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Abstract (English):  
Cachexia remains an enigmatic syndrome that manifest alongside a variety of chronic 

inflammatory diseases, infections and malignancies, with very limited treatment options. 

Infection-associated cachexia is particularly underdiagnosed and understudied form of the 

syndrome. In this study, we implement an integrative approach to investigate the 

physiological, cellular and molecular changes during infection-associated cachexia in a murine 

model of chronic viral infection. We found that the onset of cachexia was couple to short-term 

anorexia, lethargy and  triggered a depletion of both fat and muscle mass. We further 

characterized global changes in the adipose tissue architecture and metabolic program. In 

addition, we use a number of pharmachological and genetic perturbation to identify the 

inflammatory and immune triggers upstream of peripheral tissue wasting. Surprisingly, the 

classical cytokines associated with cancer cachexia did not contribute to wasting in this model. 

Instead, cachexia was triggered by CD8+T cells at a timepoint preceding the peak of T cell 

response and required T cell–intrinsic type I interferon signaling and antigen-specific priming. 

Our results link systemic antiviral immune responses to adipose-tissue remodeling and reveal 

an underappreciated role of CD8+T cells in infection-associated cachexia.  
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Abstract (German):  
Kachexie bleibt ein rätselhaftes Syndrom, welches sich im Laufe von verschiedenen 

Entzündungs-, Infektions- und Krebserkrankungen manifestiert, mit sehr limitierten 

Behandlungsoptionen. Die Infektions-assoziierte Kachexie ist eine besonders 

unterdiagnostizierte und wenig studierte Unterform dieses Syndroms. In dieser Studie 

implementieren wir eine integrative Herangehensweise, um die physiologischen, zellulären 

und molekularen Veränderungen während Infektions-assoziierter Kachexie in einem 

Mausmodell für chronische virale Erkrankungen zu studieren. Wir fanden heraus, dass die 

Anfangsphase der Kachexie mit kurzzeitiger Anorexie und Lethargie verknüpft ist, was einen 

Schwund von Fett- und Muskelmasse zur Folge hat. Wir haben darüber hinaus die globalen 

Veränderungen im Aufbau und Metabolismus des Fettgewebes charakterisiert. Zusätzlich 

verwenden wir eine Vielzahl an pharmakologischen und genetischen Pertubationen, um die 

entzündlichen und immunologischen Auslöser, die für den peripheren Gewebeschwund 

verantwortlich sind, zu identifizieren. Überraschenderweise tragen die klassischen Zytokine, 

welche mit Krebs assoziierter Kachexie in Verbindung gebracht werden, in diesem Modell 

nicht zum Gewebeschwund bei. Stattdessen wird die Kachexie von CD8+ T-Zellen zu einem 

Zeitpunkt, der vor dem Maximum der T-Zell Antwort stattfindet, hervorgerufen. Dieser Prozess 

ist abhängig von T-Zell intrinsischen Interferon Typ 1 Signalen, sowie Antigen-spezifischem 

Priming. Unsere Erkenntnisse verbinden systemische antivirale Immunantworten mit 

Veränderungen im Fettgewebe und enthüllen eine unterschätzte Rolle von CD8+ T-Zellen in 

Infektions-assoziierter Kachexie. 
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Introduction: 
When an organism is faced with a prolonged exposure to a critical conditions, be it external, 

such as predation or famine, or internal such as infections or malignancies, it needs to develop 

specialized strategies to maximize its chances of survival (Wang et al, 2019; Hotamisligil, 

2017; Hayward et al, 2013). In the case of infections, innate surveillance machineries are able 

to identify the threat, and acquire the essential information to initiate critical decision making 

processes during the first hours following infection (Shin et al, 2016; Moseman & McGavern, 

2013). The biological nature of the pathogen, initial inoculum and replicating rate as well as 

its pathogenicity and tropism, are all factors that influence whether the immune system will 

launch a defensive response or activate tolerogenic responses (Ayres & Schneider, 2012; 

Medzhitov et al, 2012). This is because immunological responses aimed at combating 

pathogens are energetically very expensive, and can cause immunopathology and tissue 

damage that then may require tissue repair. Meanwhile, the energy reserves available for the 

host are limited. Moreover, the basal energy requirements designated to support growth, 

reproduction and maintenance programs, the so-called life history traits, must be taken into 

consideration (Stearns 1992).  

Many efforts have been made towards a better understanding of the major regulatory 

pathways coordinating organismal energy distribution. Even within homeostatic conditions this 

remains a very challenging endeavor that involves complex and overlapping signaling 

pathways across multiple organs (Lempradl et al, 2015; Krauss et al, 2012). Moreover, these 

pathways are often influenced by circadian regulation, nutritional state as well as other 

developmental and environmental changes across the organism’s life cycle (Sahar & 

Sassone-Corsi, 2012; Di Francesco et al, 2018). Over the past few years, a number of studies 

described a variety of mechanisms by which metabolism influences immune responses and 

vice versa, launching a new field of research in immunometabolism (Buck et al, 2017; Mathis, 

2019; O’Neill et al, 2016).  

The first landmark studies in immunometabolism mostly focused on exploring the metabolic 

regulation within innate and adaptive immune cells in vitro using metabolic flux analysis and 

pharmacological manipulations (Krawczyk et al, 2010; Michalek et al, 2011; Shi et al, 2011; 

Haschemi et al, 2012). As the field matured, more in vivo studies emerged and focused on the 

consequences of the metabolic reprogramming during infection (Geltink et al, 2018; Norata et 

al, 2015). A number of these studies described multiple mechanisms by which trade-offs are 

made between life history traits and the immune response. Many of these strategies can 

manifest as pathophysiological and behavioral changes termed “sickness-behavior” (Shattuck 

& Muehlenbein, 2015; Harden et al, 2015). This includes thermal-regulation (hyperthermia in 

humans, and hypothermia in some murine infections), anorexia, lethargy, and/or social 

isolation (Filiano et al, 2016). It’s important to note that all such manifestations of disease are 
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neither always beneficial nor always detrimental, but are highly context dependent. Studies of 

different infection models described a specialized role for anorexia, rendering it as both 

adaptive and maladaptive (Wang et al, 2016; Rao et al, 2017). In this context, anorexia is 

defined as a reduction in food intake, commonly due to inflammation-induced hypothalamic 

regulation, which results in a significant body weight loss. This is to be distinguished from 

anorexia nervosa, a mental illness in which the fear of weight gain, and the desire to be thin 

causes individuals to restrict their dietary intake to a degree that renders them critically 

malnourished (Attia, 2010). Additionally, parallel trade-off strategies can be coordinated 

independently within the same organism to address different aspect affecting host survival. 

For instance, during lipopolysaccharide (LPS) injection, or Listeria monocytogenes (L. 

monocytogenes) infection, an adaptive role has been shown to both homeothermic regulation 

and anorexia (Wang et al, 2016; Ganeshan et al, 2019). Hypometabolic hypothermic response 

was shown to promote disease tolerance and survival, independently of anorexia and lethargy 

(Ganeshan et al, 2019), while anorexia-induced ketogenesis proved essential in mitigating 

reactive oxygen species (ROS)-induced neuronal damage and thus promoting host survival. 

Reversing L. monocytogenes-associated anorexia through nutritional supplement, in 

particular, glucose supplement, resulted in lethality (Wang et al, 2016). On the other hand, 

supplementing glucose to anorexic mice during influenza infection increased their survival, 

suggesting a detrimental mode of anorexia (Wang et al, 2016). During Salmonella 

typhimurium (S. typhimurium) infection, the pathogen itself actively inhibits anorexia in the 

host by blocking the interleukin 1-beta (IL1β)-mediated gut-brain signaling axis. By doing so 

S. typhimurium promoted host survival, and maintained the host’s food consumption, which 

subsequently facilitates prolonged pathogen transmission through fecal shedding (Rao et al, 

2017).  

The work of this thesis investigates the pathophysiology of a more enigmatic nature called 

“Cachexia”. It is a complex syndrome which engages multiple inflammatory, metabolic and 

behavioral programs across different organs and results in a severe depletion of muscle and 

fat mass (Fearon et al, 2011). Cachexia occurs alongside numerous chronic inflammatory 

illnesses and is often associated with advanced stages of disease. This includes many 

aggressive cancer types, chronic infections with human immunodeficiency virus (HIV) or 

tuberculosis (TB), and other chronic illnesses such as multiple sclerosis, chronic kidney failure, 

or chronic heart failure (Baracos et al, 2018; Keithley & Swanson, 2013; Cheung et al, 2010). 

The manifestation of cachexia has a severe impact on the patient’s prognosis and survival. It 

also affects their mental health and that of their care-givers due to the severe visual effect of 

such an extreme weight loss, as well as the inability of the patients to care for some of their 

basic daily needs (Lok, 2015). During cancer-associated cachexia, patients with a very 

advanced stage of cachexia (so called refractory cachexia) reach a state of weakness in which 



 3 

therapeutic interventions become inappropriate (Fearon 2011). Moreover, the depleted 

muscle mass and strength could result in cardiac arrhythmias, respiratory weakness or other 

complications that may result in mortality (Baracos et al, 2018). 

 

1.1 Cachexia: clinical diagnosis, and human data.  
In 2011, the results of an international Delphi consensus process was published in the Lancet 

Oncology led by Fearon et al.(Fearon et al, 2011). This process brought together a diverse 

group of medical and surgical oncologists, palliative care physicians and nutritionists to 

formalize a definition for cancer-associated cachexia. The consensus reached described 

cachexia as a multifactorial syndrome, during which skeletal muscle mass is depleted either 

with or without the depletion of fat mass, and a result of a negative energy balance, and 

reduced food intake. Importantly, conventional nutritional supplementation is insufficient in 

reversing cachexia.   

In practical terms cachexia in human patients is diagnosed by an involuntary weight loss of 

over 5% over the course of 6 months (Fearon et al, 2011; Baracos et al, 2018; Tisdale, 2002). 

However there are two factors that call for making exceptions to this criteria. The first concerns 

individuals with a low body mass index (BMI), here cachexia could be defined by the loss of 

over 2% of body weight with a BMI lower than 20kg/m2 and/or sarcopenia (Fearon et al, 2011). 

The second concerns individuals with obesity, a very prevalent demographic in modern 

western societies, and one that is on the rise in many developing countres. In this case weight 

loss could easily go undetected, especially if muscle loss occurs without a significant loss of 

fat mass (Martin et al, 2013). These variations in the patient’s baseline bodyweight makes 

diagnosis solely on the basis of weight insufficient, especially considering that amongst 

individuals with the same underlying illness, weight loss occurs at variable stages of disease 

and progresses at different rates (Baracos et al, 2018). This creates a need to set and 

standardize more sophisticated diagnostic criteria, which incorporate weight loss with 

computed tomography (CT) or magnetic resonance imagining (MRI) measurement, evaluation 

of food intake and metabolic alterations (Martin, 2016; Fearon et al, 2011). To 

comprehensively evaluate the loss of muscle and fat mass, most clinical studies used axial 

lumbar CT scans, which are anchored at the 3rd lumbar vertebra. At this position, a good 

correlation has been established with the whole body volume of the respective tissue (Baracos 

et al, 2018; Martin, 2016).  Cachectic patients are also evaluated for the cause of their reduced 

food intake, as it is important to establish whether it is due to damage to their digestive track 

or caused by alterations in their appetite (Baracos et al, 2018). Other measurements of serum 

inflammatory cytokines and signaling hormones have been used to diagnose cachexia, 

however, these criteria show high variability amongst patients (Martin, 2016). In the case of 

patients suffering from infection-associated cachexia, there is little data available mostly due 
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to the low rate of diagnosis. During HIV infection, it is often difficult to distinguish HIV-

associated cachexia from HIV-1-associated lipodystrophy syndrome (HALS) (Kotler, 2004; 

Wanke, 2004). As opposed to cachexia, lipodystrophy is characterized by abnormal lipid 

redistribution, and its ectopic deposition in other organs, such as liver and muscles. Moreover, 

lipodystrophy occurs in association with infections such as HIV and tuberculosis (TB), or can 

result from genetic defects that give rise to either partial or complete lipodystrophy 

(Vegiopoulos et al, 2017). 

 
1.1.1 Adipose tissue wasting. 
Adipose tissue wasting is a prominent feature of both cancer- and infection-associated 

cachexia. In general terms, the proinflammatory state that follows an infection or malignancy, 

triggers global changes that effect lipid metabolism and adipose tissue homeostasis 

(Hotamisligil, 2017; Mathis, 2019). The exact inflammatory and/or hormonal mediators of 

adipose tissue wasting are not entirely defined, and tend to vary across diseases. Adipose 

tissue lipogenesis and lipid uptake becomes restricted and the rate of lipolysis is increases, 

which results in a severe depletion of the adipose lipid droplets, and excessive release of 

none-esterified fatty acids (NEFA) and glycerol into the circulation. This excess of circulating 

lipids leads to lipotoxicity, increased reactive lipid species and aggravates metabolic 

dysfunction (Vegiopoulos et al, 2017; Sassoon, 2016; Fukawa et al, 2016). 

When examining adipocyte morphology, it becomes clear that lipid droplets occupy most of 

the cell volume. Lipid droplets contain mainly neutral lipids in the form of triacylglyceride (TGs) 

coated by a layer of phospholipids and lipid-associated proteins, such perilipin. During the 

postprandial state, perilipin act as a protective coat that shields the lipid droplet from the 

hydrolytic activity of adipose lipases. Meanwhile, adipose triglycerides lipase (ATGL) and 

hormone sensitive lipase (HSL) are suspended in the cytosol. Ingested dietary lipids are 

packaged into chylomicrons and very low density lipoproteins (vLDL) in the liver, and then 

released into the circulation. When they reach the adipose tissue, vascular lipases, mainly 

lipoprotein lipase (LPL) are secreted into the capillary lumen to hydrolyze the chylomicrons 

and vLDL TG content. This is an essential step that allows lipid uptake into the cells 

(Whitehead, 1909), either passively through cellular diffusion, or actively through membrane 

proteins such as the lipid scavenger receptor CD36 (Balaban et al, 2015). Within adipocytes, 

NEFAs are converted into fatty acyl-CoA (FA CoA) to serve as an acyl-donor for TG synthesis, 

either through the glycerol phosphate pathway, or through the monoacylglycerol (MG) 

pathway (Coleman et al, 2002). Both pathways converge upon the synthesis of diacylglycerols 

(DG), which are then further esterified into TGs and packaged into a membrane bilayer 

through acyl-CoA:diacylglycerol acyltransferase (DGAT) family enzymes DGAT1 and DGAT2, 
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the rate-limiting enzyme being DGAT2, due to its higher enzymatic activity at lower substrate 

levels (Liang et al, 2008).  

When fasting, or undergoing stressful conditions, lipolysis is activated in response to a number 

of stimuli that either bind and activate cell surface receptors or diffuse through the cell 

membrane. On the cell surface, thyroid stimulated hormone receptors (TSHRs), beta-

adrenergic receptors (β-ARs) and natriuretic peptide receptor A (NPR-A) activate lipolysis in 

response to signals from free thyroxine (fT4) and free triiodothyronine (fT3), catecholamines, 

or natriuretic peptides respectively (Duncan et al, 2007; Nielsen et al, 2014). The binding of 

TSHRs or β-ARs to their ligands leads to the activation of adenyl cyclase (AC) through guanine 

nucleotide-binding protein (GNAS), and the release of cyclic adenyl monophosphate (cAMP), 

which in turn phosphorylates protein kinase A (PKA). In humans the activation of NPR-A leads 

to the release of cyclic guanine monophosphate (cGMP), which in turn phosphorylates protein 

kinase G (PKG) (Nielsen et al, 2014). PKA and/or PKG subsequently phosphorylate both 

perilipin and HSL (Ser660). Phosphorylated HSL (pHSL) translocated towards the surface of 

the lipid droplet, whereas phosphorylated perilipin undergoes conformational changes that 

lead to increased access to the lipid droplet, allowing pHSL and ATGL to bind to their lipid 

substrate (Zechner et al, 2012). Moreover, when perilipin is phosphorylated it releases the 

Comparative Gene Identification-58 (CGI-58) which is otherwise bound to it. CGI-58 then 

binds to ATGL, which is an essential step for ATGL to reach its full hydrolytic capacity (Lass 

et al, 2006; Lu et al, 2010). ATGL also interacts with G0G1 switch protein 2 (G0S2), however 

the full nature of their interaction is still not fully understood (Lu et al, 2010). HSL/pHSL and 

ATGL activity mediates about 90% of lipolysis in the adipocytes (Schweiger et al, 2006). HSL 

mediates stimulated lipolysis and is capable of hydrolyzing TGs and DGs, though it has a 

higher affinity for the latter. ATGL mediates basal lipolysis, and mainly acts on TGs. The 

remaining MG are broken down by MG lipase (MGL) and the resulting NEFAs are released 

into the circulation. NEFAs are taken up by other tissue as substrates for fatty acid oxidation 

(FAO), ketoneogenesis or other synthetic or signaling pathways (Rambold et al, 2015; Nielsen 

et al, 2014; Calder, 2012). Glycerol is transported into the liver, where it is used in 

gluconeogenesis (Jelen et al, 2011) (Figure 1). 

It is worth noting that lipogenesis and lipolysis are not mutually exclusive processes, but they 

are constantly held in balance to mediate a cycle of hydrolysis and re-esterification. This 

creates a buffering system to prevent the accumulation of reactive lipid species, provides 

intermediary molecules and allows for the replenishment of the adipose lipid pool (Zechner et 

al, 2012; Arner & Langin, 2014). Within the lifespan of an adipocyte, which is approximately 

10 years, its lipid content is renewed over 6 times, a rate which inversely correlates with 

adipose tissue inflammation, highlighting an important role for the hydrolysis-re-esterification 

cycle in maintaining tissue homeostasis (Arner et al, 2011; Rydén et al, 2013).  
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During cancer-associated cachexia, a number of proinflammatory cytokines including tumor 

necrosis factor (TNF), interleukin 6 (IL6) and interferon gamma (IFNγ) have been shown to 

mediate adipose tissue wasting by increasing energy expenditure, lipid mobilization or by 

increased catecholamine signaling (Arner & Langin, 2014). The increase in energy 

expenditure could be partially attributed to the increased rate of adipose tissue 

beiging/browning, which takes place in a subset of adipocytes called beige/bright adipocytes 

(Petruzzelli et al, 2014; Kir et al, 2014). This subset of cells has a distinct lineage from both 

white (WAT) and brown (BAT) adipocytes. In steady state, beige adipocytes accumulate large 

lipid droplets and behave as WAT. However, when non-shivering thermogenic demand is 

increased, these cells adopt a more BAT-like behavior, by increasing their mitochondrial 

content and performing uncoupling protein 1 (UCP1)-mediated thermogenesis (Wu et al, 

2012; Petruzzelli et al, 2014). This process consumes a large amount of NEFAs which is 

thought to account for a portion of the energy loss during certain types of cancer-associated 

cachexia. The extent to which adipose tissue beiging contributes to cachexia in humans, 

however, is still controversial (Baracos et al, 2018). The cachexia-associated increase in 

lipolysis occurs through a variety of pathways associated with systemic inflammation. On a 

transcriptional level, increased ATGL (Pnpla2) and/or HSL (Lipe) mRNA expression can 
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promote lipolysis. Although, the two do not always correlate, indicating that other regulatory 

approaches are more important in regulating ATGL and HSL activity (Zechner et al, 2012).  

Increased adipose tissue lipolysis also occurs due to decreased perilipin (Plin1) mRNA 

expression, rendering lipid droplets more exposed to lipolysis (Silvério et al, 2017). Other 

factors can affect the PKA-mediated phosphorylation, either directly, or by blocking adenyl 

monophosphate-activated protein kinase (AMPK), a negative regulator of PKA 

phosphorylation (Djouder et al, 2010).  

 
1.1.2 Muscle atrophy. 
Muscle atrophy is perhaps the most studied aspect of cachexia, as it is thought to be the main 

factor leading to functional impairment and mortality (Cohen et al, 2014). The reduced muscle 

mass and strength limits the patient’s ability to perform daily activities and to care for 

themselves, which could have a big impact on their psyche, and put them in a greater risk of 

harm (Lok, 2015). Moreover, muscle atrophy is not only limited to skeletal muscles but could 

also interfere with both cardiac and pulmonary function (Baracos et al, 2018; Argilés et al, 

2018). In both humans and mice, the onset of cachexia results in a reduction of heart size 

(Olivan et al, 2012; Barkhudaryan et al, 2017), cardiac fibrosis, and alterations in myocardial 

ultrastructure and contractile protein complex composition (Belury et al, 2010), these and other 

factors could result in life threatening cardiac arrhythmias.  

Muscle atrophy is attributed to three major factors: increased proteasomal activity (Sandri, 

2016), increased autophagy (Von Haehling et al, 2017), and reduction of muscle regeneration 

(Bossola et al, 2016). These processes share common upstream signaling pathways, mainly 

the PI3K-AKT-mTOR signaling axis (Cohen et al, 2014). During normal muscle growth, the 

activation of this pathway leads to increased protein synthesis, and suppresses the 

transcription factor forkhead box protein O (FOXO) (Glass, 2005). However, when muscle 

atrophy is induced in conditions such as cachexia, PI3K-AKT-mTOR pathway signaling is 

Figure 1: Adipose tissue lipolysis. 
Activation of lipolysis during fasted state is mediated by a number of hormonal signals, 

including glucocorticoids (GCs), thyroid stimulated hormones (TSH), catecholamines, and 

natriuretic peptides (NP). GCs diffuse freely across the cellular membrane and mediate a 

variety of functions through the binding to their cytosolic GC-receptor (GR). The binding of 

TSHR, β-ARs or NPR-A to their respective ligands triggers the release of cAMP/cGMP, the 

phosphorylation of PKA/PKG, and their downstream targets, including HSL, ATGL and PLIN. 

This leads to the increased lipolysis and the breakdown of TGs, DGs, and MG into free fatty 

acids and glycerol which are then released into the circulation. 
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attenuated. As a result, the rate of protein synthesis drops, and the FOXO proteins are free to 

translocate into the nucleus. FOXO1 and FOXO3, then mediates the increased mRNA 

expression of muscle-specific RING-finger1 (Murf1) and atrogin1, both of which are 

proteasomal proteases, commonly used as markers for muscle atrophy due to their consistent 

increase across different models (Cohen et al, 2014). Moreover, FOXO1 and FOXO3 also 

mediate the increased expression of genes involved in autophagy, a process by which cells 

degrade unnecessary and dysfunctional organelles and cellular components (Von Haehling 

et al, 2017). Muscle regeneration is also affected during cachexia, as indicated by the 

decreased expression of myoblast determination protein 1 (Myod1). Myod1 is a master 

regulator of muscle regeneration and growth. During cachexia, its expression is suppressed 

through the activation of the NF-κB pathway, which prevents muscle stem cells from 

differentiating into mature myotubes (Guttridge et al, 2000). 

Several lines of evidence suggest that adipose tissue wasting predisposes or aggravates 

muscles atrophy. This could be either through adipocyte secretion of proinflammatory factors 

and cytokines, which directly trigger muscle atrophy (Argilés et al, 2018), or through the 

increased release of NEFA in the circulation (Fukawa et al, 2016). The excessive rate of FAO 

in skeletal muscles during cachexia leads to high levels of oxidative stress and ROS 

generation. This in turn activates p38 mitogen-activated protein kinase (p38 MAPK) pathways, 

and leads to muscular defects (Fukawa et al, 2016).    

 

1.1.3 Soluble signaling regulators of cachexia.  
Amongst the clinical data available from cachectic patients during cancer, infection and 

chronic illness, circulating cytokine profiles and acute-phase proteins (APP) are abundant. 

However, these measurements are inconsistent and thus ill-suited as diagnostic criteria 

(Martin, 2016; Baracos et al, 2018). A plausible explanation for these inconsistences is the 

difference in the inflammatory context and/or genetic background of the patients.  

TNF, IL6, IL1 and IFNγ are some of the most prominent cytokines associated with cachexia 

(Fearon et al, 2012; Argilés et al, 2009). In the periphery, these pro-inflammatory cytokines 

can induce wasting by modulating gene expression through their activation of master 

regulatory pathways, such as the Janus kinase family protein/signal transducer and activator 

of transcription protein (JAK/STAT) pathway or the NF-kB pathways (Fearon et al, 2012; 

Guttridge et al, 2000). For instance, in adipocyte cultures, TNF has been shown to inhibit 

adipocyte differentiation (Sethi & Hotamisligil, 1999), lipogenesis and lipid uptake (Price et al, 

1986), and to promote ATGL-mediate lipolysis (Yang et al, 2011; Patel & Patel, 2016). TNF 

effects on lipolysis occur downstream of mitogen-activated protein kinase kinase and 

extracellular signal-related kinase (MEK/ERK) signaling axis. MEK/ERK TNF-mediated 

pathway activation leads to the inhibition of phosphodiesterase 3 (PDE3B) (Aoyagi et al, 
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2015). PDE3B is an enzyme downstream of insulin receptor signaling that limits PKA activity 

through the sequestration of cAMP, and its conversion into 5’AMP (Nielsen et al, 2014). TNF 

also mediates skeletal muscle wasting through its engagement with the NF-kB pathway (Patel 

& Patel, 2016).  

Many of these cytokines can also mediate both behavioral and physiological changes through 

central regulation (Burfeind et al, 2016). The mediobasal hypothalamus (MBH) is part of the 

central nervous system (CNS) that is particularly sensitive to inflammation, and can regulate 

both feeding behavior and systemic metabolism (Cone et al, 2001). This modulation is likely 

to be through cytokines targeting orexigenic neurons such as agouti-related peptide (AgRP) 

or neuropeptide Y (NPY), or targeting anorexigenic neurons such as pro-opiomelanocortin 

(POMC) (Grossberg et al, 2010). Cachectic patients suffering from pulmonary TB infection 

showed elevated serum levels of peptide YY (PYY) (Chang et al, 2013), an appetite-regulating 

hormone, which is secreted in the intestine and mediated a feedback regulation by interacting 

with NPY in the hypothalamus (Vincent & le Roux, 2008). 

 Alternatively, cytokine signaling in the MBH, for example by IL1β, can lead to activation of the 

hypothalamic-pituitary adrenal axis (HPA) (Katsuura et al, 1988; Braun et al, 2011). This 

activation of HPA, results in increased glucocorticoid (GC) production, which are known to 

promote lipolysis in adipose tissue (Xu et al, 2009), and increased proteasomal degradation, 

while inhibiting protein synthesis in muscles (Wing & Goldberg, 1993; Braun et al, 2011). In 

the adipose tissue, GCs exhibit their effect on lipolysis through their engagement with the 

cytosolic GC-receptor (GR) and its translocation into the nucleus, which then triggers a wide 

range of transcriptional modulation (John et al, 2016). This includes the increased expression 

of β-ARs and decreased PDE3B expression, which promote PKA-mediated lipolysis (Nielsen 

et al, 2014). Additionally GCs increased ATGL and HSL expression while decreasing the 

expression of perilipin (Xu et al, 2009).   

Adipose tissue inflammation, also leads to the increased production of leptin, an adipokine 

with a wide range of influence. It acts as a proinflammatory cytokine (Procaccini et al, 2013; 

Cava & Matarese, 2004), promotes adipose tissue lipolysis (Friedman & Halaas, 1998; 

Vegiopoulos et al, 2017) and modulates feeding behavior through its STAT3 mediated 

hypothalamic signaling (Morrison, 2009; Zeng et al, 2015).  

 
1.2 Therapeutic approaches.  
In the majority of cases, therapeutic strategies addressing cachexia focus on establishing 

supportive dietary and exercise regiments that meet the patient’s capacity (Arends et al, 

2017). Indeed, multiple trials showed a measurable improvement in muscle strength after 

aerobic and resistance exercise during the early stages of cachexia (Stene et al, 2013). 

Nutritional support occurs in different forms, depending on the disease stage of the patient 
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(Fearon et al, 2011). During the early stages of cachexia, patients received dietary 

supplements and/or follow dietary programs under the close observation of a nutritionist. 

However, at an advanced stage patients suffering severe functional impairment are forced to 

rely on enteral or parenteral feeding (Arends et al, 2017; Baracos et al, 2018).   

In some cases, orexigenic treatments are also implemented to increase the patient’s appetite 

and food intake. Such an example is Anamorelin, a ghrelin agonist which stimulates food 

intake by binding to the growth hormone secretagogue receptor (GHS-R) (Von Haehling & 

Anker, 2014; DeBoer, 2011). Patients suffering from cancer-associated cachexia (DeBoer, 

2011), as well as chronic obstructive pulmonary disease (COPD)-associated cachexia (Miki 

et al, 2012) receiving Anamorelin treatment showed some improvement in body weight, fat 

and lean mass, however, no correlation was made to strength or survival (Argilés et al, 2017; 

Von Haehling & Anker, 2014).   

Other pharmacological treatments target either specific cachexia-associated proinflammatory 

cytokines such as IL6 and TNF, aim to alter muscle atrophy (Zhou et al, 2010), or target lipid 

metabolism (Argilés et al, 2017). However, in most of these cases, the involvement of these 

factors vary according to the underlying illness, which speaks for the importance of 

personalized treatment plans to achieve the most improvement.  

 
1.3 Experimental models of Cachexia. 
The majority of the mechanistic information available regarding cachexia is acquired through 

murine models of cancer-associated cachexia. Many of these models rely on ectopic or 

orthotopic injection of cancer cells that have been cultivated in culture (DeBoer, 2009). Both 

approaches have their limitations (Penna et al, 2016), and the choice of administration route 

has to be made carefully as it results in phenotypic variations both in the tumor growth and 

the manifestation of cachexia. When using ectopic injection, tumors grow at very high rate, 

while cachexia takes time to manifest. This leaves a very narrow time window to study 

cachexia, before it becomes ethically necessary to sacrifice the mice (DeBoer, 2009; Penna 

et al, 2016). On the other hand, using orthotopic injection requires performing surgery, which 

introduces an additional factor of variability and is more invasive. Even when using ectopic 

administration, the outcome can highly vary between subcutaneous or intramuscular 

injections. For instance, when administering Lewis lung carcinoma (LLC) cells 

subcutaneously, it takes 28 days for cachexia to develop. With intramuscular administration, 

cachexia develops within 15 days only. Moreover, the rate of metastasis is much higher with 

subcutaneous injection (Penna et al, 2016). Another examples is  the C26 colon cancer model, 

where anorexia is only seen during subcutaneous but not intraperitoneal injection. In both 

cases, the mice do exhibit other signs of cachexia, including both adipose tissue and muscle 

wasting (Matsuyama et al, 2015).  
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Tumors used as cancer cachexia models also differ in their genetic background, an important 

variable to consider when weighing the translational potential of a dataset. The LLC cells were 

obtained from C57BL/6 mice that spontaneously developed tumors (Margret Lewis 1951). In 

this case, one could consider this a naturally developed tumor, though the highly inbred nature 

of these mice could be a contributing factor. The C26 colon cancer model, is chemically 

induced and therefore carries an artificial developmental pathway. It was isolated from a 

mouse that was exposed to carcinogens (Corbett et al, 1975).  

In order to mimic the slow and gradual progression of cachexia observed in humans, a number 

of genetic models were developed. APCmin/+ mice, contain a mutation in the tumor suppressor 

gene adenomatous polyposis coli (Apc). They develop tumors when they’re approximately 4 

weeks old, and cachexia 10 weeks after the tumor development. Around 16 days after tumor 

development, a 15% weight loss is observed (Puppa et al, 2011; Baltgalvis et al, 2010). Other 

models include the Tsc2+/-Eμ-Myc model for B lymphomas, the MKN-45 stomach cancer 

model, and the ASV-B model for hepatocellular carcinoma (HCC). There are also genetic 

models available for metastatic tumor models such as the two breast cancer metastasis 

models MDA-MB-231 and 4T1 mammary carcinoma (Konishi et al, 2015).  

Models of cachexia outside the cancer setting are very limited, especially when it comes to 

infection-associated cachexia. Experimental models of parasitic infections develop cachexia 

gradually over a longer timeframe before reaching their endpoint. Such models include 

infection with Toxoplasma gondii, an obligatory intracellular protozoan with multiple hosts to 

support different stages of its life cycle (Molloy et al, 2013). When Toxoplasma cysts are 

ingested, mice lose up to 20% of their initial body within the first 10 days after infection. The 

infected mice display anorexia and wasting of their fat and muscle mass, which is sustained 

for over 90 days after infection, independently of the parasite load (Hatter et al, 2018). This 

long-term onset of cachexia gives this model a big advantage, as it simulates the prolonged 

nature of cachexia in humans, and allow for long-term investigations into therapeutic 

opportunities. Infection-associated cachexia also occurs in mice infected with Trypanosoma 

cruzi, another protozoan parasite (Teixeira et al, 2002). Yet, in this model weight loss is only 

seen around day thirty after infection (Truyens et al, 1999).   

To acquire sterile models of cachexia, independent of infection and malignancy, the 

implementation of surgical procedures become necessary. For example, to investigate 

cachexia during chronic cardiac disease, models of myocardial infarction and aortic banding 

are often used to induce heart failure (DeBoer, 2009). Another two-step surgical procedure 

leaves the mice or rats with 1/6th of a functional kidney, which renders them uremic, and 

induces slower weight gain and loss of muscle mass within two weeks following the surgery 

(Deboer et al, 2008). 
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1.4. Lymphocytic choriomeningitis virus (LCMV). 
Lymphocytic choriomeningitis virus (LCMV), is a single stranded negative sense RNA virus 

belonging to the Arenaviredae family (Bergthaler et al, 2010, 2007; Buchmeier et al, 2007).  

LCMV is is a virus with a relatively simple genome of ten kilobases divided between two RNA 

segments in an ambisense orientation (Flatz et al, 2006; Buchmeier et al, 2007). The long (L) 

segment encodes for the RNA-dependent RNA polymerase and the matrix protein Z, required 

for virus budding from the cells. The short (S) segment codes for the viral nucleoprotein (NP), 

which enclose the virus RNA, and the glycoprotein (GP), required for binding to cell surfaces 

and entry (Bergthaler et al, 2010; Lee et al, 2002). On each segment, the two genes are 

separated by an intergenic region, which enables the viral RNA to fold into a stable secondary 

structure, and is thought to play an important role in the viral life cycle (Pinschewer et al, 2005).  

This viral model has been extensively studied in the past few decades and has been 

instrumental in establishing fundamental concepts in adaptive immunity and antiviral immune 

response (Zhou et al, 2012; Zinkernagel & Doherty, 1979). This is because LCMV provides a 

versatile tool capable of generating different pathophysiological conditions depending on the 

route of infection, the dose, and the strain of LCMV used. For instance, intracranial injection 

(i.c.) of LCMV results in severe meningitis ending in mortality within 6 to 8 days after infection. 

On the other hand intravenous (i.v.) or intraperitoneal injections (i.p.) generates a systemic 

infection, from which mice are able to recover (Hotchin & Benson, 1963). Moreover, there are 

multiple stains of the LCMV leading either acute (LCMV-Arm and LCMV-WE) or chronic 

(LCMV-Cl13 or LCMV-docile) (Bergthaler et al, 2007).  

LCMV is not a cytolytic virus, and thus, the virus itself does not inflict direct cytotoxicity to the 

infected cells. However, LCMV elicits a very strong antiviral immune response, which is 

initiated at the innate phase by type I IFN signaling (Teijaro et al, 2013) and followed in the 

adaptive phase by a robust cytotoxic CD8+ T cell response (Zinkernagel et al, 1986; Wherry 

et al, 2003). Thus, the pathologies associated with LCMV infection are primarily CD8+ T cell-

mediated immunopathologies (Pfau et al, 1982; Zinkernagel et al, 1986). 

 

 

1.4.1 LCMV antiviral immune response.  
The majority of the work discussed in this thesis utilize a model in which C57BL/6J mice were 

infected intravenously (i.v.) with a high dose 2x106 focus forming units (FFU) of LCMV clone 

13 (LCMV-Cl13). This results in chronic infection in which the virus is able to persist for over 

60 days after infection (Bergthaler et al, 2010). The immune response triggered against 

LCMV-Cl13 can be divided into four main phases: the initial innate phase, mainly driven by 

type I IFN and cytokine signaling. The adaptive immune response, driven by cytotoxic CD8+ 

T cell response, with assistance from CD4+ T cells, and B cells that produce LCMV-binding 
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non-neutralizing and, in a later phase of the infection, neutralizing antibodies (Richter & 

Oxenius, 2013; Cerny et al, 1988). The viral persistence phase is associated with T cell 

exhaustion (Wherry et al, 2003; Cornberg et al, 2013) until the virus is cleared  (Figure 2).  

 

1.4.2 Type I IFN response.  
Viral recognition starts within the first hours after infection, mainly through innate antigen 

presenting cells such as dendritic cells (DCs) and macrophages. These cells are able to 

recognize pathogen-associated molecular patterns (PAMPs) through specialized detectors 

called the Pattern-recognition receptors (PRR). In the case of LCMV infection, the viral RNA 

acts as the PAMP and is recognized by a number of PRR (Sullivan et al, 2015), including 

endosomal Toll-like receptor 7 (TLR7) (Walsh et al, 2012; Bell, 2005), cytosolic retinoic acid-

inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) (Taylor & 

Mossman, 2013). In the cytosol, viral recognition via RIG-I and MDA5 triggers phosphorylation 

of interferon regulatory factor 3 (IRF3), its homodimerization and nuclear translocation, where 

it mediates increased IFN-β and IRF7 expression (Taylor & Mossman, 2013). This creates a 

self-propagating signal, as IRF7 protein forms heterodimers with nuclear IRF3 and further 

amplifies the type I IFN signal (Ning et al, 2011). On target cells, secreted IFNs bind to the 

IFN receptor (IFNAR), which initiates JAKs-mediated phosphorylation of STAT1 and STAT2. 

Phosphorylated STAT1 and STAT2 then bind to IRF9 forming a heterotrimeric complex called 

IFN-stimulated gene factor 3 (ISGF3). Finally, ISGF3 translocates into the nucleus and 

Figure 2: Antiviral response against chronic high dose LCMV Clone 13 infection. 
Time kinetics depicting the different phases of the immune response following intravenous 

infection with high dose (2x106 FFU) LCMV-Cl13. 
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induces the expression of a wide array of IFN-stimulated genes (ISGs) that participate in anti-

viral responses (Pitha & Kunzi, 2007; Wu et al, 2016) (Figure 3). Early type I IFN production 

occurs in plasmacytoid DCs (pDC) (Swiecki & Colonna, 2015), which are preferential targets 

of LCMV infection (Bergthaler et al, 2010; MacAl et al, 2012). The infection of the DCs allows 

the virus to resist their function, as it dampens their antigen presentation capacity (Sevilla et 

al, 2004), and type I IFN production. This also involves the binding of the viral NP to IRF3, 

which blocks IRF3-mediated IFNβ production (Martinez-Sobrido et al, 2006).  

 
 
 

Figure 3: Type I IFN response. 
Viral recognition in the cytosol, through RNA-specific PRRs such as RIG-I or MDA5 leads to 

MAVS-mediated phosphorylation of IRF3, its homodimerization and translocation to the nucleus 

which induces IFN-β expression. IFNs then propagate their signaling in an autocrine fashion 

through binding to type I IFN receptors, and the formation of ISGF3, which then translocate to the 

nucleus and induce the expression of IRF7 and other ISGs. Viral recognition can also occur in the 

endosomes, after viral internalization by phagocytes. This is mediates by the TLR7-MyD88 

complex and the downstream dimerization of IRF7. IRF7 and IRF3 also form heterodimers further 

express ISGs. 
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1.4.3 CD8+ T cells response. 
The adaptive immune response against LCMV is mainly driven by CD8+ T cells. To initiate 

virus-specific CD8+ T cell response, the cells needs to receive three distinct signals. The first 

is driven by T cell receptor (TCR) binding to the viral antigen presented by the major-

histocompatibility complex (MHC) of APCs. Once this signal is received another co-stimulatory 

signal must follow through the binding of CD28 T cell receptor with its ligand B7 on the surface 

of APC, to insure the survival and maintenance of virus-specific CD8+ T cell clones (Jenkins 

& Johnson, 1993). The third signal is mediated either by IL12 (Schmidt & Mescher, 1999) or 

type I IFN signaling (Curtsinger et al, 2005) (Figure 4). These Primed CD8+ T cells can then 

mediate their effector function though cytokine secretion such as TNFα and IFNγ, or through 

the release of cytotoxic granules carrying granzyme B (GzmB) and perforin (PFN) (Zhou et al, 

2002). 

Variations in the inflammatory milieu, timing and intensity of the signals received by CD8+ T 

cells during their priming trigger profoundly different response programs that distinguish acute 

from chronic infections (Virgin et al, 2009; Wherry, 2011). The IFN-I signal is critical for the 

increased expression of CD8+ T cells inhibitory signals, such as IL10 and programmed death 

receptor ligand 1 (PD-L1) (Teijaro et al, 2013). Moreover, the viral replicative capacity is 

substantially higher in the LCMV-Cl13 model, which results in an increased pathogenic 

burden, and a prolonged TCR activation, which in turn activated the so called “exhaustion” 

transcriptional program (Bergthaler et al, 2010). Exhausted T cells exhibit dampened effector 

function and proliferation. This allows the virus to persist within its host for prolonged periods 

of time, yet keeps its replication in check, and minimize collateral tissue damage while T cells 

work slowly but steadily at clearing the infection (Wherry et al, 2003; Moskophidis et al, 1993; 

Virgin et al, 2009).  
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2. Aims 
The aim of this work was to achieve the following:  

2.1 To establish that infection with chronic strain of LCMV is a valid model for studying 

infection-associated cachexia.  

2.2 To characterize the similarities and differences between cancer-associated cachexia and 

infection-associated cachexia.  

2.3 To identify the inflammatory and immune factors responsible for triggering cachexia during 

chronic viral infection.  

 

  

Figure 4: CD8+ T cell priming. 
Antigen recognition occurs in secondary lymphoid organs, such as the lymph nodes, where 

phagocytic cells, mainly DCs internalize viral particles, digest the viral peptides and then 

present them as epitopes on their surface MHC class I molecules. Virus-specific priming of 

CD8+ T cells requires three critical signals: MHC-I-epitope binding to TCR, B7-CD28 binding, 

and a third signal from type I IFN or IL12. 
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3. Results. 
3.1 Prologue. 
Cachexia is a debilitating syndrome that effects the quality of life, morbidity and mortality of 

patients suffering a variety of chronic and terminal illnesses. It is a highly unmet medical need, 

where standards of care are lagging and treatment options are unavailable (Lok, 2015; 

Baracos et al, 2018). In this is study, we employed a benchmark model of chronic viral infection 

using lymphocytic choriomeningitis virus (LCMV) in order to delineate the mechanisms of 

immune-metabolic crosstalk during infection-associated cachexia (Figure 6). We 

characterized the common and unique properties of infection-associated cachexia in 

comparison to cancer-associated cachexia, with a focus on adipose tissue biology and the 

inflammatory triggers. During LCMV-induced infection-associated cachexia, the adipose 

tissue underwent severe morphological and metabolic reprogramming, similar to that seen 

during cancer associated cachexia. However, in this model adipose tissue beiging (browning) 

did not contribute to the tissue wasting. Moreover, we found that classical cachexia-associated 

cytokines such as TNFα, IFNγ, IL6 and IL1 are not involved in infection associated cachexia. 

Instead, the initiation of cachexia required CD8+ T cell-intrinsic type I IFN signaling and antigen 

specific T cell priming. Our data identifies a novel signaling axis implicating antigen-specific 

CD8+ T cells as previously unknown inducers of infection-associated cachexia (Baazim et al, 

2019). 

 
3.2 Scientific articles reporting on this study. 
 
Not the usual suspect: type I interferon–responsive T cells drive infection-induced cachexia. 
(Wang & Medzhitov, 2019) 
Nature Immunology, News & Views, 2019 
https://doi.org/10.1038/s41590-019-0374-5 
 
Cachexia by T cells. 
(Bird, 2019) Nature Reviews Immunology, 2019 
http://www.nature.com/articles/s41577-019-0186-8 
 
Cachexia Is Driven By Killer T Cells in a Mouse Model of Infection. 
 Katarina Zimmer, The Scientist.  
https://www.the-scientist.com/news-opinion/cachexia-is-driven-by-killer-t-cells-in-a-
mouse-model-of-infection-65922 
 
Was den kranken Körper schwinden lässt 
Wolfgang Dauble, Die Presse. 
https://diepresse.com/home/premium/5634073/Was-den-kranken-Koerper-schwinden-
laesst?from=suche.intern.portal 
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3.3 Graphical abstract.  

 
  Figure 5: Infection-associated cachexia (IAC). 

Following infection with a chronic virus, CD8+ T cells are able to induce weight loss and 

cachexia. This requires virus-specific T cell activation as well as type I IFN signaling. The 

weight loss occurs as a result of depletion of both muscles and adipose tissue, and is 

associated with a reduction on food and water intake, reduced activity, and reduced 

respiratory exchange ratio (RER). During the development of cachexia, adipose tissue 

undergoes severe metabolic and structural reorganization. 
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3.4 Manuscript: CD8+ T cells induce cachexia during chronic viral infection.  
Nature Immunology. 20: 701-210, June 2019, https://doi.org/10.1038/s41590-019-0397-y 

Hatoon Baazim*, Martina Schweiger, Michael Moschinger, Haifeng Xu, Thomas Scherer, Alexandra 

Popa, Suchira Gallage, Adnan Ali, Kseniya Khamina, Lindsay Kosack, Bojan Vilagos, Mark Smyth, 

Alexander Lercher, Joachim Friske, Doron Merkler, Alan Aderem, Thomas H. Helbich, Mathias 

Heikenwälder, Philipp A. Lang, Rudolf Zechner & Andreas Bergthaler** 
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4. Discussion.  
Cachexia is a debilitating syndrome that impacts a wide range of patients, yet remains poorly 

diagnosed and, in the majority of cases, unsuccessfully managed (Baracos et al, 2018; Aoyagi 

et al, 2015). Patients suffering from cancer, chronic inflammation and infection, are at risk of 

manifesting cachexia during terminal stages of disease, and as such cachexia often correlates 

with increased morbidity and mortality (Lok, 2015).  

In this study, I investigated the inflammatory and metabolic drivers of infection-associated 

cachexia, using a benchmark model of chronic viral infection. We report that infection with 

high dose LCMV-Cl13 results in a transient cachexia triggered by antigen-specific CD8+ T cell 

response, and requires CD8+ T cell-intrinsic type I IFN signaling. The decline in body weight 

accompanies a reduction in food and water intake, decreased physical activity, as well as a 

shift in systemic metabolism towards fat utilization. A closer examination of adipose tissue 

revealed severe structural remodeling, metabolic reprogramming and increased lipolysis.  

Within multiple models of cachexia, adipose tissue wasting was shown to precede muscle 

atrophy, and is thought to potentially predispose to it (Bing & Trayhurn, 2008; Das et al, 2011; 

Fukawa et al, 2016). The wasting affected fat depots in the whole organism, though the 

inguinal compartment showed a slightly earlier wasting. Additionally, fat remodeling was 

associated with an increase in the density of vascular structures, mainly in the inguinal fat pad, 

a feature that has not been previously described during cachexia. It’s important to note that 

the true nature of this vasculature remains unknown and requires further characterization. 

Some similarities might be drawn between obesity and cachexia, in terms of the adipose tissue 

inflammatory milieu and metabolic changes which can promote systemic inflammation, 

dyslipidemia and metabolic dysfunctions (Vegiopoulos et al, 2017). Increased vascularization 

is a known feature of obesity, during which the expanding mass of adipocytes increases their 

distance to blood vessels, thereby triggering hypoxia-induced angiogenesis (Cao, 2013). 

Additionally, the differences in tissue remodeling of the inguinal and gonadal compartment 

could provide important clues into the molecular underpinnings of cachexia and may be 

attributed to the fat pad localization and/or the presence of lymph nodes, both of which are 

factors that can alter the tissue’s metabolic and inflammatory state (Bjørndal et al, 2011). For 

instance, if the cachectic signals that link virus-specific CD8+ T cells and adipocytes are 

transmitted from lymph nodes to peri-lymphatic adipose depots, the affected fat pads might 

then indirectly induce wasting in other depots. Though cross-fat pad communication networks 

are poorly understood, depot-specific manipulations in rodents highlight their presence and 

ability to affect the lipolytic and cell proliferative state (Shi & Bartness, 2005). 

When viewing cachexia under the light of metabolic adaptation, the available evidence 

remains insufficient to definitively classify cachexia as a maladaptive syndrome. Cachectic 

patient have been reported to exhibit cardiac and respiratory complications that can result in 
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death (Fearon et al, 2011; Baracos et al, 2018). However, these complications mostly occur 

at very advanced stages of disease, and it is difficult to disentangle whether they occur as a 

result of the cachexia-program, or due to the underlying illness. Additionally, a study 

investigating cachexia during pancreatic ductal adenocarcinoma (PDAC), performed a review 

of clinical data from PDAC patients. This study showed no correlation between peripheral 

tissue wasting during cachexia and the patient’s survival (Danai et al, 2018).  

The syndrome as a whole occurs in three pathophysiological stages: pre-cachexia, cachexia, 

and refractory cachexia (Fearon et al, 2011). During pre-cachexia, subtle changes are 

observed in feeding behavior and glucose tolerance, which might not have a significant effect 

on weight loss (Muscaritoli et al, 2010). Patients are then classified as cachectic, when their 

weight loss exceeds 5% of their initial weight over 6 months and present with sarcopenia 

(Baracos et al, 2018; Tisdale, 2002). They enter a state refractory cachexia when the extent 

of illness prevents medical intervention and limits their life expectancy (Fearon et al, 2011). 

These stages could be viewed as a reflection of the adaptive state of the progression of 

cachexia programs as they progress in response to the inflammatory environment (Figure 6).  

 

Figure 6: A model representing stages of cachexia along disease progression. 
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If we super-impose this progression on our model, we can point towards day 6 after infection 

as the transition point between pre-cachexia and cachexia, where the alterations in feeding 

behavior and lipid metabolism start to have global impacts. At day 8 post infection, the weight 

loss reaches a threshold of 15-20%, the progression of cachexia slows down and weight 

recovery begins. This threshold is likely to represent the dividing line between transient or 

terminal cachexia. It is reasonable to hypothesize that during transient cachexia, recovery 

starts either due to the resolution of the underlying illness (Arends et al, 2017), or due to the 

activation of immunomodulatory pathway that dampens the cachexia-programs (Wherry, 

2011; Rouse & Sehrawat, 2010; Moseman & McGavern, 2013). If these immunomodulatory 

pathways fail to control the signals that either trigger or maintain cachexia, or if the underlying 

illness continued to progress, this could result in an uncontrolled pathology and refractory 

cachexia.   

A better understanding of the trade-off mechanisms by which cachexia is influenced is still 

massively underexplored (Wang & Medzhitov, 2019). Our work provides a reliable model for 

comparative analyses, where viral infection-associated cachexia, could be compared to 

parasitic infection-associated cachexia and cancer-associated cachexia. Such comparative 

analyses would be crucial in the future to strip away the disease-specific variations and identify 

the main modulatory elements of cachexia. This could be valuable for the design of new 

therapeutic strategies, that are specialized to the respective context.  
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• PhD	fellow,	Andreas	Bergthaler	Lab.				

2012	–	2014		 King	Abdullah	University	of	Science	and	Technology.	Thuwal,	
Saudi	Arabia.		

• MSc	degree	in	Bioscience	department,	genome	engineering	group.			
• GPA:	3.75	(out	of	4)	

2009	–	2012		 	 King	Saud	University.	Riyadh,	Saudi	Arabia.	
• Obtained	a	Second	Degree	with	Honors	BSc	in	Biochemistry.	
• GPA	4.22	(out	of	5)	

2007	–	2009	 	 Riyadh	Najd	School:	96%		
	
Publications:	
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Kosack*,	B.	Wingelhofer*,	A.	Popa*,	A.	Orlova,	B.	Agerer,	B.	Vilagos,	P.	Majek,	K.	
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H.	V.	Siddle,	G.	M.	Woods,	S.	Kubicek,	E.	P.	Murchison,	K.	L.	Bennett,	R.	Moriggl,	A.	
Bergthaler**.	Cancer	Cell,	2019.	DOI: 10.1016/j.ccell.2018.11.018.		

• Superoxide	Dismutase	1	protects	hepatocytes	from	type	I	interferon-driven	
oxidative	damage.	A.	Bhattacharya*,	A.	N.	Hegazy*,	N.	Deigendesch,	L.	Kosack,	J.	
Cupovic,	R.	K.	Kandasamy,	A.	Hildebrandt,	D.	Merkler,	A.	A.	Kühl,	B.	Vilagos,	C.	
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Bergthaler**.	Immunity	2015.	DOI:	10.1016/j.immuni.2015.10.013.	

• RNA-guided	transcriptional	regulation	in	planta	via	synthetic	dCas9-based	
transcription	factors.	A.	Piatek*,	Z.	Ali,	H.	Baazim,	L.	Li,	A.	Abulfaraj,	S.	Al-
Shareef,	M.	Aouida	and	M.	M.	Mahfouz**.	Plant	Biotechnology	Journal,	2015.	
DOI:	10.1111/pbi.12284.	

	
Training	and	Conferences	
	
28thMay	–	2nd	June	2019		 International	Conference	on	Immunometabolism:	

Molecular	and	Celluar	Immunology	of	Metabolism.	
• Oral	presentation.		
• Awarded	the	Aegean	Conference	Travel	Award	for	

an	excellent	research	contribution.	
	
19th	–	20th	October	2018	 Annual	Meeting	of	the	Austrian	Obesity	Association	

(ÖAG).	Vienna,	Austria.		
• Invited	speaker.		

21st	–	25th	January	2018	 Keystone	Symposium:	Organ	Crosstalk	in	Obesity	and	
NAFLD.	Keystone,	Colorado,	US.		

• Poster	presentation.		
29th	May	–	2nd	June	2017	 Keystone	Symposium:	Integrating	Metabolism	and	

Immunity.	Dublin,	Ireland.	
• Awarded	the	Keystone	Symposia	Future	of	Science	

Fund	Scholarship.	
• Poster	presentation.		

30th	May	–	2nd	June	2016	 CEMIR:	Conference	on	Molecular	Mechanisms	of	
Inflammation.	Trondheim,	Norway.		

• Poster	presentation.		
12th	–	19th	September	2015	FEBS	Immunology	Summer	School.	Rabac,	Croatia.		
6th	–	9th	September	2015	 European	Congress	of	Immunology	(ECI).	Vienna,	

Austria.	
6th	–	7th	November	2014	 Vienna	Biocenter	Symposium:	Complexity	of	Life.	

Vienna,	Austria.	
30	June	–	25	July,	2012	 Internship:	Human	Cancer	Genome	Research	in	King	

Faisal	Specialist	hospital	&	Research	Center.	
Experimental	Molecular	Pathology	Lab.	Riyadh,	Saudi	
Arabia.	

26	June	–	20	July,	2011	 Internship:	Obesity	Research	Center,	College	of	
Medicine,	King	Saud	University.	Riyadh,	Saudi	Arabia.	
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Conference	and	Symposium	Organization.	
	
2015	–	2018		 Annual	Young	Scientist	Association	PhD	Symposium.	

Vienna,	Austria.	
• Board	member	and	organizing	committee	for	four	

consecutive	years.		
6	–	8	March,	2012	 International	Conference	of	the	Saudi	Osteoporosis	

Society.	Riyadh	Saudi	Arabia.	
• Organization	committee.		

	
Relevant	Skills		

	
• Mouse	handling,	dissection	of	various	organ	types,	gavage	feeding,	

intravenous,	intraperitoneal,	and	intranasal	injections	as	well	as	whole-
body	and	liver	perfusion.	

• Experience	with	experimental	diets	and	pharmacological	perturbations.		
• Immune	cell	isolation,	FACS	and	ICS	analysis	from	blood	and	various	

tissue	types.	
• Immune	adoptive	transfer.		
• RNA	and	protein	extraction	and	analysis	from	various	tissue	including	

liver,	adipose	tissue	and	muscles.	
• Adipose	tissue	CVF	and	cell	line	(3T3-L1)	differentiation,	culture,	and	

staining.	
• Bone	marrow	isolation.	
• Experience	with	various	virus-infection	models	(injections,	analysis,	and	

virus	stock	propagation).	
• Seahorse	metabolic	flux	analysis.				
• Proficient	use	of	molecular	biology	techniques.			
• Histological	image	analysis	of	H/E	and	co-immunofluorescent	staining.		
• Basic-level	understanding	of	MRI	imaging	and	analysis.		
• Scientific	illustration	and	design.		

	
Experience	

	
• Proficient	and	independent	project	management	and	design.			
• Initiated	and/or	maintained	multiple	international	collaborations.	
• Supervised	a	junior	PhD	student,	a	Master	student	and	a	short-term	

diploma	student.		
• Vice-president	and	board	member	of	the	Young	Scientist	Association	(YSA),	

at	the	Medical	University	Vienna	(MUV)	from	2015	to	2018.	
https://ysa.meduniwien.ac.at/phd-symposium/	
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Started	as	a	volunteer,	then	moved	to	be	the	director	of	public	relations,	then	
vice-president,	and	finally	acting	president	for	half	a	year	in	the	absence	of	the	
president	at	the	time.	In	this	capacity	I	organized	both	scientific	and	social	
workshops,	in	addition	to	the	annual	YSA	PhD	symposium.	For	this	symposium	I	
was	heavily	involved	in	organizing	tasks	within	the	board,	coordinating	with	the	
Medical	University	and	selecting,	inviting	and	hosting	international	keynote	
speakers.		

• Founder	and	coordinator	of	the	Science	|	Art	competition,	in	the	Medical	
University	Vienna.	2016-2018.	https://ysa.meduniwien.ac.at/phd-
symposium/scienceart/	
This	required	securing	support	from	the	Medical	University	Vienna	(MUW),	
initiating	collaborations	with	local	artists,	and	both	local	and	international	
professors	in	Applied	and	Conceptual	Art,	philosophy	and	culture,	as	well	as	local	
scientists	with	artistic	inclinations	and	interest	in	science	communication.		

• PhD-student	representative	of	the	year	2015	at	the	Center	for	Molecular	
Medicine	(CeMM).		

• Convocation	student	speaker	in	King	Abdullah	University	KAUST	for	the	
year	2013.		

	 http://vimeo.com/73851983		
• Selected	delegate	from	King	Saud	University	to	represent	Saudi	women	to	

the	United	nation	agencies	in	Geneva,	Switzerland.	
The	delegation	included	a	visit	to	the	United	Nation,	World	Health	Organization,	
World	Food	Program,	United	Nations	Environment	Program,	International	
Organization	for	Migration,	International	Committee	of	the	Red	Cross,	in	addition	
to	the	European	Organization	for	Nuclear	Research	(CERN),	and	a	visit	to	the	
University	of	Lausanne.	

• Graduate	life	Committee	member,	in	the	fourth	student	council	in	KAUST.	
• Founder	of	the	Biochemistry	Club	in	King	Saud	University.	
• Vice	President	of	the	Health	Committee	in	“Mojtam3e	Club”.	
• Supervised	the	organization	and	sales	for	a	fundraiser	exhibition.	
• Represented	the	students	of	the	Science	College	in	the	student	council	of	King	

Saud	University.		
• Published	author	of	two	science	fiction	novels.	The	novels	were	published	in	

Arabic	and	have	earned	great	interest	from	the	media,	it	was	featured	in	two	
newspaper	articles	and	won	a	prestigious	sponsorship	from	a	Dubai-based	
foundation	Mohammed	bin	Rashid	Al	Maktoum	Foundation.	

	
Languages:	
	
Arabic:	Native.		 English:	Fluent.		
 
 


