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“One day, we imagine that cancer biology and treatment - at present,

a patchwork quilt of cell biology, genetics, histopathology, biochemistry,
immunology, and pharmacology - will become a science with a
conceptual structure and logical coherence that rivals that of

chemistry or physics.“

Taken from

D. Hanahan and R. A. Weinberg
The Hallmarks of Cancer

CELL, 2000
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Abstract

The mechanistic understanding of protein complexes in cancer cell proliferation and survival
as well as in the response of malignant cells to targeted therapeutic perturbations is of great
clinical importance. The development of tandem affinity purification (TAP) coupled to mass
spectrometry (MS) and genetic screening technologies has fueled the phenotypic identification
and functional dissection of protein-protein interactions on a large scale.

Haploid genetic screening has been instrumental for the identification of the repertoire of genes
essentially required for suspension and adherent cancer cell proliferation under normal culture
conditions. Interestingly, apart from well-studied gene sets this screening has revealed a
collection of essential genes without any annotated biological function. Within this doctoral
thesis | have employed TAP-MS technology to identify interacting proteins of a selected set of
these essential candidates in order to understand in which biological processes they engage.
Most importantly, this approach identified the transmembrane protein 258
(TMEM258/C110rf10) as an integral component of the oligosaccharyltransferase (OST)
complex important for protein N-linked glycosylation.

In order to enable streptavidin-hemagglutinin (SH)-based TAP-MS approaches in a diverse
compilation of cellular model systems, | furthermore developed a versatile inducible expression
system named pRSHIC (retroviral expression of SH-tagged proteins for interaction proteomics
and color-tracing). Using pRSHIC to study the NRAS G12D mutant protein recovered well-
known interaction partners and cellular hallmark features of this well studied oncogene hence
validating the functionality and utility of this novel vector tool. Moreover, pRSHIC-based TAP-
MS analysis of the necroptosis-regulating MLKL S358D mutant protein revealed a critical
functional HSP90 dependency for MLKL-induced cell death amenable to pharmacological
interference by geldanamycin.

Chronic myeloid leukemia (CML) is characterized by expression of the Philadelphia
chromosome-encoded BCR-ABL tyrosine kinase fusion oncoprotein. BCR-ABL engages
numerous protein complexes leading to cellular leukemic transformation. Targeted inhibition
of this oncoprotein using tyrosine kinase inhibitors (TKIs) has demonstrated durable clinical
responses embodying the paradigmatic example for precision medicine. In order to understand
the genetic requirements of cellular TKI therapy efficacy, | have performed genetic gene-trap-
based screens of 1%, 2" and 3™ generation BCR-ABL inhibitors in a haploid human CML cell
line. These screens identified a common set of 6 resistance-inducing gene loss-of-functions
demonstrating the critical importance of enhanced RAS/mitogen-activated protein kinase
(MAPK) pathway activation and altered transcription regulation for the survival of CML cells
upon TKI treatment. Most importantly, functional validation experiments on leucine zipper like
transcription regulator 1 (LZTR1) led to the identification of the cullin (CUL) 3-LZTR1 E3 ligase

complex as a novel rheostat of RAS signaling and hence MAPK activation. Moreover, these

X



findings provide the first mechanistic explanation for the involvement of identified LZTR1
missense mutations in Noonan syndrome (NS), Schwannomatosis (SWNMT) and
glioblastoma (GBM).

In summary, within this thesis | have employed MS-based interaction proteomic methodologies
to delineate signaling complexes essential for cancer cell proliferation and used genetic
screening approaches to uncover gene loss-of-functions contributing to resistance to targeted

therapeutic agents.
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Zusammenfassung

Das mechanistische Verstindnis von Proteinkomplexen in ihrer Relevanz fiir das
Krebszellenwachstum und die Entwicklung von Resistenzen gegeniber zielgerichteten
medikamentdésen Therapieformen ist von entscheidender klinischer Bedeutung. Die
Etablierung von Tandem-Affinitats-Aufreinigungsverfahren (TAP) in Verbindung mit
Massenspektrometrie (MS)-basierter Analyse sowie genetische Screening-Technologien
haben entscheidenden Anteil an der erfolgreichen funktionellen Aufarbeitung von zahlreichen
zellularen Protein-Interaktionen.

Der Einsatz einer auf haploiden Zellen basierenden Screening-Methode hat es ermdglicht all
diejenigen Gene zu identifizieren, die fir das Wachstum von malignen Suspensionszellen und
adharenten Krebszellen unter Laborbedingungen unentbehrlich sind. Interessanterweise war
die zellulare Funktion fir einen Teil dieser identifizierten Gene unbekannt. Im Rahmen dieser
Doktorarbeit habe ich fiir eine ausgewahlte Gruppe der unbekannten Proteine mittels TAP-MS
Methode die Protein-Interaktionspartner identifiziert, um daraus Rickschlisse auf die
moglichen Genfunktionen ziehen zu kénnen. Bedeutsam war vor allem die Identifikation des
Transmembranproteins TMEM258  (C711or10) als integraler  Bestandteil des
Oligosaccharyltransferase (OST) Proteinkomplexes, der fur die zellulare aminoterminale
Glykosylierung verantwortlich ist.

Des Weiteren habe ich ein vielfach einsetzbares, induzierbares, virales Vektorensystem
(pPRSHIC) etabliert, das die Bandbreite verfiigbarer physiologisch relevanter Zelllinien fir die
Anwendbarkeit von Streptavidin-Hemagglutinin (SH)-basierter TAP-MS Methodik wesentlich
erweitert. Die Identifizierung von bekannten Protein-Interaktionspartnern des Onkogens NRAS
G12D mittels pRSHIC hat in einem ersten Schritt die experimentelle Validitdt und
Verwendbarkeit dieses Systems erfolgreich demonstriert. Dartiber hinaus hat die TAP-MS-
gestutzte Analyse der MLKL S358D Mutante, die bei zellularer Expression zum Nekroptose
Zelltod fuhrt, Interaktionen mit HSP90 Proteinen identifiziert. Diese Assoziation ist
entscheidend flir die Funktion von MLKL und die Nekroptoseinduktion kann mittels
pharmakologischer HSP90 Inhibition wie zum Beispiel Geldanamycin inhibiert werden.
Chronische myeloische Leukamie (CML) entsteht durch eine chromosomale Translokation, bei
der das sogenannte Philadelphia Chromosom entsteht und dadurch das BCR-ABL
Fusionsprotein mit Tyrosinkinaseaktivitat generiert wird. BCR-ABL aktiviert verschiedene
zellulare Signaltransduktionswege und flihrt dadurch zu leukamischem Krebszellwachstum.
Die pharmakologische Inhibierung der Tyrosinkinaseaktivitdt mittels zielgerichteten
Arzneimitteln ist klinisch hochst erfolgreich und gilt als ein Paradebeispiel fiir personalisierte
Prazisionstherapie. Um besser zu verstehen, welche Gene flr diese exquisite zellulare
Sensitivitat verantwortlich sind, habe ich im Rahmen dieser Doktorarbeit genetische Screens

in einer haploiden CML Zelllinie unter Verwendung von BCR-ABL Inhibitoren der 1., 2. und 3.
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Generation durchgefuhrt. Dabei habe ich sechs Geninaktivierungen identifiziert, die zur
Resistenz gegenuber BCR-ABL Inhibitoren fihren. Aus den Genfunktionen lasst sich
schliel3en, dass die verstarkte Aktivierung des RAS/MAPK Signaltransduktionsweges und die
veranderte Regulation der Gentranskription fir das Zelliberleben nach BCR-ABL Inhibition
eine entscheidende Rolle spielen. Darlber hinaus haben funktionelle Validierungsexperimente
gezeigt, dass das Protein LZTR1 als Teil eines Cullin (CUL) 3 E3 Ubiquitinligase
Proteinkomplexes ein entscheidender Regulator fir die RAS Signaltransduktion und die
Aktivierung des MAPK Signalweges ist. Durch diese Ergebnisse konnte ich eine erste
mechanistische Erklarung fur die Pathogenitat der LZTR1 Mutationen erbringen, die in
Patienten mit Noonan Syndrom, Schwannomatosis oder Glioblastom gefunden wurden.

Im Rahmen dieser Doktorarbeit habe ich in Kombination genetische Screening-Verfahren und
MS-basierte Proteom-Analysemethoden verwendet um ein detaillierteres Verstandnis der
zellularen Signaltransduktionswege zu erhalten, die fir das Wachstum von Krebszellen und

die Entstehung von Arzneimittelresistenzen verantwortlich sind.
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shRNA short hairpin RNA

shRNAmir microRNA-embedded short hairpin RNA

SH2 Src homology 2 domain

SH3 Src homology 3 domain

SILAC Stable isotope labeling with amino acids in cell culture

siRNA small interfering RNA

SLC Solute carrier protein

SNP Single-nucleotide polymorphism

SOS1 Son of sevenless homolog 1

SSL Synthetic sickness/lethality
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STAT
SUMO
SWNMT
SYK
TALEN
TAP
TCGA
TF

TGF

TKI
TMEM258
TMT
TNF-a
TNFR1
TP53
tracrRNA
TSG
TSS
TyrK
VP64
WT
WGS
WNT
WT1

ZNF

Signal transducer and activator of transcription
Small ubiquitin-like modifier
Schwannomatosis

Spleen tyrosine kinase
Transcription activator-like effector nuclease
Tandem affinity purification

The Cancer Genome Atlas project
Transcription factor

Transforming growth factor
Tyrosine kinase inhibitor
Transmembrane protein 258
Tandem mass tag

Tumor necrosis factor alpha
Tumor necrosis factor receptor 1
Tumor suppressor p53
trans-encoded small RNA

Tumor suppressor gene
Transcription start site

Tyrosine kinase domain

VP16 tetrameric repeat

wild type

Whole genome sequencing
Wingless-related integration site
Wilms tumor 1

Zinc-finger nuclease

Gene and protein name abbreviations not listed here can be found in publicly available
databases such as GeneCards, Ensembl, NCBI or UNIPROT.
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1 Introduction
1.1 Molecular signal transduction networks in cancer

1.1.1 Cancer genomes

Cancer can be defined as a disease of altered cellular proliferation and identity states driven
by aberrations in the genome and epigenome (Hanahan & Weinberg, 2000; Vogelstein et al,
2013; Garraway & Lander, 2013). The selective acquisition of mutations leading to either gain-
or loss-of-function variants in the cancer genome induces manifold alterations in the wiring and
regulation of signaling protein networks ultimately driving cellular transformation and cancer
cell propagation. The description of gaining genomic alterations in a sequential way over time
as the causal event for the development of malignancies has been pioneered by C. O. Nordling
and A. G. Knudson in the formulation of the two-mutation hypothesis with an estimated need
of 3 to 7 mutations for cancer formation postulated by D. J. B. Ashley (Nordling, 1953; Ashley,
1969; Knudson, 1971). The model of sequential mutation acquisition has been observed
thereupon both from a genetic as well as histopathological viewpoint in many cancers and can
be phenotypically exemplified by the step-wise developmental properties of colorectal cancer
(CRC) or head and neck squamous cell carcinoma (HNSCC) (Vogelstein et al, 1988; Haddad
& Shin, 2008; Vogelstein et al, 2013). In the development of CRC, the acquisition of
adenomatous polyposis coli (APC) gene mutations in the colonic epithelium leads to the
formation of small adenomas that upon acquisition of kirsten rat sarcoma viral oncogene
homolog (KRAS) gene mutations expand to large adenomas and with additional genetic or
epigenetic alterations can transform into aggressive invasive carcinomas (Vogelstein et al,
2013).
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Figure 1: Acquisition of genetic alterations over time. Whereas non-pathogenic mutations
will remain silent, pathogenic alterations will ultimately lead to clonal expansion and induce
tumorigenesis and contribute to cancer drug resistance. (Taken from Stratton et al, 2009.
Reprinted with permission from Nature Publishing Group)



The acquisition of mutations over time also implies that the probability for the development of
malignancies increases with becoming older coining the phrase that cancer can be considered
as the disease of an ageing society (Figure 1). Following this notion, it has been proposed that
the risk for developing cancer can at least in a fraction of cases be linked to the amount of
stem cell divisions happening over time (Tomasetti & Vogelstein, 2015). These results however
have been considered highly controversial for the reason of omitting the substantial
participation of exogenous (e.g. environmental) stimuli (Wu et al, 2016).

Interestingly, whereas most cancers follow the above mentioned sequential mutational pattern,
the recent description of a phenomenon termed chromothripsis broadens the scope of how
genetic perturbation events can lead to cancer development (Stephens et al, 2011; Maher &
Wilson, 2012). Chromothripsis describes the observation of sudden large scale shattering and
subsequent rearrangement of chromosomal fragments at a genome-wide scale within the
range of only a few mutagenic events. It has been identified in various malignancies like
melanoma, colorectal, thyroid, renal cell and up to 25% of bone cancer as well as
neuroblastoma (Stephens et al, 2011; Molenaar et al, 2012).

Consequently, the acquisition of missense (amino acid (aa) changing), nonsense (premature
stop codon) or frameshift (alteration of reading frame) mutations, shaped by the underlying
mutational processes, can lead to activation, inactivation or property changes of the encoded
protein. The distribution of mutations along the coding sequence of a given gene can already
be informative about the potential phenotypic effect of the encoded protein on cellular
transformation. Whereas oncogenic activating mutations tend to cluster in specific domains or
even around specific aa residues, inactivating mutations are inclined to spread out through the
entire gene body (Vogelstein et al, 2013). Additionally, it is the current view that not all
mutations within one tumor cell do necessarily directly contribute to cancer development and
progression, which led to the distinction between driver and passenger mutations as a means
to categorize and prioritize functional impact of identified mutations (Vogelstein et al, 2013;
Garraway & Lander, 2013). However, albeit being not directly involved in cell-autonomous
signaling contributing to transformation, passenger alterations provide a pool of novel, “non-

self’ neo-epitopes possibly harnessable for cancer immunotherapy (Su & Fisher, 2016).

1.1.2 Deep sequencing approaches to decipher cancer genomes

Over the years, different complementary technologies have aided in the molecular
characterization of cancer genomes with increasing resolution over time. The development of
comparative genomic hybridization (CGH) methods has allowed for the detection of gene copy
number variations (CNV), gains and losses of chromosomal fragments as well as loss of

heterozygosity on a genome-wide level. This has enabled the identification of recurrently

2



deleted gene candidates characterizing specific disease subtypes (Mullighan et al, 2008), the
identification of specific risk alleles for the development of leukemia predisposing
precancerous disorders of the hematopoietic system (Olcaydu et al, 2009), as well as in pan-
cancer CNV studies for the identification of commonly amplified regions targeting essential
core survival pathways (Beroukhim et al, 2010).

The automated Sanger sequencing-based deciphering of the human genome until the year
2001 has revolutionized the understanding of the human genome and has provided a
pronounced impulse for the development of new, next-generation sequencing (NGS)
technologies (Lander et al, 2001; Venter et al, 2001; Metzker, 2010). This novel deep
sequencing-based approaches have in the following 10 to 15 years allowed for the in-depth
genomic characterization of numerous cancer types at unprecedented resolution (Stratton et
al, 2009).

Various types of NGS-based sequencing technology like emulsion polymerase chain reaction
(PCR), solid-phase bridge amplification or in-solution DNA nanoball generation-based
platforms have been developed offering different read-length and sample through-put
capabilities (Shendure & Ji, 2008; Meyerson et al, 2010; Mardis, 2011; Goodwin et al, 2016).
As a result, different consortia like The Cancer Genome Atlas project (TCGA) or genome
sequencing centers like the Welcome Trust Sanger institute have collectively identified
common and unique mutational patterns and novel tumor subtypes in lung cancer (Imielinski
et al, 2012; Govindan et al, 2012; Cancer Genome Atlas Research Network, 2014), prostate
cancer (Berger et al, 2011), HNSCC (Stransky et al, 2011; Cancer Genome Atlas Network,
2015), esophageal adenocarcinoma (Dulak et al, 2013), glioblastoma (Verhaak et al, 2010;
Schwartzentruber et al, 2012), breast cancer (Curtis et al, 2012) and pediatric low-grade
glioma (Zhang et al, 2013) beyond many others. The aggregate amount of cancer sequencing
data has for the first time allowed to obtain a pan-cancer analysis at base resolution of the
mutational diversity in human cancers (Lawrence et al, 2013; Kandoth et al, 2013; Alexandrov
et al, 2013; Hoadley et al, 2014). Interestingly, these analyses have furthermore uncovered a
strong inter-cancer diversity in the average somatic mutation frequency with pediatric cancer
like rhabdoid tumor, Ewing sarcoma or medulloblastoma displaying 0.1-1 somatic mutations
per mega-base (Mb) to lung squamous cell carcinoma and melanoma with an up to 1000 fold
higher mutational burden and clear traces of carcinogen-induced mutagenic processes
(Lawrence et al, 2013). Pathway level-based analysis has furthermore enabled the annotation
of low-frequency mutations that otherwise would have been missed by single-gene-based
testing. These include genes like lysine demethylase 1B (KDM1B) or lysine methyltransferase
2E (KMT2EIMLL5) both involved in histone methylation as well as the receptor protein
encoding gene neurogenic locus notch homolog protein 3 (NOTCH3) or the cohesion subunit

encoding stromal antigen 1 (STAG1) (Leiserson et al, 2015). These types of analysis will be



crucial in the future to estimate the number of additional cases to be sequenced to reach
saturation level for the identification of almost all mutations per tumor entity. Additionally, the
extension from performing exome (coding sequence only) sequencing analysis to whole
genome sequencing (WGS) has started to reveal novel interesting mutational patterns in non-
coding regulatory, enhancer or gene-adjacent regions. For instance, activating mutations in
the telomerase reverse transcriptase (TERT) promoter region in familial and sporadic
melanoma as well as mutations creating novel transcription factor binding sites in enhancer
regions of the T-cell acute lymphocytic leukemia protein 1 (TALT) have been identified (Horn
et al, 2013; Huang et al, 2013; Mansour et al, 2014).

Moreover, multi-region sequencing in individual solid tumors has revealed a high degree of
clonal evolution and intra-tumor mutational heterogeneity (Gerlinger et al, 2012; McGranahan
& Swanton, 2015; Xu et al, 2012). Interestingly, bystander mutations potentially non-driver
mutations themselves can function as valuable molecular barcodes to trace the cellular tree of
origin and to delineate complex branched evolutionary patterns occurring within one tumor
from initiation to therapeutic selection and adaptation.

NGS-based technologies have not only allowed deciphering the complex genomic make up
but also enabled to quantify the transcriptome of human cancers at unprecedented resolution
(Wang et al, 2009), allowing the additional detection of fusion oncogenes (Maher et al, 2009),
identification of viral integrations contributing to tumorigenesis (Tang et al, 2013) as well as

detection of circulating tumor cells and associated gene expression profiles (Yu et al, 2012).

1.1.3 Signaling pathway networks enabling malignant growth

Cells are complex biological systems and by operating within the context of a multicellular
organism face the necessity to sense, transduce and integrate information supplied by external
stimuli and convert them into appropriate and actionable responses (Hlavacek & Faeder, 2009).
Cellular membrane-associated, cytosolic, organelle- or nuclear-residing signaling platforms
formed by protein-complexes are the functional units of molecular signal transduction
pathways. The careful orchestration of these protein networks in time and space is of crucial
importance for cellular homeostasis (Kholodenko et al, 2010; Kolch et al, 2015). Genetic and
epigenetic perturbations as describe previously are instigating deranged network
organizations and signaling dynamics. Changes in protein activity states, loss of negative
regulatory feedback circuits, or rewiring of nuclear transcriptional programs ultimately lead to
altered cellular conditions and neoplastic transformation (Logue & Morrison, 2012).

The neoplastic mutational landscape has functionally and historically been categorized into
two opposing gene groups: the activation of proto-oncogenes (OG), drivers of the

transformation phenotype, and inactivation of tumor suppressor genes (TSG), safeguards of
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normal cellular physiology. Early identification of OG has been tremendously fueled by
investigating the cellular transformation capabilities of oncogenic (retro-) viruses, with the
tyrosine protein kinase SRC being one of the first proto-oncogenes discovered by studying
avian RNA Rous sarcoma virus (RSV) (Huebner & Todaro, 1969; Stehelin et al, 1976; Martin,
2004). On the contrary the tumor suppressor p53 (TP53) and retinoblastoma-associated
protein (RB) genes both represent paradigmatic TSGs and act as protective security guards,
maintaining genome integrity and cell cycle regulation, responding to plentiful intra- and
extracellular elicited threats (Kinzler & Vogelstein, 1997). It has become clear that from the
growing number of gene mutations identified by deep sequencing, not every gene can be
outright classified as OG or TSG. This has lead that to the assumption that neoplastic cells
contain a significant amount of bystander or passenger alterations. Being considered as non-
functional in upholding the cellular transformed state, further work is needed to experimentally
clarify whether these changes only represent silent passengers or actually constitute essential
functional units (Stratton et al, 2009; Pon & Marra, 2015).

The acquisition of mutations in OG and TSG allows a cell to gain key capabilities and
characteristics that in seminal work by D. Hanahan and R. A. Weinberg have been condensed
into the “Hallmarks of Cancer” in the year 2000 (Hanahan & Weinberg, 2000), and further
revised and extended in 2011 (Hanahan & Weinberg, 2011). They provide a phenotypic and
pathway-level framework of crucial features and enabling characteristics that define the
distinction between normal cells and their transformed counterpart embedded in the tissue
environment (Figure 2). Undoubtedly, there is interdependence and crosstalk between these
different characteristics. Exemplified, enhanced cellular proliferation and tissue invasion is
supported by sustained growth stimulation, increased sensitivity to mitogenic signals and the
inactivation of counterbalancing negative regulatory factors (Hahn & Weinberg, 2002).
Concomitant support by dysregulated cell cycle progression will be required in concert with the
adaptation of genomic DNA integrity and maintenance-sensing mechanisms, as well as altered
regulation or inactivation of cell death mechanisms (e.g. apoptosis, necrosis). As neoplastic
cells accumulate, the coordination of endogenous metabolic processes, the support by
enhanced angiogenesis but also the failed recognition or adverse support by immune cells
represent essential milestones in tumor development, maintenance and progression (Hanahan
& Weinberg, 2000; 2011). As a consequence of NGS-based cancer genome sequencing
campaigns, the frequent detection of alterations in epigenetic regulators has opened the
question of whether these variations fuel the above mentioned processes or represent an
independent hallmark characteristic. While further work will be required for clarification,
undoubtedly altered transcriptional regulation and the role of epigenetic lineage memory
represent important liabilities of cancer cells that distinguish them from their healthy
counterparts (Bracken & Helin, 2009; Chi et al, 2010; Dawson & Kouzarides, 2012). The



intricate interplay between cell-autonomous and non-cell-autonomous mechanisms, further
increases the experimental difficulty of interpreting the involvement of nucleotide variants on
the cancer phenotype itself or bystander support especially in the case of germline variant-

induced cancer predispositions (Miething et al, 2014; Dong et al, 2016).
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Figure 2: Core features associated with the acquisition of cancer phenotypic traits.
Characteristic key pathway alterations are depicted, collectively referred to as the “Hallmarks

of cancer” including selected hallmark-targeting therapeutic interventions. (Taken from
Hanahan & Weinberg, 2011. Reprinted with permission from Elsevier)
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The acquisition of cancer-associated traits is crucially dependent on the altered activation and
regulation of key cellular signaling pathway programs like the mitogen-activated protein kinase
(MAPK), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB)-AKT/mammalian target
of rapamycin (mTOR), Janus kinase (JAK)/signal transducer and activator of transcription
(STAT), transforming growth factor (TGF)-B, wingless-related integration site (WNT)/B-catenin,
neurogenic locus notch homolog protein (NOTCH), Hedgehog (HH), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) and Hippo signaling pathway.

The cell lineage developmental stage, in which initiating alterations originate have sparked the
field of cancer stem cell research (Clevers, 2011). The search for the cell of origin represents
an important aspect both for the basic understanding of cancer biology as well as for
therapeutic strategies and clinical decision processes (Gilbertson, 2011; Wang, 2010).
Nevertheless, it is more and more becoming clear that the heterogeneity within one tumor is

greater than expected and the lineage plasticity granted by epigenetic alterations complicate



the unequivocal definition and identification of neoplasia-inducing cells (Jordan et al, 2006;
Gupta et al, 2009a; Graf, 2011; Nguyen et al, 2012). Supporting evidence can be found in the
considerable similarities that exist between pathways involved in organism development and
being deregulated in cancer (Bellacosa, 2013). Numerous gene candidates, being somatically
mutated in cancer also have been identified as germline variants leading to various forms of
developmental syndromes with distinct cancer predispositions (see chapter 1.1.7). The cellular
lineage plasticity observed in the seminal work of the discovery of induced pluripotent stem
cells (iPSC) partially requiring the overexpression or activation of oncogenic transcription
programs further illustrates this close relationship (Takahashi et al, 2007; Carette et al/, 2010).
The RAS/MAPK pathway represents a paradigm for molecular pathway functionality and
regulation (Hunter, 1997). Due to its involvement in growth support, regulation of differentiation
in development and cancer, as well as being a therapeutic target and mechanistic resistance

factor this pathway therefore will be discussed in more detail in chapter 1.1.6.

1.1.4 Protein complexes executing gene function in forming signaling

networks

The formation, steady state maintenance, as well as dynamic rearrangement of protein
complexes upon transmission of cellular information represents the fundamental organizing
principle of every cellular signal transduction pathway. The quaternary structural assembly of
proteins into homomeric or heteromeric assemblies allows for the gathering of different sized
multi-protein complexes (Marsh & Teichmann, 2015). The homo- and hetero-dimerization of
STAT proteins (Miklossy et al, 2013), the association of catalytic (e.g. p100a) and regulatory
(e.g. p85a) subunits of the PI3K complex (Thorpe et al, 2015) or the construction of large
molecular machines like the cellular degradation apparatus, the proteasome containing over
30 protein subunits (Kish-Trier & Hill, 2013) represent diverse examples of how protein-protein
interactions shape cellular physiology. Protein complexes as functional units are subject of
intensive investigations ranging from yeast up to human cells (Gavin & Superti-Furga, 2003).
Changes in protein abundance, post-translational modifications, protein activity states, and
interaction propensities are important factors within the regulatory wiring of protein complexes
(Lee & Yaffe, 2016). Additionally, the availability of proteins due to their compartmentalized
subcellular distribution at the cell surface, in lipid bilayer membranes, the cytoplasm or within
cellular organelles and the nucleus is important for differential complex assembly (Gavin &
Superti-Furga, 2003; Hung & Link, 2011). Single-nucleotide polymorphisms (SNPs) and gene
gain- or loss-of-functions impact on the assembly and composition of protein complexes
thereby altering signal transduction and changing cellular behavior, contributing to human

disease development (Ideker & Sharan, 2008; Hannum et al, 2009).



Protein interactions act as the driving forces to assemble individual proteins into cellular
machines that provide the basis of forming signal transduction pathways allowing controlled
and directed orchestration of gene function (Kuriyan & Eisenberg, 2007; Rebsamen et al,
2013). Protein complexes are therefore the ultimate pathway building blocks forming molecular
networks and transducing information into and within the cell. Different technologies enable
the experimental identification and characterization of signaling complexes in steady state
conditions or upon phenotypic perturbation and will be discussed in more detail from chapter

1.5 onwards.

1.1.5 Post translational modifications in protein complex assembly and cellular

signal transduction

Proteins themselves are built up out of one or multiple domains, usually spanning 50-400
amino acids (aa) (Lee & Yaffe, 2016; Letunic et al, 2012). Protein domains are the specification
factors within proteins providing functional modules for signal exchange. PTMs act as
molecular modifier codes being read by protein domains and thereby regulating nearly every
cellular signaling process in a highly dynamic and controllable fashion (Hunter, 2007). These
include phosphorylation, ubiquitination, acetylation, glycosylation, methylation and many more
(Deribe et al, 2010). Until now over 200 different types of PTMs have been reported (Mann &
Jensen, 2003). They assist in adapting and maintaining protein folding and stability, regulate
subcellular transport and distribution as well as signal transmission. Target protein residues
can be altered by different modification on the same acceptor site creating a second layer of
complexity and possibility for PTM-induced protein and pathway regulation (Deribe et al, 2010).
The occurring modifications can influence protein conformation, stability, activity, subcellular
localization as well as protein-protein interactions. Therefore, the sole monitoring of DNA
sequence alterations or modulations of RNA transcript levels only captures an incomplete
picture of the state of protein signaling networks in health and disease (Lee & Yaffe, 2016).

The integration of cellular signaling information via PTMs, protein domains, and downstream
assembly of protein complexes can be framed within the writer - reader - eraser mechanistic
concept. Writer domains are catalytically active domains placing novel PTMs on proteins as
for example a novel phosphorylation induced by a kinases or the ligation of ubiquitin molecules
on destined target protein(s) by a designated E3 ligase (Lim & Pawson, 2010; Chi et al, 2010;
Lee & Yaffe, 2016). Reader domains act as recognition devices of specific modification marks
placed by writer domains. Classical examples include Src homology 2 (SH2) domains, binding
to phosphotyrosine-containing residues, Src homology 3 (SH3) domains recognizing proline-
rich sequences, polo-box domains interacting with phosphoserine or -threonine residue-

containing motifs, Bromodomains recognizing acetyl-lysine-containing stretches or different
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ubiquitin binding domains (e.g. UBA) recognizing single or multiple attached ubiquitin
molecules (Pawson & Nash, 2003). Eraser domains close the regulatory circle instigated by
writer and reader domains by removing again specific PTMs. Classical examples include the
large families of phosphatases removing phosphorylation marks in a regulated manner as well
as deubiquitinating enzymes (DUB) removing ubiquitin moieties from target proteins (Tonks,
2006; Shi, 2009; Komander et al, 2009; Nijman et al, 2005).

Phosphorylation is one of the first PTMs that has been discovered (Krebs & Fischer, 1955).
Mainly three protein residues are targeted by phosphorylation, interestingly displaying a
skewed distribution of around 85% serine, 15% threonine and only 0.4% tyrosine residues
being modified (Lee & Yaffe, 2016). More recently the identification of histidine residue
phosphorylation has gained interest with research tools just becoming available, enabling the
detailed explorations of its biological importance (Fuhs et al, 2015). Protein kinases represent
the writer element in phosphorylation driven signal transduction by attaching phosphate groups
onto substrate proteins in an ATP-dependent manner (Ubersax & Ferrell, 2007). The human
genome encodes over 500 different kinases with diverse effector functions in the regulation of
cell growth, differentiation and cell death beyond many others (Manning et al, 2002). Due to
their pleiotropic involvement in human diseases like cancer they have attracted attention to
identify chemical inhibitors for therapeutic use. Phosphorylation-based signaling is counter
regulated by the concerted action of eraser proteins, the protein phosphatases. They can be
divided based on their phosphorylation specificity into the groups of tyrosine, serine-/threonine-
specific, dual specificity and histidine phosphatases (Shi, 2009; Tonks, 2013; Patterson et al,
2009; Rigden, 2008). As a protein family they have overall received less attention compared
to their writer counterparts, nevertheless the high frequency of cancer associated mutations
as for example identified in tyrosine-protein phosphatase non-receptor type 11 (PTPN11) or
phosphatase and tensin homolog (PTEN) clearly outline their importance as a critical
regulatory step in the coordination of phosphorylation-driven cellular signaling (Julien et al,
2011). Extensive crosstalk exists in between different writer-reader-eraser systems with for
example ubiquitin-mediated PTMs being in close interplay with phosphorylation (Hunter, 2007).
Ubiquitin is a small size protein of 76 aa, mostly conjugated onto lysine residues, in rare cases
also onto cysteine, serine or threonine (Clague et al, 2015). Ubiquitin moieties can be attached
as monomers, forming mono-ubiquitin modifications or as multiple ubiquitin molecules forming
poly-ubiquitin chains (Rajalingam & Dikic, 2016). In the case of mono-ubiquitination,
attachment is achieved via the C-terminal glycine residue of ubiquitin and a lysine residue on
the target protein. In the case of poly-ubiquitination linkage at a lysine or the N-terminal
methionine residue on ubiquitin itself leads to branched or linear chain formation. In contrast
to phosphorylation, the placement of ubiquitin involves a coordinated enzymatic cascade of

E1 enzymes leading to ATP-dependent ubiquitin activation, E2 enzymes for ubiquitin



conjugation and a broad repertoire of E3 enzyme proteins or complexes for ubiquitin ligation
onto target proteins, providing modification specificity (Dikic & Robertson, 2012; Komander &
Rape, 2012). E3 ligases represent the final writer step and can be categorized into three main
groups: the RING E3 ligases contain either RING (really interesting new gene) or U-box
domains (e.g. the monomeric RING domain-containing E3 ligase c-CBL or the family of cullin-
RING ligase complexes) and present the largest subgroup, followed by HECT (homologous to
the E6GAP carboxyl terminus) E3 ligases (e.g. NEDD4, HERC and other HECT ligases) and
RBR (RING-between RING-RING) E3 ligases (Berndsen & Wolberger, 2014; Dikic &
Robertson, 2012). Marks placed by these enzymes will be read by ubiquitin-binding domain-
containing proteins sensing the different structural shapes of mono- and poly-ubiquitin
attachments (Dikic et al, 2009). The array of different types of deubiquitinating enzymes acting
as eraser proteins remove these attached modifications (Nijman et al, 2005; Komander et al,
2009). Different PTMs similar to ubiquitin like small ubiquitin-like modifier (SUMO) or ubiquitin-
like proteins (UBLs, e.g. NEDD8) exist, requiring similar cascades for activation and placement.
The attachment of neural precursor cell expressed developmentally down-regulated protein 8
(NEDDS8) is important for the activity of cullin E3 ligase complexes by recruiting E2 enzymes
to the ligase complex (Hori et al, 1999; Kawakami et al, 2001). Many recent studies reveal the
critical involvement of alterations in ubiquitin pathway members as crucial mediators in the
pathophysiology of human diseases (Popovic et al, 2014). Moreover, approaches to
therapeutically interfere or even harness this PTM using small molecule inhibitors are being
developed (Nalepa et al, 2006; Winter et al, 2015).

As mentioned above, there is intricate cross-talk between different types of PTMs, exemplified
by the role of phosphorylation and ubiquitination in the regulation of epidermal growth factor
receptor (EGFR) signaling from initiation to attenuation and termination. Phosphorylation
events upon ligand-induced receptor activation lead to the recruitment of adaptor proteins like
growth factor receptor-bound protein 2 (GRB2) or Src homology 2 domain-containing-
transforming protein 1 (SHC1) via phosphotyrosine-binding domain (PTB) or SH2 domain
based interactions and son of sevenless homolog 1 (SOS1)-RAS-MAPK signaling cascade
activation (Zheng et al, 2013). Signal attenuation and termination is subsequently achieved by
the phosphorylation-induced CBL E3 ligase-mediated EGFR ubiquitination, clathrin-mediated
endocytosis of ligand-receptor complex and eventual lysosomal degradation initiated upon
recognition by the endosomal sorting complex required for transport (ESCRT) complex (Deribe
et al, 2010). Finally, coordinated removal of ubiquitination moieties by dedicates
deubiquitinating enzymes (DUBs), exemplified by the ubiquitin-specific peptidase 2 (USP2)-
mediated delayed EGFR endocytosis, present negative regulatory feedback mechanisms for

fine tuning signal duration and strength (Liu et al, 2013; Rose et al, 2016).
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A second example of ubiquitination and phosphorylation collaboration on the cross-roads of
cell survival, cytokine production and cell death initiation is the triggering of complex signaling
wiring upon tumor necrosis factor alpha (TNF-a) binding to the tumor necrosis factor receptor
1 (TNFR1) (Vanden Berghe et al, 2014; Conrad et al, 2016). Sequential and coordinated
placement of PTMs, predominantly linear and K63-linked poly-ubiquitination in the initiating
step, lead to the formation of protein-complexes directing distinct cellular signaling reactions.
The formation of the receptor-proximal complex | assembly induces subsequent canonical NF-
kB as well as MAPK pathway activation. Alternatively, in a cell- or perturbation-dependent
manner altered protein complex formation can be triggered leading to the induction of either
apoptotic or necroptotic cell death. TRADD (TNFR1-associated death domain)-dependent
complex lla or RIPK1 (receptor-interacting serine/threonine kinase) 1-dependent complex Ilb
(the “ripoptosome”) formation leads to TNF-a induced apoptosis whereas RIPK1/RIPK3/MLKL
(mixed lineage kinase domain-like protein) complex lic formation (the “necrosome”) ultimately

triggers execution of regulated necrosis (Vanden Berghe et al, 2014).

1.1.6 RAS - MAPK pathway activation in cancer

The MAPK pathway presents a paradigmatic example of protein complex-driven information
transduction involving signal amplification, feedback regulation and diversification of the input
information important in regulating cell growth, survival, and differentiation as well as the
adaptation and appropriate integration of multiple stress stimuli (Johnson & Lapadat, 2002;
Amit et al, 2007; Rauch et al, 2016). Their essential enrolment in cellular and organism
physiology is reflected by the plentitude of mutations identified in developmental syndromes,
cancer and disorders of the immune system (Shendure & Akey, 2015; Tidyman & Rauen, 2016;
Twigg et al, 2013; Salzer et al, 2016).

The MAPK network forms a sequential kinase cascade, whereby MAPK kinase kinase
(MAPKKK) phosphorylates its dedicated MAPK kinase (MAPKK) which by itself will upon
phosphorylation-induced activation phosphorylate its dedicated MAPK therefore leading to a
sequential signal amplification and extension (Plotnikov et al, 2011). These cascades can be
classified based on their final MAPK into four main groups, the extracellular signal-regulated
kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK) 1/2/3, p38a/p/y/® and ERK5 (Johnson &
Lapadat, 2002; Morrison, 2012).

The group of RAS GTPase proteins act as upstream activators of the canonical ERK1/2 MAPK
pathway. They act as coordinating hub for the integration of external growth signals transduced
via cell surface receptors and associated adaptor proteins. Apart from MAPK, they can in
parallel induce multiple other pathways of which the PI3K, phospholipase C epsilon (PLCg),

and Ral guanine nucleotide exchange factor (RalGEF) are most prominently studied due to
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their importance for oncogenic transformation and cancer maintenance (Karnoub & Weinberg,
2008). There are four different main RAS gene isoforms HRAS, NRAS, and the two splice
isoforms KRAS4A and KRAS4B. Activation of RAS is achieved via a set of diverse guanine
nucleotide exchange factors (GEF), one of the most prominent ones being SOS1 or RAS
guanyl-releasing protein 1 (RASGRP1). Structural conformation changes induced by the GEF
interaction lead to the exchange of guanosine diphosphate (GDP) with guanosine triphosphate
(GTP) and hence activation of RAS proteins. Inactivation is achieved via the interaction with a
second set of GTPase activating proteins (GAP) that induce enhanced activation of the
endogenous GTPase activitiy of RAS proteins (Vigil et al, 2010). One of the most prominent
GAPs is Neurofibromin (NF1) that forms an important negative regulatory feedback circuit that
is frequently found to be abrogated in cancer but also developmental syndromes (Ratner &
Miller, 2015).

Oncogenic mutations in RAS have first been found in the Harvey sarcoma virus-associated
oncogene (HRAS) leading to cellular transformation, (Parada et al, 1982; Santos et al, 1982).
By now it is clear that mutations in the RAS gene family are one of the most common alterations
found in human cancers with for example over 90% of pancreatic ductal adenocarcinoma
cases displaying KRAS mutations (Pylayeva-Gupta et al, 2011; Cox et al, 2014). Residues
G12, G13 and Q61 show the highest frequency of mutations interfering with the GTP>GDP
exchange cycle maintaining RAS predominantly in an active state. The unequal distribution of
activating mutations in the four main RAS isoforms in different cancer types might represent
dosage dependent activation requirements in different tissues and developmental stages
(Karnoub & Weinberg, 2008).

Active RAS signaling leads to the activation of members of the MAPKKK RAF proto-oncogene
serine/threonine-protein kinase family (ARAF, BRAF and CRAF) which in turn induces
phosphorylation of the MAPKKSs dual specificity mitogen-activated protein kinase kinase 1 and
2 (MEK1/2) and subsequent phosphorylation of the MAPKs ERK1/2. Whereas activating
mutations in ARAF, CRAF and MEK1 can be found at low frequency across different types of
cancer, BRAF V600E mutations are frequently found in melanoma, colorectal cancer and hairy
cell leukemia (Holderfield et al, 2014; Arcaini et al, 2012). Activated ERK1/2 kinases induce
the phosphorylation of target proteins both in the nucleus as well as the cytoplasm leading to
the initiation of transcriptional programs as well as negative regulatory feedback loops
(Plotnikov et al, 2011; Courtois-Cox et al, 2006; Avraham & Yarden, 2011). Dual-specificity
phosphatases (DUSPs) play an important role for the negative feedback regulation of the
MAPK signaling strength in a timely controlled fashion (Jeffrey et al, 2007; Shojaee et al, 2015).
Moreover, different scaffolding proteins like kinase suppressor of Ras 1 (KSR1) have been

identified assisting in the subcellular assembly of MAPK signaling complexes with a crucial
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role in maintaining pathway activation (Kornfeld et al, 1995; Nguyen et al, 2002; Dhawan et al,
2016).

Due to its prominent role in growth factor induced and pro-survival signaling, as well as cancer
cell proliferation and drug resistance, the RAS/MAPK pathway has been an area of intense
research to develop therapeutic agents able to counteract enhanced activation (Steelman et
al, 2011; Ward et al, 2012; Pritchard & Hayward, 2013; Samatar & Poulikakos, 2014).

1.1.7 RASopathies - germline genetic alteration of the MAPK pathway

The RASopathies denominate a heterogeneous group of developmental syndromes
characterized by the presence of germline mutation alterations in members of the RAS/MAPK
pathway affecting collectively around 1:1000 individuals and therefore represent one of the
biggest group of malformation syndromes (Rauen, 2013). Based on their clinical-phenotypic
presentation, they are subdivided into various subtypes, namely Noonan syndrome (NS),
Noonan syndrome with multiple lentigines (NSML, previously named as LEOPARD syndrome),
neurofibromatosis type 1, Legius syndrome (LS, previously named as neurofibromatosis 1-
like), Costello syndrome (CS), hereditary gingival fibromatosis, capillary malformation-
arteriovenous malformation (CM-AVM) and cardio-facio-cutaneous syndrome (CFC) (Tidyman
& Rauen, 2009; Rauen, 2013; Hernandez-Porras & Guerra, 2017). Their common nature in
increasing MAPK pathway activation results in shared yet distinct phenotypic traits
characterized by cardiovascular defects, facial dysmorphias, short stature, cutaneous lesions,
neurodevelopmental defects and increased likelihood of developing cancer. Phenotypic
similarities do exist in between subgroups as for example NS shares commonalities with CS
and CFC (Tidyman & Rauen, 2009).

Commonly affected gene candidates include PTPN11 (Tartaglia et al, 2001), SOS1 (Roberts
et al, 2007; Tartaglia et al, 2007), SOS2 (Cordeddu et al, 2015), HRAS (Aoki et al, 2005),
KRAS (Schubbert et al, 2006), NRAS (Cirstea et al, 2010), RIT1 (Aoki et al, 2013; Chen et al,
2014), RRAS (Flex et al, 2014), NF1 (Ratner & Miller, 2015), RASA1 (Eerola et al, 2003),
RASA2 (Chen et al, 2014), SPRED1 (Brems et al, 2007), BRAF (Niihori et al, 2006), CRAF
(Pandit et al, 2007), SHOC2 (Cordeddu et al, 2009), CBL (Brand et al, 2014), MAP2K1 (Chen
et al, 2014) and LZTR1 (Yamamoto et al, 2015). However, NGS-based approaches are still
expanding the field of mutations in known components of the MAPK pathway as well as
identifying mutations in genes that have not yet been linked to function within this signaling
cascade (Chen et al, 2014; Aoki et al, 2016; Tidyman & Rauen, 2016).

Importantly, a subset of the identified activating mutations represent a predisposition for cancer
development (Ratner & Miller, 2015). Specifically, there is an increased likelihood for the

development of juvenile myelomonocytic leukemia (JMML) in NS (Tartaglia et a/, 2003; Aoki &
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Matsubara, 2013; Niemeyer, 2014). However, on a functional biochemical level the identified
mutations often display less pathway-activating potential compared to their, in cancer identified,
counterpart mutations. This can be explained by the experimental finding that strong gain-of-
function mutations for example in KRAS are associated with lethality during development
indicative of a critical activity threshold level for germline variants in this genes (Schubbert et
al, 2007). Indeed, the NS associated KRAS mutations KRAS V14| and T58I display milder
increase in activity compared to cancer associated G12D variants (Schubbert et al, 2006). In
addition, recent findings on germline variants in NF1 and PTPN11 have identified additional
non-cell autonomous microenvironment-induced effects for the development of RASopathy
associated cancers potentially counterbalancing for the milder activation propensity in cellular

transformation (Yang et al, 2008; Dong et al, 2016).
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1.2 Hematopoietic malignancies

Hematopoietic malignancies summarize the groups of heterogeneous cancer entities arising
within the hematopoietic cell compartment. The oncogenic transformation of a hematopoietic
stem or progenitor cell (HSPC) clone or population leads to regulated differentiation escape
and uncontrolled expansion of transformed poorly-matured cells replacing normal,
physiological hematopoiesis over time (Bonnet & Dick, 1997; Krivtsov et al, 2006; Valent et al,
2012). The number of hematopoietic malignancies is estimated at around 60 000 new leukemia
cases as well as 24 000 estimated leukemia deaths in the United States in 2016 (leukemia
statistic numbers excluding lymphoma (~81 000 new cases, 21 000 deaths) and myeloma
(30 000 new cases and 12 500 deaths) cases) (Siegel et al, 2016). Comparable numbers can
be observed in Europe (http://eco.iarc.f/EUCAN/, November 2016) with a 5-year age-
standardized overall survival for adult leukemia cases in Austria ranging from 39.8 to 45.8%
(Allemani et al, 2015).

Hematopoietic cancers are categorized based on the remaining lineage-association of hyper
proliferating cells, carrying either myeloid or lymphoid features as well as based on the

disease-progression severity in chronic or acute disease types (Figure 3).
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Figure 3: Tree view of subtype distribution of leukemias within the group of
hematopoietic malignancies. (Taken from Khwaja et al, 2016. Reprinted with permission
from Nature Publishing Group)

The clinical distinction of different leukemia subtypes is furthermore guided by classifications
including histomorphological and cytogenetic characteristics vital for diagnosis, therapeutic
decision making and risk stratification (Vardiman, 2012; Khwaja et al, 2016). The development
of gene-expression and DNA methylation-based descriptions of malignant cells in acute
myeloid leukemia (AML) or mixed lineage leukemia (MLL)-rearranged leukemia have provided
first improvements in the refined definition of clinical disease states (Staudt, 2003; Valk et al,
2004; Armstrong et al, 2002; Stumpel et al, 2009). The application of deep sequencing studies

has provided novel insights into the disease biology at unprecedented detailed resolution and
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led to the recognition of known and novel disease-causing variants in AML (Mardis et al, 2009;
Cancer Genome Atlas Research Network, 2013), T-cell acute lymphoblastic leukemia (T-ALL)
(Zhang et al, 2012a), High-risk ALL (Roberts et al, 2012), hypo-diploid ALL (Holmfeldt et al,
2013), chronic lymphocytic leukemia (CLL) (Puente et al, 2011; Landau et al, 2015), multiple
myeloma (MM) (Chapman et al, 2011), myelodysplastic syndrome (MDS) (Yoshida et al, 2011)
beyond others. These findings are instructive for the improved understanding of the underlying
disease biology but will undoubtedly in future years also be an irreplaceable additional layer of
information for the identification and stratification of therapeutic interventions. Indeed, the
NGS-based delineation of clonal variations in AML have started to shed light on the complex
clonal selection processes elicited by disease progression itself as well as therapeutic
interventions (Ding et al, 2012; Patel et al, 2012). These studies have clearly demonstrated
that mutational alterations in multiple pathways important for growth regulatory processes (e.g.
FLT3, KRAS, NRAS, NF1, BRAF, PTPN11), cytokine signaling (e.g. JAK2, JAK3, IL7R), cell
death and cell cycle related pathways (RB, TP53, CDKN2A/B, BCL2, BIM) as well as genes
involved in transcriptional and epigenetic regulation (MYC, ETV6, RUNX1, EP300, EZH2, WT1,
PHF6, MLL, NOTCH1) ultimately lead to leukemic cell transformation. Interestingly, deep
sequencing analysis have demonstrated that the increased susceptibility for developing
myeloid or lymphoid leukemias due to aging hematopoiesis can be linked to gene mutations
arising in epigenetic regulator proteins (e.g. TET2, ASXL1, DNMT3A) (Jaiswal et al, 2014;
Shlush et al, 2014; Shih et al, 2012). Hence, the cell of origin and initiating transformation event
strongly influence disease onset and biology (Huntly et al, 2004), progression as well as
therapeutic response and prognosis (Krivtsov et al, 2006). Furthermore, it is becoming more
and more clear that the influence of supportive signals elicited by the tumor microenvironment,
leukemia initiating cells being within the bone marrow niche, are of vital importance especially
with regards to potential curative treatment approaches (Valent & Deininger, 2008; Reagan &
Rosen, 2016).

1.2.1 Myeloproliferative neoplasms

The main disease focus of this thesis has been on chronic myeloid leukemia (CML), which is
part of the larger group of myeloproliferative neoplasms (MPN) (Arber et al, 2016). MPNs
represent a clinically heterogeneous group of myeloid pre-leukemic disease entities. They can
be divided into the set of classical MPNs, comprising Philadelphia chromosome-positive (Ph+)
CML, and the Philadelphia chromosome-negative (Ph-) types polycythemia vera (PV),
essential thrombocytosis (ET) and primary myelofibrosis (PMF) (Campbell & Green, 2006;
Arber et al, 2016). Genetic analysis have clarified associated driver mutations within the
classical MPNs, namely mutations in JAK2 leading to JAK2 V617F frequently found in PV, ET
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and PMF (Kralovics et al, 2005; Campbell et al, 2005). Additionally, alterations in the
thrombopoietin receptor gene (MPL) leading to MPL W515L have been found in ET and PMF
(Pikman et al, 2006) and recently frameshift mutations in calreticulin (CALR) leading to the
formation of an altered C-terminus partially utilizing 3’ UTR sequences are associated with ET
and PMF (Klampfl et al, 2013). The group of MPNs moreover comprises chronic neutrophilic
leukemia (CNL), chronic eosinophilic leukemia (CEL) and mastocytosis associated with
mutations in CSF3R, translocations involving PDGFRA and mutations in KIT, respectively
(Maxson et al, 2013; Cools et al, 2003; Longley et al, 1996; Arber et al, 2016).

MPNs share the commonality of being clonal diseases with the initiating alteration(s)
happening within the hematopoietic stem cell (HSC) fraction leading to dominant clonal
hematopoiesis. Main hallmarks of these pre-leukemic diseases is their increased cellular
expansion phenotype of mostly still terminally differentiated cells (Campbell & Green, 2006).
Being chronic in the clinical presentation with long latencies and stable disease states over
many years, all of the aforementioned nevertheless carry the imminent risk of progressing to
an aggressive, difficult to treat secondary acute myeloid leukemia (sAML). Interestingly, these
sAMLs also display distinct genetic abnormalities compared to primary de-novo AML (dnAML)
and therefore especially present a clinically challenging disease subgroup (Milosevic et al,
2012).

1.2.2 Chronic myeloid leukemia

CML belongs to the group of classical MPNs, and originates from the so-called Philadelphia
chromosome (Ph). It has been identified by P. C. Nowell and D. A. Hungerford in 1960 in
Philadelphia and the formation of a balanced chromosomal translocation event between
chromosome 9 and 22 (Ph+ 1(9;22)(q34;911)) has been discovered by J. D. Rowley in 1973
(Rowley, 1973; Nowell, 2007). There are about 8000 new CML cases and 1000 deaths related
to CML per year in the United States (Siegel et al, 2016).

The in-frame fusion of parts of the Breakpoint Cluster Region (BCR) and Abelson Murine
Leukemia Viral Oncogene Homolog 1 (ABL1) gene loci located on chromosome 22 and 9
respectively, leads to the formation of an oncogenic fusion protein, BCR-ABL, displaying
constitutively active tyrosine kinase activity (Hantschel & Superti-Furga, 2004). Depending on
the specific chromosomal breakpoint localization, three different fusion oncogenes have been
identified with varying breakpoint locations and contributing length of the BCR gene part
leading to the formation of either p185, p210 or p230 BCR-ABL isoforms, named according to
their molecular weight (Melo, 1996). Whereas the p185 isoform predominates in Ph+ ALL,
p210 represents the leading form in CML, but can also be found in Ph+ ALL (Ren, 2005; O'Hare

et al, 2012). Additionally, a longer isoform, p230, has been identified in rare cases of chronic
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neutrophilic leukemia (CNL) as well as CML and AML (Bertorelle et al, 2001; Boeckx et al,
2005). Beyond BCR-ABL1, different other ABL1 gene fusion partners have been identified,
which provide domains favoring dimerization, abrogate the autoinhibition state of WT ABL as
well as activate additional downstream pathways giving rise to diverse cancer types (De
Braekeleer et al, 2011; Hantschel, 2012).

The constitutive activity of this oncogenic kinase leads to the transformation of a hematopoietic
stem cell, leading to enhanced survival signaling, proliferation and inhibition of apoptosis and
terminal differentiation. The HSC-transformative capabilities of BCR-ABL have first been
described in a murine model using retroviral infection of p210 BCR-ABL into HSPC. These
mice developed a myeloproliferative syndrome demonstrating phenotypic features of chronic
phase CML (Daley et al, 1990; Ren, 2005).
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Figure 4: BCR-ABL-initiated hematopoietic cell lineage alterations leading to the
development of CML. CMP - common myeloid progenitors, CLP - common lymphoid
progenitors, GMP - granulocyte/macrophage progenitors, MEP - megakaryocyte/erythrocyte
progenitors, G - granulocytes, M - macrophages, RBC - red blood cells, MEG -
megakaryocytes. (Taken from Ren, 2005. Reprinted with permission from Nature Publishing
Group)

Clinically CML can be categorized into three distinct stages: a chronic phase (CP) with
expansion of still differentiated myeloid cells followed by, if untreated, an accelerated phase
(AP) which represents a transition period into the final blast phase (crisis) (BP) characterized
by massive proliferation of immature blasts and expansion of these into the peripheral
circulation (Figure 4) (Melo & Barnes, 2007; O'Hare et al, 2012). Ph+ ALL does not progress
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via the three distinct CML disease phases, can be phenotypically similar to CML lymphoid BP
(Pui et al, 2008) and shows ab initio a more aggressive clinical progression with distinct
additional genetic aberrations like IKZF1, PAX5, EBF1, CDKN2A and CDKN2B deletions rarely
found in CML (Mullighan et al, 2008; Notta et al, 2011). Various different mechanisms and
pathway alterations have been proposed and described leading to blast crisis progression,
including differential expression of microRNAs (miRNAs), increase in DNA damage driven by
BCR-ABL activity and epigenetic alterations (Perrotti et al, 2010; Bueno et al, 2008; Eiring et
al, 2010; Makishima et al, 2011). Additionally, transcriptome analysis has highlighted that on
a gene expression level AP and BP display very similar differential expression patterns yet
clearly distinct from CP (Radich et al, 2006). However, much to the surprise and
disappointment within the CML community, NGS-based approaches have yet failed to identify
recurrent patterns of gene alterations strongly associated with CML BP development and

failure of therapeutic responses (Soverini et al, 2015).

1.2.3 BCR-ABL driven signaling networks

Fusion of the BCR and ABL1 gene loci leads to the combination of different domain features
generating the hybrid oncoprotein BCR-ABL, a docking station for several SH2 and PTB
domain-containing adaptors initiating the activation of multiple downstream signaling networks.
As mentioned before, depending on the exact breakpoint location within the BCR gene, three
different fusion proteins have been identified in patients, being p185, p210 and p230 (Figure
5). Whereas the ABL domain architecture remains constant in all three fusion proteins, in
general only lacking the first ABL1 coding exon, the BCR part varies marked in length and
amount of contributed domains (Hantschel, 2012). The BCR portion in all three fusions
consists of a coiled-coil domain (CC), a Dbl-homology (DH) and Pleckstrin-homology (PH)
domain in the p210 isoform as well as an additional C2 and Rho GTPase-activating protein
(RHOGAP) domain only found in the p230 fusion (Hantschel, 2012; Hantschel & Superti-Furga,
2004) (Figure 5). The ABL part encodes a tyrosine kinase (TyrK) domain amino-terminally
flanked by an SH2 and SH3 domain and on the very carboxy-terminal end followed by an F-
actin-binding domain (FABD) important for cytoskeletal association (Hantschel & Superti-
Furga, 2004; Hantschel et al, 2005) (Figure 5). Negative regulatory interactions normally
contributed by the ABL WT N-terminus, are replaced by the BCR-encoded CC domain that
induces dimerization and oligomerization of BCR-ABL proteins leading to constitutive kinase
activation and cellular transformation (Zhao et al, 2002; McWhirter et al, 1993). Furthermore,
three different residues within BCR-ABL are of pronounced importance due to their contribution
to kinase activity and to the initiation of downstream signaling pathways. The tyrosine (Y) 177
residue in the N-terminal BCR part has been demonstrated to critically function in the

interaction with GRB2 upon phosphorylation, triggering GRB2-GRB2 associated binding
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protein 2 (GAB2) binding, recruitment of SOS1 and hence RAS/MAPK pathway activation
important for cellular transformation (Pendergast et al, 1993; Million & Van Etten, 2000; Sattler
et al, 2002; Ren, 2005). The Y245 residue in ABL is located in the SH2 - TyrK domain linker
region, displacing the second proline residue within a PxxP motif, leading to increased kinase
activity upon phosphorylation (Nagar ef al, 2003). The Y412 residue is located within the TyrK
domain activation loop, is targeted via autophosphorylation leading to conformational switching
between inactive and active states and therefore represents an indicative reporter of kinase
activation (Dorey et al, 2001). Furthermore, a recent study has demonstrated that the SH2-
TyrK domain interface is of critical importance for BCR-ABL and downstream STATS5 activation.
Mutational or monobody-based disruption of the formed interface leads to reduced BCR-ABL
activity in vitro and abrogates leukemogenic potential in vivo pinpointing a possible novel
therapeutic targeting approach (Grebien et al, 2011). Additionally, the myristoyl-binding pocket
in the ABL TyrK domain, usually in ABL WT bound by the myristoylated N-terminus important
to keep the inactive state has been explored therapeutically, harnessing conformational
changes upon small molecule myristoylation pocket binding (Adrian et al, 2006).

Whereas murine models have recapitulated some aspects of the BCR-ABL isoform specific
phenotypic differences, leading to either more pronounced lymphoid or myeloid transformation,
the underlying biochemical and cellular signaling differences are still until now only
incompletely understood (Quackenbush et al, 2000). A recent comparative study has shown
that BCR-ABL p185 and p210 differ in their signaling dynamics and differential abilities to
activate downstream pathways like STAT3 and STAT5 as well as SRC kinases and MAPK
pathways (Hantschel et al, 2016).

BCR ABL

p210

p185

p230

translocation isoform
breakpoint

Figure 5: Protein domain arrangement present in the different BCR-ABL isoforms. CC -
coiled-coil domain, DH - Dbl-homology domain, PH - Pleckstrin-homology domain, RHOGAP
- Rho GTPase-activating protein domain, SH3 - Src homology 3 domain, SH2 - Src homology
2 domain, TyrK - tyrosine kinase domain, FABD - F-actin-binding domain. (Adapted from
Hantschel, 2012)
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In general, different genetic pathway requirements have been mapped over the years
establishing clear evidence that activation of the RAS/MAPK (Afar et al, 1994; Goga et al,
1995), PIBK/AKT/mTOR (McCubrey et al, 2008) and JAK2/STATS (Bibi et al, 2014) pathways
are essential for the development and maintenance of CML cells (Figure 6). Specifically, the
assembly of BCR-ABL proximal adaptor proteins and phosphatases like GRB2 (Pendergast et
al, 1993; Johnson et al, 2009), GAB2 (Sattler et al, 2002), CRK like proto-oncogene (CRKL)
(Senechal et al, 1996; Johnson et al, 2009) and SHP2 (PTPN11) (Chen et al, 2007) represent
essential non-redundant links for pathway activation. Interestingly, the three SRC family
kinases LYN, HCK and FGR have been found to be essential for the development of Ph+ ALL
but are dispensable for CML (Hu et al, 2004).

Activation of STAT5 represents a strong genetic dependency for the development and
proliferation of CML cells (Hoelbl et al, 2006; Friedbichler et al, 2010; Walz et al, 2012; Hoelbl
et al, 2010). There have been discussions in the field sparked by recent findings that BCR-
ABL is capable to directly activate STAT5 neglecting JAK2 as the canonical prerequisite step
(Hantschel et al, 2012). It is possible that STAT5 represents a convergence point of direct
BCR-ABL- and cytokine-receptor JAK2-based activation fueling leukemic cell transformation
and survival (Gallipoli et al, 2014). Interestingly, JAK2 demonstrates a limiting factor for the
initiation and/or maintenance of Ph+ ALL but failed to do so in CML models, a feature shared
with SRC family kinases and the JUNB proto-oncogene TF (Hantschel et al, 2012; Ott et al,
2007). Earlier reports have furthermore revealed that there are similarly overlapping and
divergent roles of RAS/MAPK and STAT5 in Ph+ cell proliferation and drug resistance (Hoover
et al, 2001). In summary, these insights provide first pathway-level genetic and biochemical
explanations for the phenotypic differences observed in CML and Ph+ ALL disease courses
as well as therapeutic responses.

Early studies based on murine models have shown that CML is a HSC-driven disease
(Kavalerchik et al, 2008) and that these stem cells can actively contribute to reshape their bone
marrow niche (Reynaud et al, 2011). The aberrant employment and activation of transcriptional
programs driven by MYC (Abraham et al, 2016), MYB and BMI1 (Waldron et al, 2012)
represent limiting factors for the stem cell maintenance in CML but also AML and beyond
(Zuber et al, 2011b). The concerted activation of HH signaling (Dierks et al, 2008), TGF-
(Naka et al, 2010), PML (Ito et al, 2008), MSI1 (lto et al, 2010) and ALOX5 (Chen et al, 2009)
in in vivo murine models provide evidence for the complex signaling wiring and interplay
between the BCR-ABL oncogene and the cellular linage origin of CML. These requirements to
maintain CML cancer stem cells provide potential explanations for the observed difficulties in

long-term curative therapeutic efforts (Nicholson & Holyoake, 2009).
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Figure 6: Signaling pathways initiated by the presence of the BCR-ABL fusion oncogene.
BCR-ABL-proximal signaling proteins marked in red are essential for CML initiation and/or
proliferation, proteins marked in orange are essential for Ph+ ALL initiation and/or proliferation.
brown - adaptor proteins, violet - JAK/STAT pathway, blue - MAPK pathway, green -
PI3BK/AKT/mTOR pathway, grey - additional pathways directly involved in BCR-ABL driven
signaling processes or CML stem cell survival independent of BCR-ABL. (Adapted from Ren,
2005, Melo & Barnes, 2007, O'Hare et al, 2011, O'Hare et al, 2012, Cilloni & Saglio, 2012)
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1.3 Targeted cancer therapy

The treatment of cancer is a multidisciplinary process combining different therapeutic
modalities to eliminate or prevent further growth of malignant cells leading to a potential cure
or, if not achievable, prolongation of survival while preserving adequate quality of life. Surgery,
radiation therapy, cancer-directed anti-neoplastic chemotherapy, hormonal therapy,
modulation of the immune system to mount anti-tumor responses as well as transplantation-
based approaches constitute a broad armamentarium of therapeutic tools (Savage et al, 2009;
Chen & Mellman, 2013; Wyld et al, 2015; Schaue & McBride, 2015; Gharwan & Groninger,
2016; Baumeister et al, 2016; Khalil et al, 2016). Applied as single or combination regimens
they are designed to combat the adaptive plasticity elicited by cancer cells upon disease
evolution and during therapeutic intervention (Begg et al, 2011).

The unifying principle of pharmacological cancer treatment is to exploit vulnerabilities of
neoplastic cells that are inherently connected to the transformed state and distinguishes them
from their normal, non-transformed counter parts (Luo et al, 2009b). Functional signaling
nodes and networks display selective importance in different cancer cell states therefore
providing a therapeutic window of opportunity (Weinstein, 2002). Targeting rapid cell
proliferation using conventional chemotherapy by inducing DNA damage, interfering with DNA
metabolism, cytoskeletal dynamics and cell division, or radiation therapy can be cited as the
first examples of targeting cancer by rationalizing on specific vulnerability traits (Luo et al,
2009b). The discovery of activating mutations in proto-oncogenes like KRAS, translocations
like BCR-ABL1 or amplification of TFs like MYC and their genetic requirement for cellular
transformation has led to the conceptual framing of oncogene addiction (OA) (Weinstein, 2002;
Felsher, 2004; Sharma & Settleman, 2007). Similarly, inactivation of TSG due to deletions,
missense mutations or epigenetic silencing can represent a state of OA given the requirement
that reactivation or reintroduction of the TSG WT sequence can revert the transformation
phenotype (e.g. TP53, APC, PTEN) (Premsrirut et al, 2011; Dow et al, 2015).

On the contrary, multiple variations within the cancer genome lead to cell state and signaling
network adaptations that reshuffle genetic dependencies and are referred to as non-oncogene
addictions (NOA) (Solimini et al, 2007; Luo et al, 2009b). This comprises genes or whole
pathways that are in comparison to classical oncogenes not or way less-frequently affected by
mutational alterations themselves, however represent unsurpassable requirements for the
survival and proliferation of cancer cells and less so for untransformed cells (e.g. BRD4, MYB,
STATS5, HSF1) (Zuber et al, 2011c; 2011b; Hoelbl et al, 2006). NOA gene candidates can
further be divided into two classes based on their mechanistic action, being tumor cell-
autonomous or non-cell-autonomous involving the cellular microenvironment (Luo et al,
2009Db).
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Several OAs proved difficult to be tackled therapeutically. This can be due to either a missing
or not yet identified enzymatic function or absence of any suitable pocket or cleft to tailor a
small molecule for functional interference. Similarly, the oncogenic contribution of TSG
deletions necessitating gene replacement for functional recovery, have led the focus on
identifying potential NOA. The most extreme case of NOA-based targeted cancer therapy has
been illustrated by therapeutically harnessing the genetic phenomenon of synthetic
sickness/lethality (SSL) (Kaelin, 2005; Nijman, 2011; Chan & Giaccia, 2011). Whereas most
of the mechanism-based therapeutic approaches aim to target within an evident therapeutic
window, the genetic concept of SSL is based on the principle that the deletion of two genes is
far more deleterious then the deletion of each individual gene candidate alone (Kaelin, 2005).
It must be said that there is a long phenotypic gradient ranging from hard-wired genetic lethal
interactions comprising core cellular machinery components to soft-wired contextual genetic
lethal interactions merging with NOAs. Successful clinical application of the SSL concept has
been exemplified by increased sensitivity of BRCA1 and BRCAZ2 mutant ovarian cancer (Fong
et al, 2009) or metastatic DNA repair defect-associated prostate cancer (Mateo et al, 2015) to
PARP1 inhibition using olaparip (Lynparza®). Moreover, the exploration of gene-deletion-
induced loss of functionally redundant protein family members might create SSL-based
therapeutic windows of opportunity (Muller et al, 2012; Nijhawan et al, 2012; Krénke et al,
2015). However, the high cellular context dependency of many discovered SSL interactions
proved to be problematic in their translatability to broader clinical applications (Lord & Ashworth,
2013).

The exploitation of OA and NOA states for targeted cancer therapy follow the magic bullet
concept proposed by Paul Ehrlich in a modern sense: to selectively target cancer cells in a
personalized fashion with minimal side effects aiming to achieve durable responses and even
cures. Such efforts have turned into reality for the first time by the development of TKI-based
therapy in CML (Strebhardt & Ullrich, 2008; Druker et al, 1996; 2001b; Schiffer, 2007). Since
then, a myriad of small molecule-based inhibitors of enzymatic functions or protein-interactions
exemplified by the development of kinase inhibitors (Zhang et al, 2009; Dar & Shokat, 2011)
or inhibitors of epigenetic regulators (Copeland et al, 2009; Kelly et al, 2010) have been
identified and characterized in order to achieve cancer cell-selective induction of apoptosis,
terminal differentiation and senescence, or triggering of alternate cell death pathways as the
recently described forms of regulated necrosis (Labi & Erlacher, 2015; Rello-Varona et al,
2015).

Small molecule inhibitors for the pharmacological targeting of the cellular kihome can be
categorized into five distinctive but related categories based on their molecular mode of action.
ATP competitive type | inhibitors like the EGFR inhibitors erlotinib (Tarceva®) or gefitinib

(Iressa®) bind to the ATP binding pocket of the kinase domain being in the active state (kinase
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activation loop “DFG-in” conformation) whereas type Il inhibitors like the BCR-ABL inhibitors
imatinib (Gleevec®) or nilotinib (Tasigna®) favor the opposite condition by binding the inactive
state (kinase activation loop “DFG-out” conformation) (Lamontanara et al, 2013; Wu et al,
2015b). In contrast, allosteric non-ATP competitive inhibitors are defined as molecules binding
to the kinase domain outside of the ATP binding pocket leading to enzymatic inhibition.
Depending on the distance of the compound binding site relative to the ATP binding pocket
these inhibitors can be classified as type Il and type IV acting as allosteric inhibitors like the
MEK1/2 inhibitor trametinib (Mekinist®), or the BCR-ABL inhibitors rebastinib or GNF-2 (Wu
et al, 2015a). Type V inhibitors utilize a combination of different binding modes (Wu et al,
2015b). These reversible kinase inhibitors are in contrast to the growing number of irreversible
inhibitors, which attach in a covalent manner to a cysteine residue in the close proximity to the
ATP binding site leading to continuous blockade of the enzyme as exemplified by the Bruton
tyrosine kinase (BTK) inhibitor ibrutinib (Imbruvica®) or EGFR inhibitor afatinib (Giotrif®) (Wu
et al, 2015b).

Advancements in the field for targeting OA addiction candidates have led to the successful
clinical development of Fms related tyrosine kinase 3 (FLT3) inhibitors like midostaurin or
quizartinib in AML and mastocytosis (Smith et al, 2012; Gotlib et al, 2016), JAK2 inhibitors like
ruxolitinib (Jakafi®) in MPN (Verstovsek et al, 2010; Harrison et al, 2012), EGFR and Erb-B2
receptor tyrosine kinase 2 (ERBBZ2) inhibitors like gefitinib (Lynch et al, 2004), erlotinib
(Shepherd et al, 2005) or lapatinib (Tykerb®) (Geyer et al, 2006; Arteaga & Engelman, 2014;
Chong & Janne, 2013) for the treatment of non-small-cell lung carcinoma (NSCLC) and breast
cancer, anaplastic lymphoma kinase (ALK) inhibitors like crizotinib (Xalkori®) (Kwak et al, 2010;
Roberts et al, 2014; Bresler et al, 2014) in NSCLC, lymphoma and neuroblastoma displaying
ALK activating mutations or translocations, as well as BRAF inhibitors like vemurafenib
(Zelboraf®) (Flaherty et al, 2010) for the treatment of BRAF V600E mutant melanoma. More
recently, kinase-focused targeting of the cell cycle machinery, exemplified by using the cyclin-
dependent kinase (CDK) 4/6 inhibitor palbociclib (Ibrance®) in breast cancer has shown
encouraging clinical results (Turner et al, 2015; Hortobagyi et al, 2016). It is furthermore worth
mentioning that kinase inhibitors are increasingly utilized in non-malignant diseases such as
pulmonary hypertension or in the prevention of in-stent restenosis after percutaneous coronary
intervention (PCI) (Grimminger et al, 2010).

In contrast to the growing field of identified kinase driver oncogenes and associated inhibitors,
alternative approaches have been developed by selectively targeting whole cellular processes
or specific cell states altered in cancer cells reminiscent of the classical examples of anti-
neoplastic chemotherapy. This includes the selective targeting of the cellular protein
degradation machinery in multiple myeloma by using proteasome inhibitors like bortezomib

(Velcade®) (Richardson et al, 2006; San Miguel et al, 2008), targeting protein folding using
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heat shock protein 90 (HSP90) inhibitors (Whitesell & Lindquist, 2005; Ramalingam et al, 2015;
Johnson et al, 2015), autophagy (Bellodi et al, 2009) or targeting mitochondrial translation
(Skrti¢ et al, 2011) for potential NOA induced therapeutic windows of opportunities.

In the recent years, targeted or NGS-based sequencing campaigns and compound or
functional genetic screening-focused approaches have uncovered the importance and
opportunity for targeting proteins involved in the regulation of the epigenome as well as protein
complexes involved in transcriptional regulation. This has so far led to the clinical and
preclinical development of histone deacetylase (HDAC) inhibitors like panobinostat (Farydak®)
(Giles et al, 2006; Tan et al, 2015) or belinostat (Beleodag®) (Kirschbaum et al, 2014; Steele
et al, 2008), DNA methyltransferase (DNMT) inhibitors like azacitidine (Vidaza®) (Fenaux et
al, 2009; Sekeres et al, 2010) or decitabine (Dacogen®) (Libbert et al, 2011) and mutant
isocitrate dehydrogenases (IDH) 1 and 2 specific inhibitors (Rohle et al, 2013; Wang et al,
2013a). Furthermore, the clinical development of inhibitors targeting bromodomain-containing
protein 4 (BRD4) (Filippakopoulos et al, 2010; Zuber et al, 2011c; Dawson et al, 2011; Berthon
et al, 2016), CDK7 (Chipumuro et al, 2014), the histone methyltransferase DOT1L (Daigle et
al, 2013) or enhancer of zeste homolog 2 (EZH2) (McCabe et al, 2012) will provide important
insights whether targeting of epigenetic regulators can provide clinical benefit as single agents
or need to be applied in combination.

The upcoming advancements in the field of cancer immunotherapy raise the question to which
extent small molecule-based therapeutic agents can contribute to enhance the efficacy of
currently developed treatment regiments in a synergistic manner (Seliger et al, 2010).
Moreover, the attempt to engaging protein-complexes as therapeutic targets beyond
enzymatic inhibition or interference with protein interactions has led to the design of a novel
strategy harnessing E3 ligase protein-complexes for immunomodulatory drug (IMiD) small-
molecule induced target protein degradation (Winter et al, 2015; Bondeson et al, 2015).
Whereas proof of concept experiments in murine models have demonstrated the in vivo
feasibility of this approach for different targets, the clinical applicability has still to be

demonstrated.

1.3.1 Targeted therapy in chronic myeloid leukemia

Despite the fact that CML in most of the cases is diagnosed in CP with patients being
asymptomatic or only demonstrating mild symptoms, CP disease without treatment inevitably
progresses into AP and BP with a 3-6 months median survival (Sacchi et al, 1999). Initially,
treatment of CML CP and AP or BP was limited to conventional chemotherapy regiments
including hydroxyurea and busulfan with a 5-year survival of 38% and 44% respectively

(Hehlmann, 2015). The sole curative approach consisted of chemotherapy followed by
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hematopoietic stem cell transplantation (HSCT) but only available to a small, preselected and
risk-stratified cohort (Pavlu et al, 2011). A first improvement in overall survival was the
introduction of interferon-a (IFN-a)-containing treatment regimens, yet displaying only a 15-30%
overall response rate and containing substantial side effects limiting the broad applicability of
this modality (Hehimann et al, 2003). The turning point in the standard of care for CML patients
and beyond has been the development of STI-571 (imatinib, (Gleevec®)) as a first-in-class
selective ABL inhibitor (Druker et al, 1996) (Table 1). Subsequent first clinical trials
demonstrated unexpected and overwhelming therapeutic efficacies dramatically outperforming
current standard treatments with even demonstrable transient activity in BP (Druker et al,
2001b; 2001a; Kantarjian et al, 2002). In contrast to prior treatments, the 5-year and 10-year
survival within the randomized CML IV study on imatinib increased to 90% and 84%,
respectively (Kalmanti et al, 2015). Treatment success has been classically assessed by
overall survival but is increasingly supported by the use of prognostic scores demonstrating
that age is one of the most critical prognostic factors (Sokal et al, 1984; Hoglund et al, 2013).
The introduction of different TKI-based therapies increasingly utilizes hematological response
(HR), cytogenetic response (CR) and molecular response (MR) parameters for monitoring
treatment efficacy and prognostic estimation on a phenotypic cellular level (Hughes et al, 2016).
The achievement of complete MR (CMR) has proven to be predictive of survival and can be
improved with high-dosage imatinib (Hehlmann et al, 2014). Long-term follow up results have
demonstrated that patients treated with TKI therapy in CP have by now an overall survival rate
close to the normal life expectancy (Héglund et al, 2013; Hehimann, 2015). TKl-based therapy
in CML nevertheless requires the administration of imatinib on a daily basis to maintain durable
disease control. The stop imatinib (STIM)-1 study has assessed the consequences of
treatment discontinuation in patients with undetectable minimal residual disease for 2 years
and deep MR. Interestingly, with a molecular recurrence-free 5-year survival of 38% the
obtained results indicated that in patients with first line deep MR to TKI therapy discontinuation
can be an option under close surveillance (Etienne et al, 2017).

The subsequently developed 2™ generation inhibitors nilotinib (Tasigna®) (Kantarjian et al,
2006), dasatinib (Sprycel®) (Talpaz et al, 2006) and bosutinib (Bosulif®) (Puttini et al, 2006)
have demonstrated within phase lll trials a superior efficiency compared to imatinib (ENESTnd
trial, (Saglio et al, 2010; Hochhaus et al, 2016)) (DASISION trial, (Kantarjian et al, 2010; Cortes
et al, 2016b)) (Cortes et al, 2012) (Table 1). Additionally, nilotinib has further demonstrated to
reduce the incidence of BCR-ABL mutations when used as first-line agent (Hochhaus et al,
2013). Unfortunately, no comparative trial between nilotinib and dasatinib or bosutinib for first
line therapeutic choice has been performed to date.

Whereas nilotinib, dasatinib and bosutinib succeeded in combating some of the imatinib

resistance conferring kinase domain mutations, both 1% (imatinib) and 2" (nilotinib, dasatinib,
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bosutinib) generation inhibitors fail in inhibiting the BCR-ABL T315I gatekeeper mutant isoform.
Henceforth, ponatinib (Iclusig®) (O'Hare et al, 2009; Cortes et al, 2013) and rebastinib (DCC-
2036) (Chan et al, 2011) have been developed as 3™ generation inhibitors specifically destined
to combat resistance due to gatekeeper mutations (Table 1). Ponatinib has demonstrated
clinical efficiency in CP, AP and BP, and especially in cases with BCR-ABL T315l-associated
resistance as well as selected cases of Ph+ ALL (Cortes et al, 2013). The phase lll trial
assessing ponatinib as first line treatment in comparison to imatinib has been terminated due
to life-threatening arterial occlusive events (Lipton et al, 2016). An additional phase Il trial has
established the efficacy of ponatinib as first line agent, however due to observed side effects
its clinical application is currently limited to second line application subsequent to first line TKI
failure following careful clinical evaluation and/or identification of a BCR-ABL T315] mutation
(Jain et al, 2015). The development of rebastinib has been ended due to only modest clinical
efficacy during the initial phase | trial (Cortes et al, 2016a).

In contrast to ponatinib, 15 and 2" generation BCR-ABL TKls showed on average mild and
tolerated side effect profiles in many patients not interfering with the continuation of the
respective clinical trials. Different degrees of myelosuppression have been observed with all
four TKIs contributing to treatment interruption or discontinuation. Some side effects have
solely been observed with one but not the other TKils, like pleural effusions associated with
dasatinib or pancreatitis associated with nilotinib treatment and most likely are rooted in their

non-overlapping off-target profiles (Deininger & Manley, 2012).

Compound Previous Market Company Clinical trial CML clinical indicati ism of inhibiti T3151
name name name status gatekeeper
mutation
a2 Imatinib STIS71 Gleevec® Novartis Approved CP - 1stline ATP competition, Type Il Insensitive
1st generation
AP, BP
Nilotinib AMN107 Tasigna® Novartis Approved CP - 1stline ATP competition, Type Il Insensitive
AP with resistance or
intolerance to prior therapy
2nd generation Dasatinib BMS354825 Sprycel® Bristol-Myers Squibb Approved CP - 1st Iilne. . ATP competition, Type | Insensitive
AP, BP with imatinib
resistance or intolerance
Bosutinib SKI606 Bosulif® Pfizer Approved CP, AP, BC with resistance or ATP competition, Type | Insensitive
intolerance to prior therapy
Ponatinib AP24534 Iclusig® Ariad Approved CP, AP, BP with T315| ATP competition, Type Il Sensitive
" mutation mediated resistance
3rd generation
Rebastinib DCC2036 Deciphera Discontinued "switch pocket", ATP competition, Type Il (?) Sensitive
- = GNF2/GNF5 Novartis Pre-clinical Allosteric myristate pocket binders Insensitive
Myristoylation
pocket . : i : i
ABLO01 Novartis Phase | Allosteric myristate pocket binders Insensitive
Tozasertib VX680 Merck Discontinued ATP competition, Type | Sensitive
Others Danusertib PHA739358 Nerviano Medical Discontinued ATP competition, Type | Sensitive
Sciences
Axitinib AG013736 Inlyta® Pfizer Phase | ATP competition, Type | Sensitive

Table 1: Different BCR-ABL TKis in clinical use or in preclinical development. (Adapted
from Lamontanara et al, 2013)

Apart from failures of TKI based therapy due to the development of resistance, non-drug

adherence or TKI intolerance, the inherent insensitivity of CML stem cells albeit sustained and
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efficient BCR-ABL inhibition presents a substantial clinical concern with regards to treatment
duration and potential curative therapeutic intent (Wong et al, 2004; Corbin et al, 2011).
Different preclinical and clinical studies are currently pursued to identify combination
treatments in order to target the CML stem cell compartment. Interesting observations have
been made by the combinatorial application of imatinib + IFN-a which led to more durable
responses compared to single agent treatment (Preudhomme et al, 2010; Burchert ef al, 2010).
Preclinical observations and in vivo murine models have revealed diverging results with BCR-
ABL signaling being involved in the differential regulation of the IFN-a surface receptor
expression (Bhattacharya ef al, 2011) as well as IFN-a playing an important role in regulating
the cycling of dormant HSC within their niche (Essers et al, 2009). Additionally, potential
immunomodulatory effects of IFN-a cotreatment cannot be excluded at the current state and
further mechanistic experiments will be needed to identify the molecular basis of the observed
clinical efficacies.

The use of TKI-based therapy in the treatment of Ph+ ALL cases has led to encouraging clinical
trial results however not comparable to the outstanding responses observed in CML. Imatinib,
nilotinib, dasatinib and ponatinib are currently used as first and second line agents in
combination treatments with corticosteroids or dose-adapted chemotherapy. Whereas HR is
initially achieved at high frequency, complete CR or MR is seldom reached and relapse over
time occurs in many patients. Combination therapy involving BCR-ABL TKIs therefore

represents an initial bridging regiment to HSCT (Malagola et al, 2016).
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1.4 Cancer drug resistance

The development of cancer drug resistance - the unresponsiveness of neoplastic cells towards
a specific therapeutic perturbation - is one of the main causes of cancer progression and
associated mortality. The molecular understanding of the underlying mechanistic principles
governing drug resistance is of importance for the identification of patients at risk as well as to
instruct the design of combination approaches circumventing or preventing further outgrowth
of malignant cells and disease progression. Each and every treatment modality, be it radiation
therapy, hormonal therapy orimmunomodulation has its associated mechanisms of resistance
and the emphasis of the upcoming chapter will be according to the focus of this thesis on
kinase targeted cancer therapy related types (Janne et al, 2009; Holohan et al, 2013).

Tumor cell populations are comprised of a complex mixture of different cell types with a
mutational make up within the neoplastic fraction that is shaped following Darwinian selection
processes, enriching for the most well-adapted subpopulation during disease evolution and
especially upon drug treatment over time (Hanahan & Weinberg, 2000; Lambert et al, 2011;
Valent et al, 2012; Stratton, 2013). The way in which tumor cells react to pharmacological
perturbations can be categorized into displaying intrinsic or primary de novo resistance,
whereby cancer cells do not respond to a given agent from the very beginning in contrast to
acquired and secondary resistance, whereby neoplastic cells adapt and become insensitive
over the treatment time course (Garraway & Janne, 2012; Holohan et al, 2013). Moreover,
drug resistance can be driven by cell autonomous mechanism within the cancer cell population
opposed to non-cell autonomous microenvironment-mediated support of malignant growth
which also includes potential germline variants as contributing factors (Corso & Giordano, 2013;
Gottesman et al, 2016).

Cancer cells display a high degree of plasticity in order to adapt to targeted cancer drugs to
maintain cellular survival and proliferation. Different mechanisms for adjusting to
pharmacological perturbation can be distinguished. First, the exposure of neoplastic cells to
target-directed agents can trigger adaptive target upregulation or the development of additional
mutation within the target itself, reducing inhibitor efficiency or even preventing drug binding
(Lamontanara et al, 2013). Especially the development of mutations within the kinase domain
and more specifically at the gatekeeper residue which can be found in several serine/threonine
and specific tyrosine kinases. Within BCR-ABL, the threonine 315 (T315) residue forms a
hydrogen bond with imatinib allowing proper inhibitor-binding in the inactive conformation.
Mutation of T315 to isoleucine (l) leads to reduced spacing due to the increased side-chain
bulkiness and prevents correct inhibitor binding and hence enzymatic inhibition (Lamontanara
etal, 2013; Gorre et al, 2001). In general, mutations in gatekeeper residues leading to apparent
clinical resistance have been identified for BCR-ABL as T315l in CML (Gorre et al, 2001) or
for KIT as T670l in gastrointestinal stromal tumor (GIST) (Serrano et al, 2015) mediating
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resistance towards imatinib, as well as the EGFR T790M mutation leading to gefitinib, erlotinib
and lapatinib resistance (Kobayashi et al, 2005).

The identification of the EML4-ALK L1196M gatekeeper mutation which elucidates resistance
to crizotinib has led to the development of gatekeeper-targeting alternatives. Second line
treatment with alternative TKils like lorlatinib can nevertheless trigger the development of
additional resistance mutations, in this case L1198F. Interestingly, selectivity profiling has
uncovered that the combination of both mutations in a unique constellation leads to crizotinib
resensitization illustrating the increased complexity and adaptability of cancer cells which in
some cases can be harness again therapeutically (Shaw et al, 2016).

Second, the activation of pathways acting downstream of the initial drug target, reactivation of
upstream signaling pathways or compensatory parallel pathway activations have been
identified in various cancers. Examples include the amplifications of the MET receptor tyrosine
kinase (RTK) leading to EGFR inhibitor resistance in lung cancer patients as well as mutational
activation of KRAS closing the therapeutic window for EGFR inhibition in CRC (Engelman et
al, 2007; Misale et al, 2012). Furthermore, the upregulation of platelet-derived growth factor
receptor (PDGFR), serine/threonine-protein kinase COT (COT/MAP3K8) and G-protein
coupled receptors (GPCRs) or acquisition of NRAS activating mutations upon vemurafenib
treatment in BRAF mutant melanoma is able to maintain MAPK pathway activation and
therefore reduced inhibitor sensitivity (Nazarian et al, 2010; Johannessen et al, 2010; 2013).
Globally, the integrated redundancy within signaling pathways provides cancer cells with an
armamentarium to adapt appropriately to kinase inhibitors by differentially regulating
alternative kinases, adaptor proteins, growth factor receptors as well as proteins involved in
negative regulatory feedback loops (Prahallad et al, 2012; Huang et al, 2012; Wilson et al,
2015).

Third, recent years have highlighted the importance of cell lineage identity, epigenetic
modifications and transcriptional regulatory processes in the adaptation towards targeted
cancer drugs (Sharma et al, 2010). The deletion of chromatin factors like SOX70 or SMARCE1
have been shown to be critical nodes in the reactivation of growth factor receptor signaling via
EGFR upregulation (Sun et al, 2014; Papadakis et al, 2015). Moreover, two elegant studies
have demonstrated that differential WNT pathway regulation and subsequent alternate
enhancer regulation can drive MYC activation leading to persistent MYC transcription and
hence resistance towards JQ1 mediated BRD4 inhibition in murine models of acute myeloid
leukemia (Rathert et al, 2015).

Fourth, alterations in drug import and export transporter pumps have long been studied in the
field of resistance towards antineoplastic agents. Numerous examples exist that have
implicated the family of multidrug resistance proteins (MDRs) like ABCB1 or ABCG2 as

important cellular safe-guard mechanism enabling regulated export of toxic entities from within
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the cell (Szakacs et al, 2004; Mo & Zhang, 2012). More recent findings have also started to
highlight the importance of the solute carrier protein family (SLCs) as limiting factors in the
uptake of cancer drugs and hence therapeutic efficiency (César-Razquin et al, 2015). For
example, genetic screening has identified a crucial role for SLC35F2 in the cellular uptake of
the DNA damage-inducing anticancer drug YM155. Diverse expression patterns of SLC35F2
in different cancer tissues might offer a first mechanistic explanation for the poor performance
of this novel compound in early stage clinical trials (Winter et al, 2014).

Fifth, several studies have highlighted the relevance of non-cell autonomous factors in the
development of resistance towards targeted agents by providing various signals within the
cancer cell microenvironment sustaining proliferation and tumor cell survival (Lovly & Shaw,
2014; Lee et al, 2014). The secretion of extracellular messenger factors like
phosphatidylinositol-glycan biosynthesis class F protein (PIGF) (Schmidt et al, 2011),
hepatocyte growth factor (HGF), fibroblast growth factor (FGF) (Straussman et al, 2012;
Wilson et al, 2012) or Insulin-like growth factor (IGF) (Obenauf et al, 2015) can lead to
enhanced MAPK and PI3K pathway activation as well as cytokine secretion leading to

increased JAK/STAT activation (Lee et al, 2014) enabling cancer cell growth.

1.4.1 Tyrosine kinase inhibitor drug resistance in chronic myeloid leukemia

The limiting factor to the long-term success of targeted therapy in CML is the inherent and
acquired resistance to BCR-ABL inhibiting TKIs. In general, direct BCR-ABL-affecting, BCR-
ABL-dependent and BCR-ABL-independent modes of resistance can be distinguished
(Milojkovic & Apperley, 2009; Lamontanara et al, 2013; Soverini et al, 2015) (Figure 7).

a b
o Point mutation . Compound mutation
Imatinib Imatinib Imatinib
Nilotinib e . Nilotinib Nilotinib
Dasatinib —i (== (N Dt Dasatinib
Bosut!n|‘b ¥ Bosutinib l Bosutinib l
Ponatinib Ponatinib
CML cell CML cell CML cell
proliferation and proliferation and proliferation and
survival survival survival
c d
Imatinib miiﬂﬁ'.té
Dasatine— (> SED Dasatiniy ) emeive
Bosutinib Negative Sont o $ activation
3 Ponatinib
Ponatinib pathway regulator
CML cell CML cell

proliferation and
survival

proliferation and
survival

Figure 7: Different mechanisms leading to BCR-ABL TKI drug resistance. (Adapted from
O'Hare et al, 2011, O'Hare et al, 2012 and Zabriskie et al, 2014)
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The development of single point mutations in proximity to the ATP binding pocket of the ABL
TyrK domain, but most prominently the T3151 gatekeeper mutation, as discussed previously,
have been hampering the clinical success of TKI based therapy in CML. Apart from the
gatekeeper residue additional prominent spots of mutations cluster within the activation loop
as well as the glycine-rich loop (Lamontanara et al, 2013). The head to head phenotypic
characterization of recovered point mutations leading to reduced enzymatic inhibition and
cellular sensitivity has propelled the assembly of selectivity-sensitivity charts like the
ABLogram (O'Hare et al, 2007). These data demonstrate unifying resistances mediated by the
T3151 mutation. But, whereas glycine-rich loop residing Y253F/H and E255K/V mutations are
insensitive to imatinib they still retain full to intermediate sensitivity to dasatinib treatment
(O'Hare et al, 2007). This allows for the clinical selection of suitable second line TKis for
therapy continuation on a mechanistic basis. It is noteworthy, that biochemical evaluations
have further revealed that some of the identified mutations not only reduce or prevent inhibitor
binding but also increase intrinsic kinase activity with potential implications for disease
progression and prognosis (Griswold et al, 2006).

The development of ponatinib and rebastinib as potent inhibitors of T315] mutant BCR-ABL
has provided new therapeutic possibilities and novel biochemical insights into the mutational
adaptability of kinase targets. In the case of ponatinib structure-based guidance has led to the
incorporation of a carbon-carbon triple bond connection allowing to achieve binding in the
presence of the isoleucine 315 residue, otherwise mimicking some of the binding contacts of
imatinib (O'Hare et al, 2009). In contrast, rebastinib has been designed as a “switch-control”
small molecule promoting ABL into a type Il inactive conformation (Chan et al, 2011). Both
agents have demonstrated activity against the T3151 gatekeeper mutant with ponatinib being
available for second line clinical use in resistant CML and Ph+ ALL patients. Furthermore, ex
vivo patient profiling campaigns have identified the kinase inhibitor axitinib (Inlyta®) being able
to selectively inhibit the gatekeeper mutant form of BCR-ABL with in vivo therapeutic efficacy
(Pemovska et al, 2015). However, concerns about the clinical utility attributed to the extreme
mutational selectivity creating the necessity for TKI combinations have been raised (Zabriskie
et al, 2016).

The strong selective pressure elicited upon treatment with BCR-ABL T315I targeting TKis like
ponatinib has further triggered the development of compound mutations-based resistances,
whereby two independent point mutations can be found on one kinase domain encoding allele
within the ABL1 gene (Khorashad et al, 2013; Zabriskie et al, 2014). Similar ABLogram-like
functional mutation profiling efforts have revealed that non-T315] containing compound
mutations do show selected sensitivity towards other 1% and 2" generation TKls whereas
T315l-inclusive mutants remain fully resistant requiring alternative salvage therapeutic

approaches (Zabriskie et al, 2014).
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Interesting biochemical and potentially therapeutic valuable insights have been obtained by
the development of allosteric inhibitors like GNF-2 and GNF-5 that are binding the
myristoylation pocket present within the ABL TyrK domain, leading to conformational changes
upon compound binding and hence enzymatic inhibition (Adrian et al, 2006). Whereas BCR-
ABL T315I remains resistant to single agent GNF-2 or GNF-5 treatment, coadministration with
nilotinib can lead to resensitization effects with a potential clinical implication as alternative
strategy to ponatinib (Zhang et al, 2010b).

Besides mutational alterations, drug target upregulation mediated by enhanced transcriptional
activity or locus amplification can lead to increased BCR-ABL expression levels (Gorre et al,
2001). Dosage adaptations or switching of TKI can be used in an attempt to counteract this
kind of resistance (Rudzki & Wolf, 2011).

Deletion of negative feedback regulators as well as the upregulation or mutational activation
of alternative growth and cell survival supporting factors are hallmarks of yet BCR-ABL-
dependent or completely independent resistance mechanism. Early studies that have utilized
CML cell lines continuously grown in increasing amounts of TKI and subsequent genomic and
phosphoproteomic characterization of obtained resistant cell lines have identified LYN (Donato
et al, 2003; Gioia et al, 2011), spleen tyrosine kinase (SYK) (Gioia et al, 2011), GAB2 (W&hrle
et al, 2013) and AXL RTK (Gioia et al, 2011) upregulation as contributing factors to reduce
inhibitor sensitivity. Interestingly, AXL activation has also been observed in the resistance
development towards EGFR inhibition in lung cancer (Zhang et al, 2012b). Moreover,
increased levels of STAT5 have been identified in a murine model of BCR-ABL-mediated
leukemia leading to enhance pro-survival signaling due to increased STAT5 target gene
activation like MYC, BCL2 and PIM1 (Warsch et al, 2011). In an alternative murine model by
utilizing an RNA interference (RNAI) knock-down approach, reduced expression of TP53 has
been implicated in reduced TKI sensitivity (Wendel et al, 2006) potentially contributing to CML
BP progression in a proportion of patients (Perrotti et al, 2010). Gene deletions and
polymorphisms have been found in the apoptosis regulatory genes BAD and BIM that
correlated with reduced TKI therapy response rates (Kuroda et al, 2006; Ng et al, 2012; Faber
etal, 2011).

Importantly, similar to many other antineoplastic agents imatinib and other BCR-ABL TKIs can
be substrates of the ABCG2 drug export pump leading to reduced intracellular inhibitor
concentrations and incomplete BCR-ABL inhibition (Ozvegy-Laczka et al, 2004; Balabanov et
al, 2011). Additionally, a long standing controversy has been around the importance of organic
cation transporter 1 (OCT1/SLC22A1) in the uptake of imatinib into leukemic cells thereby
influencing TKI sensitivity. Whereas studies focused on cell-intrinsic mechanisms have so far
failed to pinpoint an unequivocal association, clinical studies have revealed an association

between the expression levels of SLC22A1 and the response to imatinib treatment, implying
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potential secondary, drug metabolizing factors or an absorption-based mechanism as
explanatory models (Watkins et al, 2015).

Single cases have been reported to develop resistance due to the acquisition of BCR-ABL-
independent single-nucleotide mutational alterations or genomic aberrations. However, no
recurrent candidate gene or region has yet been identified by recent NGS-based sequencing
efforts (Nadarajan et al, 2011; Soverini et al, 2015).

The bone marrow micro-environment undoubtedly represents an important support for the
maintenance and survival of normal as well as leukemic stem cells and contributes inevitably
to the reduced sensitivity of CML stem cells to TKI therapy (Valent & Deininger, 2008; Corbin
et al, 2011; Chen et al, 2010).

Combinatorial administration of therapeutic agents has been established with the aims to
enhance treatment efficiency, delay or prevent the development of resistance by perturbing
alternate critical signaling pathways and at the same time diminish side-effect profiles by
reduced dosing schedules of individual inhibitors (Borisy et al, 2003; Kummar et al, 2010;
Knight et al, 2010). One of the first combination trials has been conducted in acute leukemia
cases with the aim to improve therapeutic success and reduce dismal adverse events (Frei et
al, 1958). The concept of synergistic drug combinations has thereof been explored in great
detail and has proven to be a fruitful strategy in areas beyond cancer, including anti-microbial
therapy and the treatment of persistent viral infections (Cokol ef al, 2011; Bock & Lengauer,
2012). Numerous combinatorial, polypharmacology approaches are currently being tested in
CML to circumvent resistance and eradicate TKI resilient CML stem cells by concomitant
administration of B-Cell CLL/Lymphoma 2 (BCL2) (Goff et al, 2013) or HDAC inhibitors (Zhang
et al, 2010a) as well as protein phosphatase 2A (PP2A) activation (Neviani et al, 2013) or
activation of peroxisome proliferator-activated receptor gamma (PPARYy) (Prost et al, 2015).
Furthermore, interference with cytokine-induced signaling is being tested by combining
nilotinib and the JAK2 inhibitor ruxolitinib (Gallipoli et al, 2014; Traer et al, 2012). Moreover, a
candidate approach is related to the observation that CML cell subpopulations activate
autophagy as a cell survival program and hence pharmacological targeting of autophagy to
enhance TKI action is currently being evaluated (Bellodi et al, 2009; Helgason et al, 2011).
The development of functional genetic screening systems allows the unprecedented, detailed
interrogation of single genetic requirements and combinatorial dependencies in cell lines as
well as in vivo aiding in the process of identifying novel therapeutic targets. The corresponding

technological innovations and advancements will be further discussed in the following chapters.
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1.5 Phenotypic screening approaches for the identification of genes
essential for cell proliferation and modulating cancer drug

sensitivity

Following the concept of magic bullet treatment agents, the identification of novel cancer
vulnerabilities and pharmacological protein targets requires the ability of high-throughput and
-content-based screening systems. Hypothesis-driven “one-target-one-drug” at a time based
approaches fail in keeping pace with the enormous complexity observed in the development
and progression of human cancers. The field of chemical biology focuses on the phenotypic
interrogation of cellular reactions upon chemical perturbations at large scale and has proven
to be a powerful tool in the discovery of novel chemical agents with potential translation into
clinical settings for various diseases (Stockwell, 2004). The obtainability of cellular material
(e.g. cell lines, mouse model-derived tissue, primary patient cells) at large quantities is a
prerequisite and allows for the application of diverse chemical libraries, spanning from small-
scale FDA (US Food and Drug Administration) or EMA (European Medicines Agency)-
approved molecule inhibitor groups to large-scale collections covering broad chemical scaffold
space (Macarron et al, 2011; Moffat et al, 2014).

Large-scale compound screening campaigns focusing on cell line collections like the cancer
cell line encyclopedia (CCLE) have identified well known associations but also revealed novel
drug-cancer pairs and cell lineage-dependent vulnerabilities for potential clinical use (Barretina
et al, 2012; Basu et al, 2013). The upcoming questions about cancer cell lines as
representative surrogates has sparked the development of protocols to harness clinical
samples for ex vivo screening therefore being closer to the clinical cancer patient (Tyner et al,
2008; Pemovska et al, 2013; van de Wetering et al, 2015). The resulting complexity in ex vivo
specimens, containing both cancerous as well as non-cancerous, healthy cells created the
necessity to phenotypically focus on selected cell populations as a screening read-out. This
has been adapted for the identification of compounds with differential cancer stem cell (CSC)
killing properties and newer high-content-based approaches are being developed at the
moment (Gupta et al, 2009b; Hartwell et al, 2013).

Furthermore, the integration of drug treatment with gene expression-based profiles has been
adapted in numerous projects (e.g. connectivity map) in order to stratify compound
perturbations to cell type-specific signatures or patient samples in order to select
subpopulations most likely to benefit from a specific treatment (Stegmaier et al, 2004; Ng et al,
2016) or attribute compound perturbation signatures to specific phenotypes as done in the
connectivity map project (Lamb et al, 2006).

However, difficulties in the reproducibility of screening campaigns due to predominantly

chemical agent discrepancies rather than cell line diversities (Haibe-Kains et al, 2013; Haverty
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et al, 2016), annotation accuracy of chemical libraries (Arrowsmith et al, 2015), complexity of
chemical structures representing both opportunity and challenge, and often limited reagent
amounts represent obstacles to be considered. Moreover, chemical screening usually requires
elaborate second-line experimental follow up strategies for target identification and validation
using for example proteomic-based technologies (Rix & Superti-Furga, 2009) as well as in vitro
purified target protein collections for enzymatic inhibition screening (Karaman et al, 2008).
However, due to often observed polypharmacological compound action with concentration-
dependent increase in off-target inhibition, narrowing down the molecular mode of action to
one or even a view targets can be a challenging endeavor.

Hence, in parallel to the advancement of chemical biology, different genomic and genetic
screening technology platforms have been developed in the last 10 to 15 years allowing the
research community to delineate the wiring of physiological and pathological cell states on a

gene level basis (Nijman, 2015) (Figure 8).

1.6 Loss-of-function genetic screening

Molecular tools for the manipulation of genomic DNA in model organisms like yeast have
uncovered many fundamental cellular processes. However, the modulation of gene expression
and introduction of changes into genomes of human cells has for a long time faced seemingly
unsurmountable challenges. The introduction of transposon-based mutagenesis screens
(Klinakis et al, 2000; Keng et al, 2009) as well as chemical mutagenesis approaches (e.g. N-
ethyl-N-nitrosourea (ENU) mutagenesis (Forment et al, 2017)) has provided a first
advancement into studying cellular pathways and phenotypes in an unbiased way. Their
limitations in dynamic regulation, targeting specificity, saturation as well as recovery of mutant
alleles at ease has nevertheless limited their broad application. The discovery of RNAi and
subsequent adaptation as a technological tool for the regulated intervention in gene expression
of mammalian cells has jump-started a new area in loss-of-function screening-based
explorations of cell biology (Figure 8). This has also for the first time opened the possibility to
study the requirement of individual genes for cell survival at a near genome-wide scale and
enabled the first genomic interrogations for vital mediators of drug sensitivity (Mohr et al, 2014).
The advent of zinc-finger nucleases (ZNF) (Kim et al, 1996; Hockemeyer et al, 2009) and
transcription activator-like effector nucleases (TALEN) (Boch et al, 2009; Moscou &
Bogdanove, 2009; Hockemeyer et al, 2011) has permitted researchers for the first time to
manipulate genomic sequences at base-pair resolution in human cells. However, the complex
assembly by protein-domain joining to achieve precise sequence recognition and thereby
limited scalability with respect to generating complex libraries has similarly hindered their broad

application in unbiased screening campaigns.
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To this end, the usage of transposon and gene-trap-based targeting of genomic loci in human
and murine cells has been restricted by the simple fact that the presence of each gene in two
copies in a diploid genome makes the generation of complete loss-of-function alleles in
complex mutagenized cell populations highly unlikely. The identification of rare subpopulations
in a human hematopoietic cancer cell line displaying a near haploid karyotype (namely the
CML cell line KBM-7 (Andersson et al, 1987)) has sparked the game-changing idea to reutilize
viral gene-trap-based mutagenesis and created for the first time a fully functional genetic
screening tool with unprecedented precision and reproducibility in human cells (Carette et al,
2009) (Figure 8). At the beginning being restricted to only two human haploid cancer cell lines,
the derivation of murine (Leeb & Wutz, 2011; Elling et al, 2011) and later on human (Sagi et
al, 2016) haploid embryonic stem cells has tremendously broadened the phenotypic space for
gene-trap-based screening.

The limiting capabilities in cell line availability as well as single gene modification at will have
been dramatically eased with the arrival of a novel revolutionary genetic precision tool kit: the
clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated
protein (Cas) technology (Doudna & Charpentier, 2014; Hsu et al, 2014). The discovery and
adaptation of the bacterial RNA-guided nuclease system for the use in human cells has
allowed to edit genomes with similar precision as ZFN or TALEN systems yet increased
efficiency. The simplicity of directing the Cas nuclease protein by RNA guidance overcomes
many limiting factors inherently linked to previous screening technologies and opened the door
for even more sophisticated interrogation of gene functions in the culture dish as well as in vivo
(Cox et al, 2015) (Figure 8).

RNAI Haploid genetic screening CRISPR/Cas9

e knock-down (mRNA level) e knock-out (DNA level) e knock-out (DNA level)

e reversible e unbiased o knock-down (CRISPRI, DNA level)
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e broad cell line applicability e non-regulateable o regulateable (nuclease and CRISPRi/a)

e in-vivo applicability © high screen reproducibility e reversible (only CRISPRi/a)
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o Off-target effects
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Figure 8: Overview and comparison of different genetic screening technologies.
(Adapted from Winter et al, 2009, Blomen et al, 2015 and Wang et al, 2015)
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1.6.1 RNAi-based functional genomic screening

The RNAI pathway has first been identified in Caenorhabditis elegans and has been awarded
with the Nobel Prize to A. Z. Fire and C. C. Melo in 2006. Apart from its importance for the
regulation of a multitude of biological processes, it has been adapted as a transformative
technology allowing to interrogate gene function in a controllable way up to genome-wide scale
in different cellular model systems in vitro and in vivo.

It is based on the mechanistic structural insight of double stranded RNA being able to regulate
gene expression on a posttranscriptional level. The miRNA processing pathway forms an
enzymatic cascade whereby the endonuclease DROSHA cleaves pri-miRNA into pre-miRNA,
followed by XPOS5-mediated nuclear export and a second DICER endonuclease-based
cleavage step generating small RNA duplexes. These duplexes are in a final step bound by
the AGO proteins, selecting one of the two duplex fragments, and taken up into the RNA-
induced silencing complex (RISC). Subsequent posttranscriptional modulation of gene
expression is achieved either by mRNA degradation or interference with protein translation
(Fellmann & Lowe, 2013).

In its simplest form small interfering RNA (siRNA) or endoribonuclease-prepared siRNA
(esiRNA) duplexes have been employed directly in single-well or array-format experiments
whereby their direct loading into the RISC complex leads to gene suppression under transient
transfection conditions (Kim et al, 2013).

In the following step retro- and lentiviral vectors have been adapted to stably express RNAI
reagents allowing for the first time to perform complex library screens in pooled cell populations
due to their traceability over time (Bernards et al, 2006). One strategy was the use of RNA
polymerase Il (Pol Ill) promoter-based expression of stem-loop short hairpin RNAs (shRNAs)
whereby resulting shRNA transcripts would enter the miRNA pathway at the pre-miRNA stage
(Brummelkamp et al, 2002; Paddison et al, 2004). In a second strategy, different endogenous
miRNA scaffolds, like miR-30 or miR-155 (Winter et al, 2009; Fellmann & Lowe, 2013) have
been adapted to express shRNA sequences within an endogenous miRNA backbone
(shRNAmir) (Dickins et al, 2005). This arrangement allows shRNAmirs to enter the miRNA
pathway similarly to its endogenous counterparts, leading to reduced off-target silencing,
reduced toxicity to the endogenous miRNA metabolism and therefore unaltered endogenous
miRNA regulation (Premsrirut et al, 2011). Recently, these reagents have been further
optimized to increase silencing potency and the number of potent shRNA sequences. This has
been achieved by performing reporter-based mRNA tiling assays to deduce ideal design rules
to identify potent shRNA sequences (Fellmann et al, 2011) as well as optimized miRNA
backbones like miR-E (Fellmann et al, 2013) or UltramiR (Knott et al, 2014) increasing

shRNAmir processing and hence gene silencing. The additional advantage of using
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shRNAmirs is their RNA polymerase |l (Pol Il) promoter-driven expression which allows for
inducible expression in vivo (Dickins et al, 2007; Premsrirut et al, 2011).

Numerous pooled as well as arrayed screens have since then been performed providing novel
insights into the pathway regulation and vulnerabilities of cancer. This has led for example to
the identification of Brd4 (Zuber et al, 2011c) and ltgb3 (Miller et al, 2013) as targets in murine
models of MLL-AF9-driven AML or the dependency of multiple myeloma cells on IRF4 (Shaffer
et al, 2008). Moreover, genome-wide shRNA screens have provided a draft of the gene-sets
required for cancer cell proliferation and drug sensitivity (Schlabach et al, 2008; Luo et al,
2008). Additionally, the development of shRNAmir-based in vivo RNAi screening protocols has
enabled to dissect tumor initiation and cancer cell dependencies as well as drug resistance in
a native tissue context querying cell-autonomous and non-autonomous factors in models of
lymphoma, hepatocellular and squamous cell carcinoma (Miething et al, 2014; Schramek et al,
2014; Rudalska et al, 2014).

However, doubts have remained due to several large-scale RNAI studies, as exemplified by
two reports about the identification of gene vulnerabilities in KRAS mutant cancer cells, that
failed to reproduce in follow-up experiments as well as similar RNAi screens displaying a
substantial lack in overlapping results (Luo et al, 2009a; Barbie et al, 2009; Babij et al, 2011).
These observations can be partially attributed to heterogeneous knock-down efficiencies, off-
target silencing effects due to inaccurate shRNA processing, and overload toxic effects on the
endogenous miRNA machinery (Jackson et al, 2003). The limitations in early generation RNAI
reagents and heterogeneity in obtainable screening results has revealed the need for

additional novel and precise genetic screening reagents.

1.6.2 Haploid genetic screening

Loss-of-function genetic screening capabilities offered by the haploid genome of yeast cells
like Schizosaccharomyces pombe or Saccharomyces cerevisiae have been difficult to
translate into mammalian cells. Whereas in the context of a diploid genome the second allele
provides a buffering fail safe mechanisms, single loss-of-function alleles in a haploid genome
directly create a functional gene knock-out (KO). The identification of a nearly haploid human
leukemia cell line, KBM-7 derived form a CML patient in the late ‘80s, has enabled the lab of
Thijn Brummelkamp to develop a novel tool kit to perform genetic screens in human cells
(Carette et al, 2009).

Haploid genetic screening employs a viral gene-trap cassette-containing vector in haploid
human cells. Upon viral infection saturating mutagenesis is achieved by random integration of
the pro-viral gene-trap sequence throughout the genome. Insertion of a gene-trap cassette,

containing splice acceptor site, reporter gene (resistance marker or reporter fluorophore) and
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an mRNA polyadenylation signal, within the genomic locus of a specific gene will lead to
aberrant splicing and hence premature termination of the mRNA transcript leading to a
functional knock-out allele. Furthermore, the gene-trap cassette is dependent on genomic
integration directionality. Whereas sense orientation integrations lead to mRNA truncation,
antisense orientations do not interfere with normal transcript generation providing an additional
parameter for the interpretation of screening results. The integrated provirus sequence in the
target cell genome provides a genetic handle to recover viral insertions. This is achieved by
using inverse PCR or linear amplification-based (LAM)-PCR protocols allowing to recover
mutagenic insertions on a large scale using deep sequencing, originally developed for mapping
viral integrations and monitor clonal variation in gene therapy settings (Schmidt et al, 2007).
Interestingly, analysis on unselected control cell populations have revealed and confirmed the
tendency of retroviruses to integrate preferentially in the 5' prime region of the gene body and
into actively transcribed genes (Wu et al, 2003; Carette et al, 2011a; Burckstummer et al, 2013).
Many studies have until now employed haploid cell genetic technology primarily in positive
selection screening scenarios. This has led to the identification of gene loss-of-functions
important for drug sensitivity (Carette et al, 2009; 2011a; Birsoy et al, 2013). Gene-trap
mutagenesis screens in HAP1 cells, an adherent haploid KBM-7 derivative cell line, have
identified the intracellular cholesterol transporter Niemann-Pick C1 (NPC1) as the essential
receptor for Ebola virus entry (Carette et al, 2011b). Fluorescent activated cell sorting (FACS)-
assisted screens have identified novel pathway members important for the glycosylation of a-
dystroglycan and thereby have helped in annotating the repertoire of genes mutated in Walker-
Warburg syndrome as well as important for Lassa virus entry (Jae et al, 2013; 2014). The
combination of FACS and gene-trap-based methods has furthermore enabled the identification
of a novel protein complex involved in the epigenetic maintenance of transcriptional silencing,
termed the human silencing hub (HUSH) complex consisting of transgene activation
suppressor protein (FAM208A), M-phase phosphoprotein 8 (MPHOSPHS8) and periphilin
(PPHLN1) (Tchasovnikarova et al, 2015).

Interestingly, recent observations support the notation that positive selection screens using
retroviral gene-trap mutagenesis can not only identify loss-of-function phenotypes but in
selected cases also reveal gene expression activation-induced phenotypes. Dubey et al.
uncovered in a doxorubicin resistance screen a significant enrichment of antisense insertions
in the 5’ prime region of the gene ABCB1, encoding a drug efflux pump, leading to enhanced
protein expression and increased cell survival upon drug treatment (Dubey et al, 2016).

The availability of only two different yet somehow similar human haploid cancer cell lines has
limited the scope of biological questions to be addressed with this screening tool. Though,
identification, isolation and characterization of murine (Leeb & Wutz, 2011; Elling et al, 2011)

and human (Sagi et al, 2016) haploid embryonic stem cells has dramatically extended the
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experimental space in performing genetic screens focusing for example on developmental
biology or cellular differentiation phenotypes (Yilmaz et al, 2016). With these novel haploid cell
lines and NGS analysis being available to the research community, also transposon and
chemical mutagenesis reagents have regained attention in being used as genetic tool kits for

genome-wide perturbation screens (Pettitt et al, 2013; Forment et al, 2017).

1.6.3 CRISPR/Cas9-based genetic screening

The initial discovery of CRISPR has been based on the observation of its role as a bacterial
immune system, creating a memory of and cleaving intruding nucleic acids. This finding has
been sparked by the initial sequence-based discovery of interspaced sequence repeats in the
Escherichia coli genome (Ishino et al, 1987). First key insights were substantiated by the fact
that these sequences are derived from exogenous phage sources or extrachromosomal
stretches (Bolotin et al, 2005) and lie within close proximity to an expressed cas nuclease
enzyme (Jansen et al, 2002). Functional experiments further established CRISPR being a
genetically encoded bacterial immune system that maintains memory of previous infections by
acquiring spacer sequences encoding fragments of previously faced threats (Barrangou et al,
2007). Different types of CRISPR/Cas systems (type I-VI) have since been identified with
distinct protein components and modes of RNA-guided target DNA recognition and destruction
(Wright et al, 2016). Key insights that sparked the development of CRISPR as a novel
transformative gene editing tool in mammalian cells have come from functional
characterizations of type Il systems. CRISPR/Cas systems possess the ability to cut plasmid
and phage DNA in vivo (Garneau et al, 2010) and the existence of a trans-encoded small RNA
(tracrRNA) aids in the functional processing of CRISPR RNAs (crRNAs) for combating foreign
nucleic acids (Deltcheva et al, 2011).

The discovery that the Streptococcus pyogenes encoded Cas9 enzyme, containing the two
nuclease domains HNH and RuvC-like (Makarova et al, 2006), uses a tracrRNA and crRNA
assembly to cleave DNA (Jinek et al, 2012) and furthermore requires a sequence feature,
called protospacer adjacent motif (PAM) on the double-stranded target DNA for recognition-
induced cleavage (Shah et al, 2013), has fueled its functional tool development. Collectively,
these findings have furthermore opened the door for its translation to other species and
subsequent work has adapted and applied CRISPR/Cas as a novel functional tool in genome
engineering in eukaryotic cells (Cong et al, 2013; Mali et al, 2013; Cho et al, 2013). Additionally,
fusion of tracrRNA and crRNA into one single guide RNA (sgRNA) allows for Watson-Crick
base pair binding-enabled DNA site recognition and RNA double-strand scaffold-based Cas9
recruitment to DNA with one single RNA moiety (Jinek et al, 2012). Inspired by the adaptation
of the type Il CRISPR/Cas9 system found in Streptococcus pyogenes, additional CRISPR
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effectors from Staphylococcus aureus, Francisella novicida and many others have been
characterized in the meantime, displaying smaller protein size, altered sgRNA requirements
as well as PAM sequence preferences, providing alternative tools for experimental and
therapeutic genome editing approaches (Zetsche et al, 2015; Ran et al, 2015).

The development of genome engineering approaches offers the unique ability to correct
preexisting nucleotide alterations causing disordered cellular and organism-wide physiology
as well as construction of novel advantageous mutations in bioengineering and agricultural
processes (Hsu et al, 2014; Cox et al, 2015). However, the prime application of these reagents
in biomedical research is the generation of gene loss-of-functions in cell lines and in vivo.
Endogenously-occurring, environmentally-induced or experimentally nuclease-induces DNA
double strand breaks (DSB) are sensed and repaired by a complex interplay of genome-
guarding repair pathways. DSBs induced by CRISPR/Cas9 cutting are predominantly
substrate for the error-prone non-homologous end joining (NHEJ) repair process, leading to
the insertion and deletion (indel) of small DNA stretches at a given cutting site. The introduction
of these indels within the coding sequence of a given gene will lead to an alteration of the WT
reading frame generating phenotypic loss-of-function alleles (Doudna & Charpentier, 2014).
Providing DNA repair templates of variable length with homology to the endogenous targeted
locus, which can encode distinct variants or reporter sequences, homology-directed repair
(HDR) or micro-homology-mediated end-joining (MMEJ) pathways can mediate incorporation
at CRISPR induced DSB sites (Yang et al, 2013; Suzuki et al, 2016).

Using CRISPR/Cas9 upon transient expression has allowed to establish different cancer and
developmental models very rapidly and with unprecedented ease. The spectrum ranges from
the generation of single cell knock-out or knock-in cell lines and primary cells (Gundry et al,
2016), generation of in vivo mouse models (Wang et al, 2013b; Xue et al, 2014), removal of
chromosomal fragments as well as engineering of chromosomal alterations and translocations
like EML4-ALK or NPM1-ALK in vivo (Maddalo et al, 2014). Using human stem cell-derived
intestinal organoids in combination with CRISPR/Cas9 has allowed to reconstruct sequential
mutation acquisition processes driving CRC development (Drost et al, 2015). Moreover,
employment of repair template-aided modification to the cystic fibrosis transmembrane
conductance regulator (CFTR) gene locus in organoid cultures has model-wise provided an
intriguing template for the use of CRISPR in hereditary diseases (Schwank et al, 2013).

The simplicity of RNA-guided recruitment of Cas nucleases and sgRNAs being the main
determining factor of locus selection sparked the idea to harness vector reagents and
screening systems, established in the course of RNAI technology developed. The placement
of sgRNA and Cas9 expression cassettes within one or two viral vectors has enabled until now
numerous targeted as well as genome-wide genetic screens displaying enhanced sensitivity

and specificity in comparison to previous RNAi-based approaches (Shalem et al, 2014; Wang
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et al, 2014b; Koike-Yusa et al, 2014). Along the same line, since CRISPR is an exogenous
system being introduced into mammalian cells, it does not rely on endogenous RNA pathway
processing in comparison to RNAI therefore providing the advantage to study the biology of
many so far not amenable cellular processes (Doudna & Charpentier, 2014). Guided by
exemplary studies performed to identify predictive factors for shRNAmir efficiency and to limit
off-target binding mitigated events (Fellmann et al, 2011), several studies have identified and
provided tools to incorporate important features (e.g. favoring or disfavoring of nucleotides (nt)
at certain positions within the 20nt sgRNA sequence) influencing sgRNA targeting efficiency
and off-target mutagenesis (Hsu et al, 2013; Xu et al, 2015; Chari et al, 2015; Doench et al,
2016). Collectively these screens have helped in the identification of novel genes being
important for the vemurafenib sensitivity of BRAF V600E mutant melanoma (Shalem et al,
2014; Doench et al, 2016) or the etoposide sensitivity of human AML cells (Wang et al, 2014b).
Furthermore, lentiviral CRISPR/Cas9 has allowed to model TSG combinations in murine
models of AML (Heckl ef al, 2014) and by harnessing the differential effect of indel formation
to delineate the selective requirement of protein domains on cancer cell proliferation by
CRISPR-based domain scanning approaches (Shi et al, 2015). In comparison to RNAi
technology being dependent on post-transcriptional regulation, viral delivery of sgRNA pools
targeting enhancer regions has enabled the functional annotation of these non-protein coding
genomic regions for the first time (Canver et al, 2015).

In an effort to circumvent limitations associated with the protein size of S. pyogenes Cas9
(SpCas9), the development of Cas9 transgenic mice eases adaptation of in vivo screening
applications, only requiring the delivery of sgRNAs to destined tissues for phenotypic
interrogation (Platt et al, 2014).

The S. pyogenes Cas9 is a 1368 aa spanning multi-domain protein with the two nuclease
domains, HNH and RuvC-like, being indispensable for DNA cutting (Nishimasu et al, 2014).
Whereas the HNH domain cleaves the guide RNA complementary DNA strand, the RuvC-like
domain mediates cleavage of the opposite one. Inactivating mutations in each of these two
domains individually creates a nuclease derivative that mediates single strand breaks, also
referred to as nickase approach (Cas9n) (Ran et al, 2013). Inactivation of both domains
creates a nuclease-defective RNA-guided DNA binding protein (dCas9) that upon fusion with
novel effector domains can dramatically expand the tool box of targeted genome modification
(Jinek et al, 2012). Specifically, fusion of dCas9 with the Kriippel associated box (KRAB)
domain for transcriptional interference (CRISPRI) or a VP16 tetrameric repeat (VP64) domain
for activation (CRISPRa), respectively, has enabled to repurpose CRISPR as a time- and
dosage-depend regulate able tool to control transcription in numerous cell types (Qi et al, 2013;
Gilbert et al, 2014; Horlbeck et al, 2016). Therefore, CRISPR/Cas systems not only represent

a revolutionary tool in DNA editing applications, but also for the first time allows as a genetic
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programmable and unifying tool to bridge the gap between loss- and gain-of-function studies

amenable to high-throughput pooled experimental setups.
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1.7 Gain-of-function screening approaches enabling focused to

genome-wide characterizations of cancer drug resistance

The identification of mediators and novel mechanisms leading to the development of drug
resistance has for the longest time relied on culturing malignant cells with increasing inhibitor
concentrations allowing for cellular drug adaptation and the subsequent collection of resistant
sub clones. Comparison of these clones to the initial starting population using various different
omics technologies (e.g. transcriptomics, expression proteomics) has allowed to identify
proteins involved in enhanced neoplastic cell survival upon drug perturbation (Donato et al,
2003; Gioia et al, 2011; Wacker et al, 2012). However, the heterogeneity of hereby obtained
cell pools has made the unequivocal mechanistic identification and causal relationship of
individual gene candidates cumbersome.

Adaptation of viral vectors for the delivery of cDNA libraries containing different gene
candidates or mutation-carrying variants into cell pools has enabled to interrogate and
characterize inhibitor resistances in a more controlled fashion. A focused approach employing
in vitro random mutagenesis of the BCR-ABL1 cDNA and subsequent cell transduction,
inhibitor treatment and sequencing-based recovery of aa variants from resistant single cell
clones has revealed a broad set of mutations leading to reduced imatinib sensitivity.
Convincingly, a great amount of the hereby identified BCR-ABL tyrosine kinase domain
mutations have subsequently been recovered in resistant CML patients and provided the basis
for mutation-informed clinical selection and stratification of different TKls (Azam et al, 2003).
Advancements in on-chip synthesis protocols has enabled to modify coding sequences in a
more targeted manner and deep sequencing can aid substantially in the identification of
enriched variants from complex mixtures of cells (Majithia et al, 2016).

The assembly of lentiviral open reading frame (ORF) libraries has expanded the applicability
of overexpression-based screening approaches (Yang et al, 2011). Using these collections,
important insights have been obtained about the auxiliary function of kinases like COT and
TFs like microphthalmia-associated transcription factor (MITF) in enabling cell survival upon
BRAF VG600E inhibition in melanoma (Johannessen et al, 2010; 2013). Moreover,
comprehensive sets of WT and mutant ORFs have collectively been identified in mediating
resistance to targeted ALK (Wilson et al, 2015) or EGFR inhibition in lung cancer (Sharifnia et
al, 2014) or pan-drug resistance in various malignant entities (Martz et al, 2014). Furthermore,
this approach has been utilized to functionally screen vector-adapted cDNA libraries obtained
from individual AML samples to identify protein variants with the potential to mediate cytokine-
independent growth in murine hematopoietic cells (Yoda et al, 2015).

Nevertheless, sequence size constrains of viral vectors negatively impinging on packaging and

transduction efficiencies, codon composition features or alterations, and cell type-specific
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variabilities of employed (endogenous or exogenous) promoters, can decrease or even
prevent sufficient cDNA expression levels which renders the interrogation of overexpression
phenotypes challenging.

The development of dCas9-based transcription activation systems has provided a novel
promising avenue implementing overexpression screens at a genome-wide level in reachable
distance. Yet, preliminary results have demonstrated that, in contrast to dCas9-KRAB-
mediated silencing, dCas9-VP64 induced transcription was lacking substantial dynamic
strength (Konermann et al, 2015). Henceforth, various different technological improvements
have been developed in increasing the magnitude of achievable transcriptional activation.
The first approach takes advantage of a new tag system, named SunTag, that allows the
assembly of multiple antibody-effector fusion proteins along a protein scaffold tag leading to
dramatic signal amplification in both transcriptional activation applications as well as imaging
studies (Tanenbaum et al, 2014). A second approach harnessed the ability of minimal hairpin
aptamers being bound by bacteriophage-derived coat protein dimers, named MS2.
Incorporation of these aptamers into the 3’ prime scaffold part of sgRNAs allows for the
additional recruitment of MS2-fused activation domains derived from the NF-kB p65 subunit
and heat-shock factor 1 (HSF1) to the dCas9-VP64 protein complex enabling strong
synergistic activation (referred to as synergistic activation mediator (SAM)) (Konermann et al,
2015). The third approach utilizes a triple activator fusion conformation by attaching VP64, p65
and replication and transcription activator (RTA) as tandem to dCas9 (referred to as VPR)
(Chavez et al, 2016). A following head-to-head comparison revealed increased functionality of
all systems compared to dCas9-VP64 alone, with overall similar increased efficiency of the
SAM, SunTag and VPR approach (Chavez et al, 2016). Interestingly, the ability to activate
transcription of a specific gene is inversely correlated to its basal expression state (Konermann
et al, 2015). However, whereas the combination of different dCas9-linked activation complexes
does not add further benefit, placement of several sgRNAs within one gene promoter can elicit
synergistic activation effects indicative that current tools are functioning in non-saturating
conditions (Chavez et al, 2016). Additionally, a recent study has identified that incorporation of
nucleosome DNA binding localization information as well as cap analysis gene expression
(CAGE)-based precise transcription start site (TSS) annotations can dramatically improve
sgRNA-induced gene expression activation propensity (Horlbeck et al, 2016).

Associated work to the establishment of the SAM and SunTag CRISPRa system have
convincingly demonstrated that these tools can be used in genome-wide pooled screening
campaigns to delineate phenotypic consequences of overexpression-induced genetic
perturbations. Performed pilot screens have identified known and novel genes facilitating

enhanced survival upon inhibition of the BRAF V600E oncogene in melanoma cells as well as
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cholera-diphtheria fusion toxin induced cell killing of leukemic cells illustrating their novel

unique experimental capabilities (Konermann et al, 2015; Gilbert et al, 2014).

The mechanistic understanding of gene candidates identified by above mentioned functional
genetic screening approaches is greatly aided through the use of proteomic technologies that
allow to detect and characterize the associated protein-protein interaction networks. Selected
experimental approaches that are frequently employed by the biomedical research community

will be described in more detail in the following sections.
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1.8 Proteomic approaches to study protein complex regulation in

cellular physiology

The attempt to systematically study the sum of all expressed proteins in a given cell, the
proteome, in an unbiased way has been greatly empowered by the development of mass
spectrometry (MS)-based protein identification. The advancements in mass spectrometer
technologies including electrospray ionization and MS-based peptide analysis as well as
further improvements in liquid chromatography (LC)-centered peptide fractionations have
facilitated the identification of high, medium to even low abundant proteins in complex cell or
tissue lysates (Aebersold & Mann, 2003; 2016).

Enhancements in acquisition and identification speed of MS machines has allowed to
quantitatively compare the proteomes of different samples within reasonable timeframes
enabling transcriptome-like proteomic studies. Importantly, it is now possible to directly study
the dynamic state of signaling pathways in time and cellular space without the dependency on
validated antibody reagents or using mRNA expression levels as a proxy read-out for protein
dynamics (Choudhary & Mann, 2010; Kolch & Pitt, 2010). Furthermore, enrichment protocols
for the identification of highly dynamic protein-linked PTMs has allowed to gain even deeper
insights into the wiring and molecular underpinnings of interaction networks and pathway
activation states (Altelaar et al, 2013; Gingras & Wong, 2016).

NGS-focused studies, "reading" the genetic code of cellular states as well as phenotypic
screening approaches reveal novel, often uncharacterized gene alterations and compounds
with poorly characterized mechanisms of action (MoA), creating the necessity of unequivocally
defining their impact on protein function. Apart from global proteomics procedures, classical
methods for protein complex identifications have been developed relying on candidate protein
affinity purification coupled to MS analysis of obtained eluates. Improved protocols have been
established to study and elucidate the dynamic nature of protein-protein interactions involving
proximity labeling or cross-linking strategies as well as pulse-chase epitope labeling
technologies (Mehta & Trinkle-Mulcahy, 2013) (Figure 9). Additionally, complementary
approaches have been developed to confirm the structural basis of proteins and the related
complexes they are embedded in mainly using X-ray crystallography and nuclear magnetic
resonance (NMR) beyond others (Marsh & Teichmann, 2015).
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Figure 9: Overview and comparison of different proteomic work flows for the
identification and quantitation of protein expression changes, PTMs and protein-protein
interactions. (Adapted from Mehta & Trinkle-Mulcahy, 2013, Rebsamen et al, 2013, and
Bigenzahn et al, 2016)

1.8.1 Global mass spectrometry-based approaches

Expression proteomics defines the MS-based undertaking of identifying (and eventually
quantifying) all proteins expressed at a specific time point within a given cellular sample. Cell
pools or tissue samples are disrupted in lysis buffers with application-dependent compositions
and subsequently digested with one or more protease enzymes (e.g. trypsin) with preferential
cleavage sites generating distinct identifiable peptide pools. LC-based peptide fractionation is
directly linked to MS-based analysis, followed by bioinformatics processing of generated
spectra for peptide and final protein identification (Aebersold & Mann, 2003; 2016). Whereas
earlier studies were restricted by preferentially identifying highly abundant proteins, the
technological improvements regarding resolution and speed of peptide identification as well as
combination of different proteases for protein digestions have allowed to chart (nearly)
complete proteome maps of human and murine cells providing isoform resolution (Kim et al,
2014; Wilhelm et al, 2014). This furthermore allows to identify differentially expressed proteins
between different tissues and cell states (Munoz et al, 2011) or define their secreted protein
fraction under steady state conditions or stimulation (Meissner et al, 2013).

Integrative attempts have established genomic- and proteomic-based characterization of
cancer cell lines and primary patient material for bridging the genotype-phenotype border
enabling identification of novel therapeutic targets and potential clinical biomarkers of distinct

disease states (Gstaiger & Aebersold, 2009). In seminal studies this has provided the chance
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to directly correlate the influence of nucleotide variants and epigenetic alterations on protein
expression levels and led to the definition of distinct subtypes in comparison to transcriptome
analysis in CRC (Zhang et al, 2014). Similarly, work on a collection of genetically characterized
breast cancer samples has identified novel regulators of EGFR signaling and activation of
GPCR signaling missed by transcriptome analysis (Mertins et al, 2016).

Essential to the comparative interrogation or cellular proteomes was the development of
quantification strategies permitting assessment of protein abundance changes between
samples. Different ways to evaluate changes in the proteome have been developed, of which
three main types can be distinguished: label-free quantification uses spectral information to
derive a measurement of quantitative abundance without the need to further introduce any
artificial labeling (Asara et al, 2008; Li et al, 2012; Anand et al, 2017). In contrast, metabolic
labeling approaches like stable isotope labeling with amino acids in cell culture (SILAC) utilize
the introduction of specifically heavy labeled aa into the proteome in the culture dish for
quantitation (Oda et al, 1999; Ong et al, 2002) and isobaric tags for relative and absolute
quantitation (iTRAQ) or tandem mass tags (TMT) labeling approaches attach balanced mass
marks on digested peptides (Thompson et al, 2003; Ross et al, 2004). These quantitative
methods have enabled more accurate in-between sample comparisons especially in the
experimental settings of perturbation experiments using drug treatments (Cohen et al, 2008;
Pan et al, 2009) or oxidative stress challenges (Vogel et al, 2011).

The characterization of selected PTMs has been hampered by the availability of suitable
antibody reagents for modified target proteins. The aspiration for performing global, proteome-
wide analysis of PTMs under normal culture conditions or upon perturbation using MS
technology has stimulated research in numerous fields (Mann & Jensen, 2003). The concept
of phosphoproteomics is based on the enrichment of serine and threonine as well as tyrosine
phosphorylated peptides by ion metal affinity chromatography (IMAC) or antibodies
respectively (Huang & White, 2008; Karisch et al, 2011). This has allowed for the first time to
quantitatively monitor the global phosphorylation state of cells in culture and in vivo (Olsen et
al, 2006; Huttlin et al, 2010). Unexpectedly, stimulation experiments using epidermal growth
factor (EGF) or targeted T-cell receptor stimulation have revealed broad cellular changes in
the phosphorylation states of proteins not only limited to receptor stimulation-proximal events
(Pan et al, 2009; Mayya et al, 2009). Along the same line, drug-induced perturbations as
exemplified by the treatment of BCR-ABL positive CML and ALL cells with dasatinib uncovered
reduced phosphorylation events on numerous cellular processes yet not always directly
connected to BCR-ABL signaling (Pan et al, 2009; Rubbi et al, 2011). Application of tyrosine
phosphoproteomics in non-small-cell lung cancer (NSCLC) cell lines and primary samples

allowed to characterize activation states and pinpoint important driver proteins like PDGFRa
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or epithelial discoidin domain-containing receptor 1 (DDR1) involved in the oncogenic state
(Rikova et al, 2007).

For the identification of ubiquitin based PTMs, tryptic digestion of lysates containing
ubiquitinated proteins offers a unique opportunity for antibody-based enrichment due to
formation of a characteristic glycine-glycine (diGly) peptide motif after tryptic digestion
indicative of the covalent attachment of ubiquitin onto a given target protein (Kim et al, 2011;
Udeshi et al, 2013). This approach has allowed to globally identify and quantitate the
ubiquitinated state of the proteome under regular culture conditions and inhibition of the
proteasome, cullin neddylation or deubiquitinating enzymes (Kim et al, 2011; Udeshi et al,
2013; Rose et al, 2016). Additionally, MS-based ubiquitination profiling allows for pinpointing
specific lysine residues being subject of ubiquitination, providing further functional insights and
entry points for biochemical validation experiments. Expectedly, similarly to phosphoproteomic
analysis, inhibition of the cellular protein degradation machinery as well as EGF and B-cell
receptor stimulations induce strong alterations in the ubiquitination of cellular signaling
networks (Argenzio et al, 2011; Satpathy et al, 2015). Moreover, the combination of expression
and ubiquitination proteomic approaches has been crucial in the elucidation of target proteins
being licensed for degradation upon treatment with IMiDs like thalidomide or its analogues
(Krénke et al, 2015; Winter et al, 2015).

A fairly recent addition to the armamentarium of global proteomic profiling has been the
adaptation of thermal shift protein stability profiling. Based on the ability of chemical
compounds or metabolites to increase the thermal stability of proteins upon binding, work from
the lab of Par Nordlund has demonstrated that this approach can be used to identify drug target
proteins without the necessity for chemical modification of the examined agent (Martinez
Molina et al, 2013). The availability of TMT quantification reagents and high-resolution global
MS analysis enables the unbiased interrogation of target protein engagement within increasing
temperature gradients applied to compound treated lysates, termed cellular thermal shift assay
(CETSA)-MS (Savitski et al, 2014; Huber et al, 2015).

1.8.2 Interaction proteomic technologies

The conceptual appreciation that no single protein within a cell functions completely
independent but rather is embedded into a web of protein-protein interactions has sparked
interest early on to map these associations in an unbiased way. The identification of protein
complexes purified out of their native cellular environment using affinity purification protocols
followed by MS analysis has greatly enhanced our knowledge about function and modularity
of interactions (Gingras et al, 2007; Kécher & Superti-Furga, 2007; Gingras & Wong, 2016).
Interestingly, without further insight into the biology of a given protein using guilt-by-association

analysis on identified interactors allows to predict potential biological functions based on the
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derived embedding within the larger interactome and provides the basis for hypothesis-driven
follow-up functional studies (Oliver, 2000; Kécher & Superti-Furga, 2007).

Affinity purification (AP) and tandem affinity purification (TAP) technology approaches allow
the identification and characterization of protein-protein interactions in a broad variety of
cellular model systems (Rigaut et al, 1999; Birckstimmer et al, 2006; Glatter et al, 2009;
Dunham et al, 2012). Whereas AP uses a single tag (e.g. FLAG, HA, V5), TAP utilizes various
different tag combinations (e.g. STREP+HA (SH), FLAG+HA, Protein A+CBP) for sequential
purification steps preceding MS analysis (Li, 2010; 2011). The procedure of combining different
sequential affinity handles for protein purification allows to reduce the amount of identified
background proteins, considered as non-specific binders. However, the TAP methodology
comes at the disadvantage of reduced sensitivity for detecting transient, low-abundant and
low-stoichiometric interactions (Li, 2010; 2011).

In general, both AP and TAP rely on the expression of affinity tagged bait-proteins within the
cell system of relevance to the bait. Cell lysis is performed using non-denaturing conditions
preserving protein-protein interactions during the purification procedure and lysates are
subsequently loaded onto chromatography columns harboring a solid support matrix able to
bind to the bait-attached affinity handle. Sequential wash steps are followed by a final elution
in which the bait with its bound interacting prey-proteins is again released from the matrix. In
the end, the purified fraction is processed by proteolytic digestion and analyzed by MS
(Burckstimmer et al, 2006).

Numerous studies have been performed using AP or TAP to map interactions of specific
protein families like kinases, phosphatases, deubiquitinating enzymes, transcription factors,
RNA binding proteins, virus-encoded proteins, fusion oncogenes, as well as proteins involved
in cellular processes like autophagy, endoplasmic-reticulum-associated protein degradation
(ERAD), chromatin-remodeling complexes, hippo pathway or innate immune signaling
(Bouwmeester et al, 2004; Sowa et al, 2009; Brehme et al, 2009; Glatter et al, 2009; Behrends
et al, 2010; Christianson et al, 2011; Li et al, 2011; Jager et al, 2011; Pichlmair et al, 2012;
Hauri et al, 2013; 2016).

Inspired by seminal work in identifying all protein complexes in yeast using TAP (Gavin et al,
2006; Krogan et al, 2006) efforts in recent years have focused on establishing a
comprehensive map of the entire human protein-protein interactome mostly relying on AP
methodology with the first part being completed in the year 2015 (Ewing et al, 2007; Hein et al,
2015; Huttlin et al, 2015).

Adapted forms of AP-based interaction proteomics have gained popularity in the field of drug
discovery and compound mechanism of action studies, namely chemical proteomics (Rix &
Superti-Furga, 2009; Rix et al, 2007) and kinobeads-based MS (Bantscheff et al, 2007; 2011).

In the case of chemical proteomics, the bait protein is replaced with a small molecule drug,
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that is chemically modified to be able to bind to a solid support matrix and therefore purify
potential target proteins. The inclusion of conditions whereby excesses of unmodified
compound can compete with the attached one allows to derive an estimate for binding
specificity within these experimental datasets (Rix & Superti-Furga, 2009). Kinobeads-based
MS makes use of solid support matrices coupled to a defined set of fairly unspecific inhibitors
for a specific enzyme class (e.g. kinases, HDACs) providing close to full coverage. Incubation
of cellular lysates with or without a selected kinase or HDAC inhibitor allows for the
identification of specific drug binders by MS-guided competition analysis (Bantscheff et al,
2007; 2011).

The identification of highly complex and dense interaction data sets generates the need of
statistically assessing each individual bait-prey interaction pair in their reproducibility and
significance for being specific or unspecific within the entire dataset. Several bioinformatics
platforms like significance analysis of interactome (SAINT) (Sardiu et al, 2008) or comparative
proteomic analysis software suite (CompPASS) (Sowa et al, 2009) have been developed to
aid in the analysis of proteomic experiments. An orthogonal filtering approach is offered by the
recently established community-wide repository, CRAPome, which offers a collection of
“negative” control purification datasets performed in various different cell lines using diverse
purification technics (Mellacheruvu et al, 2013). Orthogonal approaches like yeast-two-hybrid
screenings (Rolland et al, 2014) or luminescence-based mammalian interactome mapping
(LUMIER) (Barrios-Rodiles et al, 2005; Taipale et al, 2012) can furthermore deliver an
instrumental estimate about the binding potential of each individual human protein pair.
Proteins are highly dynamic entities, being embedded in modular complexes opening up the
call to use AP/TAP-MS analysis to capture perturbation and nucleotide variation induced
interactome changes (Przytycka et al, 2010; Bennett et al, 2010). Exemplary studies have
started to address these questions by looking at the dynamic protein-protein interaction
changes upon stimulation of the RTK adaptor protein GRB2 (Bisson et al, 2011) or by profiling
of mutant versions of bait-proteins like CDK4 and the thereby altered interactions (Lambert et
al, 2013; Sahni et al, 2015).

Limiting factors including cellular lysis, buffer conditions, salt concentrations, amount of
detergents or pH can affect protein complex formation and preservation during the entire
purification procedure (especially during wash steps) until tryptic digestion and MS analysis.
Cross-linking approaches have been developed to “freeze” protein complexes in their native
environment within the cell to enable recovery of even transient interactions using AP or TAP.
These protocols can provide further insights into structural assembly features important for
complex association, however can be challenging to analyze due to the difficult annotation of
cross-linked peptides identified by MS (Holding, 2015).
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1.8.3 Proximity-based protein interaction approaches

In order to extend beyond the interactome space covered by AP and TAP procedures novel
methods have been developed on the basis of proximity labeling or trapping principles in order
to capture transient interactions or associations within cellular subdomains being difficult to
solubilize while preserving protein-protein interactions.

Proximity-dependent biotin identification (BiolD) proteomics resembles a novel approach by
adopting the bacterial enzyme BirA for labeling applications coupled to AP and MS analysis.
BirA is a biotin ligase enzyme derived from E. coli that mediates biotinylation of target proteins
involved in metabolic processes (Roux et al, 2012; Rees et al, 2015; Varnaité & MacNeill,
2016). Whereas the original form displays restricted substrate specificity, an altered form of
BirA (R118G), BirA*, enables promiscuous labeling of proteins in close proximity upon
excessive supply of exogenous biotin in mammalian cells. Fusion of BirA* as an exogenous
tag to a given bait protein will therefore induce biotinylation in a limited surrounding radius
representative of close proximity to the enzyme-bait fusion protein (Roux et al, 2012). Coupling
of BirA*-bait inducible expression with coordinate supply of exogenous biotin allows
furthermore to fine tune the degree and magnitude of prey protein labeling in a time dependent
manner (Roux et al, 2012; Couzens et al, 2013). Since the labeling is happening in cells,
stringent lysis conditions can be applying allowing for enhanced protein recovery especially
from disfavored subcellular compartments (e.g. membrane, nucleus). Marked bait and prey
proteins are similar to AP protocols captured on streptavidin-coated beads, subjected to
extensive washing and finally eluted and processed for MS analysis. Different laboratories
have quickly adapted this complementary technology and recent works have illustrated
especially the great value of combining in parallel AP and BirA*-mediated proximity
biotinylation for the identification of novel components in the Hippo signaling pathway
(Couzens et al, 2013), of chromatin associated protein complexes (Lambert et al, 2015), cullin
E3 ligase substrates (Coyaud et al, 2015), the centrosome-cilium interface (Gupta et al, 2015)
as well as novel phosphatase regulatory factors (St-Denis et al, 2016). Further vector
adaptations will undoubtedly broaden the applicability of this tool kit and open up the possibility

for in vivo applications.

In addition, a virotrap-based proteomic approach has recently been developed, expanding the
scope by providing yet another complementary method for the identification of proteins in the
close vicinity of specific target baits (Eyckerman et al, 2016). This technology is based on the
usage of the HIV-1 GAG protein as a fusion tag thereby allowing trapping of protein interactors
by viral particle sorting. Affinity tag-assisted recovery and purification of particle content
coupled to MS analysis allows to identify protein complexes with high reproducibility. The

current limitation to cytoplasmic proteins however confounds the broad applicability of this
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technology (Eyckerman et al, 2016). Future work will be needed to address scalability of this

tool towards other cellular compartments.

Enabled by numerous innovative developments described above, the interconnection of global
and targeted interaction-proteomic as well as genetic screening approaches to dissect the
functional wiring of protein-protein interactions and their impact on cellular physiology will be

an important and prosperous playground for future research campaigns (Collins et al, 2007).
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1.9 Aims of this thesis

Nowadays targeted therapeutic agents represent an important armamentarium in the
treatment of many diseases including malignancies. In order to develop novel therapeutic
molecules and increase the rate of success in subsequent clinical trials, a deep rooted
mechanistic understanding of the underlying pathways and protein complexes intended to be
targeted, including their involvement in pathological disease states, is of utmost importance.
Haploid genetic screens offer the opportunity to identify essential genes under standard culture
conditions with unprecedented precision. In a collaborative project, the lab of Thijn
Brummelkamp has mapped the repertoire of genes important for cell proliferation in different
cancer cell lines. Interestingly, the cell biological function of a proportion of identified candidate
essential genes was unexplainable by available data. Within this thesis, we aimed (1) to use
TAP-MS to identify the binding partners of a preselected group of uncharacterized proteins,
important for cell proliferation, in order to assigned molecular functions based on their
engagement with known protein complexes.

The study of protein-protein interactions has been enabled by numerous technological
innovations in the field of chromatography and mass spectrometry analysis. SH-based TAP
approaches have demonstrated clear experimental benefits for the identification of protein
complexes in mammalian cells, however face limitation with the current restricted subtypes of
targetable cell lines available. Here within the scope of this thesis, we aimed to (2) further
develop a new, versatile, inducible vector system to enable SH-based TAP-MS analysis in a
broad range of cell lines as well as in vivo applications. Next (3) to demonstrate applicability of
this toolbox in identifying interaction partners of oncogenic proteins, exemplified by the use of
NRAS G12D in murine hematopoietic cells and toxic, cell-death inducing proteins, exemplified
by the use of MLKL S358D in human CRC cells.

The development of targeted agents for treatment of CML patients has paved the way for a
new area in cancer medicine. By using gene loss-of-function genetic screens in a haploid CML
cell line we aimed (4) to identify the collection of genes mediating sensitivity towards small
molecule-based BCR-ABL inhibition in this MPN subtype. We furthermore aimed to (5)
characterize the cellular mode of action of identified candidate genes in their ability to modulate
the cellular sensitivity to 1%, 2" and 3™ generation BCR-ABL TKIs thereby providing a high-

confidence data set for future clinical drug resistance follow-up studies.
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2 Results

2.1 Prologue

The lab of Thijn Brummelkamp addressed the long standing question of identifying essential
genes important for cancer cell proliferation in suspension and adherent cells under normal
cell culture conditions. The adaptation of LAM-PCR-based library preparation protocols has
drastically enhanced the recovery of independent gene-trap provirus integration sites from
mutagenized cell populations. The high statistical power associated with the identification of
100 to 10 000 insertions per gene locus opened up the opportunity to perform negative
selection screens in haploid cells. The ratio of sense and antisense gene-trap integrations
becomes a direct measurement of the impact of mutagenic gene perturbation on cellular fitness.
Surprisingly, within the set of recurrently identified gene candidates, resembling the “core
essentialome”, a significant number remained uncharacterized with regard to their cell
biological function.

Here, we inducibly expressed a preselected group of 18 essential genes in human HEK-293
cells and used TAP-MS analysis thereof to derive a first characterization of their biological
function based on the identified interacting proteins. For instance, we were able to deduce a
functional involvement of the transmembrane protein 258 (TMEM258/C110rf10) within the
regulation of the oligosaccharyltransferase (OST) complex. For clarity, the bait proteins
characterized by TAP-MS analysis with their identified prey proteins are listed in the following

table preceding the manuscript (Table 2).

Gene name Alternative protein name Interactors identified ( ber, protein

Ctorf131 Chromosome 1 Open Reading Frame 131 NEPRO/ NET17 RARS, EIF5B, IARS, KARS, MYBBP1A, PPP2R1A,
LRRC59, RPL23A, QARS, RPS15, DDX21, NAT10, AIMP2,
25 PRPF40A, SNRNP200, RPL17, SMARCC1, DDX18,
PPP2R2A, EPRS, EIF2S3, IQGAP1, PRPF8, EIF3L,
SMARCB1

C3orf17 Chromosome 3 Open Reading Frame 17 POP1, UBE20, NPM1, RPP38, RPLP2, RPP25L, EMD,
19 HIST1H1C, YBX1, POP7, PPM1G, NAP1L1, ATP1A1,
LDHB, RPL27A, ATP2A2, RPL13, RPP30, RPL28
TMEM258 |Transmembrane Protein 258 C110rf10 RPN1, RPN2, STT3A, DDOST, STT3B, MAGT1, MLEC,
16 C4orf32, DAD1, SCCPDH, FKBP8, CCDC167, PTPLAD1,
HS2ST1, STX12, FUT8

FAM210A __|Family With Sequence Similarity 210 Member A C18orf19 7 COPA, COPB2, RCN2, COPE, MYL6, DNAJA2, LDHB

C210rf59 Chromosome 21 Open Reading Frame 59 CILD26/ FBB18/ Kur 2 CTNNA1, CTNNB1

FAM204A _|Family With Sequence Similarity 204 Member A C100rf84 6 HAT1, KPNB1, NPEPPS, KPNA2, KPNA3, COPG1

SPATAS Spermatogenesis Associated 5 AFG2/ SPAF/ EHLMRS 9 SPATAS5L1, CINP, C1orf109, WBSCR16, PFDN5, ATAD3A,
RCN2, AIFM1, PFDN2

TTC27 Tetratricopeptide Repeat Domain 27 13 EFTUD2, SNRNP200, PRPF8, CCT5, CCT6A, CCT4,
CCT7, CCT2, AAR2, TCP1, CCT3, NCDN, ECD

LENG1 Leukocyte Receptor Cluster (LRC) Member 1 6 MARS, RARS, DARS, IARS, LARS, AIMP1

NHLRC2 NHL Repeat Containing 2 1 ERC1

ZNF207 Zinc Finger Protein 207 HBUGZ 8 BUB3, HSPH1, ZNF207, PUF60, SRSF11, DPY30,
S100A9, SETD1A

DIEXF Digestive Organ Expansion Factor Homolog (Zebrafish) C1orf107/ DEF/ UTP25 7 AP2A1, PSME3, AP2B1, MPHOSPH10, AP2A2, AP2S1,
IMP3

ARMC7 Armadillo Repeat Containing 7 5 CKAP4, RBM48, MPRIP, PHB, PHB2

C9orf78 Chromosome 9 Open Reading Frame 78 HCA59/ HSPC220 3 EFTUD2, SNRNP200, PRPF8

WBSCR22 | Williams-Beuren Syndrome Chromosome Region 22 MERM1/ WBMT 2 WBSCR22, TRMT112

NLE1 Notchless Homolog 1 (Drosophila) 5 CCT2, CCT4, CCT6A, CCT5, CCT7

CEP85 Centrosomal Protein 85 CCDC21 4 PSMA7, PSMB5, PSMC2, PSMA6

METTL16 __ |Methyltransferase Like 16 METT10D 2 MEPCE, KPNAG

Table 2: Protein interactions identified by TAP-MS analysis of essential proteins
identified in the ,,core essentialome“ with unknown cellular function. (Adapted from
Blomen et al, 2015)
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Abstract

Although the genes essential for life have been identified in less complex model
organisms, their elucidation in human cells has been hindered by technical barriers.
We use extensive mutagenesis in haploid human cells to identify approximately 2,000
genes required for optimal fithess under culture conditions. To study the principles of
genetic interactions in human cells we created a synthetic lethality network focused on
the secretory pathway based exclusively on mutations. This revealed a genetic
crosstalk governing Golgi homeostasis, an additional subunit of the human
oligosaccharyltransferase complex, and a Phosphatidylinositol 4-Kinase Beta adaptor
hijacked by viruses. The synthetic lethality map parallels observations made in yeast
and projects a route forward to reveal genetic networks in diverse aspects of human

cell biology.
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Main Text

Single cell organisms can tolerate inactivating mutations in the majority of genes (7-3),
but it is unclear whether human cells require more essential genes due to increased
complexity, or fewer, due to added redundancy. To study this we used mutagenesis in
the near-haploid chronic myeloid leukemia (CML) cell line KBM7 (karyotype 25, XY,
+8, Ph+), and its non-hematopoietic derivative HAP1 which is haploid for all
chromosomes (fig. S1A) (4). More than 34.3 million and 65.9 million gene-trap
integrations were identified in KBM7 and HAP1 cells, respectively. The employed
gene-trap vector was unidirectional by design (fig. S1B) and for most genes the
number of intronic integrations in the sense direction was similar to that in the antisense
direction (e.g. pro-apoptotic factor BBC3, Fig. 1A and B) (5-7). For a fraction of genes,
however, disruptive mutations were underrepresented, indicative of impaired fitness:
some genes (e.g. STATSB) appeared essential in one cell type (fig. S1C), whereas
others in both (such as RPL13A) (Fig. 1A and B and tables S1-3).

2,054 genes in KBM7 cells (table S1, figs. S2-3) and 2,181 genes in HAP1 (table
S2, figs. S2-3) appeared to be needed for viability or optimal fithess under the
experimental growth conditions (referred to as ‘essential’ although the approach does
not distinguish between the two). The 1,734 genes identified in both cell lines were
designated as ‘core essentialome’ (table S3). Importantly in KBM7 cells, genes on
chromosome 8 (present in two copies) tolerated disruptive mutations, underscoring the
specificity of the approach (fig. S1D). Furthermore, nearly all subunits of the
proteasome were identified as essential (fig. S4). In general, essential genes are
overrepresented in categories such as translation or transcription but not signaling (Fig.
1C, fig. S5 and S6).

Many genes required for fitness in yeast were also essential in human cells.
Exceptions were largely explained by paralogs in the human genome or by yeast-
specific requirements (fig. S7A and table S4) (7). We estimated the evolutionary age
of essential genes and found that 77% emerged in pre-metazoans (‘old’ essential
genes) (fig. S7B). Essential genes had fewer paralogs and higher protein abundance
and contained fewer single nucleotide polymorphisms (SNPs) predicted to impair
function (Fig. 1D). Proteins encoded by essential genes displayed more protein-protein
interactions (fig. S8A-D) and these occurred more frequently with other essential
proteins (49.8%) (fig. S9A) and within the same functional category (fig. S5B).

Remarkably, the products of new essential genes are more often connected with old
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rather than other new essential gene products, suggesting that they largely function
within ancient molecular machineries (fig. S9B and C).

To identify proteins interacting with products of 18 uncharacterized essential
genes we used tandem affinity purification coupled to mass spectrometry (fig. S10).
Interactors were frequently essential proteins (52.4%, P<2.5E-36, hypergeometric test)
involved in processes like splicing, translation, and trafficking (fig. S11, and table S5).
The small transmembrane protein TMEM258 associated with components of the
conserved oligosacharyltransferase (OST) complex (Fig. 2A and fig. S12A) essential
for protein N-glycosylation (8). TMEMZ258 localized to the endoplasmic reticulum (fig.
S12B) and depletion (fig. S12C-D) impaired OST catalytic activity as monitored by
hypoglycosylation of prosaposin (Fig. 2B) (9). This also rationalizes the observed
clustering of TMEM258 with OST complex subunits in a recent genetic screen (70).
Thus, TMEM258 constitutes a subunit of the human OST complex and although
homology searches (fig. S12E) do not identify a yeast ortholog, TMEM258 may relate
to the similarly sized yeast transmembrane protein OST5 (77).

Whereas most genes appear nonessential, their function may be buffered by
other genes such that only simultaneous disruption is lethal (712-15). The frequency of
such synthetic lethal interactions between human genes is debated and challenging to
address experimentally (16, 77). We studied the small guanosine triphosphatases
(GTPases) RAB1A and RAB1B, by creating individual knockout lines and assessing
the genes needed for fitness in these backgrounds (Fig. 3A and fig. S13A). Whereas
neither RAB1A nor RAB1B were essential in wild-type cells, RAB1A became
indispensable in RAB1B knockout cells and vice versa (Fig. 3A and fig S13B). To
explore the breadth of synthetic lethality we probed the secretory pathway using three
independent knockout cell lines (fig. S14) for RAB1A, RAB1B, GOSR1 (a subunit of
the Golgi SNAP receptor), (18) and TMEM165 (a Golgi-resident Ca®*/H* antiporter
whose deficiency impairs glycosylation) (79) (Fig. 3B, figs. S15-16, and table S6). Most
of their genetic interactions impinged on the secretory pathway (Fig. 3B and table S7)
and many were found synthetic lethal with PTAR1. Synthetic lethality screens in
PTAR1 deficient cells confirmed these genetic interactions and additionally identified
the uncharacterized gene C700rf76 (Fig. 3B and fig. S17A). Validation using C100rf76
as query gene confirmed synthetic lethality with PTAR1, and (reciprocally) identified
TSSC1, which was recently reported to interact with the Golgi associated retrograde

protein complex (GARP) (20) (Fig. 3B). The human genes we studied display on
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average ~20 synthetic lethal interactions, a number comparable to that in yeast (72),
although this varies between genes, with PTAR1 (causing a fitness defect when
deleted alone) having close to 60 interactions (fig. S17B). This illustrates that synthetic
lethal interactions can be identified and validated using reciprocal haploid screens and
that, similar to yeast, interactions frequently occur between genes whose products act
in related processes (fig. S17B) (13, 16). However, we acknowledge a caveat that this
approach cannot readily distinguish between synthetic lethal or synthetic ‘sick’
interactions.

The impaired growth of PTAR17-deficient cells (table S2) was suppressed by
loss of the Golgi factor GOLGAS (21) (Fig. 4A, fig. S18). PTAR1-deficient cells had an
abnormally dilated Golgi morphology (fig. S19A) which was partially corrected by co-
deletion of GOLGAS (Fig. 4B and fig. S19B). Functionally, PTAR7-deficiency impaired
glycosylation (7) (fig. S19C), possibly due to dysregulation of RAB proteins (22).
Indeed, PTAR1-deficient cells showed attenuated geranylgeranylation of RAB1A and
RAB1B (fig. S19D). Partial correction of the Golgi morphology in cells lacking both
PTAR1 and GOLGAS could relate to the effect of GOLGAS, itself a RAB effector, on
Golgi fragmentation (21, 23). Thus, the interaction map reveals PTAR1 and GOLGAS
as opposing handles tuning Golgi morphology and homeostasis.

Genetic analysis suggested a link between the unstudied gene C70o0rf76 and
PI4KB which were both synthetic lethal with PTAR1 (Fig. 3B). A host factor screen
using coxsackievirus A10 also identified C7100rf76 as well as PI4KB (fig. S20A and B)
and a proteomics survey (24) suggested association between C100rf76 and PI4KB.
We confirmed this interaction in immunoprecipitation experiments with cells expressing
FLAG-tagged C100rf76 (Fig. 4C). PI4KB regulates abundance of phosphatidylinositol
4-phosphate [PI1(4)P] (25) and has a role in genome replication of various RNA viruses
including coxsackieviruses (26). Infection studies confirmed that C700rf76 knockout
cells were particularly resistant to coxsackievirus A10 (fig. S20C). Although virus entry
occurred normally, replication of viral RNA was decreased in C700rf76 knockout cells
(Fig. 4D and fig. S20D). Enteroviruses hijack PI4KB activity to construct ‘replication
factories’ which were abundant in wild-type cells but rare in C700rf76-deficient cells
(fig. S20E). Amounts of PI(4)P were decreased in these cells and Golgi retention of
P14KB after chemical inhibition (27) was largely dependent on C100rf76, which also
localized to this compartment under these conditions (fig. S21A-B). Thus, C100rf76 is

a Pl4KB-associated factor hijacked by specific picornaviruses for replication.
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This study identifies approximately 2,000 genes required for optimal fitness of
cultured haploid human cells. Despite technical limitations, the identification of gene
essentiality shows high concordance with the gene-trap and CRISPR data reported in
the accompanying manuscript of Wang et al. (supplemental discussion and fig. S22).
This suggests that the increase in total number of genes in humans as compared to
that in yeast yielded a system of higher complexity rather than more robustness
through added redundancy. Nonessential human genes appear to frequently engage
in synthetic lethal interactions. Our studies start to reveal an interconnected module of
genetic interactions affecting the secretory pathway and link it to uncharacterized
genes. The experimental strategy is applicable to various cellular processes and may

help unravel the genetic network encoding a human cell.
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Figure legends

Figure 1. Identification of genes required for fitness in KBM7 and HAP1 cells
through insertional mutagenesis. (A) Unique gene-trap insertions were mapped in
KBM7 and HAP1 cells, and their orientation relative to the affected genes was counted.
Per gene the percentage of sense orientation gene-trap insertions (Y-axis) and the
total number of insertions in a particular gene (X-axis) are plotted. (B) Gene-trap
insertions identified in the sense (S, yellow) or antisense orientation (AS, blue) in a
non-essential gene (BBC3), a gene essential only in KBM7 cells (STAT5B), and a gene
essential in both cell lines (RPL13A). (C) KEGG pathway enrichment analysis of
essential genes shared between or unique to KBM7 or HAP1 cells. (D) Properties of
‘new’ and ‘old’ essential genes compared to the human genome. Averages for the sets

are displayed, except for protein abundance where median emPAIl values are shown.

Figure 2. The essential gene TMEM258 encodes a component of the OST
complex. (A) High-confidence protein-protein interactions associated with TMEM258.
Green proteins indicate members of the oligosaccharyltransferase (OST) complex.
Dashed lines indicate the OST complex subnetwork. (B) Effects of depletion of
TMEM258 with siRNAs on the glycosylation of endogenous prosaposin. Cells were
pulsed with **S-methionine/cysteine, lysed and subjected to immunoprecipitation using
anti-prosaposin antibodies. Precipitated proteins were detected by phosphorimaging
and hypoglycosylated prosaposin species are indicated. Tunicamycin treatment and

depletion of the established OST subunit DDOST served as positive controls.

Figure 3. Synthetic lethality network generated based on mutations. (A)
Essentiality of RAB1A and RAB1B in wild-type HAP1 cells and cells deficient for
RAB1A or RAB1B. (B) Genetic interaction network indicating synthetic lethal/sick
interactions that were identified by scoring genes for fithess reduction in three
nuclease-generated knockout clones per genotype. This revealed an interconnected
network with many genes that could be functionally assigned to the secretory pathway

(labeled in green). Reciprocal interactions, scored in either query genotype, are
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indicated by red edges. Edge thickness reflects the effect size of the interaction

(compared to wild-type cells).

Figure 4. Roles of PTAR1 and C1700rf76 in Golgi homeostasis and virus
replication. (A) A bias for sense-orientation integrations in GOLGAS observed in
PTAR1-deficient HAP1 cells but not wild-type cells. (B) Electron micrographs of the
Golgi apparatus (orange highlight) in the indicated genotypes. (C) Interaction of Flag-
tagged C100rf76 with PI4KB in HAP1 cells detected by immunoprecipitation using anti-
Flag antibodies. (D) Coxsackievirus A10 amplification in wild-type and C1700rf76-
deficient cells measured by single molecule fluorescent in situ hybridization (smFISH)
to localize individual viral genomes (red). Intracellular viral RNA was first detected after

30 minutes. Increased RNA signal after 300 minutes indicates RNA replication.
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2.3 Interlude

The elucidation of protein complexes within their most physiological or disease-representative
tissue and cellular model system is of great importance to appropriately capture and annotate
the human interactome. The growing number of identified cancer-associated gene alterations
as well as signaling hubs involved in the development of drug resistance requires a scalable
system to identify mutant-specific binding partners and capture dynamic protein-protein
interactions.

Here we have developed a versatile retroviral vector system pRSHIC (retroviral expression of
SH-tagged proteins for interaction proteomics and color-tracing) that enables TAP procedures
utilizing the SH tandem tag combination in a wide-ranging set of cell lines. Additional linked
expression of the mCherry reporter fluorophore allows tracking of SH-tagged bait protein
expressing cell pools by flow cytometry and microscopy. We have utilized pRSHIC in two
biological settings to chart the interactors of the tumorigenic NRAS G12D protein in murine
hematopoietic cells and the regulated cell death inducing mutant MLKL S358D protein in a
human CRC cell line. The integration of proteomic as well as biochemical and functional
validation data uncovered an essential role of HSP90 in the proteostatic regulation of MLKL-

induced necroptosis that can be targeted by using different HSP90 inhibitors.
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An Inducible Retroviral Expression System
for Tandem Affinity Purification Mass-
Spectrometry-Based Proteomics ldentifies
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Tandem affinity purification-mass spectrometry (TAP-MS)
is a popular strategy for the identification of protein-
protein interactions, characterization of protein com-
plexes, and entire networks. Ilts employment in cellular
settings best fitting the relevant physiology is limited by
convenient expression vector systems. We developed an
easy-to-handle, inducible, dually selectable retroviral ex-
pression vector allowing dose- and time-dependent con-
trol of bait proteins bearing the efficient streptavidin-he-
magglutinin (SH)-tag at their N- or C termini. Concomitant
expression of a reporter fluorophore allows to monitor
bait-expressing cells by flow cytometry or microscopy
and enables high-throughput phenotypic assays. We used
the system to successfully characterize the interactome
of the neuroblastoma RAS viral oncogene homolog
(NRAS) Gly12Asp (G12D) mutant and exploited the advan-
tage of reporter fluorophore expression by tracking cyto-
kine-independent cell growth using flow cytometry.
Moreover, we tested the feasibility of studying cytotoxicity-
mediating proteins with the vector system on the cell death-

inducing mixed lineage kinase domain-like protein (MLKL)
Ser358Asp (S358D) mutant. Interaction proteomics analysis
of MLKL Ser358Asp (S358D) identified heat shock protein
90 (HSP90) as a high-confidence interacting protein. Further
phenotypic characterization established MLKL as a novel
HSP90 client. In summary, this novel inducible expression
system enables SH-tag-based interaction studies in the cell
line proficient for the respective phenotypic or signaling
context and constitutes a valuable tool for experimental
approaches requiring inducible or traceable protein
expression. Molecular & Cellular Proteomics 15: 10.1074/
mcp.0115.055350, 1139-1150, 2016.

Protein—protein interactions are the basis of most cellular
processes and characterizing the complexes associated with
a given protein greatly increases understanding of the biolog-
ical function (1). Tandem affinity purification (TAP)' (2, 3) cou-
pled to mass spectrometry (MS) constitutes a powerful tech-
nique for identifying high-confidence interaction partners of
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tagged bait proteins (4-6). The reduction of nonspecific back-
ground binding due to dual-affinity purification has made
TAP-MS the method of choice for protein interaction mapping
(7-9), and more than 30 different tandem tags have been
established so far by alternative combination of affinity han-
dles (10, 11). Specifically, the purification procedure for the
recently developed SH-tag (12) shows particularly high bait
protein recovery (10). In combination with the flippase-
flippase recognition target (Flp-FRT) recombination system,
SH-based TAP-MS has been successfully applied to the in-
depth analysis of human signaling networks (12-15) and
virus—host interactions (16). A detailed interlaboratory com-
parative analysis of highly standardized procedure using
HEK293 cells revealed a reproducibility within an individual
laboratory of 98% and a reproducibility between two labora-
tories of more than 80%, suggesting robustness of the
method using workhorse cell lines (15).

Charting the interactome of a specific protein in the relevant
physiological setting, in context of its functional signaling
pathway, requires performing interaction proteomics in differ-
ent cellular backgrounds. Highly efficient gene delivery to a
variety of cell lines, including cell types that are difficult to
transfect, can be achieved by viral-vector-mediated gene
transfer (17). Temporal and reversible control of bait protein
expression can be achieved by using inducible expression
systems, further enabling the analysis of proteins with toxic
ectopic expression. Tetracycline (Tet)-On systems (18) have
proven to be valuable tools for inducible expression of cDNAs
or short hairpin RNAs in cell lines and animal models (19, 20).

To date, TAP-MS experiments are based on Flp-In technol-
ogy or viral-based transgene delivery of bait proteins fused to
different affinity tags with a diverse range of expression and
bait recovery efficiency (10, 11, 21). While the SH-tag has
comparably high bait recovery (10) and strong interlaboratory
reproducibility (15), its application has so far been restricted
to the limited number of Flp-In system-competent cell lines.
To overcome this limitation and widen the reach of SH-based
TAP-MS studies, we established and characterized retroviral
expression of SH-tagged proteins for interaction proteomics
and color tracing (pRSHIC). This novel retroviral, doxycycline-
inducible Tet-On vector system is suitable for expression of
SH-tagged target proteins in a wide range of cell systems. In
addition to enlarging the existing toolbox for TAP-MS-based
interaction proteomics, the features and versatility of pRSHIC
make it a valuable tool for a broad set of phenotypic analyses.
To illustrate the features of pRSHIC, we charted the interac-
tome of the oncogenic NRAS G12D mutant protein (22, 23), as
delineating the network properties of such cancer-associated
gene variants is crucial to understand their impact on the
disease (24). Furthermore, we demonstrated the applicability
of pRSHIC to study cytotoxicity-inducing proteins using the
MLKL mutant S358D (25). MLKL is the key molecule required
for executing necroptosis, a form of programmed necrotic cell
death (26-28). Our study identified MLKL to associate with

HSP90 and functionally validated MLKL as a novel client
protein of HSP90.

MATERIALS AND METHODS

Cell Lines and Reagents—HEK293T was obtained from ATCC (Ma-
nassas, VA) and K-562 and KCL-22 from DSMZ (Braunschweig,
Germany). HT-29 was kindly provided by P. Schneider (Lausanne).
Cells were cultured in DMEM (Sigma-Aldrich, St. Louis, MO) or RPMI
medium (Sigma-Aldrich) supplemented with 10% (v/v) FBS (Gibco,
Grand Island, NY) and antibiotics (100 U/ml penicillin and 100 mg/mi
streptomycin) (Sigma-Aldrich). Ba/F3 was obtained from DMSZ and
grown in RPMI supplemented with 10% (v/v) FBS (Gibco) and 1-3
ng/ml recombinant murine IL-3 (213-13, PeproTech, Rocky Hill, NJ).
The reagents used were as follows: doxycycline (D9891, Sigma-
Aldrich), necrostatin-1 (N9037, Sigma-Aldrich), necrosulfonamide
(480073, Merck Millipore, Billerica, MA), geldanamycin (G-1047, AG
Scientific, San Diego, CA), MG132 (C2211, Sigma Aldrich), chloro-
quine (C6628, Sigma Aldrich), selumetinib (S1008, Selleck Chemicals,
Houston, TX), trametinib (S2673, Selleck Chemicals), and ponatinib
(81490, Selleck Chemicals).

Antibodies— Antibodies used were HA (SC-805, Santa Cruz, Dal-
las, TX), HA-7-HRP (H6533, Sigma-Aldrich), MEK1/2 (#9126, Cell
Signaling, Danvers, MA), phospho-MEK1/2 (#2338, Cell Signaling),
ERK1/2 (M5670, Sigma-Aldrich), phospho- ERK1/2 (#4370, Cell Sig-
naling), STAT5 (610191, BD Biosciences, Franklin Lakes, NJ), phos-
pho-STAT5A/B (05-886R, Merck Millipore), phospho-p70 S6 kinase
(#9234, Cell Signaling), p70 S6 kinase (SC-230, Santa Cruz), RIPK3
(#12107, Cell Signaling), HSP90 (610418, BD Transduction Labora-
tories), actin (AANO1-A, Cytoskeleton, Denver, CO), and tubulin
(@b7291, Abcam, Cambridge, UK). The secondary antibodies used
were goat anti-mouse HRP (115-035-003, Jackson ImmunoResearch,
West Grove, PA), goat anti-rabbit HRP (111-035-003, Jackson Im-
munoResearch), and Alexa Fluor 680 goat anti-mouse (A-21057, Mo-
lecular probes, Grand Island, NY).

Plasmids and Cloning—Inducible retroviral expression vectors are
derived from the pQCXIX self-inactivating retroviral vector backbone
(pSIN, Clontech). pRSHIC vectors were assembled using standard
cloning techniques and final expression constructs contain the fol-
lowing elements: pSIN-TREtight or TRE3G-HA-Strepll-Gateway cas-
sette-IRES-mCherry-PGK-BlastR for N-terminal StrepHA tagging and
pSIN-TREtight or TRE3G-Gateway cassette-Strepll-HA-IRES-mCherry-
PGK-BlastR for C-terminal StrepHA tagging. Detailed cloning strate-
gies, primers, and vector information are available upon request.
NRAS coding sequence was PCR-amplified from K562 cDNA and
cloned into the Gateway-compatible pDONR221 entry vector using
BP recombination (Invitrogen, Grand Island, NY). The G12D mutant
version of NRAS was generated by site-directed mutagenesis using
the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent
Technologies, Santa Clara, CA) using the following primers 5'-GTG-
GTGGTTGGAGCAGATGGTGTTGGGAAAAGC-3' and 5'-GCTTTTC-
CCAACACCATCTGCTCCAACCACCAC-3'. Cloning of RIPK3, MLKL,
and MLKL S358D has been described elsewhere (48). Following seq-
uence verification, the cDNAs were transferred by Gateway cloning
using LR recombination (Invitrogen) into pRSHIC vectors. All vectors
are available upon request.

Generation of Inducible Cell Lines—Human cell lines were retrovi-
rally transduced using vector pMSCV-rtTA3-IRES-EcoR-PGK-PuroR
(PMSCV-RIEP) (29), and murine cell lines were transduced with pM-
SCV-rtTA3-PGK-PuroR (pMSCV-RP) (29) to generate rtTA3 and eco-
tropic receptor-coexpressing (RIEP) or rtTA3-expressing (rtTA3)
Tet-on competent cell lines, respectively. Briefly, HEK293T cells were
transiently transfected with the retroviral packaging plasmids pGAG-
POL, pVSV-G, pADVANTAGE, and pMSCV-RIEP or pMSCV-RP. The
medium was exchanged 24 h later and replaced with the medium for
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the respective target cell line. After 48 h the virus-containing super-
natant was harvested, filtered (0.45 um), supplemented with 8 ug/ml
protamine sulfate (Sigma-Aldrich) and added to 40-60% confluent
target cell lines. Suspension cells were subjected to spinfection (2000
rom, 45 min, room temperature). 24 h after infection the medium was
exchanged and replaced with fresh medium. Another 24 h later, the
medium was supplemented with 1-2 png/ml puromycin (Sigma-Al-
drich) to select for infected cells. Following puromycin selection,
RIEP- or rtTA3-expressing cell lines were similarly transduced with
retrovirus produced in HEK293T cells using the respective target
gene-encoding pRSHIC vector, and pGAG-POL, pADVANTAGE, and
pEcoEnv. Infected cells were selected by addition of 15-25 ug/ml
blasticidin (InvivoGen). Target gene expression was induced by ad-
dition of 1-2 png/ml doxycycline.

Immunoblotting— Cells were lysed using Nonidet-40 lysis buffer (50
mm HEPES (pH 7.4), 250 mm NaCl, 5 mm EDTA, 1% Nonidet P-40, 10
mMm NaF, 1 mm NagVO,, one tablet of EDTA-free protease inhibitor
(Roche, Indianapolis, IN, USA) per 50 ml) or IP lysis buffer (50 mm
Tris-HCI (pH 7.5), 150 mm NaCl, 5 mm EDTA, 1% Nonidet P-40, 50 mm
NaF, 1 mm NagVO,, 1 mm PMSF, 5 ug/ml TPCK and protease inhibitor
mixture) for 10 min on ice. Lysates were cleared by centrifugation
(13000 rom, 10 min, 4 °C). The proteins were quantified with BCA
(Pierce, Grand Island, NY) or Bradford assay using y-globin as a
standard (Bio-Rad, Hercules, CA). Cell lysates were resolved by SDS-
PAGE and transferred to nitrocellulose membranes Protran BA 85 (GE
Healthcare, Little Chalfont, UK). The membranes were immunoblotted
with the indicated antibodies. Bound antibodies were visualized with
horseradish peroxidase-conjugated secondary antibodies using the
ECL Western blotting system (Thermo Scientific, Waltham, MA) or
Odyssey Infrared Imager (LI-COR, Lincoln, NE).

Immunoprecipitation— Cells were washed in PBS and lysed in ice-
cold HENG buffer (50 mm HEPES-KOH (pH 7.9), 150 mm NaCl, 20 mm
Na,MoO,, 2 mm EDTA, 5% glycerol, 0.5% Triton X-100, one tablet of
EDTA-free protease inhibitor (Roche) per 50 ml, 20 mm NaF, and 0.4
mm NagzVO,) for 10 min on ice. Lysates were cleared by centrifugation
(13000 rpm, 10 min, 4 °C), quantified with BCA (Pierce), and pre-
cleared (30 min, 4 °C) on Sepharose6 beads (Sigma-Aldrich). Subse-
quently, lysates were incubated (3 h, 4 °C) with monoclonal anti-HA
agarose antibody (Sigma-Aldrich). Beads were recovered by centri-
fugation and washed three times with lysis buffer before analysis by
SDS-PAGE and immunoblotting.

Affinity Purifications and Sample Preparation for Liquid Chroma-
tography Mass Spectrometry—Tandem affinity purifications were per-
formed as previously described (15, 61). Affinity purifications were
performed as biological replicates and cell lines expressing SH-
tagged GFP were used as negative controls. In brief, cell lines were
incubated with 1-2 ng/ml doxycycline for 7-24 h to induce expression
of SH-tagged bait proteins. Whole cell extracts were prepared in 50
mm HEPES (pH 8.0), 150 mm NaCl, 5 mm EDTA, 0.5% Nonidet P-40,
50 mm NaF, 1 mm NazVO,, 1 mm PMSF, and protease inhibitor
mixture. Cell lysates were cleared by centrifugation (13000 rpm, 20
min, 4 °C). Proteins were quantitated by Bradford assay using y-glo-
bin as standard (Bio-Rad). 50 mg total lysate were incubated with
StrepTactin Sepharose beads (IBA, Géttingen, Germany). Tagged
proteins were eluted with p-biotin (Alfa-Aesar, Ward Hill, MA) followed
by a second purification step using HA-agarose beads (Sigma-Al-
drich). Protein complexes were eluted with 100 mm formic acid and
immediately neutralized with triethylammonium bicarbonate buffer
(Sigma-Aldrich). Samples were digested with trypsin (Promega, Fitch-
burg, WI), and the resultant peptides desalted and concentrated with
customized reversed-phase tips (62). The volume of the eluted sam-
ples was reduced to ~2 ul in a vacuum centrifuge and reconstituted
with 5% formic acid.

Reversed-Phase Liquid Chromatography Mass Spectrometry—
Mass spectrometry was performed on a hybrid linear trap quadrupole
Orbitrap Velos mass spectrometer (ThermoFisher Scientific, Wal-
tham, MA) using the Xcalibur version 2.1.0 coupled to an Agilent 1200
HPLC nanoflow system (dual pump system with one precolumn and
one analytical column) (Agilent) via a nanoelectrospray ion source
using liquid junction (Proxeon, Odense, Denmark). Solvents for liquid
chromatography mass spectrometry separation of the digested sam-
ples were as follows: solvent A consisted of 0.4% formic acid in water
and solvent B consisted of 0.4% formic acid in 70% methanol and
20% isopropanol. From a thermostatic microautosampler, 8 ul of the
tryptic peptide mixture were automatically loaded onto a trap column
(Zorbax 300SB-C18 5 um, 5 X 0.3 mm, Agilent) with a binary pump
at a flow rate of 45 ul/min. 0.1% TFA was used for loading and
washing the precolumn. After washing, the peptides were eluted by
back-flushing onto a 16 cm fused silica analytical column with an
inner diameter of 50 um packed with C18 reversed phase material
(ReproSil-Pur 120 C18-AQ, 3 um, Dr. Maisch, Ammerbuch-Entringen,
Germany). The peptides were eluted from the analytical column with
a 27 min gradient ranging from 3 to 30% solvent B, followed by a 25
min gradient from 30 to 70% solvent B, and, finally, a 7 min gradient
from 70 to 100% solvent B at a constant flow rate of 100 nl/min. The
analyses were performed in a data-dependent acquisition mode using
a top 15 collision-induced dissociation method. Dynamic exclusion
for selected ions was 60 s. A single lock mass at m/z 445.120024 was
employed (63). The maximal ion accumulation time for MS in the
Orbitrap and MS? in the linear trap was 500 and 50 ms, respectively.
Automatic gain control was used to prevent overfilling of the ion traps.
For MS and MS?, automatic gain control was set to 10° and 5,000
ions, respectively. Peptides were detected in MS mode at a resolution
of 60,000 (at m/z 400). The threshold for switching from MS to MS?
was 2,000 counts. All samples were analyzed as technical, back-to-
back replicates.

Data Analysis—The acquired raw MS data files were processed
with msconvert (ProteoWizard Library v2.1.2708) and converted into
Mascot generic format (mgf) files. The resultant peak lists were
searched against either the human or mouse SwissProt database
v2014.03_20140331 (40,055 and 24,830 sequences, respectively, in-
cluding isoforms obtained from varsplic.pl (64) and appended with
known contaminants) with the search engines Mascot (v2.3.02,
MatrixScience, London, UK) and Phenyx (v2.5.14, GeneBio, Geneva,
Switzerland) (65). Submission to the search engines was via a Perl
script that performs an initial search with relatively broad mass toler-
ances (Mascot only) on both the precursor and fragment ions (=10
ppm and *0.6 Da, respectively). High-confidence peptide identifica-
tions were used to recalibrate all precursor and fragment ion masses
prior to a second search with narrower mass tolerances (+ 4 ppm and
+0.3 Da, respectively). One missed tryptic cleavage site was allowed.
Carbamidomethyl cysteine and oxidized methionine were set as fixed
and variable modifications, respectively. To validate the proteins,
Mascot and Phenyx output files were processed by internally devel-
oped parsers. Proteins with =2 unique peptides above a score T1 or
with a single peptide above a score T2 were selected as unambiguous
identifications. Additional peptides for these validated proteins with
score >T3 were also accepted. For Mascot and Phenyx, T1, T2, and
T3 peptide scores were equal to 16, 40, 10 and 5.5, 9.5, 3.5, respec-
tively (o value <1073). The validated proteins retrieved by the two
algorithms were merged and any spectral conflicts discarded and
grouped according to shared peptides. By applying the same proce-
dure against a reversed database, a false-positive detection rate of
<1 and <0.1% (including the peptides exported with lower scores)
was determined for proteins and peptides, respectively. The signifi-
cance of the interactions from affinity purification-mass spectrometry
(AP-MS) experiments was assessed using the SAINT software (51)
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and the CRAPome database (53). GFP pulldowns were used as the
negative control. Commonly known contaminants including trypsin
and keratin were removed. Visualization of interaction data was per-
formed using R statistical environment (66). All prey proteins with a
SAINT score of >0.95 were identified as high-confidence interactors.
Supplemental Tables S1 and S2 give the TAP-LC-MSMS analysis
results for NRAS G12D and MLKL S358D, respectively. The mass
spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium (67) via the PRIDE partner repository with
the dataset identifier PXD002855.

Cell Viability Assays—Cells were seeded in 96-well plates at the
appropriate cell density. For drug sensitivity experiments, cells were
incubated with increasing drug concentrations for 72 h. For cell death
assays, cells were incubated with the indicated compounds as stated
or overnight (14 h). Cell viability was determined using CellTiter Glo
Luminescent Cell Viability Assay (Promega) according to the instruc-
tions provided by the manufacturer. Luminescence was recorded with
a SpectraMax M5Multimode plate reader (Molecular Devices, Sunny-
vale, CA). Data were normalized to values of untreated controls.

Flow Cytometry—Samples were analyzed on an LSR Fortessa (BD
Biosciences), and data analysis was performed using FlowJo soft-
ware version 7.6.3 (Tree Star Inc., Ashland, OR).

Proliferation Competition Assay—To analyze the influence of
inducible SH-tagged bait protein expression on cell proliferation
and survival, pRSHIC-NRAS G12D (mCherry+) and pRSHIC-GFP
(mCherry+/GFP+) transduced Ba/F3 rtTA3 cells were induced with 1
ng/ml doxycycline. After 24 h, cells were mixed in a 1:1 ratio and
cultured in the presence of doxycycline with or without IL-3. The
percentage of mCherry+ and mCherry+/GFP+ populations was
monitored daily by flow cytometry, gating only viable cells (FSC/SCC).

Microscopy—Microscopy images were taken at 10X with a Leica
DFC310 FX on a Leica DM IL LED microscope (Leica Microsystems,
Wetzlar, Germany) or at 20X on an Operetta automated confocal
microscope (PerkinElmer, Waltham, MA) and analyzed with ImageJ
1.44p (NIH, open source). The fluorophores used contained no over-
lapping spectrums and channels were imaged sequentially.

Experimental Design and Statistical Rational—Tandem affinity pu-
rifications were performed as biological replicates (n = 2) and ana-
lyzed by LC-MSMS as technical duplicates. Cell viability assay data
were normalized to untreated control and are shown as mean value =
s.d. of at least two independent experiments (n = 2) performed in
triplicates. Flow-cytometry-based proliferation competition assay
data are shown as mean value * s.d. of at least two independent
experiments (n = 2). Flow cytometry and immunoblot results shown
are representative of at least two independent experiments (n = 2).

RESULTS AND DISCUSSION

Generation of a Retroviral Expression System for Inducible,
Dose-Dependent, and Reversible Expression of SH-Tagged
Bait Proteins—We assembled an inducible expression system
in a self-inactivating retroviral vector containing a tetracycline
response element tight (TREtight) promoter (29). For expres-
sion of N- or C-terminally TAP-tagged cDNAs, we inserted a
gateway-cloning cassette preceded or followed by two
streptavidin and one hemagglutinin epitope(s) (12) (Fig. 1A).
The recombination efficiency of the gateway system allows
high-throughput cloning, and thus, the vector is suitable for
use with gateway-compatible cDNA and ORF libraries. Fur-
thermore, we linked a fluorescent mCherry marker to the
cDNA expression cassette via an internal ribosome entry site
(IRES) sequence to enable tracing of bait protein-expressing

cell populations by flow cytometry or microscopy. The doxy-
cycline-controlled reverse tet transactivator protein 3 (rtTA3)
(80) in combination with different TRE promoters has proven
to be effective in inducing transgene expression in a broad
range of cell lines and tissues in vivo (31). To generate Tet-On
proficient cell lines, the respective target cells are first stably
transduced with rtTA3 or a combination of nTA3 and the
ecotropic receptor (RIEP), the latter also providing enhanced
biosafety (32). Cell lines with inducible bait protein expression
are then established by retroviral transduction of rtTA3 trans-
gene-harboring target cells with the respective pRSHIC con-
structs (Fig. 1B). Transduced cells are selected using blasti-
cidin, and transgene expression in the target cell lines can be
assessed by flow cytometry or immunoblotting prior to
TAP-MS and follow-up experiments.

To characterize the properties of this novel expression sys-
tem, we transduced human leukemia K-562 RIEP, KCL-22
RIEP and colorectal adenocarcinoma HT-29 RIEP cells with a
vector construct encoding SH-tagged green fluorescent pro-
tein (GFP). Following selection using blasticidin, the cells were
cultured in the presence of doxycycline for 24 h to induce GFP
expression. In all three cell lines, >85% of the cell population
efficiently induced gene expression as determined by the
detection of the mCherry reporter using flow cytometry (Figs.
2A-2C). Target protein expression was confirmed by immu-
noblotting for SH-tagged GFP (Figs. 2D-2F). Additionally, we
observed strong correlation between GFP and mCherry fluo-
rescence (Fig. 2G and Supplemental Figs. 1A-1C), indicating
that flow cytometry-based detection of the mCherry marker
provides a reliable surrogate measure for efficient induction of
transgene expression. The TREtight promoter exhibits low
basal expression while promoting high-level transcription
upon induction. Depending on the promoter used, the effi-
ciency of inducible expression by Tet-regulated systems and
the basal expression levels can vary between different cell
types (31). For bait proteins with elevated basal expression
levels in the context of the TREtight promoter, we additionally
created a set of vectors harboring a TRE3G promoter (Sup-
plemental Fig. 2A), which provides strongly reduced basal
expression compared with earlier versions of the TRE pro-
moter (33) (Supplemental Fig. 2B). As demonstrated in K-562
RIEP GFP cells, expression of bait proteins can be modulated
by the addition of increasing concentrations of doxycycline
(Fig. 2H). Furthermore, we monitored induction kinetics, indi-
cating that GFP was induced within hours after doxycycline
addition and continued to accumulate over 24 h (Fig. 2/).
Removal of doxycycline led to a decline in GFP levels, illus-
trating the reversibility of bait expression (Fig. 2/). Altogether,
these data establish pRSHIC as a versatile inducible vector
system that enables scaling and reversible expression of SH-
tagged bait proteins in multiple mammalian cell types.

Phenotypic Characterization and Interaction-Proteomic Anal-
ysis of NRAS G12D in the Murine Pro B Cell Line Ba/F3—
Cancer genome sequencing projects continue to reveal novel
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Fic. 1. Main features of pRSHIC and workflow for generation of inducible cell lines. (A) Schematic illustration of inducible TREtight-
driven expression vectors with Gateway-cloning cassette fused to N- (upper) or C-terminal (lower) SH-tag. (B) Workflow for generation of

inducible cell lines amenable to TAP-MS and follow-up experiments.

gene mutations and fusions (23). Understanding the molecular
function of these genetic alterations requires characterization
of their phenotypic impact on transformation and specific
influence on protein—protein interactions (34, 35). We there-
fore chose to exemplify utility of pRSHIC through phenotypic
analysis of the oncogenic G12D mutant of NRAS, a member
of the rat sarcoma (RAS) family (H-, K-, and NRAS) of guanos-
ine triphosphate (GTP)-binding proteins and frequently mu-
tated in hematological malignancies (22). We demonstrated
the growth-promoting effects and delineated the interactome
of NRAS G12D in the murine bone-marrow-derived pro-B cell
line Ba/F3. This cell line requires interleukin (IL)-3 for survival
and proliferation and thus constitutes a convenient tool for
studying oncogene-induced growth factor independence (36).
We generated Tet-On competent Ba/F3 cells inducibly ex-
pressing N-terminal SH-tagged NRAS G12D or a GFP control
(Supplemental Figs. 3A and 3B). To examine NRAS G12D-
mediated growth factor independence, we performed flow
cytometry-based proliferation-competition assays. While
both cell populations showed equal growth in the presence of
IL-3, NRAS G12D-expressing cells rapidly out-competed
GFP-expressing control cells upon IL-3 withdrawal (Fig. 3A).
Cytokine removal led to loss of signal transducer and activa-

tor of transcription 5 (STAT5) phosphorylation in both cell
lines; however, NRAS G12D cells maintained elevated mito-
gen-activated protein kinase (MEK) 1/2 phosphorylation and
hence activation of the mitogen-activated protein kinase
pathway (Fig. 3B). Consequently, NRAS G12D-expressing
cells showed marked sensitivity to the MEK 1/2 inhibitors
trametinib (GSK1120212) (Fig. 3C) and selumetinib (AZD6244)
(Fig. 3D) in the absence of IL-3, as increasing drug concen-
trations reduced mitogen-activated protein kinase pathway
activation and ribosomal protein S6 kinase 1 (S6K1) phospho-
rylation (Supplemental Fig. 3C). In order to map the interac-
tome of NRAS G12D, we induced bait protein expression for
24 h with doxycycline in the presence of IL-3 and performed
TAP coupled to one-dimensional gel-free liquid chromatogra-
phy tandem mass spectrometry (TAP-LC-MSMS). Signifi-
cance analysis of interactome (SAINT) analysis using GFP
purifications as a control for nonspecific protein interactions
identified Ras and Rab interactor 1 (RIN1) among the high-
confidence interacting proteins of NRAS G12D (Fig. 3E and
Supplemental Table 1). Indeed, RIN1 has been described as
associating with harvey rat sarcoma viral oncogene homolog
(HRAS) and to preferentially bind active, GTP-loaded RAS
(87). RIN1 competes with the RAF proto-oncogene serine/
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Fic. 2. pRSHIC allows inducible, dose-dependent, and reversible expression of SH-tagged bait proteins. (A-F) Flow cytometry and
immunoblot analysis of K-562 RIEP (A, D), HT-29 RIEP (B, E) and KCL-22 RIEP (C, F) GFP cells, untreated or treated with 1-2 ug/ml doxycycline
for 24 h. Immunoblots were probed with the indicated antibodies. Wild-type (WT) cells act as a baseline control. (G) Microscopy (20X;
brightfield, fluorescence) of HT-29 RIEP GFP cells induced or not for 24 h with 2 ng/ml doxycycline (scale bar: 100 um). (H) K-562 RIEP GFP
cells were treated with increasing concentrations of doxycycline for 24 h. Cells were lysed and immunoblotted as indicated. (/) K-562 RIEP GFP
cells were induced with 1 ug/ml and doxycycline subsequently withdrawn for the indicated time span. Cells were lysed and immunoblotted with
the indicated antibodies. Results are representative of two independent experiments (n = 2).

threonine-protein kinase (RAF1) for RAS binding (38). Further-
more, we identified phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit gamma isoform (p110+y; PK3CG) of
the phosphoinositide-3-kinase (PI3K) complex as a significant
interactor. Binding of active RAS isoforms to p110y leads to
activation of the PI3K-pathway (39, 40) and the interaction
with p110a (PK3CA) is important for mutant RAS-induced
cancer formation and maintenance in vivo (41, 42). In sum-
mary, by recapitulating the interaction partners and pheno-
typic features of the oncogenic NRAS G12D protein, we
showed that pRSHIC is an efficient tool to functionally anno-
tate and mechanistically characterize proteins bearing can-
cer-relevant mutations.

Phenotypic Analysis of a Cell Death-Inducing MLKL S358D
Mutant Protein—The possibility of tightly controlling the tim-
ing and extent of protein expression is necessary when inves-
tigating proteins that trigger cell death. The pseudokinase

MLKL plays a key role in the execution of necroptosis, a form
of nonapoptotic programmed cell death relying on the recep-
tor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3
that in recent years has been the subject of very intense
research efforts (26-28). Upon activation by RIPK3-mediated
phosphorylation, MLKL triggers destabilization and rupture of
membranes, resulting in rapid cell death (43-47). We ex-
pressed and analyzed a constitutively active MLKL mutant,
known to trigger necroptosis (25, 46). We chose to study the
RIPK3-phosphorylation mimicking MLKL S358D mutant (48)
in the human colorectal adenocarcinoma cell line HT-29, pro-
ficient to undergo necroptosis. We observed robust expres-
sion of the MLKL S358D mutant in HT-29 RIEP cells within 6 h
of doxycycline addition (Fig. 4A and Supplemental Fig. 4A). As
we have shown previously (48), exogenous expression of
constitutively active mutant versions of MLKL induces toxicity
in these cells. Indeed, MLKL S358D triggered cell death within
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Fic. 3. Phenotypic characterization and interaction-proteomic analysis of NRAS G12D in Ba/F3 cells. (A) Flow cytometry-based prolifer-
ation competition assay for Ba/F3 rtTA3 cells expressing NRAS G12D (mCherry+) or GFP (mCherry+/GFP+). After 24 h doxycycline induction cells
were mixed at a 1:1 ratio and grown in the presence of 1 ug/ml doxycycline with or without IL-3. The distribution of cell populations was monitored
at the indicated time points using flow cytometry. Data represent mean value * s.d. of at least two independent experiments. (B) Ba/F3 rtTA3 GFP
and NRAS G12D cells were induced with 1 ug/ml doxycycline in the presence of IL-3 for 48 h. Cells were then washed once, cultured in the
presence of 1 ug/ml doxycycline with or without IL-3 for 12h, lysed, and immunoblotted with the indicated antibodies. (C-D) Cell viability of Ba/F3
rtTA3 NRAS G12D-expressing cells in the presence or absence of IL-3 upon treatment with trametinib (C) or selumetinib (D) as indicated. Data
represent mean value * s.d. of at least two independent experiments performed in triplicates and normalized to untreated control. (E) Scatter plot
summarizing the SAINT-based significance and CRAPome frequency analysis of NRAS G12D TAP-LC-MSMS experiments. Ba/F3 rtTA3 NRAS
cells were grown in presence of IL-3 and induced for 24 h with 1 ug/ml doxycycline. Data shown are based on two independent experiments (n =
2), each analyzed as technical duplicates and using Ba/F3 rtTA3 GFP-expressing cells as negative control.
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Fic. 4. Phenotypic and TAP-LC-MSMS analysis of the cell death-inducing MLKL S358D mutant. (A) HT-29 RIEP MLKL S358D cells were
treated with 2 ug/ml doxycycline for the indicated time. Cells were lysed and immunoblotted with the indicated antibodies. (B) Cell viability of
HT-29 RIEP MLKL S358D cells induced with 2 ug/ml doxycycline for the indicated time. Data represent mean value = s.d. of two independent
experiments performed as triplicates and normalized to the untreated control. (C) Cell viability was examined in HT-29 RIEP MLKL S358D cells
untreated or treated overnight with 2 pg/ml doxycycline and the compounds Nec-1 (10 um) or NSA, as indicated. Data represent the mean
value * s.d. of two independent experiments performed as triplicates and normalized to the untreated control. (D) Scatter plot summarizing
the SAINT-based significance and CRAPome frequency analysis of MLKL S358D TAP-LC-MSMS experiments. HT-29 RIEP MLKL S358D cells
were induced for 7 h with 2 ug/ml doxycycline. Data shown are based on two independent experiments (n = 2), each analyzed as technical
duplicates with HT-29 RIEP GFP-expressing cells used as the negative control.

12 h after induction as demonstrated by cell viability meas-
urement (Fig. 4B) and microscopy (Supplemental Fig. 4B). The
MLKL inhibitor necrosulfonamide (NSA) (46) inhibited MLKL
S358D-induced cell death (48) in a dose-dependent manner
(Fig. 4C). Conversely, the RIPK1 inhibitor necrostatin-1
(Nec-1) (49) that blocks necroptosis signaling upstream of
MLKL, did not confer protection. These data demonstrate that
pRSHIC enables expression and, consequently, phenotypic
analysis of proteins that promote cell death.

TAP-LC-MSMS Analysis Identifies MLKL S358D as an
HSP90 Client Protein—To identify novel protein interaction
partners of MLKL S358D, the cells were induced for 7 h with
doxycycline before harvest and TAP-LC-MSMS analysis. The
known interactor RIPK3 (47) was significantly enriched in
MLKL S358D pulldowns (Fig. 4D). Furthermore, heat-shock-
related 70 kDa protein 2 (HSP72), HSP90A/B, and the kinase-
adaptor cochaperone cell division cycle 37 (CDC37) (50) were

identified as high-confidence interactors based on SAINT
analysis (51). These heat shock proteins act as molecular
chaperones, assisting other proteins to attain and maintain
proper folding (52). The comparably high contaminant repos-
itory for affinity purification (CRAPome) frequencies (53) as-
signed to HSP90 and HSP72 likely reflect the large number of
client proteins they functionally interact with. Chemical inhi-
bition of HSP90 function leads to client protein destabilization
and degradation. Importantly, the HSP90 inhibitor geldana-
mycin (54) has been shown to block necroptotic cell death
(55). This inhibitory effect has been attributed to the destabi-
lizing effect on the two main kinases involved in necroptosis
signaling, RIPK1 and RIPK3. Both have been demonstrated to
depend on HSP90 (56-58). Our TAP-MS analysis would, how-
ever, suggest that the interaction of MLKL with HSP90 may
also contribute to this inhibitory effect (Fig. 4D). In order to
investigate the functional relevance of HSP90 for MLKL
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Fig. 5. MLKL is a novel HSP90 client protein. (A) HT-29 RIEP MLKL S358D cells were treated with 2 ug/ml doxycycline and NSA (10 um),
Nec-1 (10 um) or geldanamycin (GA, 1 um) for 3 h. Cells were lysed and immunoblotted with the indicated antibodies. Asterisk (*) denotes
nonspecific band. Data shown are representative of three independent experiments. (B) HT-29 RIEP MLKL S358D cells were pretreated for 1 h
with 10 um MG132 or 10 um chloroquine (CQ) before induction with 2 ug/ml doxycycline and the addition of 1 um GA or DMSO. After 3 h of
incubation, cells were harvested, lysed, and immunoblotted with the indicated antibodies. Data shown are representative of two independent
experiments. (C) Cell viability was assessed in HT-29 RIEP MLKL S358D cells induced with 2 png/ml doxycycline and treated with 10 um NSA
or GA as indicated for 14 h. Data represent mean value * s.d. of three independent experiments performed as triplicates and normalized to
the untreated control. (D) HT-29 RIEP MLKL cells were pretreated for 1 h with 10 um MG132 before induction with 2 png/ml doxycycline and
addition of 1 um GA or DMSO. After 3 h of incubation, cells were harvested, lysed, and immunoblotted with the indicated antibodies. Data
shown are representative of two independent experiments. (E) Expression of the indicated bait proteins was induced in HT-29 cells with 2 pug/ml
doxycycline for 6 h. Cell lysates were immunoprecipitated and whole cell extracts (WCE) and immunoprecipitates (IP) were analyzed by

immunoblotting with the indicated antibodies. Asterisks (**) denote
experiments.

S358D, we induced expression in HT-29 RIEP MLKL S358D
cells by doxycycline addition for 3 h in the presence of
geldanamycin, Nec-1, or NSA. Geldanamycin led to a strong
decrease in MLKL S358D protein levels, whereas the other
inhibitors had no effect (Fig. 5A). To exclude the possibility
that geldanamycin interfered with the inducible expression
system per se, we verified that the mCherry reporter was
equally expressed in both control and geldanamycin-treated
samples by flow cytometry (Supplemental Fig. 4C). The rapid
degradation of MLKL S358D upon HSP90 inhibition sug-
gested that this protein constitutes a novel HSP90/CDC37
client. Indeed, the closely related mixed lineage kinase 3
(MLKS3) has previously been shown to be stabilized by asso-
ciation with HSP90 and the cochaperone CDC37 (59). The
geldanamycin-induced loss of MLKL S358D protein could be

SH-tagged RIPK3. Data shown are representative of two independent

prevented by simultaneous treatment with the proteasome
inhibitor MG132 (Fig. 5B), whereas blocking lysosomal protein
degradation using chloroquine had no effect. This data sug-
gested that MLKL S358D was subjected to proteasomal deg-
radation in the absence of HSP90-mediated stabilization, sim-
ilar to previously described HSP9O client proteins (57). Neither
Nec-1 nor ponatinib, recently described to inhibit both RIPK1
and RIPK3 (48, 60), blocked MLKL S358D-induced cell death,
indicating that it proceeded independently of these kinases.
Yet, the HSP90 inhibitor geldanamycin efficiently blocked
MLKL S358D-dependent necroptotic cell death in HT-29 cells
(Fig. 5C), further corroborating the requirement of HSP90 for
MLKL S358D.

Finally, we investigated the requirement of HSP90 function
for the MLKL wild-type protein. Similar to the S358D mutant,

Molecular & Cellular Proteomics 15.3

1147



SBMB

SA

MOLECULAR & CELLULAR PROTEOMICS =

P

MC

pPRSHIC Enables Identification of MLKL as HSP90 Client

geldanamycin induced destabilization of the wild-type MLKL
protein and this degradation could be blocked by concomi-
tant MG132 treatment (Fig. 5D). To confirm the interaction
between HSP90 and wild-type MLKL as well as the MLKL
S358D mutant, we performed coimmunoprecipitation experi-
ments. MLKL copurified HSP90, similar to the previously de-
scribed HSP90 client protein RIPK3 (58) (Fig. 5E). As demon-
strated by the identification and characterization of MLKL as a
novel HSP9O0 client, pRSHIC is an efficient tool to perform phe-
notypic and TAP-MS analysis of toxicity-promoting proteins.

CONCLUSIONS

We have established a retroviral-based expression system
that expands the repertoire of cell lines amenable to SH-
based TAP-MS experiments and thus enables interaction pro-
teomic experiments in the physiologically relevant cellular
background. The IRES-linked fluorescent reporter protein al-
lows quick evaluation of bait protein induction by flow cytom-
etry, fluorescence-activated cell sorting of specific cell pop-
ulations and live tracing of bait-expressing cells to assess
phenotypic changes (i.e. morphology, surface marker expres-
sion, drug resistance). Intracellular localization of the bait
proteins can be assessed by probing for the N- or C-termi-
nally fused SH-tag. Moreover, the inducibility of bait expres-
sion allows proteins that promote cell death to be studied and
opens the opportunity to perform targeted chemical screens
in the cell system of choice.

Here, we demonstrated efficiency and applicability of
pRSHIC for TAP-MS-based interaction proteomics studies on
the oncogenic NRAS G12D mutant protein (22) in murine
Ba/F3 cells. Furthermore, we performed interaction proteom-
ics and detailed phenotypic analysis of the cell death-induc-
ing MLKL S358D mutant protein (25) in HT-29 cells, leading to
the identification of MLKL as a novel HSP90 client protein.
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2.5 Interlude

The development of targeted therapeutic agents has substantially been influenced by the
identification and clinical advancement of BCR-ABL TKIs in CML. The development of
resistance due to the acquisition of TyrK domain mutations has been recognized as a pressing
constraint in the broad and durable application of kinase inhibitor-based therapy in CML and
beyond. In order to design potential novel combination treatments as alternative therapeutic
options and to derive novel candidate biomarkers of suboptimal response in resistant patients,
we rationalized the necessity to identify the repertoire of genes important for kinase inhibitor-
mediated blockade of cancer cell proliferation.

Here we have performed gene-trap based mutagenesis screens in a human haploid CML cell
line upon treatment with the six 1%, 2" and 3™ generation BCR-ABL inhibitors. Integrative
analysis has allowed us to identify a common set of 6 gene candidates which upon loss-of-
function lead to cellular resistance to pharmacological BCR-ABL inhibition. More specifically,
we could identify the LZTR1 protein as an adaptor protein for the CUL3 E3 ligase complex and
being critically important for the regulation of RAS and MAPK pathway activation state in a
broad range of cell lines. Furthermore, these observations enabled us to experimentally
demonstrate that LZTR1 mutations identified in Noonan syndrome (NS), Schwannomatosis
(SWNMT) and glioblastoma (GBM) are loss-of-function mutations affecting RAS/MAPK

signaling.
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Introductory paragraph

Small molecule tyrosine kinase inhibitor (TKI)-based treatment of chronic myeloid leukemia
(CML), directed by the presence of the Philadelphia chromosome (Ph*) encoded BCR-ABL
tyrosine kinase, is a paradigm of targeted cancer therapy'2. However, the development of TKI
resistance limits the long-term success of these therapeutics®. We used a genetic screening
approach in the near-haploid CML cell line KBM-7* to identify six genes whose individual loss-
of-function led to TKI drug resistance. Among these, we here investigated the role of the
leucine zipper like transcription regulator 1 (LZTR1) gene, as it was mechanistically enigmatic
despite its conspicuous genetic involvement in a variety of human developmental and
oncological diseases. LZTR1 protein is localized to the endosomal compartment of human
cells and interacted with all three RAS GTPase proteins (K-, N- and HRAS). By acting as an
adaptor protein for the cullin (CUL)-3 E3 ligase protein complex, LZTR1 protein mediated
KRAS ubiquitination. Investigation of LZTR1 function in Drosophila, a classical model system
to study the RAS pathway, showed that loss of the LZTR1 orthologue CG3711 in vivo

increased ectopic wing vein formation and rescued Ras""?#

-mediated R7 photoreceptor loss,
consistent with a role for LZTR1 in RAS pathway regulation. In CML cells, loss of LZTR1
activity led to enhanced mitogen-activated protein kinase (MAPK) pathway activation and
reduced TKI sensitivity in a KRAS-dependent manner. To genetically validate the interaction
between LZTR1 and RAS, we tested whether loss of LZTR1 was functionally rescued through
simultaneous ablation of the KRAS gene. Indeed, genetic inactivation of KRAS reverted MAPK
pathway hyperactivation. LZTR1 missense mutations identified in Noonan syndrome (NS)°® and
glioblastoma (GBM)® on the other hand, failed to revert the loss-of-function phenotype,
providing a mechanistic rationale for the involvement of LZTR1 in RASopathies and cancers.
Our genetic survey for TKI drug resistance genes thus identified LZTR1 as a CUL3 adaptor for

RAS family members whose role in modulating stimulus-dependent MAPK signaling appears

to be critical for specific developmental and growth regulatory processes.
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Main text

CML is characterized by the expression of the constitutively active oncogenic tyrosine kinase
fusion BCR-ABL originating from the Philadelphia chromosomal (Ph*) translocation
t(9;22)(q34;q11)?. The proliferation and survival of Ph* CML cells depends on the activation
state of key cellular signaling cascade networks including the MAPK, PI3K/AKT and JAK/STAT
pathways?. The development of the TKI imatinib has provided a successful targeted
therapeutic example, although development of resistance mainly due to kinase domain
mutations proved to be a persistent challenge'?. Different 2" and 3™ generation TKls have
been developed to combat drug resistance induced by kinase domain mutations®.

We have previously used haploid genetic screens in the near-haploid CML cell line KBM-7 to
show that the experimental set up could be successfully employed for the unbiased
identification of candidate genes affecting BCR-ABL inhibitor resistance by alternative
mechanisms®*. Encouraged, we decided to here mount a full haploid genetic screening and
validation campaign with the six TKls that were in clinical use or evaluation with the hope that
results could lead to a more comprehensive understanding of drug resistance mechanisms
(Extended Data Fig. 1a). Cells were mutagenized using a retroviral gene-trap and
subsequently exposed to each of the small molecule inhibitors at concentrations corresponding
to 1IC*°-IC"® dosage (Extended Data Fig. 1b). Resistant cell populations were collected after
14-21 days of selection and genomic gene-trap insertions identified by deep sequencing. Each
screen resulted in significant enrichment of disruptive insertions in 5 to 18 different genes (Fig.
1a-f and Extended Data Fig. 1c). We identified a recurrent set (=4 screens) of six genes (NF1,
WT1, PTPN1, PTPN12, LZTR1, BAP1 - “TOP6” set) (Fig. 1g) with significant
overrepresentation of disruptive genomic gene-trap integrations strongly indicating a selective
advantage upon drug treatment (Extended Data Fig. 2a,b).

We employed a lentiviral CRISPR/Cas9 multi-color competition assay (MCA)-based co-culture
system to evaluate gene loss-of-function-mediated drug resistance effects upon small
molecule inhibitor treatment. Here, SpCas9 expressing KBM-7 (KBM-7°%*%) cells were infected
with lentiviral guide RNA (sgRNA) vectors co-expressing reporter fluorophores enabling color
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tracing of mixed knock-out and control cell populations by flow cytometry in the same well
(Extended Data Fig. 3a). Cells infected with individual sgRNAs targeting the TOP6 genes
exhibited a strong decrease in cognate protein levels (Extended Data Fig 3b-g) and efficient
indel formation (Extended Data Fig. 3h). As expected, mixed sgRen (targeting Renilla
luciferase) control cell populations (GFP* vs. mCherry®) did not show any preferential out-
growth of resistant cells upon 14 days of TKI treatment. In contrast, KBM-7°*° GFP* cells
harboring sgRNAs targeting TOP6 genes demonstrated enhanced cell survival and out-growth
upon increasing concentrations of imatinib (Fig. 1h) and rebastinib (Extended Data Fig. 3i).
Thus, we could establish by individual functional validation the TOP 6 genes important for drug
action in BCR-ABL" CML cells.

The RAS GTPase activating protein neurofibromin (NF1) and the tyrosine-protein phosphatase
non-receptor type 1 (PTPN1) have been identified previously in genome-wide shRNA screens,
reducing sensitivity to BCR-ABL inhibitors via loss of negative RAS activity regulation and

enhanced BCR-ABL - GRB2 recruitment, respectively ’

. Additionally, tyrosine-protein
phosphatase non-receptor type 12 (PTPN12) has been shown to negatively impinge on MAPK
pathway activation in mammosphere formation 2. All three genes share the ability to modulate
MAPK pathway activation (Fig 2a). In contrast, transcription factor Wilms tumor protein (WT7)
and deubiquitinating enzyme BAP1 exert both oncogenic as well as tumor suppressor
functions due to their involvement in transcriptional regulation®'® (Fig 2a).

In contrast to these five genes, we could not deduce any mechanistic explanation for the role
of leucine zipper like transcription regulator 1 (LZTR1) in enhanced CML cell survival upon
BCR-ABL inhibition from the existing literature. To exclude cell line specific effects, we first
confirmed that loss of LZTR1 expression induced resistance to imatinib and rebastinib in
different CML cell lines (Extended Data Fig. 4b, d-e and data not shown). While we identified
significant LZTR1 enrichment only in four of the genetic screens, K-562°*° sgL.ZTR1 cells
exhibited various degrees of resistance against all tested BCR-ABL TKIis (Fig. 2a,b). In
contrast to other BTB domain-containing proteins LZTR1 displays a reverse domain orientation

with the N-terminal kelch domain preceding the two BTB and partial BACK domains'"">. We
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tested whether both N- and C-terminal domains are essential for the drug resistance
phenotype using a CRISPR/Cas9 based domain scanning strategy' to separately target kelch,
BTB-1 and BTB-2 domains with individual sgRNAs. All protein domain-targeting sgRNAs
showed efficient indel formation (Extended Data Fig. 4a) and convincingly induced resistant
out-growth of domain-targeted cell populations with increasing concentrations of rebastinib,
suggesting that the entire protein is required for inhibitor sensitivity (Fig. 2c). In order to
determine whether LZTR1 exerts its function only in a CML specific context, we tested its drug
sensitivity modulating effect in acute myeloid leukemia (AML) cells driven by the oncogenic
FLT3-ITD tyrosine kinase'®. We infected FLT3 inhibitor sensitive MV4-11°*° AML cells with
LZTR1 targeting sgRNAs (Extended Data Fig. 4c) and observed out-growth of resistant cells
upon tandutinib (Fig 2d), ponatinib (Fig 2e) or quizartinib treatment (Extended Data Fig. 4f)
underlining a role for LZTR1 in the drug response of hematopoietic cancers driven by different
tyrosine kinases.

KBM-7%%° CML cells infected with different sgRNAs targeting LZTR1 displayed enhanced
phosphorylation of MEK and ERK, indicative of augmented MAPK pathway activation (Fig. 2f).
In contrast, global tyrosine phosphorylation, as well as phosphorylation of S6K1, S6 and the
direct BCR-ABL substrate STAT5 remained unchanged (Extended Data Fig. 5a). Additionally,
BCR-ABL* CML (K-562) and FLT3-ITD® AML (MV4-11) cell lines demonstrated similar
enhanced MAPK pathway activation under normal growth conditions (Fig. 2f). Deregulation of
the MAPK pathway was detectable also by sustained MEK and ERK phosphorylation levels in
the presence of increasing imatinib concentrations (Extended Data Fig. 5b). LZTR1 full-length
cDNA complementation in K-562°%° sgLZTR1 cells reverted both enhanced MEK/ERK
phosphorylation as well as TKI resistance (Fig. 2g-h). Interestingly, in comparison to CML cells,
neither HeLa®® nor HEK293T“*° sgLZTR1 cells presented enhanced MAPK pathway
activation under normal culture conditions (Extended Data Fig. 5c). However, upon serum
stimulation after starvation, HEK293T%*? sgLZTR1 cells displayed a more pronounced MEK
and ERK activation than control cells (Extended Data Fig. 5d). As the BCR-ABL activity may
be considered functionally equivalent to constitutive growth factor stimulation this would
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suggest the interesting notion that LZTR1 function may only become manifest upon pathway
stimulation®.

Recently, several genetic studies have identified LZTR7 mutations in glioblastoma (GBM)®,
schwannomatosis (SWNTS)' and Noonan syndrome (NS)°, a developmental syndrome which
is part of the larger group of RASopathies characterized by mutations in members of the
RAS/MAPK pathway '°. Identification of NF1 and LZTR17 loss-of-function induced MAPK
pathway activation in our haploid resistance screens combined with human LZTR1 mutations
in NS raised to us the hypothesis that LZTR1 could be directly involved in regulation of RAS
or RAS like GTPases.

The genetic involvement of different pathway components to the RAS/MAPK pathway has
historically been best discovered using fly development as a model. Drosophila wing vein
formation and eye development serve as excellent read-outs to dissect RAS signaling’'®"°.
CG3711 encodes the Drosophila orthologue of mammalian LZTR1, which contains a unique
N-terminal domain (amino acids 1-184), found in Drosophila species only. This is followed by
the highly conserved remaining part of the protein (53.69% sequence identity) (Extended Data
Fig. 6a-c). We first used a systemic knock-down RNAi approach of CG3711 to identify loss-of-
function phenotype(s) related to RAS signaling. Although knock-down of CG3711 using act5C-
Gal4 was viable, the majority of wings of these flies in three independent RNAi lines displayed
wing vein defects characterized by extra veins and vein tissue (Fig. 3a-c). This phenotype
closely resembles a gain-of-function increase of RAS/MAPK signaling'®?°. For this reason, we
next asked whether CG3711 could genetically interact with Ras. Drosophila R7 photoreceptor
induction serves as paradigm and was instrumental in the dissection of the RAS pathway'"'®.
As there are no viable hypomorphic loss-of-function alleles of dRas (Drosophila Ras), we
employed a mild dominant negative version, Ras"'? “*°, which although locked in the GTP-

bound state does not activate MAPK signaling®'. Ras""'?¢4°

expression in the developing eyes
(via the sevenless/sev-Gal4 expression system) led to a frequent loss of the R7 photoreceptor
(~30% of ommatidia display R7 loss and some also lose other R-cells; Fig. 3d,g). As Ras'"

C40 is constitutively active it also causes ommatidial rotation defects, besides its R7 loss
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effect’’??, serving as internal control. Strikingly, upon sev-Gal4 driven CG3711 RNAi and

RaSV12 C40

co-expression, the loss of R7 phenotype was almost completely suppressed (Fig.
3e,g ; note that all three CG3777 RNAI lines display similar suppression of the R7 loss).
Importantly, as a control, the ommatidial rotation defects are rather enhanced than suppressed

as these involve MAPK independent RAS signaling?', which is not blocked in Ras"' %% (

Fig.
3e), consistent with an increase in RAS activity. Noteworthy, CG3777 RNAI in the eye alone
did not induce phenotypic changes, in contrast to ectopic vein formation in the wing (Fig 3f).
Altogether, the data obtained using Drosophila genetics corroborate the hypothesis that LZTR1
is a RAS/MAPK pathway component with a negative regulatory role.

To obtain insight in the LZTR1 mode of action we co-expressed LZTR1 and different RAS
isoforms in in HEK293T cells. LZTR1 co-immunoprecipitated with KRAS4A (Fig. 3h), NRAS,
HRAS (Extended Data Fig. 7a,b), and, to a lesser extent, KRAS4B (Fig. 3i) suggesting direct
or indirect physical association of LZTR1 with members of the RAS family of proteins. To
investigate the subcellular localization of LZTR1 we switched to HelLa cells with a large cell
body convenient for immunofluorescence. Immunostaining of inducibly expressed tagged
LZTR1 revealed proximity and co-localization with the endosomal markers EEA1, RAB5 and
RABY7, respectively, but not with golgi (Golgin97) or lysosomal (LAMP1) markers (Extended
Data Fig. 8a-g). This is compatible with the notion that all three RAS GTPases can signal from
endosomal compartments®. Interestingly, HRAS endosomal localization is regulated by
ubiquitination resulting in modulation of MEK/ERK activity?.

We sought to investigate whether LZTR1 affected ubiquitination of RAS family members. The

25,26

ubiquitination of RAS proteins underlies dynamic stimulus dependent regulation and can

result in diverse outcomes such as BTrCP poly-ubiquitination-induced HRAS degradation?’,

mono- and di-ubiquitination-mediated activity and effector protein binding regulation?*2°

or
alteration of intracellular trafficking and stabilization of endosomal HRAS localization
modulating ERK activation®*. BTB domain-containing proteins serve as adaptor proteins for

the CUL3 E3 ligase complex enabling specific substrate recognition and ubiquitination®.

Therefore, we tested whether LZTR1 and CUL3 would bind. Upon co-expression in HEK293T
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cells, CUL3 indeed co-immunoprecipitated with LZTR1 (Extended Data Fig. 7c) in agreement
with previous reports ®*'. We tested the possibility that the CUL3-LZTR1 E3 ligase complex
ubiquitinated KRAS, thereby regulating KRAS signaling properties and MAPK pathway
activation state in the presence of the proteasome inhibitor MG 132 known to stabilize substrate
interactions?. While co-expression of HA-ubiquitin with KRAS4A alone only demonstrated a
basal state of ubiquitination, the addition of tagged CUL3 and LZTR1 led to a substantial
increase in ubiquitination (Fig. 3j). In contrast, the two LZTR1 mutants R198G and G248R
identified in GBM and NS, failed to induce a similar increase in ubiquitination on KRAS4A (Fig.
3k), suggesting a possible biochemical mechanism for these genetic mutations.

If indeed the action of RAS is epistatic to LZTR1, then loss of RAS function should compensate
loss of LZTR1 activity. In this case, it should be possible to assess the disease-associated
LZTR1 mutations by their dependency on RAS activity. To validate the experimental system,
we first confirmed the prediction that loss of LZTR1 function would enhance RAS activity in K-
562 cells (Extended Data Fig. 9a). We then performed CRISPR/Cas9-based double knock-out
MCA experiments (Extended Data Fig. 9b), infecting sgLZTR1 cells with an additional set of
sgRNAs targeting the three main RAS isoforms (K-, N- and HRAS), RIT1 or sgRen as negative
control and treated these cells with imatinib (Extended Data Fig. 9c-e). As expected, single
sgLZTR1 and sgLZTR1/sgRen double-infected cells displayed the expected resistance
phenotype compared to control sgRen (Fig. 4a). Intriguingly, sgRNAs targeting KRAS
abolished cellular out-growth, whereas NRAS, HRAS and RIT1 targeting sgRNAs failed to do
so (Fig. 4a and Extended Data Fig. 9f). In line, sgLZTR1/sgKRAS cells displayed reduced MEK
phosphorylation comparable to sgRen cells whereas sgNRAS and sgHRAS cells still
maintained enhanced MAPK pathway activation (Fig. 4b). Altogether this genetic interaction
experiment provided formal proof for a functional involvement of RAS in the phenotypes
induced by loss of LZTR1.

Collectively there are more than 50 different mutations that have been mapped to the human
LZTR1 gene in diseases as diverse as developmental RASopathies® and various hereditable
predispositions or acquired forms of cancer®'®. As of now there is no molecular insight into the
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mechanism involved. We chose to focus on missense mutations in NS and GBM that can be
expressed in our experimental system (Fig. 4c). Different mutation-bearing LZTR1 cDNAs
were tested for their ability to complement K-562 CML cells made deficient for endogenous
LZTR1 (Extended Data Fig. 10a). In contrast to WT LZTR1, NS-associated Y199C, S247N,
G248R, R284C, H287Y and GBM-associated W105R, R198G, G248R, T288I, R810W
mutations failed to reduced MEK and ERK phosphorylation, despite being expressed at
comparable or higher levels (Fig. 4d,e). GBM mutations W105R, R198G and the GBM/NS
mutation G248R additionally failed to restore sensitivity to imatinib treatment (Extended Data
Fig. 10b). These findings provide the first functional evidence that the human LZTR1 missense
mutations identified in NS and GBM are loss-of-function mutations depending on RAS function
and thus contribute to the understanding of the disease pathologies by providing a mechanistic
rationale.

Through haploid genetic drug resistance screening we revealed that the so far unknown
cellular function of LZTR1 lies in its ability as adaptor protein for the CUL3 E3 ligase complex
to ubiquitinate and regulate RAS signaling and MAPK activation (Fig. 4f). The study provokes
the important questions on the role of LZTR1-induced RAS ubiquitination. What type of
ubiquitination is induced, where on the RAS protein and in the cell is the ubiquitination
occurring and what is the functional consequence of the ubiquitination ? RAS has been
previously reported to be ubiquitinated and other proteins have been suggested to regulate
RAS signaling through ubiquitination before. However, there has been no consensus as to the
type of ubiquitination or the functional consequences thereof and the previously characterized
Rabex-5 E3 ligase has not yet been involved in any human condition. Clearly more work will
be required to dissect the intricacies of RAS isoform ubiquitination. Our preliminary
investigation using co-transfection systems led to the detection of mono- and di- as well as
poly-ubiquitination on K48 and K63, possibly arguing for LZTR1 promoting a mixed linkage
ubiquitination. While RAS ubiquitination has been observed in large scale proteomic studies

we failed so far to detect dependency on LZTR1 for endogenous RAS ubiquitination. However,
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an accompanying study points to LZTR1 promoting mono-ubiquitination of NRAS and
subsequent impairment of p120GAP binding (Steklov, Baietti et al.).

In summary our study provides functional characterization of six genes involved in TKI
sensitivity of CML cells as well as an unequivocal involvement of an LZTR1-RAS axis in MAPK
pathway regulation leading to TKI therapy resistance. Future studies will be focused on
assessing the clinical utility of all these observations. In general, the findings highlight the
importance of RAS ubiquitination as a second layer of MAPK pathway signaling regulation in

physiology, disease pathology and cancer biology.
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MATERIALS AND METHODS

Cell lines and reagents.

HEK293T were obtained from ATCC (Manassas, VA, USA), K-562, KCL-22 and MV4-11 from
DSMZ (Braunschweig, Germany). KBM-7 were obtained from T. Brummelkamp. HelLa were
provided by M. Hentze. Cells were cultured in DMEM (Gibco, Grand Island, NY, USA), RPMI
(Gibco) or IMDM medium (Gibco) supplemented with 10% (v/v) FBS (Gibco) and antibiotics
(100 U/mL penicillin and 100 mg/mL streptomycin) (Gibco). Cell lines were checked for
mycoplasma by PCR or ELISA. The reagents used were as follows: imatinib (S1026,
Selleckchem, Houston, TX, USA), nilotinib (S1033, Selleckchem), dasatinib (S1021,
Selleckchem), bosutinib (S1014, Selleckchem), rebastinib (DCC-2036, S2634, Selleckchem),
ponatinib (S1490, Selleckchem), quizartinib (S1526, Selleckchem), tandutinib (S1043,
Selleckchem), MG132 (S2619, Selleckchem) and doxycycline (D9891, Sigma-Aldrich, St.

Louis, MO, USA).

Antibodies.

Antibodies used were HA (sc-805, Santa Cruz, Dallas, TX, USA), HA (901501, BioLegend,
San Diego, CA, USA), FLAG (F1804, Sigma-Aldrich), FLAG (#14793, Cell Signaling, Danvers,
MA, USA), V5 (R960-25, Thermo Fisher Scientific, Waltham, MA, USA), V5 (ab9116, Abcam,
Cambridge, UK), NF1 (A300-140A, Bethyl Laboratories, Montgomery, TX, USA), PTPN1 (sc-
1718, Santa Cruz), PTPN12 (A301-302A, Bethyl Laboratories), BAP1 (A302-243A, Bethyl
Laboratories), WT1 (sc-192, Santa Cruz), LZTR1 (HPA071248, Sigma-Aldrich), phospho-
MEK1/2 (#2338, Cell Signaling), MEK1/2 (#9126, Cell Signaling), phospho-ERK1/2 (#4370,
Cell Signaling), ERK1/2 (M5670, Sigma-Aldrich), phospho-STAT5A/B (05-886R, Merck
Millipore, Billerica, MA, USA), STAT5 (610191, BD Biosciences, Franklin Lakes, NJ, USA),
phospho-S6 (#5364, Cell Signaling), p70 S6 kinase (sc-230, Santa Cruz), Golgin97 (ab84340,
Abcam), EEA1 (610457, BD Biosciences), LAMP1 (ab25630, Abcam), RAB7 (#9367, Cell
Signaling), HSP90 (610418, BD Biosciences), RIT1 (ab127041, Abcam), GAPDH (sc-365062,
Santa Cruz) and tubulin (ab7291, Abcam). The secondary antibodies used were goat anti-
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mouse HRP (115-035-003, Jackson ImmunoResearch, West Grove, PA, USA), goat anti-
rabbit HRP (111-035-003, Jackson ImmunoResearch), donkey anti-goat (705-035-003,
Jackson ImmunoResearch), Alexa Fluor 488 goat anti-mouse (A11001, Thermo Fisher
Scientific), Alexa Fluor 488 goat anti-rabbit (A11008, Thermo Fisher Scientific), Alexa Fluor
680 goat anti-mouse (A21057, Thermo Fisher Scientific) and Alexa Fluor 680 goat anti-rabbit

(A-21076, Thermo Fisher Scientific).

Plasmids and cloning.

CRISPR/Cas9-based knock-out cell line generation was performed using pLentiCRISPRv2
(Addgene plasmid #52961) or pLentiCas9-BlastR (Addgene plasmid #52962) and
pLentiGuide-PuroR (Addgene plasmid #52963)*. An IRES-GFP or IRES-mCherry fragment
was added to pLentiGuide-PuroR creating LGPIG (pLentiGuide-PuroR-IRES-GFP) and LGPIC
(pLentiGuide-PuroR-IRES-mCherry) using standard cloning techniques to enable color tracing
of targeted cells in multi-color competition assays (MCA). CRISPR cloning was performed as
described elsewhere®. In brief, sgRNAs were designed using crispr.mit.edu, CHOPCHOP®*
and sgRNA Designer®. Oligonucleotides containing BsmBl restriction site-compatible
overhangs were annealed, phosphorylated and ligated into pLentiCRISPRv2, LGPIG or LGPIC
using standard cloning techniques and sequence verified using sanger sequencing.
sgRen.208 sgRNA (sgRen) targeting Renilla luciferase coding sequence was used as a
negative control. sgRNAs are labeled throughout the manuscript by gene name followed by
the genomic targeting sequence position numbered according to the sequence position on the
corresponding mRNA.

LZTR1 coding sequence was obtained as pENTR223 vector HsCD00351142 from DNASU
plasmid repository (Arizona State University, Tempe, AZ, USA) and following sequence
verification an existing single amino acid deletion was reverted to wild type by site-directed
mutagenesis using the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent
Technologies, Santa Clara, CA, USA). An sgLZTR1.466 sgRNA resistant cDNA version was
generated and single HA or V5 tags were added to LZTR1 cDNA using NEB Q5 site-directed
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mutagenesis kit (E0554S, NEB, Ipswich, MA, USA). KRAS4A and KRAS4B coding sequences
were designed as described elsewhere®, ordered as gBlocks (IDT, Coralville, 10, USA)
containing gateway cloning adaptor sites and inserted into pDONR221 entry vector using BP
recombination (11789020, Thermo Fisher Scientific). Cloning of NRAS cDNA has been
described elsewhere®®. HRAS cDNA was obtained from Addgene (Plasmid #18662), PCR-
amplified using KOD DNA polymerase (71085, Merck Millipore) and cloned into pDONR221
using BP recombination. Point mutations were introduced as stated previously or using Pfu
DNA polymerase (M7741, Promega, Fitchburg, WI, USA) and Dpnl restriction enzyme
digestion (R0176S, NEB). Following sequence verification cDNAs in gateway-compatible
pENTR223 or pDONR221 vectors were transferred by LR recombination (11791100, Thermo
Fisher Scientific) into respective expression vectors.

For cDNA rescue experiments cells were either infected with empty vector MPBIG (pMSCV-
PGK-BlastR-IRES-GFP) and MPBIC (pMSCV-PGK-BlastR-IRES-mCherry) or with cDNA-
containing gateway vector MgwSHPBIC (pMSCV-gateway-StrepHA-PGK-BlastR-IRES-
mCherry) all derived from pMSCV-PuroR (Clontech, Mountain View, CA, USA). For transient
expression experiments HA- or V5-tagged LZTR1 cDNAs were subcloned into pcDNAS3.1-gw-
6xMYC and RAS isoforms into pTO-3xFLAG-gw-FRT-HygroR. pcDNA3-MYC-CUL3 (Plasmid
#19893, Y201C mutation was corrected by site-directed mutagenesis) and pRK5-HA-
Ubiquitin-WT (Plasmid #17608) were obtained from Addgene. For immunofluorescence
experiments HA- and V5-tagged LZTR1 cDNAs were subcloned into doxycycline inducible
gateway-compatible lentiviral vector pCW57.1 (Addgene plasmid #41393). pGAG-POL and
pVSV-G retroviral packaging plasmids were obtained from T. Brummelkamp and
pADVANTAGE from Promega (E1711). Lentiviral packaging plasmids psPAX2 (Plasmid

#12260) and pMD2.G (Plasmid #12259) were obtained from Addgene.

Retroviral and lentiviral cell line generation.
For retroviral infections HEK293T cells were transiently transfected with pGAG-POL, pVSV-G,

pADVANTAGE and retroviral expression vectors using Polyfect (301105, Qiagen). Similarly,
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for lentiviral infections HEK293T cells were transiently transfected with psPAX2, pMD2.G and
lentiviral expression vectors. In both cases the medium was exchanged 24h after transfection
and replaced with the respective target cell line specific medium. After 48h the virus-containing
supernatant was harvested, filtered (0.45 pm), supplemented with 8ug/mL protamine sulfate
(Sigma-Aldrich) and added to 40-60% confluent target cell lines. Suspension cells were
furthermore subjected to spinfection (2000 rom, 45 min, room temperature). 24h after infection
the medium was exchanged and replaced with fresh medium. Another 24h later, the medium
was supplemented with the respective selection antibiotic for 5-7 days to select for infected

target cells.

Haploid genetic screens and deep sequencing analysis.

Haploid genetic screening was implemented as described previously * *. In brief, gene-trap
retrovirus containing supernatant was produced by transient transfection of HEK293T cells
with the gene-trap plasmid along with packaging plasmids pGAG-POL, pVSV-G and
pADVANTAGE using Lipofectamine 2000 (Thermo Fisher Scientific). Virus-containing
supernatant was collected three times every 24h followed by ultracentrifugation and
concentrated virus was used to mutagenize 1 x 10® KBM-7 cells via spinfection. The
mutagenized pool was expanded further, 1 x 10® gene-trapped cells were harvested as
unselected control population and equal cell amounts were selected with one of the six BCR-
ABL inhibitors each in 96-well plates (1 x 10° cells seeded in 100uL per well). Three days after
drug treatment 200uL dilution media was added to each well. Plates were monitored for out-
growth of drug-resistant clones for 2-3 weeks. Resistant cells were pooled thereafter, collected
and expanded to a total cell number of 3 x 107 cells. Genomic DNA (gDNA) was isolated and
retroviral insertion sites in resistance screens were recovered via an inverse PCR protocol and
control cell populations via a linear amplification mediated (LAM)-PCR followed by deep
sequencing analysis. Reads were aligned to human genome version hg19 and insertions 2
base pairs away from each other were removed. The significance of enrichment of insertions

in a given gene was calculated by comparing the number of insertions of the BCR-ABL inhibitor
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selected populations with the unselected control data set by applying a one-sided Fisher’s
exact test. P-values were adjusted for false discovery rate (FDR) using Benjamini-Hochberg
procedure. Screen result plots were visualized using circos plot software?, summary bubble
plots and gene-trap insertion plots were generated via custom scripts using R statistical

environment.

TIDE sequencing for analysis of CRISPR/Cas9 induced indel formation.

gDNA was isolated from control and knock-out cells using Qiagen DNeasy Blood & Tissue kit
(69506, Qiagen, Hilden, Germany), 400-800bp fragments were PCR amplified using GoTaq
DNA Polymerase (M3001, Promega, Madison, WI, USA), subsequently purified using Qiagen
QIAquick PCR purification kit (28106, Qiagen) and sent for sanger sequencing. Sequencing
tracks were analyzed using TIDE analysis*' via the online web tool (tide.nki.nl) and results

visualized using GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA).

Immunoblotting.

Cells were lysed using Nonidet-40 lysis buffer (50mM Tris-HCI pH 7.5, 150mM NaCl, 5mM
EDTA, 1% NP-40, 1 mM PMSF and one tablet of Roche EDTA-free protease inhibitor cocktail
(Sigma-Aldrich) per 50 mL) supplemented with Halt phosphatase inhibitor cocktail (78420,
Thermo Fisher Scientific) for 10 min on ice. Lysates were cleared by centrifugation (13000
rom, 10 min, 4°C). The proteins were quantified and normalized with Bradford assay using y-
globin as a standard (Bio-Rad, Hercules, CA, USA). Cell lysates were resolved by SDS-PAGE
and transferred to nitrocellulose membranes Protran BA 85 (GE Healthcare, Little Chalfont,
UK). The membranes were immunoblotted with indicated antibodies and bound antibodies
were visualized with horseradish peroxidase—conjugated secondary antibodies using the ECL

Western blotting system (Thermo Fisher Scientific).
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Immunoprecipitation.

HEK293T cells were transiently transfected with indicated constructs using Polyfect (Qiagen).
36-48h after transfection cells were washed once in PBS and lysed in IP lysis buffer (50mM
Tris-HCI pH 7.5, 150mM NaCl, 0.5% NP-40, 1 mM PMSF and protease inhibitor cocktail
containing 1ug/mL leupeptin, 1Tug/mL aprotinin, 10ug/mL soybean trypsin inhibitor) for 10 min
on ice. Lysates were cleared by centrifugation (13000 rom, 10 min, 4°C), quantified and
normalized with Bradford assay using y-globin as a standard (Bio-Rad). Subsequently, lysates
were incubated (3h, 4°C) with anti-HA or anti-FLAG coupled beads (Sigma-Aldrich). Beads
were recovered by centrifugation and washed three times with IP lysis buffer, bound proteins
were eluted by addition of 4x Laemmli buffer and boiling for 5min before analysis by SDS-

PAGE and immunoblotting.

In vivo ubiquitination assay.

HEK293T cells were transiently transfected with indicated constructs using Polyfect. 24-30h
after transient transfection cells were treated overnight with 5uM MG132, washed once in PBS
and lysed in RIPA buffer (25mM Tris-HCI pH 7.5, 50mM NaCl, 0.5% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS, 1 mM PMSF and protease inhibitor cocktail containing 1ug/mL
leupeptin, 1Tug/mL aprotinin, 10ug/mL soybean trypsin inhibitor) supplemented with 25U/mL of
Benzonase (71205, EMD Millipore Billerica, MA, USA) for 10 min on ice. Lysates were cleared
by centrifugation, quantified and normalized with Bradford assay and incubated (3h, 4°C) with
anti-HA coupled beads (Sigma-Aldrich). Beads were recovered by centrifugation, washed
three times with RIPA lysis buffer without Benzonase, bound proteins were eluted by addition

of 4x Laemmli buffer, boiled for 5min and analyzed by SDS-PAGE and immunoblotting.

Cell viability assay.
Cells were seeded in 96-well plates at the appropriate cell density. For drug sensitivity
experiments, cells were incubated with increasing drug concentrations for 72h. Cell viability

was determined using CellTiterGlo Luminescent Cell Viability Assay (Promega) according to
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the instructions provided by the manufacturer. Luminescence was recorded with a SpectraMax
M5 Multimode plate reader (Molecular Devices, Sunnyvale, CA, USA). Data were normalized

to values of untreated controls.

Flow cytometry.
Samples were analyzed on an LSR Fortessa (BD Biosciences) and data analysis was

performed using FlowJo software version 7.6.3 (Tree Star Inc., Ashland, OR, USA).

Flow cytometry based multi-color competition assay (MCA).

To analyze the long-term cellular response upon drug treatment, cell populations were marked
with GFP or mCherry fluorescent reporters coupled to individual sgRNAs or cDNAs. In the
case of CRISPR/Cas9-based knock-out cell competition experiments sgRen.208-mCherry”
reporter cells (LGPIC lentiviral sgRNA vector) were mixed with sgRen.208 or target gene
sgRNA-GFP* cells (LGPIG lentiviral vector) in a 1:1 ration. In the case of cDNA rescue
competition experiments empty vector-GFP* (MPBIG retroviral vector) control cells were mixed
with empty vector or cDNA-expressing vector-mCherry” (MPBIC or MgwSHPBIC retroviral
vector) cells and mixed in a 1:1 ratio. Mixed cell populations were treated with increasing drug
concentrations or DMSO as negative control. After ~14d the percentage of GFP* and mCherry”
cell populations was monitored by flow cytometry, gating on viable cells only (FSC/SCC). The
fold change of GFP" and mCherry” fluorescent cells from each treatment condition was

calculated and normalized to DMSO control.

Confocal microscopy.

HelLa cells inducibly expressing HA- or V5-tagged LZTR1were seeded on glass coverslips and
cDNA expression was induced by addition of 1-2 uyg/mL doxycycline. After 24h of induction
coverslips were fixed and permeabilized with 4% formalin/0.1% TritonX-100 in PBS.
Subsequently, coverslips were incubated with 5% BSA in PBS for 1h, incubated with indicated

primary antibodies in 5% BSA/PBS overnight and stained with isotype specific fluorescently
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labeled secondary antibodies. After DAPI staining coverslips were mounted on glass slides
using ProLong Gold (Thermo Fisher Scientific). Cells were visualized using a Zeiss Laser
Scanning Microscope (LSM) 780 utilizing sequential laser line interrogation into two PMTs and
a GaAsP spectral detector. Images were taken at 40x and analyzed with ImageJ (NIH, open

source).

Drosophila crosses and stocks.

Crosses were set up on standard cornmeal-agar food at 31°C for wing experiments and 29°C
for eye experiments. Embedding and sectioning of eyes were performed as described *.
Wings were removed from adult flies, equilibrated in PBS with 0.1%Triton X-100 and mounted
in 80% glycerol in PBS.

Stocks used were: sev-Gal4 (on |ll), UAS-Ras"’? ©* 2" act5C-Gal4 (line
FBst0003954/Bloomington stock center); UAS-CG3711"F stocks were #1 — VDRC line
11164/GD, #2 — VDRC line 13008/GD, and #3 - TRiP/Bloomington line FBst0033422; control

was UAS-white "% line FBst0031088 (TRiP/Bloomington)

RAS activation quantification.

RAS activation state was measured by assaying binding of active RAS to the RAS binding
domain (RBD) of RAF1 using the RAS Activation ELISA Assay Kit (17-497, Merck Millipore).
The assay was performed according to manufacturer instructions and chemiluminescent

signals were recorded with a SpectraMax M5 Multimode plate reader (Molecular Devices).

Experimental design, data plotting and statistical rational.

Cell viability assay data are normalized to untreated control and shown as mean value % s.d.
of at least two independent experiments (n = 2) performed in triplicates. Flow cytometry-based
multi-color competition assay (MCA) data are shown as mean value + s.d. of at least two
independent experiments (n = 2) performed in duplicates if not otherwise stated. Immunoblot

results shown are representative of at least two independent biological experiments (n = 2).
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Data calculations were performed using Microsoft Excel (Microsoft, Redmond, WA, USA), data
plotting and statistical analysis was done using GraphPad Prism 6 (GraphPad Software) if not
otherwise stated. A normal distribution of data was assumed and appropriate tests were
applied. In Drosophila experiments, eyes from multiple individual adults were analyzed per
genotype and over 200 ommatidia were categorized in total, wings from at least ten adults
were analyzed per genotype and categorized as wild type, partial extra vein or extra vein
depending on the amount of ectopic vein tissue present. Eye data were analyzed using the

Fisher’s exact test function of GraphPad Prism and wing data were analyzed using the %2 test.

Data availability.

Deep sequencing data of haploid genetic screens will be made publicly available upon

manuscript acceptance prior to publication.
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FIGURE LEGENDS

Figure 1 Haploid genetic screens identify gene knock-outs promoting BCR-ABL
inhibitor resistance. a-f, Circos plots of haploid genetic screens in the CML cell line KBM-7
with the six clinically relevant 1% (blue), 2" (orange) and 3™ (red) generation BCR-ABL
inhibitors. Imatinib (a), ponatinib (b), nilotinib (c), dasatinib (d), bosutinib (e) and rebastinib (f).
Each dot represents a mutagenized gene identified in the resistant cell population, the dot size
corresponds to the number of independent insertions identified per gene and the distance from
the circos plot center indicates the significance of enrichment compared to an unselected
control data set. Hits with an FDR adjusted P-value lower than 10 are labeled by gene name.
g, Bubble plot depicting the “TOP6” set of genes identified in four or more of the six haploid
screens. The bubble size of each bubble corresponds to the number of independent insertions
per gene and the color gradient depicts the FDR adjusted P-value of enrichment significance.
h, Multi-color competition assay (MCA)-derived fold change of KBM-7 SpCas9 (KBM-7°%%)
CML cells after imatinib treatment transduced with sgRNAs targeting the “TOP6” genes or
sgRen.208 (targeting Renilla luciferase) as negative control. sgRNA-infected cell populations
were mixed in a 1:1 ratio, treated with increasing drug concentrations and analyzed by flow
cytometry after 14 days. Data are shown as mean value * s.d. of at least two independent
experiments (n = 2) performed in duplicates. sgRNAs are labeled by gene name followed by
the genomic targeting sequence position numbered according to the sequence position on the

corresponding mRNA.

Figure 2 Loss of LZTR1 promotes resistance to BCR-ABL and FLT3-ITD inhibition
and enhances MAPK pathway activation. a, Bubble plot depicting the six top hits identified
in four or more screens. Coloring indicates functional pathway association of identified genes
and bubble size corresponds to the number of independent insertions per gene. b, MCA-
derived fold change of sgLZTR1.466-transduced KBM-7°*° after 14 days of treatment with
each of the six BCR-ABL inhibitors. 1%, 2" and 3™ generation BCR-ABL inhibitors are colored
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in blue, orange and red respectively. ¢, MCA-derived fold change of KBM-7*° cells
transduced with sgRNAs targeting different domains of the LZTR1 protein after treatment with
increasing concentrations of rebastinib for 14 days. d-e, MCA-derived fold change of sgRNA-
transduced MV4-11 SpCas9 (MV4-11°*% AML cells after treatment with increasing
concentrations of tandutinib (d) and ponatinib (e) for 14 days. f, KBM-7°**° and K-562 SpCas9
(K-562°%%) CML cells as well as MV4-11°° AML cells were transduced with the indicated
sgRNAs and immunoblotted with the indicated antibodies. g, K-562°®° CML cells expressing
sgRen.208 were transduced with empty vector, sgLZTR1.466-expressing cells with empty
vector or an LZTR1-cDNA-containing MSCV retrovirus, and immunoblotted with the indicated
antibodies. h, MCA-derived fold change of K-562°%*°9 sgRen.208 cells transduced with empty
vector and sgLZTR1.466-transduced cells with empty vector or LZTR1 cDNA after after
treatment with increasing concentrations of imatinib for 14 days. In b, data of a representative
experiment are shown as mean value t s.d. performed in duplicates, c-e and h data are shown
as mean value % s.d. of at least two independent experiments (n = 2). In f-g immunoblot results

are representative of at least two independent biological experiments (n = 2).

Figure 3 LZTR1 regulates RAS/MAPK pathway activation in vivo and mediates
KRAS ubiquitination. a-b, Panels show representative adult wings from act5C-Gal4, UAS-
wR (act>w"® for short) and act>CG37711"F #1 RNAI lines (a) and higher magnifications of
representative adult wings from act>CG3711"% RNAi lines (b). ¢, Quantification as percentage
of wings with ectopic wing vein formation. P-value for RNAi #1 and #3 in the wing is <0.0001
(****) and for #2, based on the criteria of expected values, and tolerance of values of 0, the XZ
testis not valid (although the P-value can be calculated to 0.0255). d-f, Representative images
of tangential eye sections (upper panels) and schematics of ommatidial orientations (lower
panels) as observed in sev-Gal4, UAS-RasV12C40 flies (or sev>Ras""? °* for short) (d),
sev>Ras""? %’ >CG3711"% #2 (e) and sev>CG3711"F #2 (f) genotypes. g, Quantification as
percentage of photoreceptor number defects in the indicated RNAI lines/genotypes. P-value

for Ras* suppression in each of the RNAi experiments in the eye is <0.0001(****). h-i,
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HEK293T cells were transiently transfected with empty vector, 3xFLAG-tagged KRAS4A (h)
or KRAS4B (i) and V5-tagged LZTR1 constructs for 36-48h. j, HEK293T cells were transiently
transfected with 3xFLAG tagged GFP or KRAS4A, HA-ubiquitin, MYC-CUL3 and V5-LZTR1.
k, HEK293T cells were transiently transfected with 3xFLAG-KRAS4A, HA-ubiquitin, MYC-
CUL3 and V5-LZTR1 WT, R198G or G248R. After 24-30h cells were treated overnight with
5uM MG132 (j-k). Following immunoprecipitation of cell lysates, immunoprecipitates (IP) and
whole cell extracts (WCE) were analyzed by immunoblotting with the indicated antibodies (h-
k). WT, wild type. Long exp., long exposure. Results are representative of at least two

independent biological experiments (n=2).

Figure 4 Loss of LZTR1 protein function leads to enhanced RAS/MAPK pathway
activation in CML cells, in a KRAS-dependent manner, and in human disease. a, MCA-
derived fold change of K-562 “*° CML sgRen.208 cells and sgL.ZTR1.466 cells additionally
transduced with sgRen.208 or sgRNAs targeting KRAS, NRAS or HRAS, treated with
increasing concentrations of imatinib for 14 days. Data are shown as mean value + s.d. of at
least two independent experiments (n = 2). b, Single and double sgRNA-expressing K-562°%%°
CML cells were immunoblotted with the indicated antibodies at the starting time of the MCA in
panel (a). ¢, Domain organization of LZTR1 and arrows indicating amino acid position of
missense mutations identified in Noonan syndrome (NS, brown) and glioblastoma (GBM,
blue). d-e, K-562°* and sgRen.208-expressing cells were retrovirally transduced with empty
vector, sgLZTR1.466-expressing cells were transduced with either empty vector, LZTR1 WT,
or LZTR1 mutations identified in Noonan syndrome (brown) (d) or glioblastoma (blue) (e) and
thereafter immunoblotted with the indicated antibodies. The LZTR1 G248R mutation has been
identified in both diseases. Immunoblot results are representative of at least two independent
biological experiments (n = 2). f, Mechanistic model of CUL3-LZTR1-mediated RAS
ubiquitination and loss of LZTR1 function-mediated enhanced MAPK pathway activation and

BCR-ABL inhibitor drug resistance.
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ASSOCIATED CONTENT

Extended Data Figure 1 Haploid genetic screening workflow, BCR-ABL inhibitor
sensitivity of KBM-7 cells and summary view of genes identified in BCR-ABL inhibitor-
focused haploid screens. a, Experimental outline of haploid genetic screens. Near-haploid
KBM-7 CML cells are infected with a retroviral gene-trap, transduced cell populations are
treated individually with one of the six 1% (blue), 2™ (orange) or 3™ (red) generation BCR-ABL
TKls individually for 14-21 days, colonies of resistant cells are pooled, followed by gDNA
isolation, recovery of genomic gene-trap insertions using an inverse-PCR based library
preparation protocols and deep sequencing analysis. The enrichment of identified insertions
per gene is calculated by comparison to an unselected gene-trap mutagenized control cell
population harvested at the time before TKI addition. b, Cell viability of KBM-7 cells after 72h
of treatment with increasing concentrations of the six BCR-ABL inhibitors. 1%, 2" and 3™
generation BCR-ABL inhibitors are colored in blue, orange and red respectively. Results are
shown as mean value * s.d. of at least two independent experiments (n = 2) performed in
triplicates. ¢, Bubble plot summarizing significantly enriched genes (FDR adj. P-value <10™)
identified in the six BCR-ABL TKI-focused haploid screens. The bubble size corresponds to
the number of independent insertions per gene and the color gradient depicts the FDR

adjusted P-value of enrichment significance.

Extended Data Figure 2 Retroviral gene-trap insertions identified in the ponatinib
screen and LZTR1 insertions identified in four BCR-ABL inhibitor screens. a-b, Genomic
location of gene-trap insertions identified in the ponatinib screen depicting the top six genes
(identified in 24 screens) (a) and insertions affecting the LZTR1 gene identified in the Imatinib,
bosutinib, rebastinib and ponatinib screens (b). Insertions within exons function via gene
disruption and generate a gene knock-out independent of insertional orientation. Intronic gene-

trap insertions disrupt transcript expression in an orientation-dependent manner. Sense
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integrations (same ftranscriptional orientation) lead to a gene knock-out (red), whereas

antisense integrations (blue) have no effect on gene expression in most of the cases.

Extended Data Figure 3  CRISPR/Cas9-based validation of gene loss-of-function-
induced BCR-ABL inhibitor drug resistance. a, Experimental validation strategy of
CRISPR/Cas9 based validation of gene loss-of-function-induced BCR-ABL inhibitor drug
resistance using a multi-color competition assay. KBM-7**° cells were lentivirally infected with
sgRNA-expressing LentiGuide-PuroR vectors additionally harboring a GFP (LGPIG) or
mCherry (LGPIC) fluorescent marker enabling to monitor respective knock-out cell populations
by flow cytometry. sgRen.208-mCherry control sgRNA infected cells were mixed with
sgRen.208-GFP control or gene targeting sgRNAs in a 1:1 ratio and treated with the indicated
inhibitor for 14 days. Cells were analyzed by flow cytometry gating on the remaining viable
population and the fold change of control or gene targeting GFP* vs mCherry” control cells,
indicative of enhanced survival and/or proliferation upon drug treatment, was calculated
normalized to untreated control. b-g, KBM-7°*? cells were transduced with the indicated
sgRNAs targeting NF1 (b), WT1 (¢), PTPN1 (d), PTPN12 (e), BAP1 (f) or LZTR1 (g) and
immunoblotted with the indicated antibodies. h, Analysis of editing efficiency as well as scatter
plots showing size and frequency of insertions and deletions (indels) induced by sgLZTR1.620
and 466 in KBM-7°** cells using sanger sequencing and TIDE analysis. i, MCA-derived fold
change of KBM-7°*° CML cells after rebastinib treatment transduced with sgRNAs targeting
the top six genes or sgRen.208 as negative control. sgRNA-infected cell populations were
mixed in a 1:1 ratio, treated with increasing drug concentrations and analyzed by flow
cytometry after 14 days. Data are shown as mean value % s.d. of at least two independent

experiments (n = 2) performed in duplicates.

Extended Data Figure 4  Analysis of indel formation by LZTR1-targeting sgRNAs
leading to TKI resistance in CML and AML cell lines. a-c, Analysis of editing efficiency as
well as scatter plots showing size and frequency of indels by LZTR1 protein domain targeting
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sgRNAs in K-562°% cells (a), by sgLZTR1.620 and 466 in KCL-22°**° CML cells (b) and MV4-
11989 AML cells (c¢) using sanger sequencing and TIDE analysis. d-e, MCA-derived fold
change of KCL-22°%*° CML cells transduced with indicated sgRNAs and treated with increasing
concentrations of imatinib (d) or rebastinib (e) for 14 days. f, MCA-derived fold change of MV4-
11989 FLT3-ITD* AML cells transduced with indicated sgRNAs and treated with increasing
concentrations of quizartinib for 14 days. MCA data are shown as mean value * s.d. of at least

two independent experiments (n = 2) performed in duplicates.

Extended Data Figure 5 Loss of LZTR1 expression induced MAPK pathway
activation. a, KBM-7**° cells were transduced with sgRen.208, sgLZTR1.620 or 466 sgRNAs

2C839

and cell lysates were analyzed by immunoblot using the indicated antibodies. b, K-56 cells

transduced with sgRen.208 or sgLZTR1.466 were treated with increasing concentrations of
imatinib for 3h. Cell lysates were immunoblotted with the indicated antibodies. ¢, K-562°%°,
HeLa®®® and HEK293T%*° cells were transduced with the indicated sgRNAs and
immunoblotted with the indicated antibodies. d, HEK293T%** cells transduced with sgRNAs
as in panel (b) were serum starved overnight and then serum stimulated for the indicated time

duration. Cell lysates were immunoblotted with the indicated antibodies. In a-d immunoblot

results are representative of at least two independent biological experiments (n = 2).

Extended Data Figure 6 Human and Drosophila LZTR1 protein domain organization
and sequence alignment of LZTR1 in different species. a, Domain organization of human
LZTR1 and Drosophila CG3711 protein. b-c, Tree view plotting average distance using %
sequence identity (b) and multiple sequence alignment colored according to % sequence
identity (¢) of LZTR1 in different species. Sequence comparisons were generated using Clustal

Omega and visualized using JalView.

Extended Data Figure 7 LZTR1 is an adaptor protein for the CUL3 E3 ligase complex,
and binds to RAS GTPase proteins. a-c, HEK293T cells were transiently transfected with
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empty vector control, 3xFLAG-NRAS (a) or 3xFLAG-HRAS (b) and V5-LZTR1, LZTR1-
STREP-HA (SH) or SH-GFP and MYC-CULS3 (c) for 36-48h. Following immunoprecipitation of
cell lysates (a-c), immunoprecipitates (IP) and whole cell extracts (WCE) were analyzed by
immunoblotting with the indicated antibodies. Immunoprecipitation and immunoblot results are

representative of at least two independent biological experiments (n = 2).

Extended Data Figure 8 LZTR1 localizes to endosomes. a-b, Hela cells were
transduced with an inducible lentiviral vector constructs harboring HA- (a) or V5- (b) tagged
LZTR1. Cells were induced with 1-2 pg/mL doxycycline for 24h and analyzed by
immunoblotting using the indicated antibodies. Long exp., long exposure. c-g, Confocal
microscopy images of doxycycline-induced HelLa cells as described in panel (a-b) and
immunostained with anti-HA or -V5 and RAB5 (c), RAB7 (d), EEA1 (e), LAMP1 (f) or Golgin97
(g). Stars are indicating direct overlap and arrows are neighboring vesicles. Representative

cells are shown. Scale bar indicates 20 um on full-sized images and 2 ym on magnifications.

Extended Data Figure 9 CRISPR/Cas9-based double knock-out MCA assay identifies
KRAS GTPase as LZTR1 substrate mediating drug resistance in CML cells. a, RAS
activation was quantified in K562°®° cells expressing control or LZTR1-targeting sgRNAs
using an RAS activation ELISA-based assay. Data of a representative experiment are shown
as mean value = s.d. of detected relative light units (RLU) and mean values of fold change of
sgLZTR1 compared to sgRen cells were calculated. Corresponding input sample lysates were
analyzed by immunoblotting using the indicated antibodies. b, Scheme of the CRISPR/Cas9-
based double knock-out MCA assay in K-562°%° CML cells to genetically identify LZTR1
substrates mediating BCR-ABL inhibitor drug resistance. sgLZTR1.466-GFP* K-562°**° cells
were infected with sgRen.208-, sgKRAS-, sgNRAS-, sgHRAS- or sgRIT1-mCherry” vectors
generating GFP*/mCherry” double knock-out cells, mixed in a 1:1 with single positive
sgRen.208-mCherry* K-562°%*° cells and treated with imatinib for 14 days. Cells were analyzed
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by flow cytometry and the fold change of double positive cells vs. single positive cells was
calculated normalized to untreated control. c-d, Analysis of editing efficiency (c) as well as
scatter plots showing size and frequency of indels (d) by K-, N- and HRAS targeting sgRNAs
in K-562°%%% sgl ZTR1.466 cells using sanger sequencing and TIDE analysis. e, K-562°%*
SgLZTR1.466 cells were transduced with sgRen.208 or sgRIT1.250 and immunoblotted with
the indicated antibodies. f, MCA-derived fold change of K-562°*° sgRen.208 cells and
SgLZTR1.466 cells additionally transduced with sgRen.208 or sgRIT1.250 treated with
increasing concentrations of rebastinib for 14 days. Data are shown as mean value * s.d. of at

least two independent experiments (n = 2) performed in duplicates.

Extended Data Figure 10 LZTR1 missense mutations identified in NS and GBM are
loss-of-function mutations. a, Scheme of CRISPR knock-out and cDNA reconstitution MCA

to characterize LZTR1 missense mutations. K-562¢2°

cells are either infected with sgRen.208
control sgRNA and MSCV-GFP empty vector control or with sgLZTR1.466 and MSCV-
mCherry empty vector, LZTR1 WT and missense mutations identified in Noonan syndrome
and glioblastoma. Cells were mixed in a 1:1 ratio, treated with BCR-ABL inhibitor for 14 days
and analyzed by flow cytometry. b, MCA-derived fold change of K-562 CRISPR/Cas9 knock-
out and cDNA reconstituted cells as described in panel (a). Cells were treated with increasing
concentrations of imatinib and the fold change of GFP* vs. mCherry” cells was calculated

normalized to untreated control. Data are shown as mean value * s.d. of at least two

independent experiments (n = 2) performed in duplicates.

Supplementary Table 1 Haploid genetic screen results listing disruptive gene-trap
insertions by genes identified in KBM-7 cells after imatinib, nilotinib, dasatinib,
bosutinib, rebastinib and ponatinib selection. Tables listing for each inhibitor screen the
identified disruptive gene-trap insertions per gene, total inactivating insertions in other genes
identified in the screens, disruptive insertions and total insertions in other genes in the control
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population, P-value and FDR adjusted P-value of enrichment. Identified genes with a FDR
adjusted P-value lower than 10™ were categorized as significantly enriched and considered for

further analysis.

Supplementary Table 2 sgRNA and primer sequences used in the study.
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d CRISPR based multi-color competition assay (MCA) for the validation of cellular drug resistance
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Submitted manuscript Bigenzahn et al., Extended Data Figure 7
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a Hela V5- b HeLa HA-
LZTR1 LZTR1
1 1
Dox - + Dox - +
L | RS |
LzTR1 [ . LzTR1 [ -
SR 100 - 100
LZTR1 S, LZTR1 | g
(long exp.) u_ 100 (long exp.) B 100
Tubulin | g s Tubulin | s s
-

V5 - HA N

HA/NS5-LZTR1 Marker Merge Expanded
c .
Yo A
m
< .
o
d .
N~
m
< .
o
e
3 .
L
w
f .
o
E .
<
-
g .
N~
»
C
;_9-’ .
o
0 .



Submitted manuscript Bigenzahn et al., Extended Data Figure 9

A RAS activation ELISA - K-562¢2s9

b CRISPR based double knock-out MCA

B U6 st EF 12 IR mCherry [

sgRen-mCherry*

100000
S 8 KRAS
— S
80000 -5 8 2 3 SLZTR1.466- SSNRAS
— N +
2 q:_). E E GFP ngIT1 Mix Drug treatment Flow cytometry
EEE 60000 E(\,é)’ é’ é’ Qég} aQ 14d analysis
2 e Bkt
2 40000 OMEK "= 3 N
3 & ﬁ I
N
20000 @
MEK S s s 0| 09
v L
SgRen 620 466 $
208
sgLZTR1 sgRen.208-
L mCherry+
Indel formation analysis - e f Double knock-out MCA - K-562¢as9
K-56249%% g1 ZTR1.466+ K-562Cas9 641 Rebastinib
100 SgLZTR1.466+ = B DMSO
N £ 3% =P
L 80 {19“’,\@ S 164 . s 0
z P 8 = 16 M
& 60 S S 8
£ o 4
= -
® 40 RT1 "8 - 2
()] — - @
S = 5 27
S 20
u GAPDH 5 1
0 0.5-
374 389 411 462 328 381 sgRen sgRIT
ngRAS sgNRAS ngRAS 2_(38 2?_0
L ] L ]
sgRen SgLZTR1
Indel formation analysis - 208 466
K-562C389 51 7TR1.466+
601 sgkRAS 374 %01 sgnrAS A1t ] 401 sgHRAS 328 |
» E. 8 404 ® 8 30-
S 404 : e ¢ S ¢
% g 30 g :
> ) g g 20
] & 204 3
45 201 G ° °
= ® 101 : = 107 e
° ® o
0 st 0 ' 0 %
40 -30 20 -10 0 10 20 30 40 40 -30 -20 -10 0 10 20 30 40 40 -30 20 -10 0 10 20 30 40
Indel size (bp) Indel size (bp) Indel size (bp)
01 sgkRAS 389 | 401 sgnRAS 62 601 sgHrAs381 |
] o i o
w40 @ % 30- @ H
3 i o S40-
€30 & 5
277 e ® g 29204 i |® Frameshift
© i ° 10 ® © ® |e In-frame
=10 R i =2
0 W11 0 ¥ 0 4
440 -30 20 -10 0 10 20 30 40 440 -30 20 -10 0 10 20 30 40 40 -30 20 -10 0 10 20 30 40

Indel size (bp)

Indel size (bp)

Indel size (bp)




Submitted manuscript Bigenzahn et al., Extended Data Figure 10
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3 Discussion

3.1 General discussion

Genetic screening approaches coupled with MS-based interactome analysis are a powerful
and transformative technology duo for the delineation of cell biological processes and the
functional characterization of disease-causing pathway alterations at large scale
(Bouwmeester et al, 2004; Behrends et al, 2010; Grebien et al, 2015; Blomen et al, 2015). The
development of novel functional genetic reagents broadening the tool box from RNAI to haploid
cell genetics and CRISPR/Cas9 allows nowadays the research community to identify genes
important for maintaining the cellular transformed state and governing the response to
therapeutic interventions with unprecedented precision and resolution (Fellmann et al, 2016).
On the other hand, technological innovations in the field of liquid chromatography and mass
spectrometry combined with novel purification and enrichment strategies allow researchers to
study the functional organization and dynamicity of the proteome in an unbiased way
(Aebersold & Mann, 2016).

This thesis has aimed to make use of the afore mention technologies as well as create novel
tools to shed light on how different genes enable cancer cells to maintain cellular homeostasis,
integrate and execute growth-stimulatory signals, and adapt to pharmacological perturbations
in order to uphold cellular viability. Specific aspects and implications related to obtained
experimental findings will be discussed in the following sections in more detail linked to the

corresponding manuscripts respectively.

3.2 Functional annotation of uncharacterized essential genes using
TAP-MS analysis

There is the long-standing interest in identifying the minimal crucial repertoire of genes
important for life. The ease of genetically manipulating the yeast genome has already more
than a decade ago provided the first insights into the sets of genes encoding core cellular
processes necessary to maintain cellular physiology (Giaever et al, 2002; Tong et al, 2001).
The development of selective gene-targeting and RNAI reagents has for the first time allowed
to address similar questions in multicellular organisms like C. elegans or D. melanogaster or
murine models in a focused manner (Green et al, 2011; Dietzl et al, 2007; Skarnes et al, 2011;
White et al, 2013). Additionally, this led to the first initiatives in mapping gene essentiality in
human cancer cells covering numerous tissues with near genome-wide resolution (Luo et al,
2008; Cowley et al, 2014). However, especially the attempts in human cells have suffered from

the limitations of available RNAI reagents as mentioned previously, namely inconsistencies in
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genome coverage, phenotypic heterogeneity related to incomplete gene knock-down and low
reproducibility in between different studies closely linked to RNAiI mediated off-target silencing
effects (Hart et al, 2015).

Two technological innovations have reinvigorated the venture to interrogate and chart the
human set of essential genes - the “essentialome”. Haploid genetic screens have
demonstrated their superiority in identifying important factors for viral entry, post translational
modifications and drug sensitivity with unprecedented exactness. Inspiring pilot experiments
in KBM-7 cells, which are dependent on the expression of BCR-ABL1 for proliferation, have
revealed that gene-trap sense insertions get depleted (negatively selected) from the cell
population over time indicative of their transcript-abrogating function demonstrating that this
technology using saturating mutagenesis on a large scale can be used to call gene knock-out
related fitness defects with high statistical significance (Carette et al, 2011a). By applying
stringent thresholds this has led to the identification of 2054 essential genes in the suspension
cell line KBM-7 and 2181 genes in the adherent counterpart HAP1 with a core set of 1734
genes being required in both cell lines (Blomen et al, 2015).

The second technological innovation for large scale, pooled growth phenotypic interrogations
came from the identification and utilization of CRISPR/Cas9 for genome-wide screening
(Shalem et al, 2014; Wang et al, 2014b). Whereas work from the Sabatini lab has exploited
both gene-trap mutagenesis and CRISPR/Cas9 screening in a comparative setting defining a
set of 1878 genes (Wang et al, 2015), the Moffat lab has used CRISPR technology alone in
different cell lines and primary cells uncovering a common set of 1580 genes required for
cellular fitness (Hart et al, 2015).

All three studies have validated and recapitulated the requirement of core cellular processes
like transcription, splicing, translation, ribosome biogenesis, cellular metabolism, proteasome
complex organization beyond many others for cell growth. In addition, in between cell line
comparisons allowed for the identification of specific liabilities outside the “core essentialome”.
For example, SHC1, GRB2, GAB2, KRAS and STAT5B showed preferential depletion in KBM-
7 compared to HAP1 cells, constituting key downstream signaling components of the BCR-
ABL1 oncogene (Blomen et al, 2015). Similarly, EGFR, SHC1, GRB2, SOS1 were selectively
required in a subset of KRAS mutant CRC cell lines whereas BRAF mutant melanoma cells
failed to demonstrate analogous dependencies (Hart et al, 2015). These findings highlight the
effectiveness of these approaches for the identification of cancer subtype-specific therapeutic
targets when expanded to a larger panel of different tumor entities.

Unifying to all three essentialome studies was the finding that a significant proportion of
identified essential genes remains functionally non-annotated. The work of the Sabatini lab
has identified 330 essential genes with unknown molecular function, encoding proteins that

showed enrichment for domains involved in RNA processing and nucleolar localization (Wang
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et al, 2015). The work of the Moffat lab has also identified essential genes with unknown MoA
providing for the first time functional annotations to selected examples which are involved in
mRNA splicing (ZNF830, CCDC84) and protein folding (ANKRD49) (Hart et al, 2015).

We have, in a collaborative effort with the Brummelkamp lab, characterized 18 essential genes
using TAP-MS, which revealed that these proteins interact again commonly with essential
proteins (Blomen et al, 2015). Most interestingly, we identified a new integral member of the
oligosaccharyltransferase (OST) complex, a protein network important for protein N-linked
glycosylation (Kelleher & Gilmore, 2006; Shrimal et al, 2015; Cherepanova et al, 2016).
Proteomic analysis of TMEM258 identified the OST complex members STT3A, STT3B,
DDOST, DAD1, RPN2 and MAGT1 within the group of high-confidence interacting proteins. A
very recent study has independently confirmed the interaction of TMEM258 with the OST
complex and deletion of TMEM258 in colon tissue organoids leads to ER stress. Additionally,
heterozygous knock-out mice display exacerbated intestinal inflammation in a colitis model
(Graham et al, 2016). Furthermore, small molecule-based therapeutic targeting of the OST
complex in RTK-driven cancers has been demonstrated by the induction of cellular
senescence and growth arrest due to interference with EGFR or FGFR glycosylation (Lopez-
Sambrooks et al, 2016). To this end, these cases provide paradigmatic examples of the
scientific value of the growing number of haploid cell genetic and CRISPR-based essentialome
datasets for future research.

However, several aspects need consideration for the comprehensive understanding of
obtained results and the adaptation of future screens aiming to identify potential therapeutic
targets. Whereas essentiality has been categorized in a qualitative way, yes or no, it actually
covers a long gradient from clear essentiality to sickness and weak essentiality due to reduced
cell proliferation. Future work will need to incorporate a way to quantify the severity of cell
depletion in order to rank gene candidates based on their phenotypic impact. The integration
of different read-outs for cell death initiation, cell cycle arrest or induction of differentiation might
further provide a second layer of information, valuable for the interpretation of depletion
phenotypes. It is noteworthy that most of the screening experiments so far have been done
under normal cell culture condition using exogenous serum and media supply which needs
consideration in the interpretation of gene candidates involved in metabolic processes.
Targeted or small library in vivo validation experiments might provide an instructive alternative
for the interrogation of such findings. Moreover, gene essentiality due to incompatibility with
developmental processes cannot be identified in the currently utilized cellular model systems.
However, the identification, characterization and adaptation of haploid embryonic stem cells
combined with gene-trap or CRISPR technologies opens up new exciting territories to study
the genetic requirement of tissue differentiation processes on a genome-wide level (Leeb &
Wutz, 2011; Elling et al, 2011).
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Our initial TAP-MS approach has shown that essential proteins tend to interact again with
essential ones, providing a rational for potential genetic associations and interactions by
forming functionally wired pathways (Blomen et al, 2015). Indeed, genetic interaction studies
performed in yeast have identified dense wiring of cellular core processes assembling into
functional protein complexes with high contextual dependencies (Collins et al, 2007; Costanzo
et al, 2016). Pilot synthetic lethality experiments performed in HAP1 cells using gene-trap
mutagenesis have started to uncover the genetic wiring of the Golgi organelle homeostasis
and provide a primer for the genome-wide mapping of such interactions in human cells
(Blomen et al, 2015). Furthermore, the proteomic interrogation of functionally uncharacterized
essential genes will provide complementary insights into the pathway wiring of mammalian
cells and their potential involvement in human diseases. This will undoubtedly involve the use
of different affinity-based, proximity labeling-based or other alternative proteomic enrichment
strategies depending on the biochemical and interaction properties of query proteins of interest.
In the end, the knowledge about essentiality in culture system per se presents a unique, so far

unavailable and experimentally important resource for many cell biological studies.

3.3 Establishment of an inducible retroviral expression system for TAP-

MS-based protein complex identification

The proteomic characterization of proteins in their respective cell line or tissue background is
of particular importance when studying genes with tissue-specific expression patterns or
biological functions, and for the identification of cell type-specific interaction partners. Various
studies focusing on transcription factors, deubiquitinating enzymes and other protein families
have demonstrated the enhanced value of performing AP-MS analysis in selected tissue
contexts (Wang et al, 2006; Dey et al, 2012). Furthermore, the identification of distinct cancer-
associated mutations in a tissue-selective manner, as exemplified by association of different
RAS isoforms with different cancer entities, further emphasizes the utility of targeted TAP-MS
analysis and requires the availability of scalable tool kits (Cox et al, 2014).

The reliable usability of the rather small size SH combination tag compared to other larger
tandem tags for proteomic approaches has been demonstrated in several important studies
focusing on the characterization of kinase substrate interactions, phosphatase interaction
networks and chromatin remodeling complexes (Glatter et al, 2009; Varjosalo et al, 2013; Hauri
et al, 2016). We have developed the viral pRSHIC (retroviral expression of SH-tagged proteins
for interaction proteomics and color-tracing) vectors that broaden the scope of amenable cell
lines and primary cells for SH-based TAP-MS experimental work flows currently limited to a

small set of flippase-flippase recognition target (FIp-FRT) recombination system-compatible
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cell lines. The joint features of inducible expression synchronized to reporter fluorophore
appearance further widens the space for potential mechanistic validation experiments based
on flow cytometry or high-content fluorescence microscopy. Fluorescent tracking of cells
provides a useful and easily accessible experimental handle to monitor cell population changes
in inducible RNAi and cDNA (e.g. TSG) overexpression or rescue experiments as well as in
the context of chemical screening (Zuber et al, 2011a; Hartwell et a/, 2013).

We first focused on the oncogenic NRAS G12D variant, frequently found mutated in
hematopoietic malignancies and melanoma (Cox et al, 2014) and inducibly expressed it in the
murine pro-B cell line Ba/F3. This convincingly recapitulated the growth-promoting ability upon
cytokine withdrawal. TAP-MS analysis of NRAS G12D revealed some of the known interactors
most prominently Ras and Rab interactor 1 (RIN1) and one of the catalytic subunits of the PI3K
protein complex, p110y (PK3CG). These data demonstrated the functional validity of the newly
established vector tool and opens up the possibility to map phenotypic changes and protein-
protein interactions of cancer-associated nucleotide variants, truncations and oncogenic
fusions (Yatim et al, 2012; Grebien et al, 2015; Klampfl et al, 2013).

We secondly focused on the ability to inducibly express SH-tagged bait proteins in a time
controlled manner followed by TAP-MS analysis, that would otherwise upon stable cellular
expression trigger cell death. We chose to profile a mutant form of the necroptosis-executing
MLKL protein. Necroptosis is a form of regulated cell death contrasting apoptotic cell demise
and is characterized by granulation, loss of cell membrane stability and release of intracellular
material (Linkermann & Green, 2014; Vanden Berghe et al, 2014). Cell killing by regulated
necrosis is a genetically encoded safety mechanism against virus infections and orchestrated
by protein complexes containing RIPK1, RIPK3 and MLKL (Vanden Berghe et al, 2014).
Recent work has identified necroptotic cell death as contributing factor to inflammation and
organ failure (Linkermann et al, 2014), hence warranting the development of potential
therapeutic agents to interfere with cell kill-induced tissue damage. The MLKL protein is the
final executing protein of regulated necrosis leading to cellular membrane disruption,
reminiscent to the mode of action of pro-apoptotic BCL2 family members by a yet not fully
resolved molecular mechanism potentially involving membrane pore formation and/or ion influx
(Sun et al, 2012). Activation of the pseudokinase MLKL is induced by RIPK3-mediated
phosphorylation at T357 and S358 releasing its inactive conformation and N-terminal four-helix
bundle domain (4HB) (Wang et al, 2014a; Hildebrand et al, 2014). Interestingly, MLKL
activating mutations have been demonstrated to be toxic when expressed in human and
murine cells making them an interesting tool to study the molecular mode of cell killing
(Hildebrand et al, 2014; Murphy et al, 2013). We have used pRSHIC to inducibly express the
phosphomimetic MLKL S358D mutant protein in human CRC cells. Expression led to induction

of necroptotic cell death within 12 hours. Proteomic analysis after 6 hours of induction enabled
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us to recover the known interaction with RIPK3 and further revealed a strong association with
the protein chaperone complex members HSP90A, HSP90B and cell division cycle 37
(CDC37). Further purification experiments convincingly also identified an association of the
MLKL WT protein with HSP90 excluding potential artefactual interactions due to the inducible
expression of the mutant protein. The ability to block cell death induction upon pharmacological
inhibition of HSP90 function using geldanamycin demonstrated the cell physiological
importance of the detected interaction. Interestingly, the requirement of HSP90 and its kinase-
specific co-chaperone CDC37 for the proper execution of necroptosis has previously been
demonstrated by its importance for RIPK1 and RIPKS3 protein function (Lewis et al, 2000; Li et
al, 2015). Our data additionally suggests that also the final step in the necroptosis signaling
cascade depends on proper HSP90-CDC37 chaperone function that allows therapeutic
interference using small molecule inhibitors. The HSP90 protein complex is an important
cellular proteostatic regulator and different chemical inhibitors have been developed for
potential application in cancer therapy (Taipale et al, 2012; Wu et al, 2012; Trepel et al, 2010).
Our findings in synopsis with previous study results warrant the further consideration and
exploration of HSP90 inhibition as a potential candidate to therapeutically interfere with tissue
damage induce due to pathological necroptosis as seen for example in ischemia reperfusion
injury, pancreatitis, systemic inflammatory response syndrome or upon virus infection
(Linkermann et al, 2013; Mocarski et al, 2015; Duprez et al, 2011).

3.4 Genetic screening for the identification of gene loss-of-functions

mediating targeted cancer drug resistance

The successful development of oncogene-directed inhibitors in CML has conceptually
transformed the field of cancer therapy triggering numerous research efforts for the therapeutic
exploration of OA and NOA in a personalized manner. Similarly, the identification and
subsequent characterization of resistance mechanisms to targeted cancer therapy has
strongly been influenced by insights obtained from studying TKI-induced BCR-ABL inhibition.
The identification of mutations in the drug target itself provide compelling evidence for the
efficiency and strong evolutionary pressure these agents elicit on cancer cells to maintain
proliferation and cell survival (Smith et al, 2012). This has not only been observed in numerous
cases of kinase inhibitor resistance but also in cellular model systems resistant to the protein
neddylation inhibitor MLN4924 whereby a single mutation in the NEDD8-activating enzyme
subunit UBA3 abrogates drug binding showing full cellular adaptation to drug treatment (Soucy
et al, 2009; Toth et al, 2012).
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The development of resistance creates the necessity to identify patients at risk early on and
provide alternative single agent or combination treatment regimens that interfere with the state
of reduced drug sensitivity enabling again sufficient disease control. Positive and negative
regulatory feedback loops can contribute to drug resistance and this raises the important
question of which of these act in a non-redundant manner centering around important cellular
signaling hubs. These hubs in many cases represent critical nodes with regard to OA and NOA
and therefore can instruct the development, selection or repurposing of small molecules for
novel therapeutic strategies. Genetic screens have been extremely instructive in identifying
genes critically important for modulating cellular sensitivity towards targeted therapeutic
interventions in different cancer entities (Bernards, 2014). Table 3 provides a summary of a
selected set of phenotypically validated RNAI, haploid genetic as well CRISPR-based positive
selection screens. It illustrates commonalities shared between different cancer entities and

their respective pharmacological treatment as well as tissue subtype-specific genetic factors.
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Table 3: Comparison of identified gene loss-of-functions in genetic drug resistance
screens performed in different cancer types using pharmacological inhibition (i) of OA
targets. (Studies included in the comparison: Berns et al, 2007, Luo et al, 2008, Huang et al,
2012, Whittaker et al, 2013, Shalem et al, 2014, de Bruin et al, 2014, Bajpe et al, 2015, Sun et
al, 2014, Papadakis et al, 2015, Doench et al, 2016 and screening results obtained within this
doctoral thesis)
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3.5 Gene loss-of-functions contribute to tyrosine kinase inhibitor

resistance in chronic myeloid leukemia

In this work we have taken advantage of the availability of a haploid human CML cell line that
is exquisitely sensitive to 1%, 2" and 3™ generation BCR-ABL TKls. Performing gene-trap
mutagenesis positive selection screens upon pharmacological BCR-ABL inhibition identified
several gene knock-out alleles with an overlapping set of 6 gene candidates that repeatedly
enriched upon TKI treatment. Whereas the BCR-ABL oncogene activates several pathways
governing cellular survival, proliferation and the regulation of differentiation and cell cycle
progression, the identification of NF1 and tyrosine-protein phosphatase non-receptor type 1
(PTPN1) emphasized the importance of RAS/MAPK pathway reactivation in the initial recovery
of CML cells upon incomplete inhibition or post-drug treatment reactivation of BCR-ABL.
Convincingly, previous drug resistance RNAi screens focusing on imatinib have similarly
identified these two genes in mediating resistance upon reduced expression in CML cell lines
(Luo et al, 2008).

NF1 belongs to the family of GAP proteins and represents one of the most prominent negative
regulators of RAS activation state by enhancing its intrinsic GTPase activity (Ballester et al,
1990; Scheffzek et al, 1998). Germline inactivating variants have been identified that lead to
the development of neurofibromatosis type 1, which is phenotypically defined by the formation
of benign peripheral cutaneous nerve tumors so called neurofibromas as well as benign
plexiform neurofibromas carrying the possibility of malignant transformation (Ratner & Miller,
2015). These inherited mutations further present a risk for the development of a diverse set of
other malignancies like JMML, gastrointestinal stromal tumor (GIST) or gliomas and somatic
alterations in the NF1 locus are frequently found in AML, melanoma, glioblastoma beyond
many others (McGillicuddy et al, 2009; Parkin et al, 2010; Maertens et al, 2013; Lawrence et
al, 2013). Reduced or complete absence of expression has furthermore been recognized in
the process of resistance development to targeted inhibition of EGFR in lung cancer and RAF
inhibition in BRAF V600E positive melanoma (Whittaker et al, 2013; de Bruin et al, 2014).
PTPN1 (also in the literature referred to as PTP1B) belongs to the group of protein tyrosine
phosphatases which act as erasers in the phosphotyrosine signaling circuitry (Tonks, 2006).
PTPN1 has been implicated as a key negative regulator of RTK signaling and more specifically
is able to antagonize the transformation propensity of BCR-ABL by negatively regulating the
BCR Y177 residue thereby interfering with GRB2 recruitment (Haj et al, 2003; LaMontagne et
al, 1998). Moreover, recent genetic studies have identified somatic inactivating mutations in
lymphoid malignancies, namely B cell and Hodgkin lymphoma (Gunawardana et al, 2014).
There are ongoing discussions about the degree of specificity and the spatial regulation of

phosphatases in cellular signaling cascades (Tonks, 2013). Therefore, the identification of a
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second protein tyrosine phosphatase, PTPN12 (also referred to as PTP-PEST), in mediating
resistance to BCR-ABL TKIs was intriguing to us. In fact, PTPN12 has been identified as a
TSG in triple-negative breast cancer whereby loss-of-function mutations or reduced expression
enhances transformation by increased activity of RTK driven MAPK signaling (Sun et al, 2011).
Detailed time-resolved MS analysis has furthermore demonstrated that PTPN12 controls an
important switch between pro-mitogenic and pro-survival signaling to cytoskeleton
rearrangement and cellular invasion via the regulation of the adaptor protein SHC1 and its
association with GRB2 and other signaling adaptor proteins (Zheng et al, 2013). In fact, TAP-
MS analysis on the BCR-ABL core signaling complex has identified an association of PTPN12
and SHC1 in CML cells (Brehme et al, 2009). In conjunction, these findings suggest a model
in which both tyrosine phosphatases, PTPN1 and PTPN12, govern sensitivity towards BCR-
ABL-directed TKIs via the negative regulatory modulation of fusion oncogene-induced MAPK
pathway activation.

Recent studies have started to accumulate evidence which emphasizes the importance of
transcriptional regulation and chromatin remodeling in the induction of drug tolerant states
(Sharma et al, 2010; Huang et al, 2012; Rathert et al, 2015). Using haploid genetic screens,
we have identified that knock-out cells of the transcription factor Wilms tumor 1 (WT7) and the
deubiquitinating enzyme BRCA1 associated protein 1 (BAP1) show reduced sensitivity
towards BCR-ABL inhibition.

WT1 has been considered a double-faced gene by its capability to act as a driving OG as well
as to fulfill TSG function (Yang et al, 2007; Huff, 2011). Within the hematopoietic system
mutations in WT17 have frequently been found in AML with prognosis predictive relevance,
contributing to disease pathogenesis and potentially influencing therapeutic responses
(Cancer Genome Atlas Research Network, 2013; Pemovska et al, 2013; Krauth et al, 2015).
Interestingly, recent studies have identified mutual exclusivity between alterations in WT1 and
IDH1, IDH2 or TETZ2 suggestive of a shared pathway involvement regulating DNA methylation
and hence altered gene transcription (Rampal et al, 2014).

In contrast BAP1 is frequently mutated in pleural mesothelioma, renal cell carcinoma and uveal
melanoma (Harbour et al, 2010; Bott et al, 2011; Pefia-Llopis et al, 2012; Carbone et al, 2013).
It has deubiquitinating enzyme function and was originally shown to interact with BRCA1
(Jensen et al, 1998). However, more recent work has identified its essential role in regulating
cell proliferation via the modulation of HCF-1 (HCFC1) protein levels (Misaghi et al, 2009).
Additionally, BAP1-associated protein complexes have been shown to further contain the
polycomb group proteins ASXL1 and ASXL2 as well as the O-GIcNAc transferase OGT (Dey
et al, 2012). Deletion of Bap1 in the murine hematopoietic compartment leads to myeloid
transformation mostly resembling human myelodysplastic syndrome supporting a potential
collaborative function with ASXL1 (Dey et al, 2012).

146



To this end, both WT1 and BAP1 knock-out KBM-7 cells displayed reduced sensitivity towards
BCR-ABL TKI treatment, however other related CML cell lines failed to demonstrate similar
behavior. It is well established that the genetic and epigenetic plasticity in between cancer
entities but also within on specific tumor can drastically influence the response to therapeutic
agents (Sharma et al, 2010; Ding et al, 2012). A previous RNAI screen for imatinib resistance
in a different CML cell line, K562, has failed to recover shRNAs targeting WT7 or BAP1 as
candidate drug sensitivity modulators. However, the same experimental setup has identified
reduced expression of the SMARCB1 and SMARCE1 genes encoding members of the
SWitch/Sucrose Non-Fermentable (SWI/SNF) nucleosome remodeling complex in being able
to mediate resistance to imatinib treatment (Luo et al, 2008) (Table 3). Clearly more work will
be required to disentangle the complex wiring of epigenetic regulation and their ability to
modulate the sensitivity towards pharmacological inhibition of the BCR-ABL oncogene in CML
and Ph+ ALL cells.

In contrast, the mechanistic involvement of leucine zipper like transcription regulator 1 (LZTR1)
in the regulation of BCR-ABL TKI sensitivity of CML cells remained elusive based on currently
available literature. Initial cell biological and MS-based studies have shown localization of
LZTR1 to the Golgi apparatus and binding to the CUL3 subunit of the cullin-RING E3 ligase
(CRL3) complex (Nacak et al, 2006; Bennett et al, 2010; Emanuele et al, 2011). Association
with CRL3 can further be rationalized by the presence of two C-terminal BTB domains in
LZTR1 which bind CUL3 as well as six N-terminal kelch domains which act as substrate
recognition domains (Xu et al, 2003; Lydeard et al, 2013). CRL complexes constitute a
subclass of the large family of RING domain E3 ligases and there are six cullin proteins (CUL1-
3, CUL4A, CUL4B and CULS5) encoded in the human genome (Zimmerman et al, 2010). These
cullins form assembly platforms for multi protein complexes, containing an E3 enzyme (RBX1
or RBX2) and one or more sequential substrate adaptor protein assemblies that lead to the
attachment of ubiquitin PTMs onto specific target proteins (Petroski & Deshaies, 2005).
Interestingly, genetic studies have identified LZTR1 mutations as potential pathogenic
alterations in GBM, SWNMT and NS (Frattini et al, 2013; Piotrowski et al, 2014; Yamamoto et
al, 2015). Particularly the association with Noonan syndrome, part of the group of RASopathies,
which are characterized by increased activation of the RAS/MAPK pathway offered a
compelling mechanistic explanation for the observed resistance phenotype. Indeed, several
examined CML as well as FLT3-ITD mutant AML cells already under normal culture conditions
displayed elevated MAPK activation. Further genetic and biochemical experiments revealed
that the increased pathway activation in CML cells is dependent on the presence of KRAS and
that the CRL3-LZTR1 complex is able to ubiquitinate RAS proteins. The ubiquitination of RAS
proteins itself has been reported in different studies, yet contradictory in their postulated

mechanistic outcome. Ubiquitination of HRAS however not KRAS can lead to altered
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endosomal trafficking and mutation-induced blockade of ubiquitination enhances ERK
activation (Jura et al, 2006). On the contrary, ubiquitination of KRAS can lead to enhanced
activation and modulates the interaction with downstream substrates (Sasaki et al, 2011).
Similarly, selective mono-ubiquitination can interfere with GAP functionality leading to
enhanced signaling output (Baker et al, 2013). Ultimately, ubiquitination has been described
to likewise trigger RAS degradation (Zeng et al, 2014). To this end, the biochemical
consequences of CRL3-LZTR1-induced RAS ubiquitination leading to enhanced MAPK
pathway activation still require further experimental work for clarification especially in light of
discrepancies present in the current literature. Most notably, RABGEF1 (also commonly
referred to as Rabex-5) has been shown to ubiquitinate RAS proteins and by using Drosophila
as model system in vivo RNAi experiments have revealed wing vein phenotypes reminiscent
of findings obtained with other NS candidate genes like PTPN11 (Xu et al, 2010; Yan et al,
2010). However, no inactivating mutations in RABGEF 1 have been identified in human genetic
studies focusing on patients with RASopathy-like clinical presentation. In contrast,
reconstitution experiments done in CML cells showed that the identified LZTR7 missense
mutations are phenotypically loss-of-function alterations in a KRAS-dependent MAPK pathway
activation state. In addition, this provides for the first time a potential mechanistic explanation
for the so far unknown molecular link between LZTR1 variants and their identification in GBM,
SWNMT and NS. It however remains to be clarified whether RAS GTPases represent the only
substrate proteins for LZTR1 or whether there are further candidates to be discovered that
would contribute to the pathogenesis of the afore mentioned diseases.

Besides our findings on LZTR1 the CRL3 complex itself has previously been linked to the
regulation of RTK-RAS/MAPK or PI3K/AKT pathway activation as well as the response to
targeted cancer agents. CRISPR/Cas9 genetic knock-out screens in BRAF mutant melanoma
have identified an enrichment of sgRNAs targeting CUL3 upon RAF or MEK inhibition using
vemurafenib or selumetinib treatment, respectively (Shalem et al, 2014; Doench et al, 2016).
No further mechanistic validation experiments have been performed building on the initial
screen observations. Nevertheless, reduced expression of CUL3 leads to alterations in late
endosome maturation interfering with EGFR degradation (Huotari et al, 2012).
Correspondingly, increased EGFR protein levels leading to enhanced PI3K/AKT activation
have been recognized to induce acquired resistance to vemurafenib treatment in BRAF mutant
melanoma as well as intrinsic resistance to RAF inhibition in BRAF mutant CRC (Prahallad et
al, 2012; Sun et al, 2014). Additionally, the regulation of NF1 protein stability has been linked
to the CRL3 activity, whereby NF1 is bound by the CUL3 BTB-Kelch-domain containing
adaptor protein KBTBD7 mediating its proteasomal degradation (Hollstein & Cichowski, 2013).
These findings further support the observed persistent proteostatic deregulation of NF1

contributing to glioblastoma development and growth (McGillicuddy et al, 2009).
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In summary, our genetic screen findings provide another piece of evidence for the crucial
importance of the RAS/MAPK pathway in maintaining cell growth of BCR-ABL-positive
leukemias and in their response to targeted therapy. Preclinical studies including in vivo
models of RAS-driven leukemias as well as case reports support the idea to therapeutically
target MAPK signaling in CML (Nguyen et al, 2007; Pellicano et al, 2011; Burgess et al, 2014).
A drug combination screen performed in BCR-ABL T315I mutant cells has identified a strong
dependency on maintaining active MAPK signaling for cell survival. The uncovered synergistic
anti-proliferative action of bosutinib and danusertib co-administration was dependent on
efficient compound off-target-mediated inhibition of MEK and ERK activity (Winter et al, 2012).
Similarly, selected TKils like nilotinib in the presence of BCR-ABL T315I can in fact lead to
enhanced ERK signaling due to paradoxical RAF activation which can be rescued by MEK
inhibitor co-treatment (Packer et al, 2011). Moreover, treatment observations in a patient
diagnosed with metastatic melanoma in the presence of CP CML revealed a complete HR
upon combinatorial treatment with BRAF and MEK1/2 inhibitors demonstrating the potential
clinical utility of combining BCR-ABL and MAPK pathway targeting agents (Andrews et al,
2015). Additionally, exemplary studies from BRAF mutant melanoma have further
demonstrated that the combinatorial blockade within the MAPK cascade or in parallel the
MAPK and PI3K pathway can significantly delay the onset of resistance and target different
mechanism leading to treatment failure (Whittaker et al, 2015; Deuker et al, 2015).

In the end, it will be important to clarify which of the so far additionally identified and
characterized resistance situations excluding direct drug target effects can be identified in
clinically resistant patients (Kim et al, 2017). Identifying a way to estimate their phenotypic
impact either by representative biomarkers or ex vivo profiling approaches will be crucial to
make informed treatment decisions for the selection of 2™ line therapeutic agents or

combinatorial regiments (Murtaza et al, 2013).
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3.6 Conclusion and future prospects

In summary within the scope of this thesis | have employed TAP procedures aided by MS
technology for the identification of protein complexes as well as gene-trap-based haploid
genetic screens and CRISPR/Cas9-induced targeted genome engineering for the discovery
and functional characterization of genes important for cancer cell growth and targeted
pharmacological perturbations. The developed vector toolkit will be beneficial in the future for
the mechanistic, MS-aided description of uncharacterized and tissue-selective essential gene
candidates identified by genetic screening campaigns. The technological integration of
proximity labeling strategies and advancements in affinity purification strategies for in vivo
settings will offer alternative ways to especially capture transient and highly context-dependent
or dynamic interactions. The adaptation of suitable CRISPR-based targeted integration
strategies into endogenous genomic loci for subsequent TAP- or AP-MS analysis will be crucial
for the exploitation of proteins currently not amenable to vector-based transductions due to
size limitations.

Focused genetic screens on the requirements of CML cells for oncogene-directed TKI
sensitivity has identified known and novel negative regulators of the BCR-ABL signaling
network. The evaluation of their relevance and usability as clinical biomarkers for the
identification of patient subpopulations at higher risk for either disease relapse after therapy
cessation or progression to advance disease states will be critical (Bertotti et al, 2015). The
findings obtained by studying the mechanistic basis of LZTR1 loss-of-function-induced drug
resistance have highlighted again the importance of ubiquitination and its interplay with other
PTMs like phosphorylation in the orchestration and fine tuning of cellular signaling processes.
The development and exploitation of novel therapeutic approaches by targeting alterations
within the ubiquitin system as well as harnessing its proteostatic regulatory capabilities will
dramatically expand the breadth of the currently available kinase and epigenetic-focused small
molecule therapeutic armamentarium (Skaar et al, 2014; Huang & Dixit, 2016).
Improvements in genetic screening systems, the addition of inducibility and traceability
features into existing CRISPR-based techniques as well as the adaptation of novel innovative
viral vectors will broaden the scope of amenable cellular and phenotypic interrogations (Khan
et al, 2011; Ran et al, 2015; Yin et al, 2016). Furthermore, the development of combinatorial
genetic screening tool kits will provide a powerful orthogonal approach to well-established
chemical biology platforms for the identification of synergistic pairs of druggable targets (Wong
et al, 2016). The development of organoid and alternative ex vivo cell (co-)culture systems will
be crucial to study gene essentiality and drug resistance development more closely to the
actual clinical setting providing more accurate predictions and means to experimentally tackle
phenotypic heterogeneities brought about by patient to patient variability (van de Wetering et
al, 2015; Clevers, 2016).
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In the end, the application of above listed technological innovations will increase our
understanding of the genetic and phenotypic wiring of cancer cells as well as the complex
interplay of targeted pharmacological agents with neoplastic cells. Extending the lessons
learned in cancer drug discovery to the growing field of immuno oncology will empower the
rise of innovative novel combinatorial treatment modalities for cancer with curative intent

achieving durable therapeutic responses.
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