently exported and therefore strongly enriched in the cytoplasmic 

fraction (top panel, blue peaks) compared to the nuclear fraction (Figure 17C, top panel) 

whereas the Kcnq1ot1 lncRNA is retained in the nucleus (bottom panel, green peaks) and 

almost absent in the cytoplasmic fraction (Figure 17C, bottom panel). This further confirms 

the efficient separation of cytoplasmic and nuclear RNA fractions in both cell types. 
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Figure 17: Cellular fractionation efficiently separates nuclear and cytoplasmic RNA 
(A) Experimental outline to investigate RNA localization by subcellular RNA fractionation and RNA-seq. 
(B) Levels of Air and Gapdh (left) and Kcnq1ot1 and Gapdh (right) were measured by qPCR analysis in 
the nuclear and cytoplasmic fractions of MEF (left) and mESC (right). Expression values were not 
normalized to a housekeeping gene. Expression levels in total RNA were set to 100 (in MEF replicates 
only biological replicate 1) and subcellular fractions relative to it. Data is log10 transformed and depicted 
as mean, error bars represent variation of three technical replicates. (C) RNA-seq data of cytoplasmic 
(blue tracks) and nuclear (green tracks) RNA fractions of MEF and mESC are displayed in the UCSC 
genome browser. Chromosome and genomic coordinates are displayed on top. Two tracks are 
displayed for every sample, the upper one corresponding to the forward strand and the lower one 
corresponding to the reverse strand. The RefSeq annotation showing a cluster of fourteen histone 
mRNAs (top) and the locus of the lncRNA Kcnq1ot1 (bottom) is displayed beneath the tracks. The 
histone mRNAs are predominantly found in the cytoplasmic fractions (top, blue peaks) and nuclear 
retained Kcnq1ot1 lncRNA predominantly found in the nuclear fractions (bottom, green peaks) in MEF 
and mESC. Abbreviations: BR, biological replicate; nuc, nuclear RNA fraction; cyt, cytoplasmic RNA 
fraction. 

 

4.3.2 LncRNAs are less exported than mRNAs 
I calculated the RNA export of each lncRNA locus and RefSeq mRNA from RNA-seq data by 

summing up each transcript’s nuclear and cytoplasmic RPKM and determine which 

percentage of the RPKM sum comes from the cytoplasmic fraction (see methods section 3.12 

for details). RNA export of a transcript is therefore defined by the percentage it is exported to 

the cytoplasm and ranges between 0% (exclusively detected in the nucleus), 50% (detected 

in the nuclear and the cytoplasmic fraction with the same RPKM) and 100% (exclusively 

detected in the cytoplasm). As mRNAs are transcribed in the nucleus and translocate to the 

cytoplasm to be translated, they are found in both fractions. The subcellular localization of 

lncRNAs is not as defined as their functions do not depend on translation in the cytoplasm, 

hence, many of them evade nuclear export and are therefore found predominantly in the 

nucleus. Figure 18A summarizes the RNA export data for mRNAs and lncRNAs in mESC and 

MEF (left) as well as REF (right). The median export of mRNAs seems to be very constant in 

all three cell types (52.26%, 52.60% and 53.07% for mESC, MEF and REF, respectively), 

arguing that the RNA fractionation experiment was equally efficient in all three experiments. 

The median export of lncRNAs is, however, statistically significantly lower in all three cell 

types compared to mRNAs as indicated by a Wilcoxon Rank-Sum test (p-values for all three 

comparisons < 2.2e-16). Also, RNA export of lncRNAs is more variable between the three cell 

types. MEF lncRNAs seem to be less exported than mESC lncRNAs (median of 16.68% 

compared to 28.41%), while REF lncRNAs are more efficiently exported (21.55%) compared 

to MEF lncRNAs. As lncRNAs are generally lower expressed than mRNAs, I wanted to make 

sure that RNA export of lncRNAs is as accurately determined as RNA export of mRNAs. I 

therefore applied not only an RPKM cutoff but also filtered out transcripts when their RPKM 

error was higher than 5% (see methods section 3.9.7 and 3.12 for details). In Figure 18B the 

distribution of RPKM errors for mouse (left) and rat (right) are plotted. As mRNAs are usually 

well expressed their median RPKM error is in all three celltypes very low (between 0.43% and 

0.49%). In contrast, most lncRNAs are lowly expressed and so the medians of their RPKM 

errors are higher (between 1.13% and 1.20%), although still very much acceptable. These 

errors indicate that the RNA-seq libraries were sequenced deep enough to have robust 
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RPKM values even of lowly expressed lncRNAs. I also investigated how robust the RNA 

export calculation is between biological replicates, how similar RNA export is between the two 

mouse cell types mESC and MEF and whether RNA export is conserved between mouse and 

rat embryonic fibroblasts (Figure 18C). The RNA fractionation experiments seem to be quite 

reproducible as the correlations of mRNA and lncRNA export are good (r=0.77 for both) 

between two experiments that were carried out with cells of a different passage number and a 

week apart (Figure 18C, left panel). RNA export between two different cell types is more 

variable for mRNAs (r=0.61) and lncRNAs (r=0.51) (Figure 18C, middle panel). Interestingly, 

also mRNA export seems to be markedly different between mESC and MEF, although their 

median export is very similar (see Figure 18A). I also checked whether export of mRNAs and 

lncRNAs is conserved between mouse and rat. I therefore investigated mRNAs and lncRNAs 

whose genomic loci overlap >30% between mouse and the synthenic rat region. Indeed, the 

conservation of mRNA export between mouse and rat embryonic fibroblasts is quite good 

(r=0.72) and comparable to the variation seen for biological replicates, however, lncRNA 

export seems to be more variable between the two species (r=0.52) (Figure 18C, right panel). 
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Figure 18: LncRNAs are less exported than mRNAs 
(A) Boxplots are showing the distribution of RNA export of mRNAs (grey) and lncRNAs (white) for ES 
cells and embryonic fibroblasts of the mouse (left) and rat embryonic fibroblasts (right) as calculated in 
chapter 3.12. Numbers in the boxes indicate medians. (B) Boxplots are showing the distribution of 
RPKM errors of mRNAs (grey) and lncRNAs (white) for ES cells and embryonic fibroblasts of the mouse 
(left) and rat embryonic fibroblasts (right) as calculated in chapter 3.12.3. Numbers in the boxes indicate 
medians. (C) Scatter plots are showing the correlation between two MEF biological replicates (left 
panel), the correlation between mESC and MEF (middle panel) and the correlation between mouse and 
rat embryonic fibroblasts (right panel). Pearson’s correlation coefficients were calculated using the R 
function cor() and are displayed in the bottom right corners. Numbers of mRNAs and lncRNAs are 
displayed in the top left corners. Trend lines were calculated using the R function lm(). 

 

4.3.3 Actinomycin D treatment efficiently inhibits RNA synthesis 
In order to investigate the stability of lncRNAs, I treated mouse and rat ES cells and 

embryonic fibroblasts with the transcriptional inhibitor Actinomycin D (ActD) or the vehicle 

control EtOH for 1h and 4h (Figure 19A). Each of the four cell types was assayed in two 

biological replicates, and each of those in two technical replicates. To confirm the 

effectiveness of the ActD treatment, I determined levels of the unstable mRNA Myc (Dani et 

al., 1984) in each of these samples prior to RNA-seq. Myc levels (Figure 19B, left panel) are 

decreased to ~50% in the mouse and rat ES cells and to ~20-30% in the embryonic 

fibroblasts after 1h ActD treatment and to ~5% in all samples after 4h of treatment. As a 

control, the levels of the stable Gapdh mRNA remained largely unaffected by ActD (Figure 

19B, right panel). This indicated that the experiment worked in all biological and technical 

replicates, hence, RNA from corresponding technical replicates was pooled before RNA-seq 

library preparation. After RNA-seq, the RNA abundances of RefSeq mRNAs were assayed 

first in order to appreciate the genome-wide effects of ActD treatment. As can be seen in 

Figure 19C, in all four cell types 1h ActD treatment had only minor effects on mRNAs as only 

few mRNAs show reduced abundance, however, after 4h a considerable number of mRNAs 

is substantially reduced. The mRNA abundances in the EtOH control treatments seem to be 

largely unaffected and resemble the untreated control. RNA-seq data of mESC and MEF 

loaded onto the UCSC genome browser further confirms the efficiency of ActD treatment. 

Fourteen clustered histone mRNAs can all be considered unstable as after 1h ActD treatment 

their abundance is reduced and after 4h ActD treatment the majority of histone mRNAs is 

degraded, while in the 1h and 4h EtOH control treatments their abundance is unaffacted 

(Figure 20A+B, left). In contrast, the Hprt mRNA can be considered a stable mRNA as its 

abundance is constant in all ActD and EtOH treatments (Figure 20A+B, right).  
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Figure 19: Actinomycin D treatment efficiently inhibits RNA synthesis 
(A) Experimental outline to investigate RNA stability in mouse and rat ES cells and embryonic 
fibroblasts. Each cell type was assayed in biological replicates (BR), each of which was assayed in 
technical replicates (TR). Technical replicates were assayed by qPCR and pooled before RNA-seq. (B) 
qPCR analysis of Myc (left) and Gapdh (right) in biological replicates of four celltypes after ActD or 
EtOH treatment for 1h or 4h relative to the untreated control. Data is depicted as mean, error bars 
represent variation of three technical replicates. (C) Heatmaps depict the log10 transformed RPKM of 
RefSeq mRNAs in four celltypes after ActD or EtOH treatment for 1h or 4h relative to the untreated 
control (set to 100). In each panel column #4 (4h ActD treatment) was sorted in increasing order to 
illustrate the distribution of unstable and stable mRNAs. Abbreviations: BR, biological replicate; TR, 
technical replicate. 

A

B

C

re
la

tiv
e 

ex
pr

es
sio

n 
(n

ot
 n

or
m

al
ize

d)

qPCR Myc

0h_TR1

0h_TR2

1h_ActD
_TR1

1h_ActD
_TR2

1h_EtOH_TR1

1h_EtOH_TR2

4h_ActD
_TR1

4h_ActD
_TR2

4h_EtOH_TR1

4h_EtOH_TR2

0
50

10
0

15
0

20
0

mESC_BR1
mESC_BR2
MEF_BR1
MEF_BR2
rESC_BR1
rESC_BR2
REF_BR1
REF_BR2

re
la

tiv
e 

ex
pr

es
sio

n 
(n

ot
 n

or
m

al
ize

d)

qPCR Gapdh

0h_TR1

0h_TR2

1h_ActD
_TR1

1h_ActD
_TR2

1h_EtOH_TR1

1h_EtOH_TR2

4h_ActD
_TR1

4h_ActD
_TR2

4h_EtOH_TR1

4h_EtOH_TR2
0

50
10

0
15

0
20

0

mESC_BR1
mESC_BR2
MEF_BR1
MEF_BR2
rESC_BR1
rESC_BR2
REF_BR1
REF_BR2

REF (n=9,330 mRNAs)

0h 1h ActD

1h EtO
H

4h ActD

4h EtO
H

0

2

5

10

20

50

100

rESC (n=8,865 mRNAs)

0h 1h ActD

1h EtO
H

4h ActD

4h EtO
H

0

2

5

10

20

50

100

mESC (n=11,161 mRNAs)

0h 1h ActD

1h EtO
H

4h ActD

4h EtO
H

0

2

5

10

20

50

100

MEF (n=11,599 mRNAs)

0h 1h ActD

1h EtO
H

4h ActD

4h EtO
H

0

2

5

10

20

50

100

Cells treated with Actinomycin D or EtOH 
for 1h and 4h (2 biological replicates) 

0h 

0h 

1h 
ActD 

1h 
EtOH 

4h 
ActD 

4h 
EtOH 

1h 
ActD 

1h 
EtOH 

4h 
ActD 

4h 
EtOH 

qPCR & pooling of TRs, RNA-seq of BRs 

Experimental outline: RNA stability 

te
ch

ni
ca

l  
re

pl
ic

at
e 

1 
te

ch
ni

ca
l  

re
pl

ic
at

e 
2 

biological replicate 1 



Philipp Günzl  RESULTS 

 - 77 - 

 
 

Figure 20: UCSC snapshots of RNA stability RNA-seq data  
RNA-seq data of mESC (top panels) and MEF cells (bottom panels) treated with ActD or EtOH for 1h or 
4h are displayed in the UCSC genome browser. Chromosome and genomic coordinates are displayed 
on top. Two tracks are displayed for every sample, the upper one corresponding to the forward strand 
(indicated by f) the lower one corresponding to the reverse strand (indicated by r). In the left panels, the 
genomic region of a cluster of fourteen histone mRNAs being expressed from the forward or reverse 
strand is depicted. Histone mRNA levels are reduced after 1h ActD treatment and nearly disappeared 
after 4h ActD treatment. These histone mRNAs can therefore be considered as unstable mRNAs. In 
both EtOH control treatments the RNA levels seem unaffected and very similar to the untreated control. 
In the right panels, the genomic region of the Hprt gene being expressed from the forward strand is 
shown. Hprt mRNA shows comparable abundances in all five samples in mESC and MEF, indicating 
that Hprt mRNA is a stable mRNA at least for 4h. 0h, untreated control; 1A, 1h ActD treatment; 1E, 1h 
EtOH treatment; 4A, 4h ActD treatment; 4E, 4h EtOH treatment. 

 

4.3.4 LncRNAs are less stable than mRNAs 
Reads of corresponding biological replicates were pooled before alignment to increase read 

numbers and facilitate accurate RPKMs of lowly expressed lncRNAs. RPKMs were 

normalized to a basket of ten housekeeping genes (see methods section 3.11.2). I defined 

RNA stability as percent of RNA that is left after 4h of ActD treatment relative to untreated 

control and relative to 4h EtOH control. RNA stability ranges from 0% (extremely unstable, no 

RNA left after 4h ActD treatment) to 100% (stable RNA, same levels as in untreated control) 

or even higher (e.g. 120%, when RNA is increased upon ActD treatment). Figure 21A 
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summarizes the RNA stability data of mRNAs and lncRNAs in mouse (left) and rat (right) ES 

cells and embryonic fibroblasts. As can be seen, lncRNAs are on average significantly less 

stable than mRNAs in all four celltypes, as indicated by Wilcoxon Rank-Sum tests. While 

mRNAs have a median stability of ~69-73% in mouse and ~78-81% in rat, lncRNAs have a 

median stability of 44.41% and 58.57% in mESC and MEF and 52.98% and 68.19% in rESC 

and REF. It seems that mRNAs have a similar stability in both species, whereas lncRNAs in 

mESC are less stable than MEF lncRNAs. This trend is also observed in rat, as rESC 

lncRNAs are less stable than REF lncRNAs. In order to accurately quantify RNA stability, I 

applied not only an RPKM cutoff but also selected transcripts based on the RPKM error (see 

methods section 3.9.7 for details). I discarded all loci with an error >10% and plotted the 

distribution of RPKM errors in Figure 21B for mouse (left) and rat (right). Overall, as mRNAs 

are higher expressed their median RPKM error is in all four celltypes between 1.70% and 

2.01%. In contrast, lncRNAs are usually lowly expressed and so the medians of their RPKM 

errors are between 3.40% and 4.29%. These errors indicate that the RNA-seq libraries were 

sequenced deep enough to have robust RPKM values even of lowly expressed lncRNAs.  

I also investigated the correlation of RNA stability between two different cell types of the same 

species (Figure 21C) and between the same cell types in two different species (Figure 21D). 

Overall, the correlations of mRNAs are good while the correlations of lncRNAs are 

considerably weaker. Specifically, the Pearson correlation coefficients of mRNAs between 

mESC and MEF (r=0.76) (Figure 21C, left) and between rESC and REF (r=0.67) (Figure 21C, 

right) show that RNA stability of mRNAs is well correlated, albeit considerably scattered. 

LncRNAs are, however, less well correlated between mESC and MEF (r=0.60) and especially 

between rESC and REF (r=0.29). I also checked whether stability of mRNAs and lncRNAs is 

conserved between mouse and rat. I therefore investigated mRNAs and lncRNAs whose 

genomic loci overlap >30% between mouse and the synthenic rat region. The RNA stability of 

mRNAs seems to be quite conserved in both cell types (r=0.75 for MEF vs. REF, r=0.74 for 

mESC vs. rESC). However, lncRNAs are again more diverse between the two species 

(r=0.40 for MEF vs. REF, r=0.31 for mESC vs. rESC). The increased diversity of RNA stability 

of lncRNAs is probably due to two facts: first, RNA stability of lncRNAs is generally more 

variable between the two mouse and the two rat cell types (as already seen in Figure 21A), 

and second, lncRNAs are lower expressed and as a consequence RPKM errors are higher 

than for mRNAs. Unfortunately, I could not lower the RPKM error cut-off to 5% (as I did for 

RNA export) because RNA stability libraries were not as deeply sequenced and a lower cut-

off would have removed most of the lncRNAs. Additionally, increased diversity of lncRNA 

stability could point towards distinct functional roles of lncRNAs in specific cells or species. 
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Figure 21: LncRNAs are less stable than mRNAs 
(A) Boxplots are showing the distribution of RNA stability as calculated in chapter 3.11 for mRNAs 
(grey) and lncRNAs (white) for ES cells and embryonic fibroblasts of the mouse (left panel) and rat (right 
panel). Only values between 0 and 160 are plotted, some outliers may not be displayed. (B) Boxplots 
are showing the distribution of relative RPKM errors as calculated in chapter 3.11.4 for mRNAs (grey) 
and lncRNAs (white) for ES cells and embryonic fibroblasts of the mouse and rat. (C,D) Scatter plots are 
showing the correlations of RNA stability between two different cell types of the same species (mESC 
vs. MEF, left, and rESC vs. REF, right) and between the same cell types in two different species (MEF 
vs. REF, left, and mESC vs. rESC, right). Pearson’s correlation coefficients were calculated using the R 
function cor() and are displayed in the bottom right corners. Numbers of mRNAs and lncRNAs are 
displayed in the top left corners. Trend lines were calculated using the R function lm(). Only loci with 
values between 0 and 120 are plotted. 
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4.3.5 Bioinformatic pipeline to investigate RNA splicing 
Splicing efficiency of lncRNAs and mRNAs was calculated from Ribo-Zero RNA-seq data 

from mESC, MEF, rESC and REF. Figure 22A shows a schematic of the strategy that I 

followed to estimate RNA splicing efficiency, hoewever, this is only one out of four strategies 

that I tried (see discussion in chapter 5.4.3). For this approach, I calculated for each junction 

an RPKM for a 45bp exonic region and an RPKM for a 45bp intronic region, both 5bp away 

from the junction. From the intron RPKM and the exon RPKM I calculated the splicing 

efficiency for each splice junction (see chapter 3.13 for details). This approach had three main 

advantages: First, calculating the exonic and intronic RPKMs near the junction abolishes 

length biases and reduces the probability that intronic repeats or intronic transcripts skew 

RPKM calculation. Second, the RPKM of a 45bp region is more robust than calculating read 

pileups in a 10bp region or counting reads in a 5bp region. Third, the exonic and intronic 

regions used for RPKM calculation did not start right at the junction, but 5bp away from it, 

thereby allowing some ambiguity for inexact splice junction annotation. The fact that splice 

junctions are not perfectly mapped in lncRNAs as well as RefSeq mRNA can be seen in the 

coverage plots in Figure 22B (for mouse) and Figure 22C (for rat). Coverage plots for 

lncRNAs (top) and mRNAs (bottom) were split to display left splice junctions (exon left, intron 

right) and right splice junctions (intron left, exon right) separately. A sharp coverage change 

can be seen between exons and intron in all eight plots, however, this change seems to occur 

in two steps: directly at the splice junction the first step and a few base pairs away a second 

step, indicating that either splice junctions are not accurately annotated or that spliced reads 

are not perfectly mapped. While the former might be true for self-annotated lncRNAs, it 

certainly does not hold true for RefSeq mRNAs whose splice junctions have been accurately 

mapped by a variety of techniques (Pruitt et al., 2014). More likely is the explanation that 

reads that contain a splice junction within the last five basepairs are mapped as unspliced 

reads over the splice junction because the aligner allows up to five mismatches and thereby 

just ignores the splice junction. Another interesting conclusion can already be drawn from 

these coverage plots: the difference between the exonic and the intronic coverage is much 

higher in mRNAs than in lncRNAs, arguing that lncRNAs are overall less spliced than mRNAs 

in mouse and rat. 
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Figure 22: Bioinformatic pipeline to investigate RNA splicing 
(A) Overview of the approach that I used to calculate RNA splicing. (B,C) Coverage plots of mouse (B) 
and rat (C) lncRNAs (top) and RefSeq mRNAs (bottom) displaying a 100bp region around left splice 
junctions (exon left, intron right) or right splice junctions (exon right, intron left). Blue (ES cells) and red 
(embryonic fibroblasts) lines indicate percent of total reads mapping to the regions of splice junctions +/- 
50bp. At the bottom of each graph, two lines indicate the region that was used to calculate the exon and 
intron RPKM. These regions were 45bp long and started 5bp away from the junction. Abbreviations: 
junc, splice junction. 

 

4.3.6 LncRNAs are less spliced than mRNAs 
In order to investigate RNA splicing I generated 100bp paired-end Ribo-Zero RNA-seq data 

from mESC, MEF, rESC and REF and added additional 100bp paired-end Ribo-Zero RNA-

A

B

C

@ exon     intron A

%
 o

f t
ot

al
 re

ad
s

RPKM exon RPKM intron5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
2

4
6

8

lncRNA (n=110,263)

mESC
MEF

@ intron     exon A

%
 o

f t
ot

al
 re

ad
s

RPKM intron RPKM exon5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
2

4
6

8

lncRNA (n=110,263)

mESC
MEF

@ exon     intron A

%
 o

f t
ot

al
 re

ad
s

RPKM exon RPKM intron5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
5

10
15

20
25

30

mRNA (n=261,595)

mESC
MEF

@ intron     exon A

%
 o

f t
ot

al
 re

ad
s

RPKM intron RPKM exon5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
5

10
15

20
25

30

mRNA (n=261,595)

mESC
MEF

@ exon     intron A

%
 o

f t
ot

al
 re

ad
s

RPKM exon RPKM intron5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
3

6
9

12

lncRNA (n=132,915)

rESC
REF

@ intron     exon A

%
 o

f t
ot

al
 re

ad
s

RPKM intron RPKM exon5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
3

6
9

12

lncRNA (n=132,915)

rESC
REF

@ exon     intron A

%
 o

f t
ot

al
 re

ad
s

RPKM exon RPKM intron5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
5

10
15

20

mRNA (n=149,623)

rESC
REF

@ intron     exon A

%
 o

f t
ot

al
 re

ad
s

RPKM intron RPKM exon5bp 5bp50bp 50bp

50bp 40bp 30bp 20bp 10bp junc 10bp 20bp 30bp 40bp 50bp

0
5

10
15

20

mRNA (n=149,623)

rESC
REF

exon 
intron RPKM exon RPKM 

Estimating RNA splicing efficiency            

+5bp -5bp +50bp -50bp 



RESULTS  Philipp Günzl 

  - 82 - 

seq data from mESC and MEF generated for another project in the Barlow Lab (Daniel 

Andergassen & Quanah J. Hudson, manuscript in preparation). The total numbers of reads 

are 259 million for mESC, 331 million for MEF, 103 million for rESC and 89 million for REF 

(see Table 16 for details about read numbers). I calculated the splicing efficiency for each 

splice junction using the approach indicated in Figure 23A. Splicing efficiencies of junctions 

were averaged to give a splicing efficiency per transcript. Lastly, the splicing efficiencies of all 

transcripts in a locus were averaged to ultimately yield a splicing value for each lncRNA and 

mRNA locus. I find that mRNAs are as expected efficiently spliced while lncRNAs show signs 

of inefficient splicing in both cell types of the mouse and rat (Figure 23A). The median splicing 

efficiency of mRNAs in all four cell types resembles each other and is between ~97% and 

~99%. The median splicing efficiency of lncRNAs is ~74% in mouse ES cells and ~85% in 

mouse embryonic fibroblasts (left panel). In rat (right panel), the median splicing efficiencies 

are ~87% in ES cells and ~90% in embryonic fibroblasts. In order to accurately estimate RNA 

splicing of lowly expressed lncRNAs, I applied not only an RPKM cutoff but also filtered out 

splice junctions when the RPKM error of their splicing efficiency was higher than 10% (see 

methods section 3.9.7 and 3.12 for details). This cut-off removed junctions with inaccurately 

calculated splicing efficiencies and the remaining ones were averaged per transcript and per 

locus to yield the final RPKM errors. In Figure 23B I plotted the distribution of RPKM errors for 

mouse (left) and rat (right). As can be seen, the errors of mRNAs and lncRNAs in the two 

mouse cell types are in the same range as in the two rat cell types. This is surprising as the 

number of RNA-seq reads for the mouse cells were ~2-3 times higher than for the rat cells. 

RPKM errors for well-expressed mRNAs are lower than for lowly expressed lncRNAs in all 

four cell types, however, the lncRNA medians do not exceed 2% and the mRNA medians are 

well below 0.5% indicating that RNA splicing data is accurate for mouse and rat.  

I also investigated the correlation of RNA splicing between two different cell types of the same 

species (Figure 23C) and between the same cell types in two different species (Figure 23D). 

The Pearson correlation coefficients of mRNA splicing between mESC and MEF (r=0.80) 

(Figure 23C, left) and between rESC and REF (r=0.77) (Figure 23C, right) indicate that mRNA 

splicing is well correlated in the two mouse cell types and in the two rat cell types. Correlation 

of lncRNA splicing is lower but still quite good (r=0.72 for mESC vs. MEF, r=0.65 for rESC vs. 

REF). I also analyzed whether RNA splicing is conserved between mouse and rat. I therefore 

investigated mRNAs and lncRNAs whose genomic loci overlap >30% between mouse and 

the synthenic rat region. The conservation of RNA splicing is, however, for mRNAs poor 

(r=0.35 for MEF vs. REF, r=0.27 for mESC vs. rESC) and for lncRNAs (r=0.45 for MEF vs. 

REF, r=0.42 for mESC vs. rESC) only marginally better. The low correlation of mRNA stability 

is probably explainable by the fact that although nearly all mRNAs are efficiently spliced in 

mouse and rat, small differences in the deeply sequenced mouse datasets and the less 

deeply sequenced rat datasets account for these dramatically low correlation coefficients.  
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Figure 23: LncRNAs are less spliced than mRNAs 
(A) Boxplots are showing the distribution of RNA splicing efficiency as calculated in chapter 3.13 for 
mRNAs (grey) and lncRNAs (white) for ES cells and embryonic fibroblasts of the mouse and rat. (B) 
Boxplots are showing the distribution of relative RPKM errors as calculated in chapter 3.13.3 for mRNAs 
(grey) and lncRNAs (white) for ES cells and embryonic fibroblasts of the mouse and rat. (C,D) Scatter 
plots are showing the correlations of RNA splicing between two different cell types of the same species 
(mESC vs. MEF, left, and rESC vs. REF, right) and between the same cell types in two different species 
(MEF vs. REF, left, and mESC vs. rESC, right). Pearson’s correlation coefficients were calculated using 
the R function cor() and are displayed in the bottom right corners. Numbers of mRNAs and lncRNAs 
are displayed in the top left corners. Trend lines were calculated using the R function lm(). 
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4.3.7 Current lncRNA classes are not distinguished by RNA biology 
One of the main questions I wanted to answer with this study is whether lncRNA subclasses 

can be distinguished by RNA biology. Figure 24A shows that the density curves of the four 

lncRNA subclasses heavily overlap each other for each of the three investigated RNA biology 

features (stability, export, splicing). The peak heights of the curves might be variable or 

slightly shifted to the left or right, but overall, no subclass can be differentiated by any of the 

three RNA biology features. When the individual lncRNAs of each subclass are plotted 

separately (Figure 24B) and each RNA biology feature is compared against each other, there 

is also no separation of any lncRNA subclass visible. LncRNAs of all four subclasses are 

equally distributed in all three comparisons and no separated cloud of a subclass becomes 

apparent. This indicates that the overall RNA biology of four major lncRNA subclasses is very 

similar and that it is unlikely that RNA biology plays an important role for the diverse functions 

of each lncRNA subclass. 

 

Figure 24: Current lncRNA classes are not distinguished by RNA biology 
(A) Density plots are showing the distribution of the three RNA biology features stability, export and 
splicing for four lncRNA subclasses in mESC (left panel) and MEF (right panel). (B) Scatter plots are 
comparing the RNA biology features stability vs. splicing (left), export vs. splicing (middle) and export vs. 
stability (right) for 1,681 lncRNAs classified into four lncRNA subclasses. LncRNAs of mESC and MEF 
were combined in this plot, numbers of lncRNA loci per subclass are indicated on the right side. 
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4.4 Clustering of lncRNAs by RNA biology 

4.4.1 Clustering of lncRNAs and mRNAs by RNA biology 
I intersected the RNA export, RNA stability and RNA splicing datasets and isolated all 

lncRNAs and mRNAs that were retained in each of these three analyses. All together 1,681 

lncRNAs (939 in mESC, 742 in MEF; 420 of them in both cell types) and 24,510 mRNAs 

(12,006 in mESC, 12,504 in MEF; 10,743 of them in both cell types) were kept for further 

analyses (Figure 25A). In order to compare the RNA biology of lncRNAs and mRNAs by 

clustering, I had to reduce the number of mRNAs. I randomly selected 300 mRNAs from the 

list of mRNAs being expressed in both cell types using the R function sample() and 

analyzed whether the distribution of each RNA biology feature of those 300 mRNA is similar 

compared to the total amount of mRNAs. Figure 25B shows that the overall distribution of 

RNA export, RNA stability and RNA splicing of the 300 mRNAs in mESC and MEF is 

representative for all mRNAs being expressed in mESC and MEF. I combined the 1,681 

lncRNAs and 600 mRNAs (300 in mESC, 300 in MEF) and clustered them by their three RNA 

biology features using the popular k-means algorithm. The number of clusters has to be 

determined empirically beforehand and after testing three to seven clusters, I found that six 

clusters are optimal to recapitulate the diverse RNA biology of lncRNAs and mRNAs. Figure 

25C shows the results of the k-means clustering in three scatterplots, each comparing two of 

the three RNA biology features. In the left plot, RNA splicing and RNA stability nicely separate 

cluster 5 (lowly spliced and stable) from cluster 6 (also lowly spliced but less stable). The 

remaining four clusters are more efficiently spliced with cluster 1 and 3 being highly spliced 

and cluster 2 and 4 being intermediate spliced. RNA stability clearly separates cluster 1 from 

cluster 3 and cluster 2 from cluster 4. While cluster 1 and 2 are both rather stable, cluster 3 

and cluster 4 are unstable. In the middle plot, RNA splicing and RNA export do not separate 

the clusters as well, however, it becomes apparent that the clusters 1, 3 and 5 are more 

exported than the clusters 2, 4 and 6, respectively. In the right plot, RNA stability and RNA 

export separate clusters 1 to 4 with cluster 5 and 6 lying beneath them. Cluster 1 and 2 are 

both rather stable but cluster 1 is inefficiently exported while cluster 2 is efficiently exported. 

Cluster 3 and 4 are rather unstable and again are separated by their RNA export, with cluster 

3 being more exported than cluster 4. Less visible, cluster 5 is stable and cluster 6 is 

unstable, with cluster 5 being more efficiently exported than cluster 6. Additionally, I marked 

the position of well-studied lncRNAs in MEF within these clusters. In a 3D plot, the clusters of 

Figure 25C become better visible (Figure 25D). Each clustered mRNA and lncRNA can be 

imagined to be located in a three-dimensional cube with the dimensions x, y and z. Its 

position inside this cube is determined by the three RNA biology features that define the x, y 

and z position. Looking at the cube from the front, from the side or from the top, each position 

will give a different appearance of the clusters (as shown in Figure 25C).  

I analyzed the distribution of the three RNA biology features in each of the six clusters in 

more detail (Figure 25E). In terms of RNA splicing, clusters 1 to 3 are well spliced with 
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clusters 4 to 6 being gradually less efficiently spliced. RNA stability is gradually reduced from 

cluster 1 to cluster 4, with cluster 5 being rather stable and cluster 6 being unstable. RNA 

export defined clusters 1, 3 and 5 as being efficiently exported and cluster 2, 4 and 6 being at 

least partially nuclear retained. This further confirms that RNA biology is different for each of 

these clusters. Next, I investigated the distribution of mRNAs and lncRNA subclasses in each 

cluster. Figure 25F shows that mRNAs are predominantly found in cluster 1 to 3, only 12 out 

of 600 mRNAs are found in cluster 4 and 1 in cluster 5. Each of the four lncRNA subclasses 

is fairly equally present in all six clusters, reinforcing the notion that lncRNA subclasses can 

not be distinguished by RNA biology (see Figure 24). Figure 25G shows the distribution of 

mRNAs and lncRNA subclasses in each of the six clusters. Approximately half of all lncRNAs 

cluster together with mRNAs (in black) in clusters 1 to 3, indicating that they have an mRNA-

like RNA biology. Accordingly, the other half has a non-mRNA-like RNA biology. 
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Figure 25: Clustering of lncRNAs and mRNAs by RNA biology 
(A) Venn diagrams showing the numbers of lncRNA (left) and mRNA loci (right) for which all three RNA 
biology features (export, stability, splicing) are available in MEF and mESC. (B) For 10,743 mRNA loci 
all three RNA biology features are available in both mESC and MEF. The boxplot displays the 
distribution of RNA splicing, RNA stability and RNA export for these mRNAs in mESC and in MEF and 
for 300 randomly picked mRNAs. (C) Scatterplots showing the results of the k-means clustering of 1,681 
lncRNA datapoints and 600 mRNA datapoints based on three RNA biology features. Each cluster is 
depicted in a different color. The left plot compares RNA splicing with RNA stability, the middle plot RNA 
splicing and RNA export and the right plot RNA stability and RNA export. The positions of eight well-
studied lncRNAs are marked by black symbols, in the legend the number of their clusters in indicated. 
For these lncRNAs only the RNA biology features in MEF are shown. (D) Same data as in (C), but 
depicted in a three-dimensional plot. (E) Boxplot displaying the distribution of the three RNA biology 
features splicing, stability and export for each of the six k-means clusters. (F) Barplot depicting the 
cluster distribution in each of four lncRNA classes and mRNAs. The color scheme is identical to (C) and 
(D). (G) Barplot depicting the transcript class distribution in each of the six k-means clusters. Clusters 1 
to 3 contain 97.83% of investigated mRNAs and 50.74% of lncRNAs, which are therefore mRNA-like. 
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4.4.2 Half of lncRNAs are in the same cluster in MEF and mESC 
After clustering lncRNAs by their RNA biology in MEF and mESC, I tested to which extent 

lncRNAs that are expressed in both cell types are actually falling into the same cluster. I 

investigated the cluster affiliation of 420 lncRNAs and 300 mRNAs (see Figure 25A) for which 

RNA biology data is available from MEF and mESC and that were used for clustering in 

Figure 25C. Figure 26A shows that 51.43% of lncRNAs are in the same cluster in both cell 

types (left panel, blue box), compared to 68.33% of mRNAs (right panel, blue box). When I 

looked more closely from which cluster lncRNAs switch into which cluster, I found that some 

specific patterns emerged. The largest group of switching lncRNAs (12.62%, grey box) is in 

MEF in cluster 2 and in mESC in cluster 4. The second largest group (8.09%, yellow box) 

switches from cluster 2 to cluster 3 and the third largest group (5.48%, green box) from 

cluster 4 in MEF to cluster 6 in mESC. The remaining 22.38% (red box) contain lncRNAs that 

switch in any of the other 27 possible combinations between the six clusters in MEF and 

mESC. As mRNAs are predominantly found in only three clusters, their two main groups 

switch from cluster 1 in MEF to cluster 3 in mESC (9.67%, grey box) or from cluster 3 in MEF 

to cluster 1 in mESC (also 9.67%, green box). The remaining 12.34% (red box) contain 

mRNAs that switch in other combinations between the clusters in MEF and mESC.  

The fact that lncRNAs and mRNAs switch preferably from a few clusters to a few other 

clusters in very specific combinations argues that it is not a random switching due to 

inaccurate mapping of RNA biology features but rather due to specific biological differences 

between MEF and mESC. I investigated whether the RNA biology features of lncRNAs 

(Figure 26B) and mRNAs (Figure 26C) switching from one cluster in MEF to another cluster in 

mESC are actually due to specific changes in RNA biology features. And indeed, when I plot 

the RNA biology features of 53 lncRNAs switching from cluster 2 in MEF to cluster 4 in 

mESC, I find that the main difference is the reduction of RNA stability from ~70% in MEF to 

~40% in mESC (Figure 26B, left panel, indicated by arrow). When I compare this change to 

the RNA biology of the whole cluster 2 and 4, it becomes evident that while RNA splicing and 

RNA export is very similar, the main difference between these two clusters is also RNA 

stability (indicated by arrow). This establishes that the RNA stability of these 53 lncRNAs is 

apparently differentially regulated between MEF and mESC and thereby explains why they 

switch from cluster 2 to cluster 4. The second largest group of 34 lncRNAs switch from cluster 

2 in MEF to cluster 3 in mESC. Again, I compared the RNA biology features of these 34 

lncRNA in both cell types with the two respective clusters (Figure 26B, right panel). Similarily 

to the previous example, these 34 lncRNAs have a reduced RNA stability (from ~70% in MEF 

to ~45% in mESC, indicated by arrow) but also an increased RNA export (from ~20% in MEF 

to ~40% in mESC, indicated by arrow). The RNA biology features of cluster 2 and 4 show 

overall the same difference in RNA stability (indicated by parallel arrows), which explains why 

the 34 lncRNAs switch between these two clusters. The two main groups of switching mRNAs 

are also explainable by differences in their RNA stability (Figure 26C). 29 mRNAs switch from 

cluster 1 in MEF to cluster 3 in mESC due to a reduction of RNA stability from ~75% in MEF 
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to ~50% in mESC (left panel, indicated by arrow) and the same number of mRNAs switches 

from cluster 3 in MEF to cluster 1 in mESC due to an increase of RNA stability from ~55% in 

MEF to ~75% in mESC (right panel, indicated by arrow). The main difference between the 

clusters 1 and 3 is a decreased RNA stability, while RNA splicing and RNA export is in the 

same range. This establishes that also RNA stability of mRNAs is differentially regulated 

between MEF and mESC, which is the main driver for mRNAs to switch clusters. In summary, 

it seems that RNA splicing is the most constant RNA biology feature between MEF and 

mESC, followed by RNA export and lastly RNA stability, which seems to be main driver for 

cluster switches. 

 

Figure 26: Half of lncRNAs are in the same cluster in MEF and mESC 
(A) The cluster affiliation of 420 lncRNAs (left panel) and 300 mRNAs (right panel) being expressed in 
both MEF and mESC was analyzed to determine the fractions of lncRNAs and mRNAs that are constant 
or switching between the six clusters. Blue boxes indicate the fractions of lncRNAs and mRNAs that are 
in the same cluster in MEF and mESC. The remaining boxes indicate fractions that are in different 
clusters in MEF and mESC. In the left panel, three main groups of cluster switching lncRNAs are 
indicated. In the right panel, two main groups of cluster switching mRNAs are indicated. Red boxes 
indicate the fractions of lncRNAs and mRNAs that are in different clusters in MEF and mESC but are not 
included in the main groups of cluster switching lncRNAs or mRNAs. Percentages for each group are 
indicated inside the boxes, numbers for each group can be found in the legend. (B) RNA biology 
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features are plotted for lncRNAs that switch from cluster 2 in MEF to cluster 4 in mESC (n=53, left 
panel) and from cluster 2 in MEF to cluster 3 in mESC (n=34, right panel). As a comparison, RNA 
biology features for all transcripts in the clusters 2 and 4 (left panel) and the clusters 2 and 3 (right 
panel) are plotted. Arrows indicate the main difference of RNA biology between the cluster switching 
transcripts in the two cell types and the respective clusters. (C) RNA biology features are plotted for 
mRNAs that switch from cluster 1 in MEF to cluster 3 in mESC (n=29, left panel) and from cluster 3 in 
MEF to cluster 1 in mESC (n=29, right panel). As a comparison, RNA biology features for all transcripts 
in the clusters 1 and 3 (left panel) and the clusters 3 and 1 (right panel) are plotted. Arrows indicate the 
main difference of RNA biology between the cluster switching transcripts in the two cell types and the 
respective clusters. 

 

4.4.3 Mouse RNA biology clusters are conserved in rat 
In order to answer the question if RNA biology is conserved between mouse and rat, I 

analyzed whether the RNA biology features of each k-means cluster are comparable between 

mouse and rat. I define lncRNAs and mRNAs as conserved when their genomic loci overlap 

>30% between mouse and the synthenic rat region. Due to the fact that I have RNA export 

data only for REF, I refrained from clustering rat transcripts according to their RNA biology. 

Instead, I plotted the RNA biology features of conserved mouse and rat transcripts according 

to their mouse cluster (Figure 27). Figure 27A shows RNA splicing for conserved lncRNAs 

(left boxplot) and mRNAs (right boxplot). Grey boxes contain conserved mouse lncRNAs and 

white boxes contain the corresponding rat lncRNAs. As can be seen, mouse lncRNAs are 

efficiently spliced in cluster 1 to 3 and are gradually less spliced in cluster 4 to 6. Rat lncRNAs 

follow this trend, albeit with higher splicing efficiencies (as already seen in Figure 23A). In 

terms of mRNAs, mouse as well as rat mRNAs are all efficiently spliced. Figure 27B displays 

RNA stability and mouse lncRNAs have a gradually reduced RNA stability from cluster 1 to 6, 

with the only exception of cluster 5 that exhibits greater RNA stability. Again, rat lncRNAs 

tend to follow this pattern although their overall RNA stability is higher than for mouse 

lncRNAs (as already seen in Figure 21A). In terms of mRNAs, RNA stability decreases 

gradually from cluster 1 to 3 in mouse as well as rat. Figure 27C shows RNA export and 

mouse lncRNAs are well exported in clusters 1, 3 and 5 while they are less efficiently 

exported in clusters 2, 4 and 6. Rat lncRNAs again follow this “zig-zag” pattern very closely. 

Mouse mRNAs are well exported in cluster 1 and 3 and less exported in cluster 2 and rat 

lncRNAs show the same trend.  
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Figure 27: Mouse RNA biology clusters are conserved in the rat 
For this analysis, I considered only lncRNAs and mRNAs that are conserved between mouse and rat. I 
defined conservation by a >30% overlap of their synthenic genomic loci in mouse and rat. Boxplots 
depict (A) RNA splicing (B) RNA stability and (C) RNA export of conserved lncRNAs (left boxplots) and 
mRNAs (right boxplots). LncRNAs are grouped according to the cluster the mouse lncRNAs are in (see 
Figure 25C). For mRNAs, only cluster 1 to 3 are shown as the remaining clusters do not contain >5 
mRNAs. The Pearson correlation coefficients are indicated after the plot title. 

 

4.4.4 Genomic transcript features differ in six RNA biology clusters 
In Figure 12 I concluded that lncRNAs have significantly different genomic transcript features 

than mRNAs, however, four well-studied lncRNA subclasses do not differ much. After 

clustering of lncRNAs and mRNAs by RNA biology, I was interested to see whether any of the 

genomic transcript features is different between lncRNAs of these six RNA biology clusters. 

When the first three features exon count, cDNA size and locus size are compared it becomes 

evident that cluster 2, 4 an 6 have longer cDNAs, however, only cluster 2 and 4 also have a 
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higher exon count and locus size (Figure 28A). This indicates that lncRNAs in cluster 6 have 

the longest cDNA (median of 3kb, 25% are longer than 5kb), yet, they mostly have only 2 or 3 

exons and their locus size is not larger than average. When the average exon length is 

compared between the six clusters, it becomes evident that lncRNAs in cluster 6 have in fact 

the longest exons, which might also explain why they have the lowest values of RNA stability, 

RNA splicing and RNA export. Accordingly, the exon/intron ratio is also highest for cluster 6. 

In contrast, the exonic repeat coverage does not differ significantly between lncRNAs in any 

of the six clusters (Figure 28A). I also investigated steady-state RNA levels of each RNA 

biology cluster in MEF and mESC (Figure 28B). In both cell types, cluster 1 has the highest 

median RPKM (1.81 in MEF, 3.80 in mESC) and cluster 6 the lowest median RPKM (0.35 in 

MEF, 0.45 in mESC). This hints towards the fact that lncRNAs in cluster 6 are either lower 

expressed than in cluster 1 or that lncRNAs in cluster 6 are less abundant because of their 

low RNA stability compared to lncRNAs in cluster 1. Presumably, both factors play a role as 

lncRNAs in cluster 3 and 4 are also rather unstable but still have ~2-fold higher RPKMs than 

cluster 6. 

 

Figure 28: Genomic transcript features for six RNA biology clusters 
(A) Six genomic transcript features were calculated for mouse lncRNAs clustered in Figure 25C and 
averaged (by median) for each locus. Boxplots depict features for all lncRNAs (white boxes) and 
lncRNAs of respective clusters (shaded grey boxes). The exonic repeat coverage was calculated using 
the UCSC repeatmasker track, all other features were directly calculated from the annotation bed file. 
(B) Boxplots depict RPKMs for MEF (left) and mESC (right) lncRNAs according to their cluster affiliation 
(Figure 25C). Numbers of medians are plotted inside each box. 
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4.4.5 RNA stability and RNA export correlate with RNA abundance 
I analyzed whether certain RNA biology features of lncRNAs and mRNAs are correlated with 

RNA abundance (steady-state levels). As can be seen in Figure 29, RNA stability is indeed 

positively correlated with RNA abundance of mRNAs (MEF: r=0.44, mESC: r=0.45) and 

lncRNAs (MEF: r=0.28, mESC: r=0.32) in both cell types (left panel). Lowly abundant mRNAs 

have a median RNA stability of <60% compared to >90% for highly abundant mRNAs. 

LncRNAs increase their median RNA stability from ~50% to ~70% in MEF and from ~40% to 

~60% in mESC as their abundance increases. Also RNA export is positively correlated with 

abundance of mRNAs (MEF: r=0.40, mESC: r=0.46) and mESC but not MEF lncRNAs (MEF: 

r=0.16, mESC: r=0.31) in both cell types (middle panel). The RNA export of mRNAs 

increases from ~50% to ~60% in MEF and from ~50% to even 70% in mESC as their 

abundance increases. LncRNAs follow the trend and slightly increase their export with 

increasing abundance in mESC, however, in MEF this trend is not observed as pronounced. 

RNA splicing (right panel) of mRNAs seems to be unaffected by their steady-state levels, 

lncRNAs show a trend towards more efficient splicing with higher abundance, although the 

significance is low and the notches of the boxplots overlap each other (see chapter 3.18). 

 

Figure 29: RNA stability and RNA export correlate with expression strength 
RPKM were calculated for mRNAs and lncRNAs using polyA+ RNA-seq data of MEF and mESC. 
Transcripts were binned by their log2 transformed steady-state levels (abundance measured by RPKM). 
For each bin, RNA stability (left panel), RNA export (middle panel) and RNA splicing (right panel) is 
depicted in boxplots. In contrast to the six genomic transcripts features in Figure 30, it was not possible 
to maintain the same bin definitions for mRNAs and lncRNAs as their expression strength is too different 
(see Figure 13). Statistical significance was judged by the overlap of the notches of the boxplots (see 
chapter 3.18) and the slope of the trend lines that were calculated from the respective medians by the R 
function lm(). Spearman’s correlation coefficients are plotted above each plot on the left side (for 
mRNAs) and on the right side (for lncRNAs). 

 

4.4.6 RNA biology correlates with certain genomic transcript features 
Finally, I was interested whether RNA biology is correlated with genomic transcript features 

such as exon count, cDNA size, locus size, average exon size, exon/intron ratio or repeat 

coverage. For each of the six genomic transcript features I divided lncRNAs and mRNAs into 

four bins according to their genomic transcript features and plotted RNA biology features 
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separately for each bin. Figure 30 depicts RNA stability (left plots), RNA export (middle plots) 

and RNA splicing (right plots) for MEF (top panel) and mESC (bottom panel) for four bins of 

each of the six genomic transcript features. Trendlines were calculated from the medians of 

the four respective bins while Spearman correlation coefficients were calculated from 

unbinned data. In Figure 30A the correlation between the exon count and the RNA biology 

features stability, export and splicing in MEF and mESC is depicted. RNA stability of mRNAs 

increases with higher exon counts and levels off as they reach six exons, however, as the 

majority of mRNAs has more than six exons this is statistically not significant (MEF: r=0.02, 

mESC: r=0.06). For lncRNAs, this trend is also visible in MEF (r=0.11) but not mESC 

(r=0.04). RNA export is negatively correlated with the exon count of mRNAs (MEF: r=-0.40, 

mESC: r=-0.41) and to a lesser extent with the exon count of of lncRNAs (MEF: r=-0.25, 

mESC: r=-0.14). RNA splicing of mRNAs is not correlated with the exon count, however, 

lncRNAs show a clear trend in MEF (r=0.18) and mESC (r=0.17) that the more exons they 

have, the more they are spliced. Figure 30B depicts the negative correlation between cDNA 

size and RNA biology. While mRNAs in MEF and mESC show a dramatic reduction of RNA 

stability with longer cDNA lengths (MEF: r=-0.34, mESC: r=-0.38), lncRNAs show a less 

pronounced effect (MEF: r=-0.16, mESC: r=-0.20). In terms of RNA export, both mRNAs 

(MEF: r=-0.49, mESC: r=-0.72) and lncRNAs (MEF: r=-0.33, mESC: r=-0.39) are significantly 

less exported the longer the cDNA gets. RNA splicing is again unaffected in mRNAs (MEF: 

r=-0.05, mESC: r=-0.05) however, lncRNAs are by trend less efficiently spliced the longer 

their cDNA becomes (MEF: r=-0.11, mESC: r=-0.14). In Figure 30C the relationship between 

the locus size and RNA biology is shown. In contrast to cDNA length (Figure 30B), the locus 

length has only a marginal negative impact on mRNA and lncRNA stability in MEF and 

mESC. The RNA export efficiency of mRNAs (MEF: r=-0.30, mESC: r=-0.50) and lncRNAs 

(MEF: r=-0.26, mESC: r=-0.34) is negatively correlated with increasing locus sizes. RNA 

splicing of mRNAs is not affected, however, lncRNAs are by trend more efficiently spliced in 

MEF (r=0.14) and mESC (r=0.13) with increasing locus sizes. Figure 30D shows the 

correlation between the average exon size of mRNAs or lncRNAs and RNA biology. RNA 

stability of mRNAs is significantly decreased in MEF (r=-0.25) and mESC (r=-0.28) when their 

exons increase their average length. This trend is also observed for lncRNAs, with higher 

effects in MEF (r=-0.20) than mESC (r=-0.13). RNA export of mRNAs and lncRNAs seems 

not to be affected by the average exon length. RNA splicing is negatively correlated with 

longer exons in lncRNAs (MEF: r=-0.24, mESC: r=-0.21), but not mRNAs. Figure 30E depicts 

the relationship between the exon/intron ration and RNA biology. In both cell types, RNA 

stability of mRNAs (MEF: r=-0.11, mESC: r=-0.13) and lncRNAs (MEF: r=-0.22, mESC: r=-

0.14) is marginally negatively affected by higher exon/intron ratios. RNA export shows a trend 

to be marginally increased with higher exon/intron ratios, however, the correlation coefficients 

are low. RNA splicing of mRNAs is not affected by the exon/intron ratio, however, splicing of 

lncRNAs is considerably reduced with higher exon/intron ratios in MEF (r=-0.24) and mESC 

(r=-0.25). In Figure 30F the relationship between exonic repeat coverage and RNA biology is 
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portrayed. It seems that among the six genomic transcript features, repeat coverage has the 

least effects on RNA stability, RNA export and RNA splicing. The only noticeable effect is that 

mRNAs with >40% exonic repeat content (n=197 in MEF, n=214 in mESC) are unstable and 

less exported than all other mRNAs. A considerable fraction of lncRNAs contains repeats in 

their exons, however, their RNA biology seems unaffected by varying repeat content. 
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Figure 30: RNA biology of lncRNAs binned by their genomic transcript features 
Six genomic transcript features were calculated for mouse lncRNAs and mRNAs and averaged for each 
locus. For each feature, lncRNAs and mRNAs were divided into four bins by their value of the respective 
feature. Boxplots depict features for mRNAs (grey boxes) and lncRNAs (white boxes). Depicted is RNA 
stability (left plots), RNA export (middle plots) and RNA splicing (right plots) for MEF (top panel) and 
mESC (bottom panel) for four bins of the six genomic transcript features (A) exon count, (B) cDNA size, 
(C) locus size, (D) average exon size, (E) exon/intron ratio and (F) exonic repeat coverage. The exonic 
repeat coverage was calculated using the UCSC repeatmasker track, all other features were calculated 
from the annotation bed file. Statistical significance was judged by the overlap of the notches of the 
boxplots (see chapter 3.18) and the slope of the trend lines that were calculated from the respective 
medians by the R function lm(). Spearman’s correlation coefficients were calculated from unbinned 
data and are plotted above each plot on the left (for mRNAs) and right side (for lncRNAs). 
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5 DISCUSSION 

5.1 Summary of results 

In this study, I investigated the RNA biology of mouse and rat lncRNAs genome-wide. I 

therefore established and optimized an RNA-seq pipeline, applied it to 76 RNA samples and 

then used a comprehensive lncRNA annotation for the mouse and the rat to analyze lncRNA 

biology. I demonstrate, in agreement with published data (Cabili et al., 2011; Ulitsky and 

Bartel, 2013), that lncRNAs are lowly abundant, tissue-specifically expressed and 

developmentally regulated. Furthermore, I analyzed genomic transcript features such as 

cDNA length, exon/intron ratio and repeat coverage and confirm that lncRNAs differ 

significantly from mRNAs (Ulitsky and Bartel, 2013). In order to investigate the RNA biology of 

lncRNAs, I conducted experiments to assay RNA export, RNA stability and RNA splicing in 

ES cells and embryonic fibroblasts of the mouse and rat. After RNA-sequencing, bioinformatic 

analyses and rigorous quality filtering, I find that lncRNAs are significantly less exported, less 

stable and less spliced than mRNAs. I divided lncRNAs into the currently used classes of 

intergenic, antisense, enhancer and bidirectional lncRNAs and find that they are not 

distinguishable by any of the three RNA biology features. Therefore, I clustered lncRNAs and 

mRNAs according to their RNA biology and defined six clusters, each having a unique RNA 

biology signature. I show that the RNA biology of these six clusters is largely conserved 

between mouse and rat and that RNA biology significantly correlates with certain genomic 

transcript features. These finding indicate that RNA biology can be a guide to understanding 

lncRNA function. The compiled RNA-seq datasets that I generated for this thesis will provide 

a valuable research tool for the research community to further unravel properties and 

functions of lncRNAs. 

 

5.2 Towards an efficient RNA-seq pipeline to annotate lncRNAs 

5.2.1 ScriptSeq v1 and v2 kits produce biased RNA-seq libraries 
When this study was started in 2011, the ScriptSeq v1 kit was the first commercially available 

kit that allowed the preparation of stranded RNA-seq libraries. With a novel chemistry, this kit 

was based on tagged random hexamers that prime the fragmented RNA and are extended to 

give rise to first-strand cDNA tagged at the 5’end. In a second step, terminal-tagging oligos 

that are 3’ end blocked bind and tag the 3’ end of the first-strand cDNA. This way the 

directionality is preserved when RNA is transcribed into cDNA. The fast and easy protocol 

was an advantage when multiple libraries had to be prepared, however, as shown in Figure 

6A the RNA-seq coverage was uneven and the data therefore not optimal for transcriptome 

assembly and splicing analysis. Most probably, the problem lies in the design of the kit as it 

relies on tagged hexamers that apparently are not binding randomly to RNA or do not bind 

randomly due to their attached tag, thereby creating uneven transcript coverage. These 
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hexamers biases have been noted before in multiple RNA-seq datasets, thereby adversely 

affecting the uniformity of read coverage along expressed transcripts (Hansen et al., 2010). 

Calculation of RPKM from ScriptSeq data is still possible as the coverage biases occur in all 

transcripts and scale with their expression levels (Figure 6C). Several programs (e.g. cufflinks 

and the R package RNASeqBias) correct for the hexamers bias, however, when RPKMs of 

the same transcript are compared between tissues the biases cancel themselves out. After 

the bias problems of the ScriptSeq v1 kit emerged, I tested the improved ScriptSeq v2 kit. 

This kit was advertised to offer improved hexamer design to facilitate more even transcript 

coverage. However, the transcript coverage still showed strong regional biases and in direct 

comparison to the dUTP/TruSeq protocol its overall transcript coverage was poor (Figure 6). 

It seemed that the sequencing community did not use the ScriptSeq kits extensively, I know 

only very few studies that published ScriptSeq RNA-seq data. A PubMed search (Oct. 30, 

2014) confirms this observation as the term “scriptseq” is only found once, compared to 

“truseq” that was found 27 times. Accordingly, in the GEO database the term “scriptseq” is 

present in 24 datasets, compared to 650 appearances of “truseq”. This shows that the 

ScriptSeq kits lack acceptance in the community although the protocol is easy to follow and 

fast. In terms of quality, they may be sufficient for simple gene expression purposes, 

however, for more complex applications such as transcriptome assembly and splicing 

analysis they might need improvement. 

 

5.2.2 The dUTP/TruSeq protocol generates superior RNA-seq libraries 
I established the dUTP/TruSeq protocol as an alternative to the ScriptSeq kits (Figure 4-3). 

This protocol combines the unstranded TruSeq kit with a few modifications to facilitate 

strandedness (Sultan et al., 2012). The effort to prepare dUTP/TruSeq libraries is significantly 

higher compared to ScriptSeq libraries, however, the quality difference was so convincing that 

I switched to the dUTP/TruSeq protocol. The transcript coverage is much more even and 

considerably higher than observed in ScriptSeq data (Figure 6). After I finished most of the 

RNA-seq libraries for this study, Illumina launched a stranded version of the original TruSeq 

kit, thereby incorporating the dUTP modifications into the kit. The TruSeq kits seem to be well 

accepted in the sequencing community and are widely used for DNA-seq and ChIP-seq 

experiments. I reduced RNA hydrolysis time to increase the size of the RNA fragments 

(Figure 7) and found that 100bp paired-end RNA seq data is most useful to assembly 

transcripts (Figure 8). Many of the studies that assembled transcriptomes used the TruSeq kit 

(Alvarez-Dominguez et al., 2013), although not all of them were strand-specific (Cabili et al., 

2011; Keane et al., 2011). For transcriptome assembly, most studies also used paired-end 

RNA-seq data preferentially with a read length of at least 76bp. Longer reads are mapped 

more accurately and span more splice junctions and thereby assemble transcripts better. 

Taken together, the choice of the optimal RNA-seq library preparation method and the 

optimization of the dUTP/TruSeq protocol improved RNA-seq data quality considerably. 
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5.3 A comprehensive lncRNA annotation for the mouse and rat 

5.3.1 Choosing the ideal lncRNA annotation for this study 
In order to investigate the RNA biology of lncRNAs in an unbiased way, I needed a 

comprehensive lncRNA annotation that included all kinds of transcripts: from highly abundant 

to lowly abundant, from well spliced to inefficiently spliced and from stable to unstable. When 

this study started in 2011, the first mouse lncRNA annotations were already published 

(Guttman et al., 2009, 2010), however, they were obtained from only three mouse tissues and 

did not contain many of the lncRNAs that I was interested in. While numerous studies 

followed and annotated mostly well spliced intergenic lncRNAs, they often missed inefficiently 

spliced imprinted lncRNAs such as Airn and Kcnq1ot1 (Huang et al., 2011). In this study, I 

therefore used a lncRNA annotation generated by Florian Pauler (see chapter 3.10.1 for 

details). This annotation was derived from eleven tissues and was probably the most 

comprehensive lncRNA annotation at the time this project started. Before this annotation 

became available, I tried in an alternative approach to annotate inefficiently spliced lncRNAs 

from total Ribo-Zero RNA-seq data (data not shown). In this approach, a pipeline detected 

putative inefficiently spliced lncRNAs as continuously transcribed regions and was indeed 

successful for some well expressed lncRNAs, however, it failed for lowly expressed lncRNAs 

as the annotations were heavily fragmented and the 5’- and 3’-ends were not correctly 

annotated. I tested if sequencing nuclear RNA would increase the coverage of precursors and 

nuclear lncRNAs but this did not eliminate the inherent problems of fragmentation (data not 

shown). The transcriptome assembly algorithms did not work well with Ribo-Zero data as they 

poorly assembled mRNAs and often skipped introns of lowly spliced lncRNAs and generated 

a wealth of splice variants. Also, the coverage of splice junctions was low as the majority of 

the reads in total RNA-seq data (74% in Ameur et al, 2011) maps outside known mRNA 

exons.  

Florian Pauler then developed an algorithm to map lncRNAs using polyA+ RNA-seq data to 

get continuous exon models and proper 5’- and 3’-ends and subsequently use Ribo-Zero 

RNA-seq data to estimate the splicing efficiency for each exon model. This approach had the 

drawback that I could not analyze completely unspliced lncRNAs, however, the annotation 

pipeline detected even the rarest splice junctions by changing two parameters of the cufflinks 

assembly algorithm (see chapter 3.10.3). This strategy enabled even the detection of 

previously unknown splice variants for the bona fide unspliced lncRNA Kcnq1ot1. A diploma 

student in the Barlow laboratory verified 104/116 (89.66%) splice junctions of 60 lncRNAs by 

PCR, indicating that most splice junctions were annotated correctly (Christoph Dotter, 

Master’s thesis, University of Vienna, 2014). The mouse lncRNA annotation contains 36,578 

lncRNA transcripts in 7,815 lncRNA loci (Figure 11A). Florian Pauler found that these 

lncRNAs exhibit higher levels of chromatin marks indicating open chromatin (H3K4me3, 

H3K4me1 or H3K27ac) than random regions and that many of them have not been previously 

detected in other lncRNA annotations (Florian Pauler, manuscript in preparation). Only in 
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2014, two studies generated similar comprehensive lncRNA annotations: Necsulea et al. 

annotated ~9,000 lncRNA transcripts from mostly non-strand-specific datasets derived from 

seven mouse tissues (Necsulea et al., 2014) and Werber et al. annotated 1,403 lncRNA loci 

in six embryonic tissues (Werber et al., 2014). However, to my knowledge, no study 

annotated mouse lncRNAs from strand-specific RNA-seq data from eleven tissues.  

The rat lncRNA annotation was also generated by Florian Pauler (see chapter 3.10.1) for the 

purpose to analyze the conservation of RNA biology features of mouse lncRNAs. Rat (Rattus 

norvegicus) and mouse (Mus musculus) diverged approximately 13-19 million years ago 

(Kutter et al., 2012) and therefore offer a perfect model to study the evolution of lncRNA 

biology in closely related species. Published rat lncRNA annotations are scarce, one study 

assembled rat lncRNAs from liver (Kutter et al., 2012) and another one more recently from six 

tissues (Wang et al., 2014a). The comprehensive rat lncRNA annotation used in this study 

contains 46,041 lncRNA transcripts in 9,921 lncRNA loci (Figure 11B). 

 

5.3.2 LncRNAs are tissue specifically expressed and developmentally 
regulated 

The comprehensive lncRNA annotation assembled from eleven mouse and rat tissues used 

in this study allowed the detailed study of lncRNA expression variation. In humans, a previous 

study assembled lncRNAs and investigated their expression levels across 19 cell types and 

found that ~78% of lncRNAs compared to only ~19% of mRNAs are tissue specifically 

expressed, irrespective of their low expression levels (Cabili et al., 2011). In mouse, a study 

investigated lncRNA expression across 30 primary cell types, however, their lncRNA catalog 

was only assembled from erythroblasts (Ter119+ cells) and their progenitors (Ter119- cells) 

(Alvarez-Dominguez et al., 2013). In this study, instead, I investigated mouse and rat lncRNA 

expression levels in the eleven tissues that have been used to assemble them (see chapter 

3.10 for details), thereby ensuring that the lncRNA assembly includes many tissue types. I 

find that ~75% of mouse lncRNAs and ~78% of rat lncRNAs are tissue specifically expressed, 

compared to 36% of mouse mRNAs and 32% of rat mRNAs (Figure 14). Numerous reviews 

infer functionality from this extraordinary tissue specific expression of lncRNAs, however, as 

chromatin states and the accessibility of underlying cryptic promoters may also have tissue-

specific distributions, lncRNA transcription may be a consequence of open chromatin or gene 

expression (Ulitsky and Bartel, 2013). From the presented data it can be conferred that only a 

minority of lncRNAs has potential housekeeping functions, as most of them are exclusively 

expressed in only one tissue. Whether all tissue-specific lncRNAs have a specific function in 

the respective tissue remains to be investigated.  

I further investigated the developmental regulation of mouse lncRNAs in heart and liver and 

found that ~65% of lncRNAs (compared to ~41% of mRNAs) are differentially expressed in 

fetal and adult heart and ~84% of lncRNAs (compared to ~68% of mRNAs) in fetal and adult 

liver. While I conclude that the low expression of lncRNAs does not explain this difference 
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(see chapter 4.2.6), it raises the question whether these hundreds of lncRNAs have indeed 

functional roles in the development of the two organs. Numerous lncRNAs have been shown 

to be differentially regulated during developmental processes as diverse as retinal 

development (Blackshaw et al., 2004), ES cell differentiation (Guttman et al., 2011), 

erythrocyte maturation (Alvarez-Dominguez et al., 2013), cardiac development (Wamstad et 

al., 2012), muscle development (Cesana et al., 2011) in mouse and embryonic development 

in zebrafish (Pauli et al., 2012; Ulitsky et al., 2011). The identification of hundreds of 

developmentally regulated lncRNAs in RNA-seq studies is simple whereas functional 

validation of single candidates is cumbersome and requires sophisticated genetic tests 

(Bassett et al., 2014). Few developmentally regulated lncRNAs interact with cell-type specific 

transcription factors (Alvarez-Dominguez et al., 2013) or regulate microRNAs that in turn 

regulate transcription factors (Cesana et al., 2011). Indeed, it has been shown that lncRNAs 

are preferentially expressed in large gene deserts flanking transcription factor genes, most of 

which are implicated in embryonic development (Guttman et al., 2009; Pauli et al., 2012; 

Ulitsky and Bartel, 2013). It is unclear whether they are all implicated in regulating 

transcription factor expression in cis by remodeling the local chromatin landscape or whether 

many of them are co-regulated with neighboring transcription factor genes, as has been 

observed for Six3 and Six3os (Rapicavoli et al., 2011). Future work is needed to estimate the 

integration of lncRNAs into developmental regulatory networks and define how exactly 

lncRNAs contribute to development and differentiation.  

 

5.3.3 Currently used lncRNA subclasses are not distinguishable by genomic 
transcript features  

The mouse lncRNA annotation was classified into the four widely used lncRNA subclasses 

intergenic, antisense, bidirectional and enhancer lncRNAs (see chapter 3.10.4 and Figure 11 

for details). In mouse and rat, intergenic lncRNAs form by far the largest subclass, followed 

by antisense, bidirectional and enhancer lncRNAs with roughly equal shares (Figure 11). I 

calculated six genomic transcript features for each mouse and rat lncRNA locus: exon size, 

cDNA size, locus size, average exon length, exon/intron ratio and percent repeat content. I 

interrogated genomic transcript features of the lncRNA subclasses to answer the question 

whether any of these features is able to distinguish the classes. The hypothesis is, that the 

more discriminating features are found, the more significance these classes have and the 

more likely they are to employ different functions. When I compared the genomic transcript 

features of the four classes I find no apparent differences (Figure 12A). The only dissimilarity I 

noted is that bidirectional lncRNAs tend to have smaller loci but longer exons and therefore 

they have a higher exon/intron ratio. But beside that, lncRNAs of all four subclasses are 

overall very similar and can not be distinguished by any genomic transcript feature. While 

intergenic lncRNAs represent a “catch-all” class and therefore include a huge variety of 

lncRNAs (Ulitsky and Bartel, 2013), enhancer lncRNAs were described to be short and 

unspliced. However, it is surprising to find that enhancer lncRNAs are not different from 
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intergenic lncRNAs in their genomic transcript features. The median steady-state RNA levels 

of the four mouse lncRNA classes are also similar in mESC and MEF, with the maximum 

difference of ~2-fold between intergenic and bidirectional lncRNAs (Figure 12C). These 

results indicate that current lncRNA classes are, beside their “geographic” position in the 

genome, arbitrarily classified, which could hinder large-scale functional studies and dampen 

lncRNA research progression. A more sophisticated approach is needed to classify lncRNAs 

by RNA biology, structural aspects, protein-binding motifs and other features to enable 

extrapolation of functions from similar lncRNAs. 

 

5.4 Most lncRNAs have an unusual RNA biology 

5.4.1 LncRNAs are inefficiently exported to the cytoplasm 
I have analyzed the RNA export of lncRNAs and mRNAs genome-wide to investigate 

differences within lncRNAs and between lncRNAs and mRNAs (Figure 18). The finding that 

lncRNAs are significantly less exported to the cytoplasm than mRNAs is not surprising, as 

mRNAs need to be exported to become translated in the cytoplasm while lncRNAs can 

function in both the cytoplasm and the nucleus. The ENCODE consortium assayed the 

cellular localization of human lncRNAs and mRNAs by sequencing nuclear and cytoplasmic 

RNA fractions and calculating nuclear/cytoplasmic RPKM expression ratios (Derrien et al., 

2012). They find that lncRNAs are more enriched in the nucleus than mRNAs in five out of six 

human cell lines. The median RNA export of human lncRNAs in Derrien et al. is ~40% and 

the median export of mRNAs ~60%, which is well comparable with the results I obtained for 

mouse lncRNAs (Figure 18). Derrien et al. used a statistical test that revealed that 17% of 

lncRNAs are enriched in the nucleus and 4% in the cytoplasm. Interestingly, in Normal 

Human Epidermal Keratinocytes (NHEK) there is no difference in the RNA export between 

lncRNAs and mRNAs, indicating that cell type specific differences in lncRNA export exist. The 

Pearson correlation of RNA export of 98 lncRNAs being expressed in all six cell lines was 

between 0.5 and 0.9 for all pairwise comparisons, which is similar to the correlation of 1,249 

lncRNAs between mESC and primary MEF in this study (r=0.55, Figure 18). Derrien et al. find 

MEG3 and XIST to be the most nuclear enriched lncRNAs, both of which I also find almost 

exclusively in the nucleus (Figure 25C). Another study claims that the majority of human 

lncRNAs is essentially exported to the cytoplasm and bound by ribosomes (van Heesch et al., 

2014). However, this study only generated 18 million 40bp reads for the nuclear fraction and 

therefore may have missed many nuclear lncRNAs. This study also applies a very high 

expression cutoff of 2,500 reads per transcript to call transcripts expressed, so only a few 

highly expressed lncRNAs (n=152) were examined. Furthermore, it was pointed out that “the 

most common misperception of lncRNAs is that they are predominantly localized in the 

nucleus” (Ulitsky and Bartel, 2013). It was argued that a relative nuclear enrichment of 

lncRNAs compared to mRNAs does not mean that the absolute number of lncRNAs is also 

higher in the nucleus. The reason is that polyadenylated RNAs are primarily localized in the 
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cytoplasm and are therefore not equally distributed between the nucleus and the cytoplasm. 

While ENOCDE used polyA+ RNA-seq data to calculate nuclear and cytoplasmic RPKM of 

their six cell lines, I use total non-ribosomal (Ribo-Zero) RNA-seq data to calculate RNA 

export. Although this may not abolish all biases, at least it reduces the bias seen with polyA+ 

RNA-seq data. A bias that is certainly introduced in my RNA export data is that I (as well as 

ENCODE) directly compare nuclear and cytoplasmic RPKM. As RPKM does not measure 

absolute abundances but rather is a relative measure of abundance in the respective sample, 

I may introduce a bias due to the unequal RNA content and RNA composition of the nucleus 

and the cytoplasm. In order to correct for this bias I would need to correct by the RPKMs of a 

set of transcripts that has perfectly equal absolute levels of RNA in the nucleus and the 

cytoplasm but this is not available. Another bias I may introduce is that I calculate RNA export 

from the exon model and disregard the intronic sequence of inefficiently spliced transcripts, 

which often contributes significantly to a unspliced transcript’s length. This bias might lead to 

an overestimation of the export efficiency of lncRNAs, as many of them are inefficiently 

spliced. Whether nuclear lncRNAs evade nuclear export because they lack an export signal 

or miss mRNA-like processing such as splicing, capping and polyadenylation remains 

enigmatic. However, most lncRNAs are capped, polyadenylated and at least to some extent 

spliced (Moran et al., 2012). A recent study found that the nuclear retention of the human 

lncRNA BORG is due to an RNA motif (Zhang et al., 2014). Mutation of this pentamer motif 

leads to nuclear export of BORG and insertion of the pentamer into a cytoplasmic lncRNA 

results in subsequent nuclear localization. As this motif is present in many human lncRNAs 

and correlates with nuclear localization, it may serve as a general nuclear localization signal 

for lncRNAs.  

 

5.4.2 LncRNAs exhibit low RNA stability 
I have assayed the RNA stability of lncRNAs and mRNAs genome-wide to investigate 

differences within lncRNAs and between lncRNAs and mRNAs (Figure 21). For this 

experiment I had to consider several issues: (i) selecting the best method to assay RNA 

stability, (ii) choosing the right time point to measure RNA half life in order to achieve a good 

separation of stable and unstable RNAs without getting adverse effects of Actinomycin D on 

cell physiology, (iii) incorporating untreated and vehicle control treatments and technical as 

well as biological replicates and (iv) establishing an analysis pipeline that normalizes all 

RPKMs to a basket of housekeeping genes and takes into account biological replicates, 

control treatments and RPKM errors.  

RNA stability can be measured by treating cells with a transcription inhibitor or by chemical 

labeling followed by pulse-chase analysis. The two most widely used transcription inhibitors 

are the anti-cancer drug Actinomycin D and the toxin α-Amanitin (Bensaude, 2011). Both 

drugs inhibit RNA synthesis as Actinomycin D intercalates into DNA and thereby inhibits RNA 

polymerase I/II elongation whereas α-Amanitin directly degrades RNA polymerase II. I have 
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decided to prefer Actinomycin D over α-Amanitin for the reason that it permeates cells faster 

and therefore is more appropriate for short term (1-4h) RNA stability studies. Actinomycin D 

can be dissolved in EtOH or DMSO and I have used EtOH as a vehicle because it was shown 

to have less influence on cells than DMSO (Wolfgang Allhoff, Diploma thesis, University of 

Vienna, 2012). Other studies use chemical labeling to investigate RNA stability. Therefore, 

newly synthesized RNA is labeled by uridine analogs such as 5’-bromo-uridine (BrU) (Tani et 

al., 2012) or 4-thiouridine (4sU) (Rabani et al., 2011), followed by a washout of the labeling 

agent and analysis of chemically labeled RNA degradation in a time course. These inhibitor-

free techniques have less influence on cell physiology than transcription inhibitors, however, 

inherent limitations are the incomplete removal of the intracellular nucleotide pool leading to 

low sensitivity and the reuse of uridine analogs generated by RNA decay after the washout, 

which leads to complications during data analysis (Ross, 1995). 

Choosing the optimal time points for Actinomycin D treatments is a balance between a long 

treatment on the one hand, leading to a good separation of stable and unstable RNAs, and a 

short treatment on the other hand, preventing negative effects of the inhibitor on cell 

physiology. Whereas some studies treat cells with Actinomycin D in a time course for up to 

32h (Clark et al., 2012), I decided to focus on two time points only. The rational was to treat 

cells for 1h with Actinomycin D to remove unstable introns and for 4h to degrade unstable 

RNAs while keeping stable ones. These short time points therefore should allow a 

categorization into stable and unstable RNAs rather than determining exact RNA half-lives, 

for which more time points would have been necessary. In the course of bioinformatic 

analysis of 1h and 4h Actinomycin D samples, I found that 1h treatment did not have an effect 

on many lncRNAs and was therefore not suitable to classify stable and unstable lncRNAs. 

However, when I analyzed the 4h Actinomycin D samples I found that stable and unstable 

lncRNAs were well separated and that ~20% of mRNAs are unstable and fall below 30% of 

remaining abundance (Figure 19C). The RNA stability of individual lncRNA examples will be 

discussed in chapter 5.5.2. Longer Actinomycin D treatments would have led to a complete 

degradation of unstable RNAs and therefore to a reduced resolution of RNA stability. 

Additionally, I wanted to avoid adverse effects on cell physiology such as altered RNA 

processing and cell death. 

When I first treated cells with Actinomycin D to investigate the RNA stability of a single human 

lncRNA for another project, I found that qPCR analysis results were very variable between 

replicates and across time points (unpublished data). For the genome-wide analysis of RNA 

stability, I therefore decided to conduct a well-controlled experiment and include technical as 

well as biological replicates. The minimal RNA stability sample set consisted of five samples: 

the untreated control, 1h and 4h Actinomycin D treatments and 1h and 4h EtOH control 

treatments. I decided to conduct this experiment in technical replicates, meaning that this 

sample set was simultaneously produced twice using cells of the same passage. Additionally, 

I repeated the whole experiment within a week with cells of a different passage to get 

biological replicates. All together, I produced 4x5 samples for each of the four cell types and 
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analyzed levels of the control mRNAs Myc (unstable) and Gapdh (stable) in all of them by 

qPCR. As Myc degradation indicated that the treatments were effective in all replicates 

(Figure 19B), I pooled the technical replicates before RNA-seq. This left me with 2x5 samples 

for each cell type, for all of which I prepared RNA-seq libraries. The mRNA stability was very 

similar between biological replicates (r>0.9 for all comparisons), therefore I pooled reads of 

biological replicates before alignment to increase read coverage and reduce RPKM errors. 

The first step in the analysis pipeline after read alignment and RPKM calculation is the 

normalization of RPKM to a basket of ten stable housekeeping genes. This step is necessary 

to account for the effect that the RPKM is relatively increased in the Actinomycin D treated 

samples because the RNA pool decreases (Clark et al., 2012; Sharova et al., 2009). Next, I 

calculated RNA stability by normalizing the 4h Actinomycin D RPKM to the untreated control 

RPKM and the 4h EtOH RPKM. The EtOH control treatment controls for effects the EtOH has 

on gene expression and cell physiology. I also observed that some RNAs are increased upon 

Actinomycin D treatment and have an RNA stability of >100%. This might be due to specific 

effects of Actinomycin D that are known for some transcripts (Cassé et al., 1999), due to 

transcription triggered by a p53 response (Ljungman et al., 1999) or due to artifacts created 

by three-fold normalizations and RPKM variation. As there is no way to discriminate between 

these three possibilities, I put their RNA stability to 100% and considered them as stable. I 

also may introduce a bias, similar to the RNA export datasets, as I calculate RNA stability 

from the exon model and disregard the intronic sequence of inefficiently spliced transcripts, 

which can contribute significantly to a transcript’s length. This bias leads most probably to an 

overestimation of the RNA stability of lncRNAs, as many of them are inefficiently spliced. 

A large-scale RNA stability study using Actinomycin D and microarrays determined the 

average half life in mouse Neuro-2a cells to be 4.8h for lncRNAs and 7.7h for mRNAs (Clark 

et al., 2012). These RNA half-lives can not be directly compared to the percent RNA stability 

values that I calculated, however, after transforming them using the decay law formula 

(http://www.calculator.net/half-life-calculator.html) they correspond to an RNA stability of 

~56.12% for lncRNAs and ~69.76% for mRNAs. This fits very well to the RNA stability I 

calculated for lncRNAs (mESC 44.41%, MEF 58.57%) and mRNAs (mESC 69.01%, MEF 

73.00%) (Figure 21A). A second study using BrU-labeling of HeLa cells followed by RNA-seq 

(BRIC-seq) determined the average half life for lncRNAs to be ~7.0h and for mRNAs to be 

~6.9h (Tani et al., 2012). Although a class of short-lived lncRNAs (half life <4h) was defined in 

this study, it is unexpected that the average half life of lncRNAs is higher than for mRNAs. 

However, Tani et al. only analyzed ~5 million 36p reads in total and state themselves that 

they are biased towards highly expressed lncRNAs, which I show to be more stable (Figure 

29). Overall, the comparison of genome-wide RNA stability data is difficult, as can be seen in 

multiple genome-wide mRNA datasets (Tani and Akimitsu, 2012). Three different studies 

using Actinomycin D and microarrays for mouse ES cells, Neuro-2a cells and NIH3T3 

fibroblasts find median mRNA half-lives from 4.9h to 7.1h, indicating that either cell-type 

specific differences exist or the method varies significantly from lab to lab. 
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The most interesting question about RNA stability is definitely why are so many lncRNAs 

unstable and how are they degraded? Are they actively targeted and degraded? Or are they 

degraded by nonsense-mediated decay (NMD) because they lack (m)RNA processing and 

thereby stabilization? It has been suggested that RNA modifications could be implicated in 

the regulation of RNA stability (Pan, 2013). Indeed, N6-methyl-adenosine is the most 

prevalent RNA modification and is selectively bound by the human YTH domain family 2 

(YTHDF2) protein to regulate degradation of mRNAs and a few lncRNAs (Wang et al., 

2014b). If lncRNAs had the same stability as mRNAs they would constitute an even larger 

portion of a cell’s RNA mass, which could negatively influence several cellular functions. DNA 

replication could be hindered due to the prevalent formation of RNA-DNA hybrids, RNA-

binding proteins could be sequestered by abundant lncRNAs and be refrained from their 

actual targets, expression of mRNAs could be skewed by potent regulatory lncRNAs and 

finally, accumulation of random and potentially highly expressed RNA fragments could reduce 

the overall efficiency and fitness of a cell (Houseley and Tollervey, 2009). The variability of 

overall lncRNA stability seen in different cell types (Figure 21) may be explainable by the fact 

that RNA stabilizing and destabilizing proteins, miRNAs and components of the exosome and 

NMD machinery show tissue-specific expression and activities. 

 

5.4.3 LncRNAs are inefficiently spliced 
Lastly, I also analyzed the RNA splicing efficiency of lncRNAs and mRNAs genome-wide to 

investigate differences within lncRNAs and between lncRNAs and mRNAs (Figure 23). RNA 

splicing efficiency of lncRNAs is probably the least understood RNA biology feature of the 

three I investigated. The main reason is that most studies use polyA+ RNA-seq data to 

annotate and analyze lncRNAs and therefore bias themselves towards the fully processed 

and spliced isoforms. In order to completely understand the complex transcription and 

processing of RNAs, it was argued that RNA-seq of total non-ribosomal RNA gives unique 

insights as also nascent and immature transcripts can be detected (Ameur et al., 2011). It is 

known that many lncRNAs also have an unspliced isoform with different RNA biology features 

and maybe even different function. In the case of Airn, the minor spliced isoform is rather 

stable and exported to the cytoplasm whereas the major unspliced isoform is retained in the 

nucleus and unstable (Seidl et al., 2006). The unspliced Airn isoform is a byproduct of 

transcription, which has been shown to be the functional process in repressing Igf2r 

expression (Latos et al., 2012). The minor spliced Airn isoforms exported to the cytoplasm 

lack any silencing function. I analyzed splicing efficiencies of steady-state RNAs for each 

lncRNA and mRNA locus using total non-ribosomal RNA-seq data. A 100% splicing efficiency 

therefore indicates that no unspliced isoform exists, whereas a 50% splicing efficiency hints 

towards equal steady-state levels of a spliced and an unspliced isoform. Accordingly, the 

lower the splicing efficiency gets, the higher the abundance of the unspliced isoform becomes 

relative to the spliced isoform. 
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In chapter 4.3.5 I mentioned that I tried four different strategies to calculate RNA splicing from 

Ribo-Zero RNA-seq data. Figure 31 shows a schematic of these strategies of which only the 

fourth approach was satisfying in terms of accuracy and number of lncRNAs that passed the 

analysis. For approach #1, Florian Pauler set up a pipeline to define splicing efficiency by 

calculating a ratio of the exonic and intronic read pileups (+/- 10bp from the junction) and 

averaging all junction ratios per transcript and locus (Figure 31A, #1). This pipeline was, 

however, not satisfying as we detected major differences within junctions of the same 

transcript and within biological replicates during the quality check of well-studied control 

lncRNAs. For approach #2, Florian Pauler set up a pipeline that, for each splice junction, 

counts the number of reads that span this splice junction and the number of reads that splice 

away at this splice junction (Figure 31A, #2). A splicing ratio was calculated from these 

numbers for each junction and these ratios again averaged over transcripts and loci. This 

pipeline gave good splicing estimations for well-studied control lncRNAs, however, the 

number of lncRNAs that passed this analysis was too low because we demanded at least ten 

reads per splice junction to be accurate. For approach #3, I decided to calculate RPKM for 

each exon and intron of each transcript, average all exon RPKM and all intron RPKM and 

calculate an exon/intron ratio (Figure 31A, #3). This strategy also yielded accurate splicing 

data for well-studied control lncRNAs, however, I anticipated problems with the different 

length and variable repeat content of exons and introns in mRNAs and lncRNAs, which would 

create biases that may have invalidated the splicing analysis of many transcripts. For 

approach #4, I combined the advantages of the above-mentioned approaches and calculated 

for each junction an RPKM for a 45bp exonic region and an RPKM for a 45bp intronic region, 

both 5bp away from the junction (Figure 31A, #4), as indicated in chapter 4.3.5. The three 

main advantages of this approach are that length biases (as in approach #3) are avoided, that 

the RPKM of a 45bp region is more robust than calculating read pileups in a 10bp region or 

counting reads in a 5bp region (as in approach #1 and #2) and lastly that some ambiguity for 

inexact splice junction annotation was allowed (+/- 5bp). 

 

10bp 10bp 

exon exon 

exon exon exon 

Exon RPKM = 15 Intron RPKM = 3 

=> 80% spliced 

5bp 5bp 

disadvantage: not robust enough disadvantage: not enough transcripts 

disadvantage: length and repeat biases 

#1 estimate splicing: by read pileup  #2 estimate splicing: by counting spliced reads 

#3 estimate splicing: by exon vs. intron RPKM  

exon 
intron RPKM exon RPKM 

#4 estimate splicing: by exon vs. intron RPKM 
               directly at the junction  

advantage: combination of all 3 approaches 

+5bp -5bp +50bp -50bp 
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Figure 31: Four strategies to calculate RNA splicing efficiency 
Overview of approaches #1 to #4 that I tested to calculate RNA splicing efficiencies, of which only 
approach #4 yielded accurate and sufficient data (see text for details). 

 

I find that lncRNAs are as a group inefficiently spliced in mESC and MEF compared to 

mRNAs (Figure 23). In an attempt to benchmark my results, I first analyzed the splicing 

efficiencies of mRNAs, which are known to be efficiently spliced. As expected, >75% of 

mRNAs are >95% spliced in both cell types, arguing that my pipeline detects well spliced 

RNAs indeed as efficiently spliced. Additionally, the spliced lncRNA H19 is also ~99% spliced 

in my pipeline. The analysis whether the pipeline also correctly detects inefficiently spliced 

RNAs is more difficult, as no homogenous set of lowly spliced RNAs is known. I analyzed 

whether known inefficiently spliced lncRNAs such as Malat1, Neat1, Airn and Kcnq1ot1 are 

indeed classified as such (Hutchinson et al., 2007; Redrup et al., 2009; Seidl et al., 2006). 

And as expected, all of the four lncRNAs have splicing values of ~10% to ~40% and can 

therefore be considered as inefficiently spliced (Figure 25). This shows that RNAs are 

correctly defined as efficiently or inefficiently spliced. The question that arises is why lncRNAs 

are incompletely spliced? Is it because they do not need to be spliced in order to be 

functional? Is it their local chromatin environment that hinders efficient splicing or rather the 

lncRNA transcript that is unable to attract certain splicing cofactors? 

RNA precursors are in general co-transcriptionally and post-transcriptionally spliced, a 

process that is very efficient for mRNAs and less efficient for lncRNAs (Figure 23). Two 

studies investigated co-transcriptional splicing of nascent transcripts, however, genome-wide 

studies investigating splicing of steady-state RNAs are, to my knowledge, lacking so far. The 

first study investigated co-transcriptional splicing by RNA-seq of chromatin-associated RNAs 

as well as polyA+ and polyA- fractions of the nucleus and cytoplasm (Tilgner et al., 2012). 

They find that cytoplasmic RNAs, no matter if polyA+ and polyA-, are almost completely 

spliced (median splicing = 100%), indicating that RNAs have been spliced before nuclear 

export. Chromatin-associated RNAs that are still in the process of being transcribed are, in 

contrast, not completely spliced (median splicing = 75.0%), indicating that splicing has started 

before transcription is completed and therefore occurs simultaneously with transcription. 

When chromatin-associated RNAs are split into lncRNAs and mRNAs, Tilgner et al. find that 

lncRNAs peak at ~15% co-transcriptional splicing and mRNAs at ~65%, arguing that co-

transcriptional splicing is significantly more efficient for mRNAs. Whereas splicing is 

completed for most mRNAs post-transcriptionally, many lncRNAs evade splicing post-

transcriptional completely and unspliced isoforms remain (Tilgner et al., 2012). It has been 

speculated that co-transcriptional or post-transcriptional splicing could be affecting RNA 

binding proteins that in turn regulate RNA stability and RNA localization (Bentley, 2014). Co-

transcriptional splicing may offer a direct opportunity for the chromatin environment to 

influence splicing, a hypothesis that could explain why lncRNAs as a group partially evade 

splicing. A slight positive correlation has been observed between expression status and co-
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transcriptional splicing levels, which could also explain why lowly expressed lncRNAs as a 

group are more often inefficiently spliced than mRNAs (Tilgner et al., 2012). A second study 

investigated co-transcriptional splicing in human adult and fetal brain and liver samples and 

found that mRNAs as well as lncRNAs are co-transcriptionally spliced. They find clear trends 

that brain samples are less well spliced than liver samples and that in both tissues fetal 

samples are less well spliced than adult samples (Ameur et al., 2011). This argues for tissue-

specific and developmental regulation of RNA splicing and could explain the differences I see 

for splicing in ES cells and embryonic fibroblasts in mouse and rat (Figure 23A). Their 

experiments also confirm that intronic RNA-seq reads indeed stem from unprocessed 

transcripts rather than from already excised introns, a result that supports my interpretation 

that a splicing value of e.g. 50% means that the spliced and the unspliced isoform are equally 

abundant, rather than that the excised introns of this RNA are more stable and that is why I 

call it inefficiently spliced.  

In conclusion, evidence that can explain why most lncRNAs are inefficiently spliced is lacking. 

Rather than a different chromatin environment or an altered binding of splicing cofactors, it 

could also be that mRNA splicing has been selected for during evolution and as lncRNAs are 

little conserved their splicing efficiency either eroded or did never evolve in the first place. 

Highly spliced lncRNAs could then have been evolved from former mRNAs that just lost their 

coding potential. For Xist, a spliced lncRNA, it has indeed been shown that it evolved from a 

protein-coding gene that pseudogenized (Duret et al., 2006). 

 

5.4.4 Currently used lncRNA subclasses exhibit strikingly similar RNA 
biology features 

Genome-wide lncRNA mapping has led to the identification of four major lncRNA subclasses 

in the mouse, each being based on the “geographic” position relative to mRNAs or genetic 

elements (see chapter 2.3). The large group of intergenic lncRNAs is crudely defined by 

being distant to mRNA genes and is considered to be a “catch-all” class (Ulitsky and Bartel, 

2013). Antisense lncRNAs overlapping mRNAs on the antisense strand and bidirectional 

lncRNAs being expressed from bidirectional mRNA promoters form separate subclasses, 

whose lncRNAs are, in contrast to intergenic lncRNAs, located near mRNA genes. The class 

of enhancer lncRNAs is formed by transcripts that arise from expressed enhancers, most of 

which reside in the intergenic space. Functions have only been determined for single 

members of these classes, however, they were projected to represent the function of the 

whole class (Guttman et al., 2011; Kim et al., 2010; Ørom et al., 2010). The RNA biology of 

these subclasses has never been thoroughly investigated and compared among themselves, 

however, certain RNA biology features were attributed to some of these classes (see chapter 

2.3). I find that, in fact, none of the four lncRNAs subclasses can be distinguished by any of 

the three RNA biology features (Figure 24). This is insofar surprising, as it invalidates at least 

one out of two hypotheses. One hypothesis is that lncRNA biology is indicative for function 
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(Guenzl and Barlow, 2012; Pelechano and Steinmetz, 2013). According to this theory, each 

lncRNA has a certain RNA biology that determines or is a result of its mechanism of action. 

The other hypothesis is that each of the four subclasses combines transcripts with similar 

functions. Now, if both hypotheses were true, this would mean that lncRNA subclasses are 

distinguishable from each other due to their RNA biology features. However, the data indicate 

that the RNA biology features of the subclasses are very similar and that they can not be 

distinguished by any RNA biology feature (Figure 24). This points to the interpretation that 

either the RNA biology does not play a role for different functions or that the lncRNAs in the 

four classes have similar functions. However, at least the latter seems unlikely due to the 

described functional diversity of lncRNAs (Mercer and Mattick, 2013). In summary, these 

analyses pose the following question: Are current lncRNA classes arbitrarily chosen just by 

their position relative to mRNAs and no functional differences exist between these classes? 

Maybe there is a better way to find classes of lncRNAs that have similar functions: a 

classification of lncRNAs by their RNA biology features. 

 

5.5 Clustering of lncRNAs by their RNA biology features 

5.5.1 Clustering of lncRNAs by their RNA biology 
The scientific community defined several classes of lncRNAs by grouping together transcripts 

that share certain features with the ultimate goal to extrapolate functions determined for 

single candidates to all members of the respective class. Each of the four lncRNA classes 

was annotated in separate studies and therefore features that were used to justify separate 

classes are hard to compare. Incorporating the results from this study, it seems that the only 

feature that is different for these lncRNA classes is their “geographic” position in the genome 

while the RNA biology features and genomic transcript features are very similar (Figure 12 & 

Figure 24). In search for a more sophisticated way of classifying lncRNAs, I classified mouse 

lncRNAs based on their three RNA biology features export, stability and splicing. I refrained 

from using hard cut-offs to split lncRNAs into arbitrary classes, instead, I used the popular k-

means clustering algorithm to cluster lncRNAs with similar RNA biology features (Figure 25C, 

D, method described in chapter 3.14). Statistically, clusters might be defined by data points 

densely located around the centers and some loose data points in the cluster periphery, a 

distribution I do not really see in the RNA biology clusters (Figure 25C, D). However, I am 

confident that using the k-means clustering algorithm offers a very useful way of classifying 

lncRNAs by their RNA biology. As a control, I also applied the Partitioning Around Medoids 

(PAM) clustering algorithm (Kaufman and Rousseeuw, 1987) and obtained very similar 

results, only very few lncRNAs at the periphery were located in other clusters and the position 

of the cluster centers were very close to those in the k-means clustering. The question that 

automatically arises when dealing with k-means clustering is how the number of clusters is 

chosen beforehand. In an empirical approach, I clustered lncRNAs using four to eight clusters 

and chose six clusters as the ideal number based on the best representation of RNA biology 
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diversity among lncRNAs (data not shown). Four or five clusters led to a fusion of transcripts 

with widely different RNA biology in the same clusters and seven or eight clusters led to 

fragmented clusters with diminished differences in their RNA biology features.  

The distribution of clusters overall is as expected, the majority of mRNAs and ~50% of 

lncRNAs are efficiently spliced and form the first three clusters. These clusters mainly differ in 

their RNA stability, which is gradually decreasing from cluster 1 to cluster 3 while the RNA 

export is similar for cluster 1 and 3 and reduced in cluster 2. LncRNAs in cluster 1 to 3 can be 

considered as mRNA-like as their RNA biology is very similar to mRNAs. The remaining 

~50% of lncRNAs are less efficiently spliced and form the second three clusters, their RNA 

biology is clearly distinct from mRNAs which makes them non-mRNA-like. Cluster 1 and 

cluster 6 form the two extremes: while lncRNAs in cluster 1 are stable, fully spliced and 

exported, lncRNAs in cluster 6 are inefficiently spliced, unstable and inefficiently exported. 

LncRNAs that are supposed to function by their transcript (e.g. Xist, H19, Rian, Meg3 and 

Braveheart) cluster together with mRNAs while the two imprinted lncRNAs Kcnq1ot1 and 

Nespas that are inefficiently spliced and hypothesized to function by the act of transcription 

are non-mRNA-like and located in clusters 6 and 4, respectively. Unfortunately, many 

interesting lncRNAs introduced in chapter 2.4 are not expressed in mESC or MEF or are not 

confidently detected in the RNA stability or RNA export datasets. In line with the finding that 

current positionally defined lncRNAs classes are not distinguished by their RNA biology, I 

also find that none of them is enriched in any of the six RNA biology clusters (Figure 25G). 

 

5.5.2 The RNA biology of well studied lncRNA examples  
In this study, I generated a catalog of three RNA biology features for each lncRNA and mRNA 

in mESC and MEF. In order to judge whether this catalog is accurate, I compared published 

data of eight well studied lncRNAs with my data. Malat1 is known to be an unspliced lncRNA 

that is stable for ~10h and nuclear retained (Hutchinson et al., 2007; Tani et al., 2010; Tripathi 

et al., 2010). Indeed, in my data Malat1 belongs to cluster 5 and is only ~10% spliced, 100% 

stable after 4h and only ~10% exported. Xist is reported to be efficiently spliced and nuclear 

localized (Pontier and Gribnau, 2011). Its half life was determined to be between 3h and 6h, 

depending on the investigated cell type (Sun et al., 2006). In my data, Xist is indeed well 

spliced, nuclear retained and ~50% stable (corresponds to ~4h half life) and therefore 

belongs to cluster 2. The imprinted lncRNA Kcnq1ot1 has been reported to be unspliced, 

nuclear localized and rather unstable with a half life of only ~2h in neuroblastoma cells (Clark 

et al., 2012; Redrup et al., 2009). The clustering puts Kcnq1ot1 into cluster 6, which contains 

lncRNAs that are inefficiently spliced, lowly exported and unstable. H19 has long been the 

prototype of an mRNA-like lncRNA, as it is well spliced, exported and rather stable (half life in 

C2C12 myoblastic cells >4h) (Berteaux et al., 2005; Keniry et al., 2012; Milligan et al., 2000). I 

find that H19 indeed clusters with mRNAs in cluster 1 as it is ~99% spliced, very stable and 

efficiently exported. Rian and Meg3 are both expressed upstream from the imprinted Dlk1 
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gene and are alternatively spliced and predominantly localized in the nucleus (Hatada et al., 

2001). The RNA biology is indeed very similar for the two lncRNAs, they are both efficiently 

spliced, nuclear localized and therefore in cluster 2. Not too much is known about the RNA 

biology of the trans-acting Braveheart lncRNA, except that it is spliced and that ~33% reside 

in the nucleus (Klattenhoff et al., 2013). I find Braveheart in cluster 1 as it is well spliced, 

~60% exported and quite stable in MEF. The last example is Nespas, an imprinted lncRNA 

that expresses an unspliced transcript as well as alternatively spliced isoforms (Williamson et 

al., 2002). It is functioning in the nucleus and was suggested to be rather unstable (Ball et al., 

2001; Yang and Kuroda, 2007). In MEF, Nespas locates to cluster 4 and is as expected 

nuclear localized, unstable and shows ~60% splicing efficiency. The overall RNA biology of 

well-studied lncRNAs is therefore well reflected in my dataset, however, biological differences 

between investigated cell types may occur. This catalog of three RNA biology features in two 

cell types of the mouse and the rat will be a valuable tool for the lncRNA research community 

to get information about their favorite lncRNA candidate and to compare it to well studied 

related lncRNAs in order to extrapolate possible functions and mechanisms of action. 

 

5.5.3 RNA biology of lncRNA clusters is evolutionary conserved 
If the hypothesis were true that RNA biology is a prerequisite or a consequence for the 

particular function of a lncRNA, one would expect that lncRNAs have a similar RNA biology 

throughout various cell types and across species. The significance of RNA biology can indeed 

be judged by the observations that the majority of lncRNAs falls into the same clusters in the 

two cell types mESC and MEF and that the RNA biology is largely conserved between the 

mouse and the rat. Figure 26 shows that 51.43% of lncRNAs and 68.33% of mRNAs have a 

very similar RNA biology in mESC and in MEF, as they fall into the same RNA biology 

clusters. Two reasons might explain why lncRNAs are more likely to switch their RNA biology 

cluster between two cell types. First, 97.8% of mRNAs fall into clusters 1 to 3 and therefore 

they also mostly switch between these three clusters, while lncRNAs switch between all six 

clusters due to their great diversity of RNA biology. Second, the RNA biology of lncRNAs is 

more diverse between mESC and MEF compared to mRNAs, as indicated in Figure 18A, 

Figure 21A and Figure 23A. I further investigated the top two fractions of lncRNAs and 

mRNAs that switched from one particular cluster to another one (Figure 26) and found that a 

certain pattern emerged. It seems that RNA stability is the main driver for lncRNAs and 

mRNAs to switch their cluster, indicating that cell type specific mechanisms might regulate 

RNA stability and thereby lncRNA abundance (Rabani et al., 2011) while the other two RNA 

biology features largely remain stable. 

While lncRNA conservation has recently been described to depend on the four dimensions 

sequence, structure, function, and expression from syntenic loci (Diederichs, 2014), the 

conservation of RNA biology as a prerequisite for function has been underestimated so far. In 

Figure 27 I show that the RNA biology of syntenically transcribed lncRNAs in each cluster is 
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largely conserved between the mouse and the rat. While RNA export shows the best 

conservation (r=0.71 for lncRNAs, r=0.86 for mRNAs), the conservation of RNA stability is 

less pronounced (r=0.48 for lncRNAs, r=0.79 for mRNAs). The conservation of RNA splicing, 

however, is more difficult to interpret. The overall correlation is low (r=0.42 for lncRNAs, 

r=0.20 for mRNAs) but this is most likely attributable to the fact that median lncRNA splicing 

efficiencies vary between mouse and rat (Figure 23A). This becomes evident especially in the 

clusters 4 to 6, which are more efficiently spliced in rat than in mouse (Figure 27A). Albeit, the 

overall trend is very similar in both species, cluster 1 to 3 are well spliced and cluster 4 to 6 

exhibit gradually decreased splicing efficiencies. It is interesting to see that a high splicing 

efficiency seems to be conserved between mouse and rat: a lncRNA or mRNA that is 

efficiently spliced in either of the two species does not show signs of inefficient splicing in the 

other species. This argues that the capability of a transcript to be spliced is not lost between 

mouse and rat. The very low correlation of mRNA splicing efficiencies (r=0.20) seems to be 

an artifact arising from the concentration of data points at the top, as mRNAs are very well 

spliced in both species. Taken together, from the data presented here it can be concluded 

that the RNA biology clusters are similar in mESC and MEF and seem to be conserved 

between mouse and rat. These findings underline the hypothesis that RNA biology is an 

important prerequisite for lncRNA function (Rabani et al., 2011). 

 

5.5.4 RNA biology clusters exhibit variable genomic transcript features 
While I have shown that current lncRNA subclasses are not distinguishable by their genomic 

transcript features and their abundance levels (Figure 12, discussed in chapter 5.3.3), I find 

that the six RNA biology clusters indeed exhibit differences in their genomic transcript 

features and their abundance levels (Figure 28). Especially lncRNAs in cluster 6 tend to have 

the longest cDNA sizes, the longest average exon sizes and the highest exon/intron ratio. 

Their abundance is also ~2x to ~8x lower than the abundance of lncRNAs in all other RNA 

biology clusters, which could be a reason why many inefficiently spliced lncRNAs have not 

been detected so far. Two reasons could explain why genomic transcript features are 

different for some of the six clusters. First, these features could be implicated in lncRNA 

function and the clustering could group together functionally similar lncRNAs. Second, the 

three RNA biology features export, stability and splicing and the genomic transcript features 

could, at least to some extent, be correlated. In the latter case, one or more of the genomic 

transcript features could predispose how efficiently a lncRNA is spliced or exported to the 

cytoplasm. RNA stability of lncRNAs might also to some extent be “coded” in their genomic 

transcript features, however, as discussed in the previous chapter RNA stability could provide 

a cell type specific mechanism to regulate abundance levels of lncRNAs .  
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5.5.5 RNA abundance levels correlate with RNA stability and RNA export 
In order to further examine why some lncRNAs are mRNA-like and others are not, I 

investigated whether RNA abundance is correlated with RNA biology. Therefore, I split 

lncRNAs and mRNAs into four RPKM bins and plotted RNA stability, RNA export and RNA 

splicing for each bin (Figure 29). As discussed in chapter 4.4.5, RNA stability and RNA export 

of lncRNAs and mRNAs correlate well with RNA abundance. Highly abundant mRNAs or 

lncRNAs (e.g. with housekeeping functions) could indeed be more stable as they are key to a 

cell’s life cycle. Alternatively, another explanation might be that stable mRNAs are simply 

more abundant because they are have longer half lives and reduced degradation rates 

compared to unstable lncRNAs that are degraded and exhibit decreased abundance levels. 

This correlation has been noted before for mRNAs, however, it was not found for lncRNAs in 

the same study which was based on expression arrays rather than RNA-seq (Clark et al., 

2012). The explanation for the positive correlation of steady-state levels and export efficiency 

might be that RNA is transcribed in the nucleus and exported to the cytoplasm. Hence, highly 

expressed and thereby highly abundant mRNAs might accumulate in the cytoplasm rather 

than in the nucleus, thereby leading to the observed shift in RNA export efficiency. As 

lncRNAs are less exported, they also exhibit a less pronounced correlation between RNA 

abundance and RNA export. The ENCODE project assayed RNA export in six human cell 

lines, however, they did not comment on a correlation between export and RNA abundance 

levels (Derrien et al., 2012). In conclusion, the presented analyses also establish that the 

reduced RNA stability, RNA export and RNA splicing efficiency of lncRNAs compared to 

mRNAs are not just due to ~100x reduced expression levels of lncRNAs (see Figure 13), as 

corresponding RPKM bins (e.g. with a log2 RPKM between 2 and 4) also indicate RNA 

biology differences between mRNAs and lncRNAs. 

 

5.5.6 Is RNA biology influenced by genomic transcript features? 
In order to find patterns explaining why lncRNAs exhibit this extraordinary diversity of RNA 

biology features, I examined the relationship between RNA biology and genomic transcript 

features and I find that many of them often correlate with each other. Most notably, lncRNA 

stability is negatively correlated with cDNA size, average exon size and exon/intron ratio 

(Figure 30). LncRNA export is negatively correlated with exon count, cDNA size and locus 

size. Finally, lncRNA splicing is positively affected by exon count and negatively influenced by 

average exon size and exon/intron ratio. Most of these patterns are also evident in mRNAs, 

which could hint towards general principles regulating RNA molecules. While I discussed in 

chapter 5.4 how RNA stability, RNA export and RNA splicing could be specifically regulated 

by the cell and why lncRNAs are so different from mRNAs, it can be concluded from this data 

that the genomic transcript features could also have an important influence on RNA stability, 

RNA export and RNA splicing. The six genomic transcript features are encoded in the 

genome and could form a prerequisite for RNA biology, e.g. that a long lncRNA is much more 
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likely to be exported and to have cytoplasmic functions than a short one, or that a lncRNA 

with large exons is likely to be lowly spliced and like other lowly spliced lncRNAs in cluster 6 

also unstable and not exported (see Figure 25E).  

For mRNAs, some of these correlations have been noted before. Significant negative 

correlations between mRNA stability and cDNA size have been previously found in humans 

and Escherichia coli, but not in Saccharomyces cerevisiae or Bacillus subtilis (Feng and Niu, 

2007). In this review, it was suggested that longer RNA molecules are more likely to suffer 

from endonucleolytic attacks by RNA endonucleases and mechanical damage. The negative 

correlation between RNA export and cDNA size has also previously been detected in humans 

(Solnestam et al., 2012). While the molecular mechanisms explaining this finding are still 

lacking, it was mentioned that the variable export efficiency of short and long mRNAs did not 

lead to changes in corresponding protein levels.  

 

5.6 LncRNAs are promising drug targets to modulate gene expression 

The emergence of lncRNAs as key regulators of mammalian genomes sparked great interest 

to pharmacologically target them to fight developmental defects and diseases such as cancer. 

Many of the currently available pharmacologically used molecules repress expression of 

genes or inhibit receptors, undesired gene products and fusion proteins. However, in many 

situations it would be desirable to activate expression of genes such as tumor suppressor 

genes, transcription factors, growth factors and deficient genes in genetic diseases 

(Wahlestedt, 2013). While it has proven difficult to pharmacologically increase gene 

expression, it might be easier to repress the repressor and thereby indirectly upregulate the 

desired gene. As many lncRNAs have been shown to directly and specifically repress single 

mRNA genes, a strategy to target them would lead to a de-repression of the mRNA genes. In 

the case of antisense lncRNAs (e.g. BACE1-AS and Zeb2-as) that form RNA duplexes with 

their sense partners, short antisense oligonucleotides (ASOs) could be used to block the 

formation of duplexes and the subsequent regulation of the mRNA. ASOs have successfully 

been used in vivo to specifically upregulate expression of BDNF by blocking its interaction 

with the repressing antisense lncRNA BDNF-AS (Modarresi et al., 2012). Two ASO drugs 

have already been approved by the Federal Drug Administration (FDA), one targets a key 

cytomegalovirus mRNA to prevent retinitis (Roehr, 1998) and the other one reduces 

apolipoprotein B mRNA levels to lower cholesterol levels in familial hypercholesterolemia 

patients (Athyros et al., 2008). This proves that antisense oligonucleotides could be used to 

target gene regulatory lncRNAs with the ultimate goal to influence mRNA expression. As an 

example, the Alzheimer’s disease driving gene BACE1 could be indirectly targeted by 

blocking its interaction with the stabilizing lncRNA BACE1-AS. Other lncRNAs such as the 

FSHD causing BDE-T and overexpressed HOTAIR in cancer might also represent promising 

therapeutic targets. However, of uttermost importance is the detailed understanding of the 
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mechanism of action and the RNA biology of lncRNAs. LncRNAs function by interacting with 

other RNA molecules, with DNA or with proteins and targeting lncRNAs therefore might need 

stratified approaches. Unstable or lowly expressed lncRNAs might be difficult to target and 

nuclear localized lncRNAs will require different drug delivery strategies than cytoplasmic 

lncRNAs. Cis-regulatory lncRNAs might have only one target while trans-acting lncRNAs 

influence hundreds of genes and could cause potent side effects. It will also be essential to 

know whether the RNA molecule is functional or the act of transcription, the latter of which will 

not be affected by targeting the RNA molecule. Targeting of lncRNAs that arise from open 

chromatin or keep chromatin open by constant transcription will likely have no effect on cis-

regulated genes. In essence, a successful pharmacological targeting of lncRNAs depends on 

the complete understanding of the molecular mechanism and the underlying RNA biology. 

And of course, toxicity, off-target effects and delivery of lncRNA-based drugs have to be 

thoroughly investigated and closely monitored (Wahlestedt, 2013). Several companies such 

as RaNA Therapeutics, OPKO-CURNA, Moderna Therapeutics and Dicerna Pharmaceuticals 

already work on RNA-targeted medicines that selectively activate protein expression, targeted 

upregulation of gene expression, messenger RNA therapeutics and silencing of undruggable 

disease targets, respectively.  

Furthermore, lncRNAs could also be used as diagnostic biomarkers and prognostic factors in 

cancer and other diseases. HOTAIR and MALAT1 are overexpressed in numerous tumor 

entities and could potentially be detected in saliva, urine or blood (Reis and Verjovski-

Almeida, 2012; Vitiello et al., 2014). The prostate cancer antigen 3 (PCA3) lncRNA can be 

detected in the urine and has already been approved by the US Food and Drug 

Administration as a biomarker for prostate cancer as it is more sensitive and more specific 

than the widely used PSA blood test (Sartori and Chan, 2014). HOTAIR is a strong biomarker 

candidate in metastatic oral cancer as it is found in higher concentrations in saliva of these 

patients (Vitiello et al., 2014). As a prognostic biomarker, HOTAIR has been associated with 

decreased survival in numerous cancers and higher levels were found in the blood of patients 

suffering from HOTAIR overexpressing colorectal cancer (Svoboda et al., 2014). Other 

examples of potential prognostic biomarkers currently being investigated include ANRIL, 

MALAT1, GAS5 and Sox2ot (Vitiello et al., 2014). 

 

5.7 Significance of datasets presented in this study 

Within the scope of this thesis, I produced numerous RNA-seq datasets to study the RNA 

biology features of lncRNAs. While the majority of published transcriptome annotations and 

RNA biology experiments are difficult to compare among themselves as they were carried out 

using variable protocols and different cell types, I decided to do all experiments in the same 

cell types to be able to draw informative conclusions. I have chosen mouse ES cells as the 

primary model as they express a wealth of lncRNAs and selected embryonic fibroblasts as a 
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second cell type to investigate how lncRNA biology varies between cell types. Additionally, I 

repeated all experiments in the corresponding cell types of the rat to be able to assay 

conservation and evolution of RNA biology features. In summary, for ES cells and embryonic 

fibroblasts of the mouse and the rat I sequenced polyA-enriched RNA for transcriptome 

assembly (Table 13) and total non-ribosomal RNA (Table 16) for the analysis of splicing 

efficiency. For the investigation of RNA stability, I sequenced RNA from the same cell types 

after treatment with the transcription inhibitor Actinomycin D treated or the vehicle control 

EtOH (Table 14). I further isolated nuclear and cytoplasmic RNA fractions of these cells 

(except rat ES cells) and sequenced them (Table 15). For the analysis of developmental 

regulation of lncRNAs, I sequenced two fetal and one adult sample of the liver and the heart, 

FACS sorted B cells as well as CD4+ and CD8+ T cells and last but not least three replicates 

of spleen (Table 17). All together, I prepared 76 RNA-seq libraries for this study and 

generated 4.1 billion reads which were analyzed alongside with 2.3 billion reads from 

published RNA-seq experiments. These deeply sequenced and well controlled datasets will 

be a valuable and comprehensive resource for the research community to investigate the 

expression states and RNA features of lncRNAs genome-wide.  
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