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Abstract

The transport mode of most drugs and drug-like compounds across cellular membranes

is currently not fully resolved. Yet, although the relative contributions of passive and carrier-

mediated processes remain a matter of controversy, the role played by membrane transporters

is increasingly recognized. Two main protein superfamilies are known to be involved in

drug transport: the ATP-Binding Cassette (ABC) family of efflux transporters, relatively well-

characterized and often involved in multidrug resistance, and the larger, less-studied and

more heterogeneous group of Solute carriers (SLCs). Literature analysis showed that SLCs

represent a highly neglected gene group, presenting the largest publication asymmetry of

all human protein families, and including an important proportion of poorly characterized

and orphan members. Similarly, a compilation of direct drug-transporter relationships also

showed that most cases concentrated around a few well-characterized SLC families, with other

members being only exceptionally involved. A closer, systematic inspection of the SLC family of

transporters from the standpoint of drug disposition might therefore constitute a key approach

to unravel the transport mechanism and dependencies of important therapeutic agents.

This thesis provides a systematic interrogation of SLC-drug associations based on a com-

bination of computational and experimental approaches. On the one hand, we built predictive

models of drug sensitivity based on SLC and ABC molecular features (gene expression, copy

number variations –CNVs–, single nucleotide variants –SNVs–) using the most comprehensive

pharmacogenomics dataset to date, which involves 1,000 annotated cancer cell lines and

their sensitivity to 265 compounds. On the other hand, we designed a CRISPR-based

genetic screening approach and analysis pipeline that enabled us to experimentally survey

transporter dependencies for a set of 60 diverse cytotoxic agents. Both approaches led

to the successful identification of known as well as previously undescribed transporter-drug

relationships, including direct transport cases and indirect effects, some of which we validated.

The results presented here provide an unbiased prioritization means of potentially

pharmacologically relevant interactions, and offer new insights into the transport mode

and pharmacodynamics of a number of compounds of great therapeutic relevance. Such
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understanding is of primary importance in order to increase the specificity and efficiency of

drug therapies and move towards precision medicine approaches.
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Zusammenfassung

Der genaue Transportweg welchen pharmazeutische Wirkstoffe sowie andere

medikamenten-ähnliche niedermolekulare Substanzen benutzen um Zellmembranen

zu durchqueren ist bis dato noch unzureichend verstanden. Die Bedeutung welche

Membrantransporter in diesem Zusammenhang innehaben wird zunehmend erkannt, auch

wenn der relative Anteil von passivem versus Carrier-vermitteltem Transport nach wie vor

kontrovers diskutiert wird. Bekanntermaßen sind zwei große Protein-Superfamilien am

Wirkstofftransport beteiligt: Die Efflux-Transporter der ATP-Binding Cassette (ATP) Familie,

welche verhältnismäßig gut charakterisiert und oft ursächlich an der Entwicklung von

Mehrfachresistenzen beteiligt sind, sowie die größere, jedoch weniger genau untersuchte und

heterogenere Gruppe der Solute carriers (SLCs). Die genaue Auswertung der existierenden

Literatur wies SLCs als eine bislang stark außer Acht gelassene Gengruppe aus. Im Vergleich

zu allen anderen humanen Proteinfamilien weisen Mitglieder der SLCs die größte Asymmetrie

bezüglich Erwähnung in Publikationen auf. DesWeiteren enthält die SLC-Familie einen großen

Teil an noch schlecht charakterisierten Mitgliedern mit unbekannten Transportsubstraten.

Ebenso zeigte die Auswertung bekannter, direkter Wirkstoff-Transporter-Beziehungen, dass

die meisten sich auf die wenigen besser charakterisierten SLC-Familien bezogen, während nur

wenige Ausnahmen die Beteiligung anderer SLC-Untergruppen beschrieben. Eine strukturierte

und detaillierte Untersuchung eines möglichen Zusammenhangs zwischen der Familie der

SLC-Transporter und der Wirkstoffverfügbarkeit stellt deshalb einen wichtigen Ansatz zur

Klärung der Transportmechanismen sowie -voraussetzungen bedeutender therapeutischer

Wirkstoffe dar.

In dieser Arbeit wird daher mittels einer Kombination bioinformatischer sowie

experimenteller Methoden eine systematische Analyse der Beziehungen zwischen SLCs und

Wirkstoffen unternommen. Gestützt auf den zurzeit umfangreichsten pharmakogenomischen

Datensatz, welcher die Sensitivität von 1000 katalogisierten Krebszelllinien gegenüber 265

Wirkstoffmolekülen erfasst, haben wir basierend auf den molekularen Eigenschaften von SLC

und ABC Transportern (Genexpression, Kopienzahlvariationen – CNVs –, Einzelnukleotid-

Varianten – SNVs –) Vorhersagemodelle für die Wirkstoff-Sensitivität entwickelt. Des Weiteren
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entwarfen wir ein CRISPR-basiertes genetisches Screening-Konzept mit zugehöriger Analyse-

Pipeline, mittels dessen wir 60 unterschiedliche cytotoxische Substanzen hinsichtlich ihrer

Abhängigkeit von Transportern experimentell testen konnten. Beide Ansätze erwiesen sich

als erfolgreich in der Identifikation bereits bekannter sowie bislang noch nicht beschriebener

Transporter-Wirkstoff Beziehungen, welche sowohl direkter als auch indirekter Natur waren

und des Weiteren zum Teil experimentell validiert wurden.

Die hier vorgelegte Arbeit beschreibt die methodische, objektive Priorisierung potentiell

pharmakologisch-relevanter Interaktionen und bringt neue Erkenntnisse hinsichtlich des

Transportweges und der Pharmakodynamik mehrerer bedeutender therapeutischer Wirkstoffe.

Dieses Verständnis ist von großem Belang für die Steigerung der Spezifität und Effizienz

medikamentöser Therapien sowie den Übergang zu einer individualisierten Medizin.
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Introduction 1
The introduction of this thesis provides a broad overview of the main topics and methods

covered by the three scientific articles presented in the results section, and is divided into three

substantially different parts consisting of:

i) a review of the mechanism of drug transport across biological membranes, with a focus on

the two main transporter superfamilies involved, and more in particular, the group of solute

carriers (SLCs). This part serves as a common link among the three above-mentioned

publications.

ii) a description of drug sensitivity predictive modeling using pharmacogenomics datasets of

cancer cell line panels, with an emphasis on existing computational approaches and the

method used in the second publication.

iii) a description of the CRISPR-Cas9 method for pooled knock-out genetic screening including

existing computational methods most commonly used for its analysis and the strategy

applied in the third and last article of this thesis.
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1.1 Drug Transport and Drug Transporters

Most drugs need to cross at least one biological membrane in order to reach their target

and exert their action. Transport is therefore a key process in drug pharmacokinetics, as

it directly controls the extent and rate at which compounds enter the organism, determines

their differential distribution across tissues and organs, and mediates their elimination from

the body. Understanding the specific mechanisms by which drugs enter and exit cells is thus

essential in order to increase the probability of therapeutic success while reducing the chance of

adverse reactions, and their study constitutes an integral part of every drug discovery program

(Goodman et al, 2011).

1.1.1 Drug transport across biological membranes

The passage of solutes through cellular membranes is regulated by different mechanisms

that can be classified according to thermodynamic and mechanistic criteria (Figure 1).

Passive processes are equilibrative, allowing the movement of solutes in the direction of their

electrochemical gradient ("downhill"), and therefore do not have any extra energy requirements.

Although the term "passive" does not per se imply a specific mechanism, it is often understood

as simple or lipoidal diffusion (i.e. directly through the lipid bilayer), and referred as facilitated

diffusion when it uses the help of a carrier. In contrast, active transport is concentrative, moving

solutes against their gradient ("uphill"), for which it strictly requires a source of metabolic energy

and the obligatory participation of specific proteins. Depending on the energy source, this

transport type is further subdivided into primary active, when energy is directly obtained from

the hydrolysis of ATP, and secondary active, when it is provided by the electrochemical potential

of another solute that is co-transported with the substrate, either in the same (i.e. symport) or

opposite (i.e. antiport, exchange) direction (Alberts et al, 2014; Kell & Oliver, 2014).

The standard view of cellular membrane architecture depicted by the "fluid mosaic" model

considered proteins being dispersed and at low concentration within the lipid bilayer (Singer

& Nicolson, 1972). However, it is nowadays well accepted that these are present at a much

higher density, compartmentalizing membranes into functional domains and giving them amore

"patchy" nature (Engelman, 2005; Goñi, 2014; Nicolson, 2014). In relation to this, there is still an
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Figure 1 Classification of membrane transport mechanisms. Transport processes are classified

into passive or active according to their energy requirements, and further subdivided based on the

participation of specific proteins, energy source and transport directionality. Red circles and black

squares represent the substrate and the ion that supplies the driving force for transport, respectively;

sizes are proportional to the concentration of the solutes; arrows display the direction of flux; and

blue ovals represent transporter proteins.

Reprinted from (Goodman et al, 2011) with permission from The McGraw-Hill Companies, Inc.

ongoing debate on the relative contribution of carrier proteins to the transport of drugs. Passive

diffusion through the lipid bilayer has generally been considered the dominant process by which

chemical compounds enter and exit cells, which is highly dependent on drug features such as

molecular size, degree of ionization or lipid-water partition. Indeed, Lipinski’s "rule of 5" (Ro5), a

frequently used rule of thumb to evaluate druglikeness of orally administered compounds, bases

absorption on size and lipophilicity, and considers drugs that act as substrates of transporters

exceptions to the rule (Lipinski et al, 2001). However, some studies have pointed to 20-30% of

FDA-approved small-molecule drugs not fulfilling Ro5 (Overington et al, 2006), and there is a

growing number of known cases of drugs whose transport is mediated by specific transporters

(Fets et al, 2018; Winter et al, 2014; Yu et al, 2018; Zhao et al, 2011). These and other

considerations have prompted some authors to question the importance of lipoidal passive
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diffusion in favor of carrier-mediated drug transport (Dobson & Kell, 2008; Kell, 2015; Kell et

al, 2011) while others defend a more even coexistence of both mechanisms (Di et al, 2012;

Matsson et al, 2015; Smith et al, 2014; Sugano et al, 2010).

Whether the rule or the exception in mediating the uptake and efflux of xenobiotics,

transporters are increasingly recognized, together with drug-metabolizing enzymes (DMEs)

such as cytochromes and transferases, as the main determinants of drug disposition (Zhou

et al, 2017). They are indeed directly involved in the selective absorption, distribution and

excretion of chemical compounds, often representing the rate-limiting step of these processes

(Giacomini & Huang, 2013). In particular, transporters allow tissue-specific drug targeting (Zhou

et al, 2015) and also exert an essential role in the detoxification and protection of vital tissues

against xenobiotics (Iqbal et al, 2012; Leslie et al, 2005; Mahringer & Fricker, 2016). Such

a role is highlighted by their characteristic expression in important pharmacological barriers,

such as the membranes of intestinal cells, hepatocytes and proximal tubules of the kidney

as well as the brain-blood (BBB), blood-testes and blood-placenta barriers (César-Razquin et

al, 2015; O’Hagan et al, 2018). Additionally, they are mediators of drug-drug and nutrient-

drug interactions (Bailey, 2010; König et al, 2013; Zhang et al, 2014) as well as drug toxicity

(DeGorter et al, 2012). As such, regulatory guidelines are being constantly published and

updated in order to guide the drug development process (International Transporter Consortium

et al, 2010; Zamek-Gliszczynski et al, 2018). Finally, they play an important role in the

development of resistance to therapeutic agents such as anticancer drugs (Robey et al, 2018;

Szakács et al, 2006) or antivirals (Ibarra & Pfeiffer, 2009; Imaoka et al, 2007).

1.1.2 Classes of drug transporters

It has been estimated that ~10% of human genes encode for transport-related functions

(Hediger et al, 2013). Membrane transport proteins can be roughly classified into two main

types, channels and carriers (often simply referred as transporters), whose main difference

resides in their mechanism of transport. Channels form hydrophilic pores across the lipid bilayer

that, in the open state, permit the rapid diffusion of specific solutes (mostly inorganic ions of a

certain size and charge) at a rate dependent on the channel conductance. In contrast, carrier

proteins interact directly with their substrates through specific binding sites and experience a
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series of conformational changes that allow the transfer of the bound cargo to the opposite

side of the membrane, therefore presenting a fixed stoichiometry of substrate movement per

translocation cycle (Alberts et al, 2014). Drug transporters belong to the latter class, and include

two large superfamilies: ABC (ATP-binding cassette) and SLC (Solute carrier) transporters.

ATP-binding cassette transporters (ABCs)

ABCs are mostly primary active transporters that use the energy of the hydrolysis of ATP to

translocate specific substrates across biological membranes. The main common characteristic

of these proteins is the presence of a highly conserved ATP-binding cassette domain, also

called nucleotide-binding domain (NBD), which gives the family its name. ABCs can be found

in all domains of life, but while in prokaryotes they mediate both uptake and efflux, in eukaryotes

they are only known to act as exporters that move compounds out of the cytoplasm. Human

ABCs are present in the plasma as well as in intracellular membranes, and are able to pump

out a plethora of substrates, ranging from metal ions to peptides, but more typically lipophilic

molecules, playing a crucial role in the transport of lipids, fatty acids and cholesterol (Borst &

Elferink, 2002; Rees et al, 2009). Consequently, mutations in more than half of human ABC

genes have been linked to diseases, often related to defects in lipid homeostasis (Tarling et al,

2013).

The basic core unit of a full ABC is made of two highly conserved cytoplasmic NBDs,

which are in charge of binding and hydrolyzing ATP, and two variable transmembrane domains

(TMD), typically containing six α-helices each, which take care of recognizing and translocating

the substrate (ter Beek et al, 2014) (Figure 2). Some ABCs exist as half-transporters, only

containing one domain of each type (e.g. the ABCG family), but since two NBD are required for

ATP hydrolysis, they need to at least dimerize as either homo- or heterodimers in order to be

functional (Dezi et al, 2010). They can also present additional domains (e.g. some members

of the ABCC family) as well as lack some of the core ones (Biemans-Oldehinkel et al, 2006).

The mechanism of transport of ABCs is generally described using the "alternating access"

model, in which conformational changes alternately expose the substrate binding site to the

extracellular (outward facing conformation) and cytoplasmic (inward facing conformation) sides

of the membrane, passing through other intermediate states such as an occluded conformation
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ABCG2

Figure 2 Structures and transport mechanisms of ABCs. A. Structure of ABCB1 in complex

with ATP. The N- and C-terminal halves, containing one TMD and one NBD each, are colored in

orange and blue, respectively. ATP is shown in ball-and-stick format (gray: C; red: O; blue: N;

orange: P), and Mg2+ is shown as a magenta sphere. B. Secondary structure models of ABCB1

(P-gp), ABCC2 (MRP2), and ABCG2 (BCRP). Transmembrane domains (TMD), nucleotide-binding

domains (NBD) and loop 0 (L0) are indicated. C. Transport mechanism of ABC transporters. ABCs

are energy-dependent (primary active) transporters. A conformational change upon substrate

binding and ATP hydrolysis drives the translocation of the substrate.

A was reprinted from (Kim & Chen, 2018) with permission from Science. B and C were reprinted

from (Chen et al, 2016) with permission from Elsevier.

where the binding site is not accessible from either side (Jardetzky, 1966). Nevertheless, due

to the structural diversity among the members of the ABC superfamily, one-size-fits-all models

might not describe accurately enough the actual transport mechanisms (Locher, 2016).
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There are currently 51 human ABC genes listed by the HGNC, including three pseudogenes,

classified phylogenetically into 7 different subfamilies named A to G (Dean et al, 2001; Gray et

al, 2016; Vasiliou et al, 2009). However, not all of them are actually transporters. For instance,

all members of the ABCE (one gene) and ABCF (three genes) subfamilies lack TM domains

and have been implicated in functions such as viral infection (Dooher et al, 2007), ribosomal

recycling (Pisarev et al, 2010) and regulation of translation (Mancera-Martínez et al, 2017;

Paytubi et al, 2009). Another case is ABCC7 (or CFTR, for Cystic Fibrosis Transmembrane

Conductance Regulator), which in spite of sharing the full domain structure of ABCs, acts as

an ATP-gated chloride ion-channel whose mutation causes cystic fibrosis (Gadsby et al, 2006).

Similarly, ABCC8 and ABCC9 (SUR1/2, respectively) serve as potassium channel regulators

(Aittoniemi et al, 2009; Bryan et al, 2007).

Several members of the ABC family are well-known mediators of drug ADME, and due to

their ability to export a large number of anticancer compounds, they often appear associated

with acquired multidrug resistance (MDR) in cancer (Szakács et al, 2006). Most drug-

transporting ABCs belong to three families:

− ABCB subfamily. ABCB1, also known as P-glycoprotein (Pgp) or Multidrug Resistance

Protein 1 (MDR1), and described as the "double-edged sword" for its dual role in protection

against xenobiotics and cause of MDR, is probably the most studied transporter (Gottesman

& Pastan, 1988). It is mainly expressed in liver, kidney, small intestine and brain, playing

an essential protective role at the blood-brain barrier (BBB). The main characteristic of Pgp

resides in its unusual broad polyspecificity. Although it has a preference for large neutral or

weakly basic hydrophobic substrates, often containing aromatic rings and charged tertiary

amino groups, it can also inefficiently handle anionic molecules. It is therefore able to

transport hundreds of structurally dissimilar compounds, ranging from 200 to greater than

1,000 Da in molecular weight, many of which are of great clinical importance, including

anticancer drugs, antibiotics, antivirals, analgesics, and immunosuppressives (Borst &

Elferink, 2002; Sharom, 2008). Indeed, the lack of highly conserved recognition elements

makes it difficult to predict ABCB1 substrates (Chen et al, 2012). Testing for susceptibility to

transport by Pgp is since long common practice in drug development programs (International

Transporter Consortium et al, 2010) and inhibitors of Pgp (e.g. excipients like tocopherol) are
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used in the clinic in order to enhance the bioavailability of drugs that are ABCB1 substrates

(Hodges et al, 2011). Two other members of this family, ABCB4 (MDR3) and ABCB11

("sister of Pgp", BSEP), are also known to mediate drug transport, but their expression is

restricted to the liver and they present a much more limited substrate specificity as well as

lower transport efficiency (Hirano et al, 2005; Morita & Terada, 2014).

− ABCC subfamily. Most members of this family, also called Multidrug resistance-associated

proteins or MRPs, mediate the transport of anionic hydrophilic compounds. This includes

glutathione (GSH), sulfate and glucuronate conjugates of hydrophobic drugs that result from

the action of metabolizing enzymes during phase II metabolism. The different members

of the family differ in their substrate specificity, tissue expression, cellular location and

structure, which includes in some cases an additional N-terminal TM domain. ABCC1

(MRP1) is an ubiquitous and versatile transporter, which also confers resistance to several

neutral/basic hydrophobic compounds that are substrates of ABCB1. ABCC2 (MRP2),

probably the most relevant pharmacologically, overlaps significantly with ABCC1 in its

substrate specificity, but has amore restricted tissue distribution (mainly to liver, intestine and

kidney), and it localizes to the apical membrane of epithelial cells, whereas ABCC1 andmost

of the other members are basolateral. ABCC3 (MRP3) has the highest sequence similarity

to ABCC1 (58%) but transports fewer compounds and shows a preference for glucuronides

over GSH. Other members, such as ABCC4 (MRP4) and ABCC5 (MRP5), are in addition

able to transport cyclic nucleotides and nucleotide analogs (e.g. 6-mercaptopurine or

5-thioguanine) at a low rate (Borst & Elferink, 2002; Kruh & Belinsky, 2003; Szakács et

al, 2006).

− ABCG subfamily. The most important member of this family regarding drug disposition

is ABCG2, which was originally given three other names based on its main reported

characteristics: overexpression in breast cancer cell lines (Breast Cancer Resistance

Protein, BCRP), enrichment in placental tissue (Placenta-specific ABC, ABCP) and

mitoxantrone transport (Mitoxantrone Resistance-associated Protein, MXR). ABCG2 is

a high-capacity half transporter that functions as a homodimer and is expressed in several

tissues, mainly in placenta, liver, intestine, endothelium and mammary tissue. It has a

wide substrate specificity, being able to transport large molecules of amphipathic character,
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both positively and negatively charged, including many chemotherapy agents. Many of its

substrates overlap with ABCB1, but in contrast to this protein and similarly to MRPs, it can

also efficiently mediate the efflux of anionic drug conjugates (Robey et al, 2009; Sarkadi et

al, 2006).

Solute carriers (SLCs)

SLCs are the second-largest group of membrane proteins in the human genome, after G

protein-coupled receptors (GPCRs). They constitute a heterogeneous collection of transporters

whose common feature is that they do not rely directly on the hydrolysis of ATP in order to exert

their function, thus acting as either facilitative or secondary active transporters (symporters or

antiporters). The inclusion of a protein within the SLC group is therefore based on functional

criteria, and not homology (Höglund et al, 2011). SLCs are present in the plasma membrane

as well as in intracellular organelles (e.g. the mitochondrial SLC25 family) (Palmieri, 2013)

and, although they are mainly involved in the uptake of solutes into the cytoplasm, a few of

them are well-known exporters (e.g. SLC47 family) (Motohashi & Inui, 2013). They are able to

transport an enormous variety of solutes including charged and uncharged organic molecules

(e.g. sugars, nucleotides, amino acids, peptides, fatty acids), inorganic ions or even the gas

ammonia (SLC42 family) (Weiner & Verlander, 2010) (Hediger et al, 2004).

The total number of human SLCs has been constantly rising in the last years (Perland

& Fredriksson, 2017). The most recent count involves more than 450 genes, including ~20

pseudogenes, classified into 66 different numbered families (Gray et al, 2016) (Figure 3).

SLC families are defined using a cut-off of 20-25% amino acid sequence similarity among its

members, which are usually identified by a unique root symbol that includes the family number

(Hediger et al, 2013). However, exceptions to this rule exist. For instance, SLC51 family

contains two members that do not share sequence similarity but encode two subunits of the

same transporter (Ballatori et al, 2013), SLC21 family changed its root symbol to SLCO in order

to accommodate an already existing species-independent classification system (Hagenbuch &

Meier, 2004) and other members such as UCPs (SLC25A7 to 9), Rh glycoproteins (SLC42A1

to 3) or FLVCRs (SLC49A1 and 2) have kept their original gene symbols. Moreover, a set

of putative transporters commonly known as atypical SLCs are not entirely classified yet into

any SLC family but are likely to be included once they are further characterized (Perland et



Introduction: Drug Transport and Drug Transporters

– 10 –

A. B.

C. D.

Figure 3 Classification of SLCs. Similarity networks for certain SLC families. A. Links represent

pairwise alignments with sequence identity ≥25% and E-value <1. Colors indicate different SLC

families. B. Links represent pairwise alignments with sequence identity ≥10% and E-value <1.

Colors as in A. C. Same as B., but colors represent the prototypical substrates of the transporters.

D. Same as B., but colors represent transport mode.

Reprinted from (Schlessinger et al, 2010) with permission from John Wiley and Sons.
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al, 2017). Other classification systems for SLCs have also been proposed that are based on

function, structure, transport mechanism and phylogenetic relatedness (Finn et al, 2016; Saier

et al, 2016; Schlessinger et al, 2010). In this sense, phylogenetic studies have shown that at

least some SLC families are evolutionarily related, forming four distinct phylogenetic clusters

(Fredriksson et al, 2008). Similarly, these analyses have reported that SLCs present the richest

evolutionary history of all membrane protein groups, with more than 50% of human families

being found in Prokaryotes and Archea (Höglund et al, 2011). Also, not all characterized SLCs

are actual transporters. Some do not have transport capability on their own and need to interact

with other members in order to form functional complexes, such as SLC3 and SLC7 or SLC51A

and B. Others are even able to exert functions unrelated to transport, such as signal sensing

and transduction (Rebsamen et al, 2015).

SLCs are structurally very diverse. They are usually made of 10-14 transmembrane (TM)

domains and cover a number of different folds, two of which are significantly represented: the

Major Facilitator Superfamily (MFS) fold and the Leucine Transporter-like (LeuT) fold (Colas et

al, 2016) (Figure 4a,b). MFS is the most common, predicted to be present in at least 17 SLC

families (e.g. SLC2, SLC15, SLCO, SLC22). It comprises 12 TM helices arranged into two 6-TM

homologous domains of "3+3" inverted repeats (theN- andC-terminal domains) connected by a

cytoplasmic loop (Yan, 2015). In contrast, the LeuT fold (e.g. SLC5, SLC6) has a core structure

of 10 TM helices made of two 5-TM inverted pseudorepeats, where the first two TMs of each

repeat form a four-helix core domain and the third and fourth TMs constitute a scaffold domain

surrounding it (Yamashita et al, 2005). Other members present less common folds involving

inverted repeats, hairpin domains or even channel-like structures (e.g. SLC14, SLC42) (Bai

et al, 2017). At least three types of alternating access mechanisms have been proposed for

SLC-mediated transport (Figure 4c): i) Rocker-switch, which describes the oscillation of the N

and C-terminal domains of the transporter (e.g. SLCs with MFS fold); ii) Gated-pore, in which

two gates control the sequential access to the substrate binding site from either side of the

membrane (e.g. for LeuT folds), and iii) Elevator, which depicts the movement of the domain

containing the binding site (transport domain) along the axis perpendicular to the membrane

(e.g. SLC1 family) (Colas et al, 2016).
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Figure 4 Structures and transport mechanisms of SLCs. A. Topology diagram of the Major

Facilitator Superfamily (MFS) and Leucine Transporter-like (LeuT) folds. Transporters are positioned

with their periplasmic side at the top and cytoplasmic side at the bottom. Corresponding TMs in

each inverted repeat are colored the same. B. Representative structures of transporters with MFS

and LeuT-like folds (from E.coli). Color scheme as in A. C. Transport mechanismmodels. Outward-

open, occluded and inward-open states are represented for each model.

A and B were adapted from (Yan, 2013) with permission from Elsevier. C was adapted from (Colas

et al, 2016) with permission from The Royal Society of Chemistry.

Importantly, structure and transport specificity or function do not form a one-to-one

relationship. Members of the same fold or family can sometimes mediate the transport

of chemically dissimilar solutes (e.g. SLC22 family) and very similar substrates are often

transported by structurally different families (e.g. glucose and SLC2 – MFS fold –, SLC5 –

LeuT fold –, and SLC50 families). Such within-family varied degree of specificity and inter-family
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functional redundancy are actually two of the most defining characteristics of SLCs (Colas et

al, 2016).

The ability of SLCs to transport all major building blocks of the cell makes them keymediators

of cell physiology and homeostasis (Figure 5). Indeed, defects in SLC function are the cause

or have been associated with numerous human diseases, from monogenic to multifactorial

pathologies such as neurological and mental disorders, inflammatory bowel disease, type

II diabetes or cancer (Lin et al, 2015; Zhang et al, 2018). Several SLCs are currently the

target of approved drugs and drugs in development, and many more seem to be potentially

druggable (Rask-Andersen et al, 2013; Rask-Andersen et al, 2014). As an illustration, serotonin

transporter SLC6A4 (SERT) is the target of the most commonly used class of antidepressants

worldwide, which includes the well-known drug fluoxetine (Prozac) (Andersen et al, 2014), and

inhibitors of the glucose transporter SLC5A2 (SGLT2) are since recently used as a treatment

of type II diabetes (Scheen, 2015). However, in spite of their central role in cellular metabolism

and their relevance for pharmacology, SLCs are the most neglected human gene group as a

whole, with the vast majority of its members still poorly characterized (César-Razquin et al,

2015).

Most members of the SLC group that are well-known mediators of drug disposition belong to

four families (DeGorter et al, 2012; Estudante et al, 2016; International Transporter Consortium

et al, 2010):

− SLC22 family of organic anion/cation/zwitterion transporters. Probably the best-studied

SLC family regarding drug disposition, it comprises more than 20 members grouped into two

major clades: OCT (organic cation transporter) and OAT (organic anion transporter). While

some of them present a broad substrate spectrum (e.g. OAT1, OAT3, OCT1, OCT2), others

have more restricted specificity (e.g. OAT6, URAT1, OATPG, OCTN2, OCTN1). OCTs are

mainly facilitative transporters that mediate the uptake of small positively chargedmolecules,

including platinum-containing anticancer agents (e.g. oxaliplatin), antidiabetic metformin, or

the antiulcer and acid reducer cimetidine. The most relevant members include SLC22A1

(OCT1) and SLC22A2 (OCT2), which transport similar substrates and are expressed in

liver and kidney, respectively, and SLC22A3 (OCT3), which has a wider tissue expression

including the central nervous system (CNS). OATs, in contrast, are exchangers that use



Introduction: Drug Transport and Drug Transporters

– 14 –

endogenous dicarboxylic acids (e.g. alpha-ketoglutarate) to move small organic anions

against their concentration gradient, such as antibiotics (e.g. tetracycline), antivirals (e.g.

acyclovir), antihypertensives (e.g. olmesartan, captorpril), NSAIDs (e.g. ibuprofen) or

the chemotherapy agent methotrexate. SLC22A6 (OAT1), expressed predominantly in the

basolateral membrane of proximal renal tubules, and SLC22A8 (OAT3), present ubiquitously

in the kidney and the choroid plexus, are the most important members for drug disposition

and have a broad and overlapping substrate specificity, although SLC22A8 shows a greater

preference for slightly cationic as well as larger and more complex molecules (Koepsell,

2013; Liu et al, 2016; Nigam, 2018).

− SLCO (SLC21) family of organic anion transporters. Also called organic anion-transporting

polypeptides (OATPs), theymediate the sodium-independent uptake of a structurally diverse

range of amphipathic organic molecules, probably via anion exchange with solutes such as

bicarbonate, although their exact transport mechanism is not yet completely clear. Drugs

transported by OATPs are statins, antidiabetics, chemotherapy agents (e.g. methotrexate,

irinotecan), antibiotics (e.g. rifampicin) or antihypertensives (e.g. olmesartan), among

other. The two best-studied transporters of this family, SLCO1B1 (OATP1B1) and SLCO1B3

(OATP1B3), are both expressed in the basolateral membrane of hepatocytes and transport

similar substrates, although SLCO1B3 shows a unique transport specificity towards taxanes

(e.g. paclitaxel, docetaxel), cardiac glycosides (e.g. digitoxin, ouabain) and small peptides.

Other relevant members are SLCO2B1 (OATP2B1) and SLCO1A2 (OATP1A2), which have a

broader expression pattern and play a key role at the blood-brain barrier (BBB) (Hagenbuch

& Gui, 2008; Leuthold et al, 2009).

− SLC47 family of multidrug and toxin extrusion transporters (MATE). MATEs are obligatory

exchangers that use the electrochemical gradient of H+ in order to flush numerous

compounds out of cells and, similarly to ABCs, often confer MDR. There are only two human

members in this family: SLC47A1 (MATE1), predominantly expressed in kidney and liver,

and SLC47A2 (MATE2), more ubiquitously expressed but with a specific kidney isoform,

MATE2-K. They are multiselective exporters whose preferred substrates are of cationic

nature and tend to overlap with those of OCTs (e.g. metformin, cimetidine, oxaliplatin),

althoughMATEs are also able of transporting several zwitterionic (e.g. antibiotics cephalexin
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and cephradine, only MATE1) and anionic (e.g. acyclovir, ganciclovir) compounds.

Importantly, they operate in concert with OCTs in the transepithelial vectorial transport of

many solutes, where OCTs mediate basolateral uptake and MATEs support efflux through

the apical membrane, often co-localized with members of the ABC family (Motohashi & Inui,

2013; Staud et al, 2013).

− SLC15 family of proton-oligopeptide cotransporters. SLC15 members are symporters that

mediate the cellular uptake of a wide variety of di- and tripeptides of differing charge,

hydrophobicity and size using the driving force of the inwardly directed H+ gradient.

Substrates include a number of peptide-like drugs such as aminocephalosporins (e.g.

cefadroxil), ACE inhibitor antihypertensives (e.g. enalopril, captopril) or the anticancer

agent bestatin, as well as prodrugs that, by coupling an oligopeptide to the actual

compound structure, can hijack on these transporters and be more efficiently absorbed

(e.g. valacyclovir). This makes SLC15 transporters very good targets for drug delivery.

The two best-characterized members of this family are SLC15A1 (PEPT1) and SLC15A2

(PEPT2), which present very similar substrates. However, while SLC15A1 is a low-affinity

and high-capacity intestinal transporter that plays an important role in the absorption of small

peptides from dietary protein digestion and is also present in kidney and liver, SLC15A2 has

high-affinity but low-capacity and is more ubiquitously expressed, especially at the brush

border of renal proximal tubules, choroid plexus, lungs and skin (Rubio-Aliaga & Daniel,

2002; Smith et al, 2013).

Several other cases of drug disposition mediated by SLCs that do not belong to these

four families also exist (Estudante et al, 2016). Often they involve transporters with narrower

specificities and compounds with very similar structures and chemical properties to the actual

endogenous substrates, in agreement with the concept of "metabolite-likeness" (Dobson et al,

2009). As an illustration, members of the concentrative and equilibrative nucleoside transporter

SLC28 and SLC29 families mediate the uptake of nucleoside analogs (e.g. gemcitabine,

zidovudine) (Young, 2016) and anti-folates such as methotrexate can be transported by the

two folate transporters SLC19A1 and SLC46A1 (Zhao & Goldman, 2013). Other cases

might involve orphan transporters i.e. carriers for which no endogenous substrates are

known. For instance, SLC35F2 was identified as the specific importer of the anti-cancer drug
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Figure 5 Coordinated action of SLC and ABC drug transporters in selected tissues. Colors

depict individual families: ABCB (red), ABCC (orange), ABCG (yellow), SLC15 (light blue), SLCO

(dark blue), SLC22 (green), SLC47 (purple). For secondary active transporters the ion that provides

the energy for transport is indicated.

Based on (DeGorter et al, 2012; International Transporter Consortium et al, 2010)

YM155/sepantronium bromide (Winter et al, 2014) and SLC37A3 was recently reported to

mediate the release of nitrogen-containing biphospohonates from lysosomes into the cytosol

(Yu et al, 2018).

Due to the understudied nature of Solute carriers and the lack of information regarding the

transport mechanism of many compounds, it is to expect that many new drug transport cases

involving SLCs will be described in the future (César-Razquin et al, 2018).
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1.2 Drug Sensitivity Prediction using Cancer Cell Line Pharmacogenomics

Datasets

Cultured cancer cell lines (CCLs) are the most widely used model systems to study the

molecular basis of drug activity, and constitute extremely valuable tools for drug discovery.

The advent of high-throughput technologies has permitted the systematic characterization of

thousands of CCLs at the molecular level, including gene expression, genomic variations and

DNA methylation, among other. Simultaneously, profiling cancer cell line panels against large

collections of small molecules has become a valuable method to associate drug response

with baseline molecular descriptors. Predictive models of drug sensitivity built with these

pharmacogenomics datasets have allowed the discovery of genetic markers of drug sensitivity,

the identification of the mechanism of action (MoA) of compounds as well as the repurposing of

drugs, and they ultimately aim at identifying the most suitable treatments for individual patients

based on their genomic make-up, this is, personalized -or precision- medicine (Weinstein et al,

1992).

1.2.1 Large-scale pharmacogenomics datasets in cancer cell line panels

In the last two decades, a number of consortia have launched large-scale pharmacogenomics

projects that involved the characterization of hundreds of cancer cell lines (Weinstein, 2012)

(Table 1). The Developmental Therapeutics Program (DTP) of the United States National

Cancer Institute (NCI) pioneered these initiatives in 1990 with the NCI-60 Human Tumor Cell

Lines Screen, a collection of 60 (now 59) cell lines covering 9 different cancers aimed at

screening thousands of small molecules for anticancer activity (Shoemaker, 2006). The NCI-

60 panel contains the most extensively characterized cell lines, profiled at DNA, RNA, protein

and even metabolite levels (Jain et al, 2012), and has the largest compound library, with more

than 100,000 synthetic and natural products tested to date. However, an important downside

of this resource resides in its limited cell line coverage.

More recent multi-omics drug sensitivity screens are the Cancer Cell Line Encyclopedia

(CCLE) (Barretina et al, 2012) and the Cancer Therapeutics Response Portal (CTRP) (Basu et

al, 2013; Seashore-Ludlow et al, 2015), two related initiatives led by the Broad Institute, as well
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NCI-60 CCLE CTRP GDSC

# cell lines 60 1457 860 1001

# compounds >120k 24 481 265

main omics datasets
SNVs, CNVs, Meth,

Gex, Prot, Metab

SNVs, CNVs, Meth,

Gex
SNVs, CNVs, Gex

SNVs, CNVs, Meth,

Gex

# cancer tissues 9 24 24 29

assay type
metabolic (sulfo-

rhodamine B)

metabolic (ATP

luciferase)

metabolic (ATP

luciferase)

DNA dye or metabolic

(Resazurin or ATP

luciferase)

reference (Shoemaker, 2006) (Barretina et al, 2012) (Basu et al, 2013) (Yang et al, 2013)

Table 1 Main publicly available large-scale pharmacogenomic resources. SNV: single nucleotide

variants, CNV: copy number variations, Meth: methylation, Gex: gene expression, Prot: proteomics,

Metab: metabolomics.

as the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett et al, 2012; Iorio et al, 2016)

(Figure 6), a collaborative effort of the Wellcome Trust Sanger Institute and the Massachusetts

General Hospital Cancer Center. They all offer larger numbers of cell lines with a broader

tissue coverage than the NCI-60 panel, annotated with Copy Number Variations (CNVs), Single

Nucleotide Variants (SNVs) and gene expression data, and tested against a few hundred of

compounds (see Table 1).

1.2.2 Small-molecule in-vitro screening

High-throughput drug sensitivity screens consist in the assessment of the cytotoxic effect

of collections of compounds across a wide range of concentrations on panels of cell lines in a

miniaturized and automated manner. In these screens, cytotoxicity is evaluated by measuring

reporter signals of cellular features whose change is associated with cell death or proliferation,

such as cell number, metabolic state, or membrane integrity, under twomain assumptions: i) the

signals are correlated to cytotoxicity, and ii) the relationship between cell viability and compound

concentration is monotonic (Cortes-Ciriano et al, 2016).

At least three main classes of cytotoxicity assays can be distinguished. Colony formation or

colonogenic assays evaluate the capacity of treated cells to form colonies, and are more suited
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Genomics of Drug
Sensitivity in Cancer
(GDSC)

Figure 6 Genomics of Drug Sensitivity in Cancer (GDSC) dataset. Main characteristics of the

GDSC dataset, a collaboration between theWellcome Trust Sanger Institute and theMassachusetts

General Hospital Cancer Center. A panel of 1001 human cancer cell lines was molecularly

characterized and screened for differential sensitivity against 265 anticancer compounds.

Adapted from (Iorio et al, 2016) under a Creative Commons Attribution 4.0 International Public

License.

for long-term cytotoxicity (i.e. cytostatic effects). Membrane integrity assays use the rupture of

cellular membranes as a proxy of cell viability, and include methods such as enzyme leakage

(e.g. lactate dehydrogenase, LDH) and die or fluorescent compound exclusion (e.g. propidium

iodide, trypan blue). Finally, metabolic assays, the most commonly used, exploit cellular

metabolic activity as a surrogate of cell viability (Cortes-Ciriano et al, 2016). For instance, the

firefly luciferase ATP assay, used in the CCLE, CTRP and GSDC screens (Table 1), measures a

luminiscent signal produced by the oxydation of luciferin in the presence of ATP, whose amount

is proportional to the number of cells in culture (Fan & Wood, 2007; Kangas et al, 1984). In

contrast, the NCI-60 screen estimated cell mass using the sulforhodamine B (SRB) assay,
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a colorimetric method that relies on the property of the SRB dye to bind stoichiometrically

to proteins under mild acidic conditions (Vichai & Kirtikara, 2006). Other frequently used

colorimetric assays, such as the MTT or resazurin assays (also used in the GDSC), are based

on the enzymatic reduction of dyes by living cells (Berridge et al, 2005).

The dose-response data obtained with these assays usually describe a sigmoidal curve that

can be fit by a 4-parameter log-logistic model (also called Hill model) (Figure 7a). Hill models

allow the estimation of the half maximal inhibitory concentration or IC50, a parameter normally

used to quantify compound potency that corresponds to the concentration required to reach a

responsemidway between theminimum andmaximum activities (top and bottom plateaus of the

sigmoidal curve). IC50 values can be relative or absolute, depending on wether or not maximum

responses are calculated using the actual test compound or an external positive control, such

as another drug known to produce the maximum possible effect or the maximum value within a

multi-compound test plate (Sebaugh, 2011). Another measure to evaluate compound activity,

often preferred to IC50, is the area under the response curve (AUC), a parameter that comprises

both potency and efficacy and seems to be more robust when comparing single drugs across

cell lines treated with identical dose ranges (Fallahi-Sichani et al, 2013). Other authors propose

the use of alternative metrics based on growth rate inhibition (GR) in order to correct for

confounder factors (e.g. division number) that affect conventional drug sensitivity measures

(Hafner et al, 2016).

1.2.3 Computational drug sensitivity modeling

Computational techniques for the identification of molecular drug response determinants

exist in a continuum of complexity. The simplest approaches correspond to purely statistical

methods that aim at associating individual molecular features with drug sensitivity. For instance,

Pearson and Spearman’s correlations are often used in order to test the significance of

the association of molecular profiles, and constitute the basis of the COMPARE algorithm

developed within the NCI-60 project (Paull et al, 1989). Other standard hypothesis testing

methods such as Student’s t-test, ANOVA or MANOVA have also been applied to identify

molecular features that are statistically different between sensitive and resistant cell lines

(Garnett et al, 2012; Iorio et al, 2016). However, proper predictive models are needed in order
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Figure 7 Dose-response data and drug sensitivity modeling. A. Dose-response data fit

with a log-logistic model. The axes represents the relative cell viability in percentage (y-axis)

and the compound concentration in logarithmic scale (x-axis). Red points represent simulated

measurements and the black line indicates the fitted model (E0 = 100, Einf = 20, Slope = 4). The

equation describing the concentration-response curve is shown in the inset. E0 and Einf are the top

and bottom activity plateaus. Slope corresponds to the Hill parameter that controls the steepness of

the linear part of the curve. Einf indicates the effect of the compound at the maximum concentration

tested. The difference between absolute and relative IC50 values is highlighted. AUC is indicated

by the gray shade. B. Drug bioactivity matrix (drugs vs. cell lines). In single-task modeling, each

cell line (row) or compound (column) is modeled at a time, while in multi-task learning the whole

bioactivity matrix is modeled simultaneously by integrating biological and chemical information.

Adapted from (Cortes-Ciriano et al, 2016) with permission from Bentham Science Publishers LTD.

to identify more complex relationships involving sets of interacting response markers that might

act in a cumulative fashion.

These computational models of drug sensitivity typically aim at estimating a metric of

drug activity (e.g. IC50, AUC) for multiple single compounds on panels of cell lines using

combinations of molecular features (e.g. gene expression, genomic variants, DNA methylation)

of those cell lines as predictors. Such an approach is referred to as single-task learning, as

it allows to extrapolate on the biological space (i.e. predict the response of new cell lines),

but not on the chemical space (i.e. predict the effect of new compounds). In contrast, more

complex multi-task learning approaches try to predict drug sensitivity by combining cell line and
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compound information in a single model, therefore allowing extrapolation on both directions

(Cortés-Ciriano et al, 2016; Gönen & Margolin, 2014; Menden et al, 2013; Zhang et al, 2015)

(Figure 7b).

The development of predictive models can be divided in three main steps (Figure 8). First,

data sets must be selected and preprocessed, which involves normalization and filtering of

noisy or irrelevant data. Feature selection (or dimensionality reduction) might be performed

at this point using different statistical methods (e.g. univariate correlation with drug sensitivity

measures), but it is often part of the subsequent model training phase. In a second step,

models are trained and their performance (i.e predictive power) tested. A plethora of statistical

and machine learning approaches can be applied to that end, depending on factors such as

the characteristics of the prediction problem or the type of input data used. Next, models are

independently evaluated using datasets different to the one used for training, a process that

can be iteratively repeated a number of times in order to refine the models and improve their

predictive power. Finally, the best performing models are validated and, if successful, applied in

the context they were created for (e.g. drug response prediction in a clinical setting). Similarly,

good performing models might enable the formulation of hypotheses regarding the molecular

MoA of specific compounds (Azuaje, 2017).

Input data has been reported as the dominant factor affecting model performance, with

modeling methodologies playing a secondary role (Bayer et al, 2013; Jang et al, 2014). This

involves both themolecular features used as predictors as well as the compound to be predicted.

AUC is generally preferred to IC50 as a summary statistic for drug sensitivity, as it is able to

capture more information about the experiment and leads to better predictive accuracy (Jang

et al, 2014). SNVs, CNVs and gene expression have been extensively used as predictive

features, either alone or in combination. Gene expression is by far the most widely used

data type, and comparative studies have shown that it is also the most predictive (Costello

et al, 2014; Geeleher et al, 2014). In contrast, while integrative models using gene expression

in combination with genomic or epigenomic features might increase model performance, this

increase is often only marginal (Costello et al, 2014; Jang et al, 2014). Nevertheless, genomic

features possess the advantage of being more easily translatable to clinical biomarkers as

well as often increasing model interpretability (Aben et al, 2016). Chemical structure, protein
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Figure 8 Development of computational models of drug sensitivity. Key steps of data

selection and preprocessing, model construction and validation are shown, including the different

data types, algorithms and computational methods that are most commonly used.

Based on (Azuaje, 2017).

expression, DNA methylation and pathway activity predictors are also becoming increasingly

used in an attempt to improve model accuracy and interpretability (Fey et al, 2015; Menden et

al, 2013; Wang et al, 2017; Zhang et al, 2015).

Most computational approaches applied to the prediction of drug sensitivity belong to the

class of supervised learning techniques, although unsupervised methods such as standard

clustering or principal component analysis (PCA) are extensively used in the processes of

data selection and filtering (Seashore-Ludlow et al, 2015). Predictive models can also be

divided into continuous (regression problems), which predict numerical estimates of drug

sensitivity (e.g. IC50, AUC) or categorical (classification problems), which make predictions

according to predefined discrete response levels based on those descriptors (e.g. high vs.

low sensitivity) (Azuaje, 2017). Linear regression-based methods are among the most popular

to infer multivariate compound response predictors, and are discussed below in more detail.

A variety of machine learning approaches have also been applied, including random forests

(Menden et al, 2013; Riddick et al, 2011), support vector machines (Dong et al, 2015; Gupta

et al, 2016) and neural networks (Menden et al, 2013), among many other. Network-based

techniques are also being increasingly used in this and similar contexts (Qin et al, 2015; Wang et

al, 2014; Zhang et al, 2015). Finally, these methods are often adapted and integrated into more
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complex algorithms (Fang et al, 2015; Neto et al, 2014; Park et al, 2014), and model ensembles

have also been used that combine predictions arising from multiple individual methods to

generate a more accurate final prediction (Cortés-Ciriano et al, 2016; Wan & Pal, 2014). A

number of studies have benchmarked and compared many of these approaches, generally

showing a lack of general solutions to achieve good predictive power and, as mentioned above,

a strong dependency on data quality and sample size (Bayer et al, 2013; Jang et al, 2014;

Papillon-Cavanagh et al, 2013).

In order to assess model performance, different statistical indicators are used that measure

the "goodness-of-fit" of predicted and observed values and compute its associated error.

In regression, correlations, coefficients of determination and root mean squared errors are

frequently used measures of error, while in classification problems the areas under the receiver

operating characteristic (ROC AUC) and precision-recall curves are normally reported (Azuaje,

2017). Another indicator is the concordance index (CI), a generalization of the ROC AUC that

can be applied to both continuous and categorical models (Papillon-Cavanagh et al, 2013).

Moreover, predictive performance is typically assessedwithin a cross-validation (CV) framework

in order to build more generalizable models and avoid overfitting (i.e. the model is so closely fit

to the training data that it fails when applied to other datasets). In CV, the full dataset is divided

into two subsets: a training set, used to build the model, and a validation or test set, used to

assess its predictive performance. The most common CV scheme is the K-fold (KF-CV), in

which the dataset is split by random sampling into K partitions (e.g. 10), of which K-1 are used

for training and the remaining one for testing. The process is then iterated until all partitions

have been used as test sets. Additionally, this scheme can be repeated a number of times (R

times KF-CV) by creating new random splits. At the end, performance statistics of each round

of validation are summarized by a single indicator (Azuaje, 2017; Baek et al, 2009).

Last but not least, interpretability is another key factor and challenge when building predictive

models. Unfortunately, the most powerful models are often the least interpretable, appearing as

black boxes in terms of the factors contributing to the final predictive decision. While achieving

a good prediction accuracy is usually the main objective, it is normally a better idea to find a

balance between accuracy and interpretability. In this sense, simpler methods that allow an
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easy understanding of their parameters and permit the extraction of biological and mechanistic

hypotheses, even at the cost of some accuracy, are often preferred (Johansson et al, 2011).

1.2.4 Regularized linear regression

Linear regression is one of the simplest and most widely used statistical methods for

predictive modeling. In a standard linear regression model, the activity profile of a compound

(Y) is expressed as a weighted sum of molecular features (X), where the relative contribution

of each feature is controlled by a signed coefficient (β) that indicates both the strength and the

direction of influence.

𝑌 ≈ 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 (1)

In order to fit the model (i.e. obtain the most accurate β coefficients), a loss function (or cost

function) that calculates the prediction error needs to be minimized, being a common choice

the sum of squared errors (SSE):

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

(2)

However, ordinary linear regression models do not achieve good predictive accuracy due to

overfitting. To overcome this problem, so-called regularization techniques are used that apply a

penalty term (P) to the loss function in order to shrink the β coefficient estimates towards zero,

hence generalizing the model. The strength of the penalty is controlled by a tuning parameter

(λ) whose value is usually optimized by cross-validation.

regularization : 𝑆𝑆𝐸 + 𝜆𝑃 (3)

The two most renowned regularization methods are Ridge (Hoerl & Kennard, 1970), which

applies the sum of squared coefficients as a penalty term (also called L2 penalty), and LASSO

(Least Absolute Shrinkage and Selection Operator) (Tibshirani, 1996), which applies the sum

of absolute coefficients (L1 penalty) (Figure 9a). The cost function will then become, in each

case:
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LASSO : 𝑆𝑆𝐸 + 𝜆1𝐿1 = 𝑆𝑆𝐸 +
𝑝

∑
𝑗=1

|𝛽𝑗| (4)

Ridge : 𝑆𝑆𝐸 + 𝜆2𝐿2 = 𝑆𝑆𝐸 +
𝑝

∑
𝑗=1

𝛽2
𝑗 (5)

The differences in these penalties entail a few consequences. On the one hand, LASSO is

able to shrink the least important feature coefficients to zero, thus performing feature selection,

while all coefficients in Ridge regression are necessarily non-zero. Therefore, LASSO yields

sparse models that are more interpretable than Ridge models. On the other hand, LASSO does

not allow group selection (multicollinearity): if there is a group of variables highly correlated to

each other (e.g. genes participating in the same pathway or process), it tends to select one at

random and ignore all the rest. Moreover, LASSO is not adequate for the p > n case (i.e. more

variables than samples), as it can at most select n features.

To compensate these limitations, a new regularization technique was developed as a hybrid

between LASSO and Ridge, called the Elastic Net (Zou & Hastie, 2005) (Figure 9b). By linearly

combining both L1 and L2 penalties in a proportion controlled by a hyper-parameter (α), Elastic

Net regularization i) does automatic variable selection and continuous shrinkage, ii) is able to

select groups of correlated features, and iii) overcomes the p>n problem.

ElasticNet : 𝑆𝑆𝐸 + 𝛼𝐿1 + (1 − 𝛼)𝐿2 where 𝛼 = 𝜆2

𝜆1 + 𝜆2

therefore, if
⎧{
⎨{⎩

𝛼 = 0 : Ridge

𝛼 = 1 : LASSO

0 < 𝛼 < 1 : Elastic Net

(6)

Due to their high interpretability and robust performance, regularized linear regression

methods, and Elastic Net in particular, have been systematically used in order to predict drug

sensitivity using panels of cell lines (Barretina et al, 2012; Garnett et al, 2012; Iorio et al, 2016),

and some benchmarking studies have even explicitly recommended their use for this aim (Jang

et al, 2014).
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Figure 9 Geometrical representation of regularization methods. A. Contours of the error

and constraint functions for the LASSO (left) and Ridge regression (right). 𝛽 represents the least

squares solution, the solid blue areas are the constraint regions of LASSO, |𝛽1| + |𝛽2| ≤ 𝑠, and

Ridge, 𝛽2
1 +𝛽2

2 ≤ 𝑠, and the red ellipses represent the regions of constant SSE. LASSO and Ridge

regression coefficient estimates are given by the first point at which an ellipse contacts the constraint

region. Ridge has a circular constraint with no sharp points, and therefore the intersection will not

generally occur on an axis and all the coefficient estimates will be exclusively non-zero. In contrast,

the LASSO constraint has corners at each of the axes, and so the intersection will often happen

at an axis, shrinking one of the coefficients to zero. In higher dimensions, many coefficients may

equal to zero generating a sparse model. B. Comparison of constraint functions of LASSO (blue),

Elastic Net (red) and Ridge (black) regularization. The Elastic Net constraint corresponds to α=0.5.

Tuning the value of this hyperparameter can make the Elastic Net approximate more or less to the

more strict Ridge and LASSO constraints.

A was reprinted from (James et al, 2013) with permission from Springer. B was reprinted from

(Korkmaz et al, 2017) with permission from Elsevier.
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1.3 Functional Screening and Analysis using CRISPR-Cas9

CRISPR-Cas9 has revolutionized genome engineering, becoming in only a few years

an indispensable toolbox for almost any field of biological research and presenting an

invaluable potential for biotechnological and therapeutic applications (Hsu et al, 2014). As

an illustration, more than 9,000 research articles have been published about CRISPR-Cas9

since its development as a genome-editing tool in 2012, and this number continues to increase

every year (Adli, 2018). The unprecedented ease, precision and versatility of the CRISPR-Cas9

system compared to previous technologies such as zinc fingers or TALENs are the reasons

behind its impressive success. CRISPR-Cas9 has already enabled the generation of large

mutant cell line collections and the genetic modification of a variety of model organisms, and

genome-wide as well as specific sgRNA libraries have been used for a diverse range of screens.

Similarly, computational algorithms and tools are constantly being developed in order to facilitate

the design of more efficient libraries as well as to increase the power and robustness of the

analysis of CRISPR-based screens.

1.3.1 The CRISPR-Cas9 system

CRISPR-Cas modules constitute the unique adaptive immune systems of bacteria and

archaea, being present in approximately 50% and 90% of their species, respectively (Grissa

et al, 2007; Mojica et al, 2000). They consist in sequence specific RNA-guided endonuclease

complexes that recognize and cleave foreign nucleic acids and thus protect these organisms

against infection by mobile genetic elements such as phages, plasmids or transposons

(Barrangou et al, 2007; Bhaya et al, 2011; Horvath & Barrangou, 2010; Marraffini & Sontheimer,

2008). The main defining characteristic of these systems, which led to their initial discovery and

gives them their name, is the presence of a genomic array of Clustered Regularly Interspaced

Short Palindromic Repeats (CRISPR): a series of identical repeats separated by unique spacers

of foreign origin that serve as an archive of previous infections (Bolotin et al, 2005; Ishino et al,

1987; Mojica et al, 2005; Pourcel et al, 2005). Next to this array, an operon of well-conserved

CRISPR-associated (Cas) genes encodes proteins that are in charge of driving the immune

response (Jansen et al, 2002).



Introduction: Functional Screening and Analysis using CRISPR-Cas9

– 29 –

The defense mechanism orchestrated by CRISPR-Cas systems can be divided in

three different phases: adaptation, expression/maturation, and interference (Hille et al,

2018)(Figure 10a). Upon an initial infection, Cas proteins (e.g. Cas1 and Cas2) select a

stretch of foreign DNA and integrate it into the CRISPR array as a new spacer. This integration

happens preferentially at the end of an AT-rich leader sequence that precedes the whole array,

therefore keeping a chronological record of infections. The CRISPR array is then transcribed

into a long precursor CRISPR RNA (pre-crRNA) and processed within the repeats by either Cas

proteins or cellular RNAses into mature crRNAs, which contain the spacer sequence and a part

of the repeat. In the context of a new infection, these crRNAs guide the interference complex

formed together with the Cas enzymes to their cognate foreign DNA in order to cleave it. Target

recognition and cleavage requires complementary base-pairing between the crRNA spacer and

the foreign sequence, and, in most cases, also the presence of a short Protospacer Adjacent

Motif sequence (PAM), which constitutes an authentication and discrimination mechanism

that avoids auto-immune targeting of the actual CRISPR array. Cleaving the DNA results in

degradation of the invading virus or plasmid, thus protecting the cell against infection.

CRISPR-Cas systems are classified into two different classes, further subdivided in six types

and several other subtypes (Shmakov et al, 2017). Their main difference resides in that class

1 systems (types I, III and IV), the most common in bacteria and archaea, use interference

complexes made of 4-7 Cas proteins, while class 2 systems (types II, V, and VI) rely on a

single multidomain protein to drive interference. This simple effector architecture has rendered

class 2 CRISPR-Cas, and in particular the type II system of Streptococcus pyogenes, the

best choice for genome engineering applications (Deltcheva et al, 2011; Garneau et al, 2010;

Gasiunas et al, 2012). The effector protein in type II systems is Cas9, a large RNA-guided

DNA endonuclease that contains two different nuclease domains: an HNH domain that nicks

the strand complementary to the crRNA (target strand) and a RuvC-like domain responsible

of cleaving the opposite strand (non-target strand). Importantly, Cas9 requires for its activity

the crRNA together with a second non-coding RNA called the trans-activating RNA (tracrRNA),

which is partially complementary to the crRNA and warrants the stability of the interference

complex. Through its endonuclease activity, Cas9 generates a blunt DNA double-strand break

(DSB) 3 bp upstream of a NGG specific PAM sequence (Jiang & Doudna, 2017).
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Figure 10 The CRISPR-Cas9 system. A. Schematic representation of the three phases during

CRISPR-mediated immunity. B. Structure of the complex formed between Cas9 and the chimeric

guide RNA (gRNA). crRNA/tracrRNA and PAMsequences are indicated in different colors. Sequences

corresponding to the spacer and protospacer are represented by stretches of N nucleotides.

HNH and RuvC domains are depicted in grey. C. dCas9‑mediated transcriptional repression and

activation. Alternative strategies for both CRISPRi and CRISPRa are summarized. CRISPRi can

be achieved by dCas9 alone through steric hindrance or by a fusion with a transcriptional repressor

such as KRAB. Two options for CRISPRa are the fusion of dCas9 to VP64 or, alternatively, to an

array of repeating peptide epitopes that recruit multiple copies of single-chain variable fragment

(ScFv) antibodies fused to transcriptional activation domains.

A was reprinted from (Hille et al, 2018) with permission from Elsevier, B and C were adapted from

(Khalili et al, 2015) and (Shalem et al, 2015), respectively, with permission from Springer Nature.

The breakthrough came with the demonstration that the CRISPR-Cas9 system can be easily

exploited for genome editing in eukaryotic cell lines (Cong et al, 2013; Jinek et al, 2012; Mali et

al, 2013). By including 20 nucleotide long custom spacers into the crRNA sequence, any gene

or genomic locus can be specifically targeted provided it contains a 5’-NGG-3’ PAM downstream
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of the protospacer sequence. To simplify the system, crRNA and tracrRNA were fused into

a single chimeric guide RNA (gRNA, or sgRNA) that proved to be as efficient in generating

DSBs as the two separate RNAs (Jinek et al, 2012) (Figure 10b). The repair of these DSBs

by eukaryotic cellular mechanisms generally involves the non-homologous end joining (NHEJ)

pathway, which is error-prone and leads to the introduction of small insertions and deletions

(indels). Indels in coding regions that cause frameshits or premature stop codons result in

gene inactivation and the generation of a stable knock-out (KO) (Brinkman et al, 2018).

In the last years, the CRISPR-Cas9 system has been tuned for a plethora of applications.

For instance, a catalytically inactive form of Cas9 (dCas9) has been used as a recruitment

platform for other effector proteins and RNA aptamers in order to achieve targeted

transcriptional activation (CRISPRa) (Konermann et al, 2015), transcriptional inhibition

(CRISPRi) (Qi et al, 2013), epigenome editing (Hilton et al, 2015; McDonald et al, 2016)

and base editing (Komor et al, 2016), among other (Figure 10c). Also, the use of donor DNA

templates in modified Cas9 systems allows the introduction of specific mutations or knock-ins

in particular loci via homology-directed repair (HDR) (Aird et al, 2018). Moreover, alternative

Cas9-like proteins from species different to S.pyogenes that differ in size, PAM requirement or

cleavage mechanism have been explored for different uses. Finally, many efforts are being

dedicated into re-engineeing the already well-characterized Cas9 proteins in order to reduce

size, increase fidelity, reduce off-target effects, and extend targeting scope (Adli, 2018). Further

improvements will therefore continue to expand the uses and applications of the CRISPR-Cas9

system.

1.3.2 CRISPR-Cas9-based pooled genetic screens

Pooled genetic screens are cost-effective means for interrogating genomes in search of

causative links between genotype and phenotype. Due to its simplicity, scalability, efficiency

and low off-target effects compared to previous methods (e.g. RNA interference), CRISPR-

Cas9 has become an incredibly practical tool for genetic screening, and a number of genome-

wide knock-out, inhibition and activation sgRNA libraries have already been generated and

successfully tested (Sanson et al, 2018).
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In a pooled screen, thousands of individual perturbations (sgRNAs, in this case) are

simultaneously tested on a population of cells, which are then selected for a robust phenotype

(e.g. survival) and the relevant perturbations identified by comparison with unselected samples.

Two main modalities of pooled screens can be distinguished. Negative selection or dropout

screens aim at identifying perturbations that cause the depletion of cells over time, and have

been widely used for the characterization of essential genes (essentialomes) and tumor cell

dependencies (Hart et al, 2015; Wang et al, 2015; Wang et al, 2017). Such screens face the

challenge of distinguishing dropout due to biological reasons from random depletion, and hence

require the use of significantly large cell numbers in order to guarantee representation as well

as robust statistical analyses (Doench, 2018; Shalem et al, 2015). In contrast, positive screens

expose cells to a strong selective pressure (e.g. a compound, an infection, a different culture

condition) that allows the survival of only those that carry resistance-conferring perturbations.

Given that the majority of the population is eliminated, resistant cells are strongly enriched,

and therefore positive screens present a much larger dynamic range and are generally more

robust than negative screens (Doench, 2018; Shalem et al, 2015). This type of screen has

been effective for the identification of host factors required for viral infection (Marceau et al,

2016) and genes involved in drug response (Deans et al, 2016; Koike-Yusa et al, 2014; Zhou

et al, 2014).

The first step in CRISPR-Cas9 knock-out genetic screening consists in the design of the

custom sgRNA library that will be used to perturb the cell population (Figure 11). In these

libraries, every gene is typically targeted by several sgRNAs in order to ensure coverage and

achieve higher statistical certainty when analyzing screen results, and 6 sgRNAs per gene has

been reported as good compromise between performance and library size (Ong et al, 2017).

sgRNA specificity and activity is highly influenced by the actual nucleotide sequence as well as

the surrounding target site, and although this is still an active area of study, a few features have

been described that can be taken into consideration when designing sgRNAs (Figure 11b). As

previously explained, the sgRNA target sequence must be located 5’ to a PAM site, and purine

nucleotides seem to be preferred at the position immediately adjacent to it (position 20) (Gagnon

et al, 2014). Similarly, sgRNAs are normally designed to target 5’ exons, as this increases the

chances of generating deleterious frameshifts, although targeting conserved protein domains
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has also proven successful (Shi et al, 2015). In contrast, sites upstream of alternative start

codons, containing high-frequency SNPs or subject to alternative splicing should be avoided

(Doench et al, 2014). Moreover, while the sgRNA spacer sequence needs to be strictly identical

to the ~10 bases of the target closest to the PAM (the seed sequence), mismatches are allowed

at the 5’ end, which should be considered to evaluate possible off-target effects in regions of high

similarity. Other characteristics such as GC content, DNA strand or local chromatin structure

have also been reported to affect sgRNA activity (Doench et al, 2014; Wang et al, 2014), and

sgRNA scaffolds have been subject to optimization in order to improve efficiency (Dang et

al, 2015). These and other considerations have been implemented into different prediction

algorithms and CRISPR tools that facilitate sgRNA design with the objective of finding the

optimal trade-off between on-target efficiency and off-target effects (Doench, 2018; Haeussler

et al, 2016; Heigwer et al, 2014).

Once designed in-silico, sgRNAs are synthesized as a pool of oligonucleotides using

array-based methods (Kosuri & Church, 2014), amplified, and cloned to generate the plasmid

library that will be used for screening. Lentiviruses or other retroviruses are generally used

for Cas9/sgRNA delivery due to their ability to integrate into the genomes of target cells,

marking them permanently with the perturbation and allowing subsequent readout by next-

generation sequencing (NGS). Single and dual-vector systems have been developed that are

codon optimized and include all necessary elements (e.g. promoters, UTRs) to ensure proper

expression in the target eukaryotic cells (Figure 11c). An antibiotic resistance marker (e.g.

puromycin) is usually also included in order to allow the selection of successfully transduced

cells (Sanjana et al, 2014). While delivering Cas9 and sgRNAs together within the same vector

is generally the preferred option, it can also be challenging as viral titers tend to be low due to

the large size of the Cas9 gene (Shalem et al, 2015).

Transduction of the target cells with the lentiviral library needs to be performed in conditions

that maximize infection, therefore requiring fewer cells to initiate the screen, while ensuring that

the majority of them receives only a single sgRNA, as multiple sgRNAs per cell would lead to

confounding and unspecific effects. Such conditions are usually obtained with a multiplicity of

infection (MOI) of 20-40%, as illustrated by the corresponding Poisson distribution (Doench,

2018) (Figure 11d). Furthermore, the number of cells utilized for the screen needs to allow a
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Figure 11 CRISPR-KO library design and genetic screening. A. General pipeline of a pooled

positive genetic screen using a lentiviral CRISPR-Cas9 system.B. Example of sgRNA design,

including some criteria used for sgRNA selection. C.Single (lentiCRISPRv2) and dual (lentiCas9-Blast,

lentiGuide-Puro) lentiviral systems for the delivery and expression of S. pyogenes Cas9 (SpCas9)

and sgRNA components. psi+: Psi packaging signal; RRE: Rev response element; cPPT: central

polypurine tract; U6: U6 promoter for RNApol III; EFS: elongation factor 1a short promoter; EF1a:

elongation factor 1a promoter; Flag: Flag octapeptide tag; P2A: 2A self-cleaving peptide; Puro:

puromycin selectionmarker; Blast: blasticidin selectionmarker; WPRE: post-transcriptional regulatory

element. D. Poisson distribution for the fraction of cells carrying varying numbers of sgRNAs at

different infection efficiencies (left) and barchart of the percent of infected cells with 1 or more

sgRNAs at different infection efficiencies (right).

A and B were adapted from (Wang et al, 2014) with permission from The American Association for

the Advancement of Science, and C and D were adapted from (Sanjana et al, 2014) and (Doench,

2018), respectively, with permission from Springer Nature.
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high coverage of the library i.e. every sgRNA being represented in the target cells a sufficiently

high number of times (e.g. 1000x). After selection of infected cells and exposure to the stimulus

of interest for a few days (e.g. a drug, in positive screens), genomic DNA is isolated from

cells, amplified, and sgRNAs are sequenced using NGS. Specific adapters and barcodes are

added during PCR amplification in order to allow multiplexing strategies during sequencing,

such as double indexing (Kircher et al, 2012). Finally, comparison of sgRNA representation

between treated and untreated samples (positive screens) or between samples at different time

points (negative screens) using dedicated statistical methods allows the obtention of "hit lists"

containing candidate genes that can be further validated.

1.3.3 Computational analysis of CRISPR-Cas9 knock-out screens

The statistical analysis of CRISPR-Cas9 screens starts with the generation of a count

table of sgRNA abundance across samples. Adapted RNA-seq pipelines as well as dedicated

CRISPR tools can be used for preprocessing raw NGS reads (i.e. fastq files), which involves

the steps of sample demultiplexing, trimming of library-specific adapters, and mapping guide

sequences to the original sgRNA library. One or two mismatches or small shifts in sgRNA

sequences are sometimes allowed during mapping in order to account for sequencing errors

and increase yield, although strict matching is generally preferred to avoid false positives (Dai et

al, 2014). Sample quality can be evaluated by analyzing the number and percentage of mapped

reads and the distribution of sgRNA counts. A sufficient number of counts for each sgRNA

across samples (e.g. over 300) together with a low value of zero-count sgRNAs in the initial

library and time points are required in order to achieve good statistical power during subsequent

analysis. Low percentages of mapped reads can be indicative of NGS and oligonucleotide

synthesis errors as well as sample contamination. Similarly, unbalanced oligonucleotide

synthesis, low transfection efficiencies and overselection can lead to highly dispersed count

distributions in plasmid libraries, initial time points or negative selection screens, respectively.

Only in positive selection screens, due to the dominance of a small number of clones over the

whole population, it is common to observe higher variances in count distributions. Pairwise

correlations and other exploratory analyses such as Principal Component Analysis (PCA) are

also commonly performed in order to assess replicate consistency (Li et al, 2015).
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A few challenges need to be overcome when analyzing sgRNA count data. The first

of them consists in the low number of replicates present in most screens together with the

highly variable and over-dispersed nature of read count distributions, which requires the use of

robust normalization methods and proper statistical models in order to estimate variances and

calculate the statistical significance of sample comparisons (Anders & Huber, 2010). As this

is a common problem to other NGS experiments, existing algorithms for RNA-seq differential

expression analysis, sometimes with small adaptations, are normally used (Dai et al, 2014;

Hardcastle & Kelly, 2010; Love et al, 2014). These methods generally calculate a normalization

factor to correct for library size, and most of them use the Negative Binomial (NB) distribution to

model read counts, as this distribution is able to accommodate over-dispersion and has been

shown to achieve better specificity and sensitivity than other models (Di et al, 2011; Rapaport et

al, 2013). Then, specific significance tests are used to compare treatment and control samples

or different time points, providing a final list of sgRNAs ranked by their associated p-values. A

more detailed explanation for the DESeq2 method is given below (Love et al, 2014).

A second challenge is related to the actual nature of CRISPR libraries. Given that several

sgRNAs of different specificities and efficiencies are used to target every gene in the library,

an aggregation method is needed in order to obtain a final ranked list of candidate genes.

Traditional methods that combine p-values (e.g. Fisher’s method) or z-scores (e.g. Stouffer’s

method) can be used to this end (Won et al, 2009; Zaykin, 2011). However, the most widely

used approaches are based on testing the enrichment of sgRNAs that target the same gene at

the top of the ranked list, which is the same principle behind traditional gene set enrichment tools

(Subramanian et al, 2005; Wu et al, 2010; Wu & Smyth, 2012). Some of these methods were

actually developed for RNAi screens, as they also present the same problem (Birmingham et al,

2009). This is the case of RNAi Gene Enrichment Ranking (RIGER), a method based on Gene

Set Enrichment Analysis (GSEA, explained below) (Luo et al, 2008), and Redundant siRNA

Activity (RSA), which uses an iterative hypergeometric test (König et al, 2007). Other more

sophisticated techniques, such as HitSelect, have been specifically developed for CRISPR

screens (Diaz et al, 2015).

Another often ignored source of false positives in CRISPR-based knock-out screens is the

effect of targeting regions affected by Copy Number Variations (CNV). In these cases, sgRNAs
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direct Cas9 to every copy of the targeted locus, inducing multiple DSBs and extensive DNA

damage, which leads to cell depletion in a gene function-independent manner (Aguirre et al,

2016; Sheel & Xue, 2016). A few methods have been developed to correct this bias, and they

can be used either alone (Meyers et al, 2017) or integrated into screen analysis pipelines (Wu

et al, 2018).

CRISPR-specific tools have been developed in the last years. MAGeCK (Model-based

Analysis of Genome-wide CRISPR-Cas9 Knockout) is probably the most well-known, and

currently exists in two different flavors (Li et al, 2015; Zhang et al, 2018). MAGECK-RRA

follows a very similar approach to DESeq2 for count modeling and hypothesis testing, and then

applies a modified Robust Ranking Aggregation algorithm (α-RRA) to aggregate guides and

rank genes (Li et al, 2014). In contrast, MAGECK-MLE uses maximum likelihood to estimate

gene essentiality with a probabilistic mixture model that includes guide efficiencies, therefore

eliminating the need of a subsequent sgRNA aggregation step, and is able to account for

more complex experimental designs (Li et al, 2015). Other existing methods, such as BAGEL

(Bayesian Analysis of Gene EssentiaLity) (Hart & Moffat, 2016) and ScreenBEAM (Yu et al,

2016), use Bayesian statistics to fit models that also consider all sgRNAs targeting the same

gene at once.

Finally, dedicated python and R libraries, such as PinAPL-Py (Spahn et al, 2017) and

Carpools (Winter et al, 2016), and integrative web applications, such as CRISPR analyzer

(Winter et al, 2017), offer the possibility to perform complete workflows, from NGS data

processing and quality assessment to statistical screen analysis, evaluation and visualization,

and provide a large range of method choices (including the ones explained above) that can be

compared.

1.3.4 DESeq2 and GSEA for the analysis of CRISPR screens

DESeq2 (Love et al, 2014) is a good example of a robust method that has already been

applied to the analysis of CRISPR-Cas9 KO screens (Sedlyarov et al, 2018; Seyednasrollah et

al, 2015; Winter et al, 2017). This algorithm first normalizes samples to account for library size

using the median-of-ratios method (Anders & Huber, 2010) and, as mentioned above, models
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counts using the NB distribution. As the estimation of within-group dispersions (i.e. among

replicates) is typically hindered by low replicate numbers, DESeq2 takes the approach of pooling

features (sgRNAs, in this case) of similar mean value together for its calculation, assuming a

direct mean-variance relationship. To this end, it uses maximum likelihood (ML) to get an initial

estimation of dispersion for each sgRNA, then fits a smooth curve for the estimations dependent

on the average counts, and finally shrinks sgRNA-specific dispersions towards the fitted values

using a Bayesian approach. Such shrinkage procedure not only decreases high variances but

also raises underestimated dispersions, thereby reducing the chances of false positives. Only

unusually extreme gene-wise estimates (i.e. more than 2 standard deviations above the curve)

are left unshrunken, as these could obey to biological reasons.

Next, generalized linear models (GLM) are fitted for each gene, which provide the flexibility

to treat both simple and complex designs, such as the inclusion of different time points and

treatments. A common problem of dealing with count data is the tendency to overestimate

log-fold changes (LFC) for features with low counts, which can then lead to false positives

(Bottomly et al, 2011). To overcome this issue, DESeq2 applies a second empirical Bayesian

procedure that shrinks LFC estimates towards zero and whose effect is stronger for features

with lower information (e.g. lower counts). Finally, a Wald test is used to calculate the statistical

significance of LFCs being different than zero, and p-values are corrected for multiple testing

using Benjamini-Hochberg’s method (Benjamini & Hochberg, 1995). In order to sort sgRNAs

in the final list, shrunken LFCs seem to be a reasonable choice, as these estimates are more

robust than standard LFCs and represent biological effects more closely than p-values.

Gene Set Enrichment Analysis (GSEA) can be then be used to to aggregate sgRNAs into

genes (Sergushichev, 2016; Subramanian et al, 2005). The aim of this algorithm is to determine

if members of a gene set (in this case, sgRNAs targeting the same gene) are randomly

distributed through the the ranked list or if they significantly accumulate at its beginning. To this

end, first an Enrichment Score (ES) is calculated for each gene. Such score is the maximum

deviation from zero of a running-sum statistic that walks down the ranked list and increases

when a sgRNA targeting that gene is found (with a magnitude depending on the LFC) and

decreases otherwise. Then, a permutation test is performed in order to estimate the statistical

significance of the ES: sgRNA labels are randomly reassigned and ES recomputed in an
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iterative manner to generate a null distribution, and the p-value of the real ES is calculated

relative to it. Finally, p-values are adjusted for multiple testing.

A drawback of this method is that genes for which sgRNAs concentrate in the middle or

at the bottom of the list can also get significant ESs. In order to overcome this problem, the

initial list of sgRNAs obtained from DESeq2 needs to be first filtered by applying a threshold

on p-values (e.g. p-value≤0.05) so that only significant guides, ranked by LFC, will be passed

on to the GSEA algorithm. A second filter on the minimum number of significant guides that

is required to assess gene enrichment can also be recommended (e.g. at least two sgRNAs).

The final result is a list of candidate genes, ranked by adjusted p-values (False Discovery Rate,

FDR) and annotated with ES and total number of guides contributing to the enrichment, which

can be used for further validation.
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1.4 Aims of this thesis

The main purpose of this thesis was to systematically explore the large and heterogenous

family of Solute carriers (SLCs) in relation to their role as mediators of drug disposition and

modulators of drug action. In particular, we aimed at:

1. Assessing and quantifying the understudied nature of SLCs in comparison to other gene

groups, considering its causes and proposing experimental solutions.

2. Contributing to the deorphanization and functional characterization of SLCs, at least in

regard to drug action.

3. Investigating the mechanism of transport and transporter dependencies of a set of

diverse chemical compounds of high therapeutic interest.

4. Uncovering new SLC dependencies of drug sensitivity by a combination of experimental

and computational techniques, which involved:

a. the application of computational methods for drug sensitivity prediction in cancer

cell lines based on transporter molecular data.

b. the development of a CRISPR-based genetic screening approach and its

corresponding analysis pipeline for SLC genes.
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Results 2
2.1 Prologue

Solute carriers (SLCs) constitute the largest group of membrane transporters in the human

genome and play an essential role in cellular metabolism as mediators of nutrient uptake, waste

removal and pH, ion and volume homeostasis (Hediger et al, 2013). In addition, they are highly

relevant for pharmacology due to their druggability and known implication in drug disposition,

and many of them are associated with disease (DeGorter et al, 2012; Rask-Andersen et al,

2014). Yet, in spite of their importance, the majority of SLCs is functionally uncharacterized

and almost no systematic, integrative studies have been reported to date.

In the article presented below, we used publicly available information to demonstrate the

understudied nature of SLCs as a group and to support the necessity of integrative multi-

omic studies to characterize them. We first analyzed the literature in order to quantify "SLC

knowledge", revealing that SLCs are the group of human genes with the largest publication

asymmetry, with a few members garnering thousands of publications while most of them

being barely studied, in contrast to other membrane protein families such as GPCRs and

ABCs. Similarly, database interrogation showed that more than three fourths of SLCs with

an already identified disease link have no active compounds associated with them. We

then reviewed the historical and technical reasons behind this lack of research attention and

proposed experimental approaches that could be used to de-orphanize the "SLCome". Finally,

we analyzed SLC expression patterns across tissues and cell lines and derived an SLC co-

expression network that illustrates the coordinated function and interdependencies of these

proteins and shows their regulation in robust tissue-dependent modules.
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Solute carrier (SLC) membrane transport proteins control essential physiological functions,
including nutrient uptake, ion transport, and waste removal. SLCs interact with several important
drugs, and a quarter of the more than 400 SLC genes are associated with human diseases. Yet,
compared to other gene families of similar stature, SLCs are relatively understudied. The time is
right for a systematic attack on SLC structure, specificity, and function, taking into account kinship
and expression, as well as the dependencies that arise from the common metabolic space.

Individual cells, be they prokaryotic or eukaryotic, must control

chemical exchange with their environments, and they use lipid

membranes and proteinaceous channels and transporters to

this end. The lipid environment of the membrane prevents intru-

sion or leakage into the sancta sanctorum of the inner milieu and

buffers the cell against changing and noxious environmental

conditions, as well as against attack by phages, viruses, or bac-

teria (Köberlin et al., 2015; Mulkidjanian et al., 2009). In many re-

spects, the integrity of the membranes represents as critical an

element to cellular individuality as does the preservation and

transmission of genetic information (Schrum et al., 2010). The

protein components of cell membranes import and export

most of the chemical matter essential for life, including water,

ions, gases, nutrients, vitamins, cofactors, and many drugs

(Kell et al., 2011; Kell andOliver, 2014; Lin et al., 2015). Therefore,

regulation of small-molecule transport across membranes is key

to a cell’s internal physiology and is the gatekeeper to its inter-

face with the environment (Nigam, 2015). Yet, despite their cen-

tral role in mediating the discussion between chemistry and

biology and despite the fact that �10% of the human genome

encodes for transport-related functions (Hediger et al., 2013),

transporters, as a class of proteins, do not appear to garner quite

the attention that they deserve.

Transporters comprise solute carriers, ion channels, water

channels, and ATP-driven pumps, including ABC transporters.

Of these, the largest group is formed by the solute carrier pro-

teins (SLCs), which according to the current counting comprises

456 members, distributed in 52 subfamilies that can be further

phylogenetically grouped (Hediger et al., 2013, 2004; Schles-

singer et al., 2010, 2013b). SLCs are membrane integral proteins

localized on the cell surface and in organellar membranes and

comprise facilitative transporters, which are equilibrative, and

secondary active transporters (symporters and antiporters),

which may be concentrative (Hediger et al., 2013). After G-pro-

tein-coupled receptors (GPCRs), SLCs are the second-largest

family of membrane proteins in the human genome (Hoglund

et al., 2011). For detailed information about the individual SLC

family members, please refer to www.bioparadigms.org.

Links to Therapeutics and Human Disease
Much research on SLCs has been spurred by their relevance to

pharmacology and drug discovery, either as drug targets them-

selves or as mediators of drug disposition. Drug targets include

SLC6A4 (SERT), the target of the hugely important serotonin up-

take inhibitor drug class. Mediators of drug transport include

SLCO1B1, which transports statins and allows for preferential

drug distribution into the liver compared to other tissues, such

as muscle. This tissue distribution of statins is important in

driving their therapeutic index by increasing the lipid lowering

over the myopathy-causing activity (Giacomini et al., 2010).

SLC-mediated transport of statins and other drug classes can

also render their pharmacokinetics susceptible to drug-drug in-

teractions. For example, naringin from citrus fruits inhibits the

enterohepatic transporter SLCO1A2 and thus can reduce the

bioavailability of drugs that rely on this transporter, such as fexo-

fenadine (Bailey, 2010). Transport canalsobeaffectedby thenat-

ural pharmacogenomic variability in SLCs (Giacomini et al.,

2013). Other SLCs have been studied for their roles in physiology,

like SLC25A7 (UCP1), the mitochondrial uncoupling protein

involved in the thermogenesis process of brown adipose tissue.

Newer research has implicated SLCs in the action of chemo-

therapeutics; YM155, a cancer drug in clinical evaluation, was

found to be completely dependent on SLC35F2 for entry into

human tumor cells (Winter et al., 2014). Increasingly, SLCs are

attracting attention because they mediate drug-drug and

nutrient-drug interactions. For instance, the investigational

478 Cell 162, July 30, 2015 ª2015 Elsevier Inc.
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JAK2 inhibitor fedratinib, which was recently terminated from

development due to incidence of Wernicke’s encephalopathy

during trials, has been shown to inhibit thiamine uptakemediated

by SLC19A2 (hTHTR2), possibly contributing to the offside ef-

fects (Zhang et al., 2014). It would not be surprising if further un-

planned SLC-drug interactions were uncovered in the future.

There is also growing interest in SLCs because of their clear

genetic link to human diseases; about 190 different SLCs have

been found mutated in human disease and through genome-

wide association studies (Williams et al., 2012, 2014).

Are SLCs Getting the Attention They Deserve?
Our sense was that the SLC protein family, despite its clear rele-

vance to health and disease, was comparatively less well studied

than other gene families. In an attempt to quantify ‘‘SLC knowl-

edge’’ versus other gene families, we surveyed the literature

and analyzed the distribution of publications as reported by

NCBI for each gene family annotated by HGNC in an automated,

unbiased fashion (Bruford et al., 2008). We then visualized the

publication asymmetry, defined by the coefficient of skewness,

versus the average number of publications for each family (Fig-

ure 1A). SLCs show by far the greatest publication asymmetry

of all gene families, i.e., the most uneven distribution of papers

over the group members. This does not seem to be simply due

to a bias against membrane proteins in general, as ABC proteins,

ion channels, and GPCRs appear not so unevenly distributed.

Further, SLCs have an average number of publications permem-

ber of around 35, which is half of what is observed on average

over all families (66 publications). At the other end of the spec-

trum, one finds, among others, that the small TNF superfamily

of ligands are all equally and very well studied.

We then analyzed the asymmetry within the SLC knowledge

domain. We performed an automated search for publications

per each of the 456 SLC genes (including 65 pseudogenes),

which indeed displayed a highly skewed SLC knowledge distri-

bution curve (Figure 1B). A manually annotated search revealed

the same general pattern (Figure S1B). Both analyses reveal that

some gene members are extremely well studied, whereas most

have very few publications. In a phenomenon that appears to be

general to all human protein families, themost well-studied SLCs

in the last 2 years are almost identical to those that were themost

well studied a decade ago (Edwards et al., 2011). Prior to 2003,

20 of the �400 SLC family members accrued 29% of the publi-

cations for the entire family, and those exact same family mem-

bers garnered 32% of all SLC publications over the period 2012–

2014 (Figure S1A).

Rankings of the SLC family members do not seem to be indic-

ative of biological relevance. Some of the most well-studied

SLCs appear to have become objects of investigation simply

due to their abundance and tissue-specific expression in easily

isolated cell types, which greatly facilitated their study in the

era before molecular biology. Examples of this type include the

so-called ‘‘band 3 of erythrocytes’’ protein (SLC4A1) and

the erythrocyte glucose transporter GLUT1 (SLC2A1).

An important factor that contributes to the elevated publica-

tion rate of particular transporters has been expression cloning.

In the case of the intestinal Na+-glucose transporter SGLT1

(SLC5A1), due to its hydrophobic nature and difficulty in purify-

ing, functional expression in Xenopus laevis oocytes finally

opened the door to successful cloning and molecular character-

ization (Hediger et al., 1987). This progress led to a substantial

increase in SLC study, ultimately leading to structural

Figure 1. SLCs Are the Most Neglected

Group of Genes in the Human Genome

(A) Publication asymmetry is plotted against the

average number of publications per group of

genes. Publication counts per gene were retrieved

from the gene2pubmed file provided and curated

by NCBI. Gene groups comprise all HGNC gene

families and super-families as well as the GO an-

notations for kinase activity (‘‘kinases’’) and ion

channel activity (‘‘ion channels’’). Asymmetry is

measured for each group of genes by calculating

the skewness (as implemented in R’s ‘‘moments’’

package) of the distribution of the number of

publications for all genes within the group. A very

positive skew thus indicates an uneven distribu-

tion where a few genes in the family concentrate a

much higher number of publications than the rest.

Dot size relates to the number of members in each

gene group, and color indicates gene groups

where at least 80% of their members are anno-

tated as membrane proteins by GO annotation

(see legend). Labels for selected classes are

shown.

(B) Number of publications per SLC gene is dis-

played in descending order. The four SLCs with

the most publications are annotated. The red line

indicates the border at which genes have fewer

than 15 publications.

Cell 162, July 30, 2015 ª2015 Elsevier Inc. 479
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determination (Faham et al., 2008) and development of an antidi-

abetic drug class (Abdul-Ghani and DeFronzo, 2014) that acts on

its renal homolog SGLT2 (SLC5A2).

Other SLCs became highly studied because they were discov-

ered as targets of existing drugs, with VMAT2 (SLC18A2) repre-

senting a specific example of this. Reserpine is a drug that was

first marketed in the 1950s as a tranquilizer. The actual mode

of action of reserpine was only uncovered 40 years later by

scoring for cDNAs conferring the ability to sequester the neuro-

toxin 1-methyl-4-phenylpyridinium (MPP+) in CHO cells, leading

to the discovery of the vesicular amine transporter family SLC18

(Liu et al., 1992). As an example of how the availability of

research tools has influenced SLC research, there were no pub-

lications at all on SLC30A8 until its first cloning and expression in

2004 (Chimienti et al., 2004). Following this publication and a se-

ries of papers genetically linking mutations in this protein with

diabetes, in recent years SLC30A8 has become one of the

most highly studied SLCs (Rutter and Chimienti, 2015). This

spike of activity is clearly displayed in Figure S1A. Even more

recently, some SLCs that were previously barely studied have

been identified to play key roles in physiology. SLC38A9, an

SLC recently found to contribute to amino-acid sensing of

mTOR, was ranked 288th in the automated ranking of all time

SLC publications (Rebsamen et al., 2015; Wang et al., 2015).

With the importance of this SLC now clear and tools available

to allow its study, one can anticipate an increase in publication

rate for this transporter. As for the bottom-ranked 15% of SLC

family members, there are more publications in a PubMed

search for ‘‘star wars’’ (72 citations) than on these 70 SLCs

combined.

Exploring SLCs as Drug Targets
Regarding SLCs as drug targets, a recent publication suggests

26 different SLCs being the targets of known drugs, or drugs in

development (Lin et al., 2015; Rask-Andersen et al., 2013). A

closer inspection using more stringent criteria (FDA-approved

drugs whose primary mode of action is considered to be through

action on an SLC) revealed just 12 drug classes. Only 8 of these

drug classes are believed to act through selective action at a sin-

gle SLC, while 4 classes are believed to act non-selectively via

two or more SLCs. Only 6 further SLCs are targeted by drugs

in active development in phase II clinical trials or beyond

(Table 1). Several drugs interact with SLCs in addition to their

purported primary target, e.g., amiloride (SLC9A1, NHE1) or sul-

fasalazine (SLC7A11, xCT), but in such examples, it has not been

clearly established that these effects contribute to their clinical

pharmacology. The GPCR family, in contrast, is a well-estab-

lished drug target class that has been the subject of systematic

drug discovery efforts for half a century. Even when considering

the possibility that GPCRs may be intrinsically more relevant as

drug targets, the difference between a fewSLC targets and�100

GPCR targets is likely to reflect a historical bias. Clearly the SLC

family is underexplored from the standpoint of drug discovery.

Druggability of SLCs appears not to be the main or only barrier

here, as the majority of the well-studied SLCs have reported

small-molecule inhibitors.

Is it reasonable to expect more SLC-targeting drugs? Around

75% of SLCs are predicted to carry small organic molecules. It

has been proposed that proteins that have evolved to bind

such species are, on average, privileged with respect to small-

molecule druggability (Fauman et al., 2011). Experiences thus

far appear to support this prediction, with molecules of high

ligand efficiency (an indicator or protein druggability) (Hopkins

et al., 2014) being identified in the cases where medicinal chem-

istry efforts have been attempted against SLCs. Even SLCs that

carry only inorganic species have been shown to be druggable,

including, for example, the SLC12 family targets of the loop and

thiazide diuretics. Thus, SLCs appear to offer the rare potential of

an underexplored gene family with high disease relevance and

general small-molecule druggability.

SLC Genes and Human Disease
Current thinking in biomedicine and drug discovery contends

that human genomics will provide the clues to those genes and

proteins of particular relevance to disease and therapy. Accord-

ingly, we looked at all SLC genes that are associated with human

disease and counted the number of compounds reported for

each (IC50 < 10 mM), using OpenPHACTS, a platform that pro-

vides a single access to disease, chemical, and target databases

(Ratnam et al., 2014; Williams et al., 2012). 76% of SLCs (145 out

of 190) with an already identified disease link have no compound

associated with them (Figure S2). It is notable how few SLC tar-

gets have more than 100 active compounds against them in the

database, likely to represent another measure indicative of how

Table 1. SLCs Specifically Targeted by FDA-Approved Drugs or

Drugs in Active Development

Drug Status SLC

Common

Protein

Name Examples

Approved SLC5A2 SGLT2 canagliflozin;

dapagliflozin

SLC6A1 GAT1 tiagabine

SLC6A2 NET atomoxetine

SLC6A3 DAT methylphenidate

SLC6A4 SERT fluoxetine; sertraline;

citalopram (SSRIs)

SLC12A1/2 NKCC1/2 furosemide (loop

diuretics)

SLC12A3 NCC hydrochlorothiazide

(thiazide diuretics)

SLC18A1/2 VMAT1/2 reserpine

SLC18A2 VMAT2 tetrabenazine

SLC22 family OATs probenecid

SLC25A4/5/6 ANT1/2/3 clodronate

SLC29A1 ENT1 dipyridamole

Phase II+

Clinical Trial

SLC5A1

(and SLC5A2)

SGLT1

(and SGLT2)

sotagliflozin

SLC6A9 GlyT1 bitopertin

SLC9A3 NHE3 tenapanor

SLC10A2 IBAT elobixibat

SLC22A12 URAT1 lesinurad

SLC40A1 Ferroportin-1 LY2928057
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few drug discovery programs have been run against the family. In

contrast, the most popular targets of monoamine uptake inhibi-

tors (SLC6A2,3,4) have more than a thousand compounds asso-

ciated with each, with likely thousands more such compounds in

pharmaceutical company collections as a result of extensive

drug discovery campaigns against these targets.

Of course, it could be argued that involvement of SLC genes in

monogenic disorders is a poor reason to call for drug discovery

efforts in the corresponding disease areas, as it appears coun-

terintuitive. Yet such arguments need not be always valid, as

there is a fundamental difference between life-long genetic

loss of function (LOF) and the titrated, reversible pharmacolog-

ical blockade of a protein. For instance, LOF mutations in the

dopamine transporter SLC6A3 lead to early stage Parkinsonism

disease (Kurian et al., 2009), but SLC6A3 is also a principal target

of methlyphenidate and in the treatment of psychiatric disorders.

Further, LOFmutations in SLC12A3 have been found associated

with Gitelman’s syndrome, characterized by low blood pressure,

and SLC12A3 could bemechanistically linked to the action of thi-

azides that treat hypertension (Brinkman et al., 2006). Even if we

take a more stringent connection to disease by counting only the

genetic mutations in the OMIM database (103 different SLCs)

(Amberger et al., 2015), it is clear that the ‘‘disease’’ zones of

the SLC network are not covered nearly enough by chemical

agents.

Why So Little Research Attention Then?
Whatmight have contributed to this apparent anomaly in the dis-

tribution of research attention for the SLC gene family, where

somemembers are well studied and somanymembers not stud-

ied at all? First, a unifying nomenclature has been adopted only

recently (Hediger et al., 2013, 2004), and as a consequence,

common principles and features may have been overlooked.

Second, there are a number of technical barriers that may have

impeded research in this area. In particular, acquiring competent

biological reagents for SLC study can be highly challenging.

These are complex integral membrane proteins that are difficult

to express and purify and are often poorly detected by typical

protocols for mass spectrometry. Accordingly, biochemical, bio-

physical, and structural biology characterization of SLCs has

also been challenging. Indeed, there are so far only three re-

ported human SLC structures (Deng et al., 2014; Gruswitz et al.,

2010; Schlessinger et al., 2013a; Deng et al., 2015) (Table S1).

Cell-based systems for studying SLC function can likewise be

challenging to obtain, as overexpression can cause toxicity

(presumably as a result of metabolic perturbation), and loss- or

gain-of-function studies can be confounded by endogenous

SLCs with overlapping specificities or by compensatory trans-

port or metabolic effects. Even when cell systems with function-

ally competent SLCs can be obtained, defining their relevant

endogenous substrates is not trivial, and establishing screening

assays can be difficult. Third, high-quality antibodies are avail-

able for only a few SLCs, with the human protein atlas reporting

just 45 SLCs for which they have raised reliable antibodies (Uhlen

et al., 2015). As a consequence, the current understanding of the

subcellular localization of SLCs, crucial for the interpretation of

their function, is indeed partial at best. Finally, the transport

assays are often challenging, even for those SLCs with known

substrates. Artificial lipid vesicles or microinjected frog oocytes,

two other useful assay systems, do not necessarily allow for

testing function in the context of the regulatory intricacies, and

the latter is not always robust enough for large-scale compound

screening. In short, despite the post-genomic era, ample

evidence for their important physiological role and their drugg-

ability, the systematic and parallel structural and functional inter-

rogation of human SLC proteins has not yet been carried out.

Delving into the ‘‘Sparse Zones’’ of Our Knowledge
Here, we argue that an energetic and detailed exploration of the

human ‘‘SLCome’’ is warranted because the family comprises

one of the largest ‘‘sparse zones’’ of human biology. Indeed,

the concept of the rational filling of sparse zones of knowledge

is starting to guide strategies in other collaborative efforts (Roll-

and et al., 2014; Snijder et al., 2014). Furthermore, we argue that

the problem should be tackled systematically to capture the

efficiencies that come with economies of scale and the learnings

that derive from studying related proteins. Finally, we believe that

the initial objective of this effort should focus on generating high-

quality, enabling reagents (antibodies, purified proteins, cell-

based assays, chemical probes, CRISPR-cell lines) and data

sets (protein interaction, tissue and sub-cellular distribution).

Such a concerted effort is not only called for but is also timely

due to recent technological developments, listed and referenced

in Table 2. Such developments cover protein expression, metab-

olomics, structure determination, gene knockout technologies,

and mass spectrometry, as well as assay development and me-

dicinal chemistry, to deliver high-quality chemical tools into the

public domain. We listed possible project aims of a concerted

campaign, fully aware that such lists are not comprehensive

and are meant to spur additional thoughts. There are several ex-

amples of successful de-orphanization of SLCs using recently

developed technologies (Abplanalp et al., 2013; Caulfield et al.,

2008; Iharada et al., 2010; Rebsamen et al., 2015; Wang et al.,

2015; Wikoff et al., 2009; Winter et al., 2014).

In broad terms, the strategy to study proteins by family, where

experimental methods on one familymembermay facilitate anal-

ysis of the next (Hoglund et al., 2011; Schlessinger et al., 2010),

has been highly successful for tackling the structure and chem-

ical tractability of other gene families such as kinases, GPCRs,

and proteins involved in the regulation of the epigenome (Barr

et al., 2009; Edwards et al., 2009). Importantly, although one

would expect similar success applying this approach to the

SLC family, there is an additional opportunity that functional in-

ter-relationships among SLCs, on top of phylogeny, may greatly

aid in the design of the experimental strategy.

Working Groups of SLCs
It is highly likely that the transport activity of one SLC may affect

the activity of others, acting in parallel or in sequential order, in

redundant or interdependent function, integrating with the

cellular metabolism in various ways (Nigam, 2015; Thiele et al.,

2013). If this is the case, there may be several ways to uncover

such functionally linked groups, for example, by analyzing co-

expression patterns (Huynen et al., 2003; Jordan et al., 2004;

Stuart et al., 2003). Proteins acting together are more likely to

be co-expressed across tissues and conditions than if they are
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functionally independent. SLCs that are consistently identified to

be co-expressed and thus represent such putative working

groups or functional modules may, in turn, help to shed light

on the role of the individual family members. Perhaps these

connections can be used to distinguish an underlying overall ar-

chitecture, which might be suggestive of dependencies and vul-

nerabilities of the system.

To explore this concept more fully, we analyzed different gene

expression data sets of human tissues (Fantom5, Illumina body

map, and the ‘‘32 tissues’’; Forrest et al., 2014; Parkinson

et al., 2011; Uhlen et al., 2015) and derived a global and high-

confidence survey of patterns of co-expression across SLC

genes. These patterns for co-expression were analyzed to iden-

tify SLCs that are frequently and consistently co-expressed. Co-

expression relationships were ranked based on the combined

p values of the correlations in the three independent data sets

used. For visualization convenience, we chose to display only

the top 2,500 co-expressed SLCs observed in at least two

data sets. We found at least five major clusters and several

smaller ones, perhaps representing fundamental functional rela-

tionships (Figure 2A). The edges were colored according to the

tissue in which two connected SLCs are most highly, but not

necessarily exclusively, expressed. We found that the clusters

correspond to individual tissues (kidney, liver, brain, testis, leu-

kocytes). Interestingly, kidney and liver seem to share the highest

number of co-expressed SLCs despite their different germ-layer

origin. A more fine-grained tissue annotation shows that the kid-

ney/liver intersection harbors the SLCs whose co-expression is

highest in intestinal tissue (Figure S3A). This similarity between

kidney and liver co-expression is specific for SLCs, as a recently

published genome-wide tissue expression comparison revealed

a considerably larger ‘‘distance’’ between these organs (Mele

et al., 2015).

The network displayed does not automatically reveal all text-

book cases of co-expression. For example, expression of

SLC26A4 (iodide transporter, pendrin) and SLC5A5 (sodium io-

dide co-transporter) is well known to be coordinately expressed

in thyroid tissue. While a significant level of co-expression is

observed in the thyroid, several tissues either express one or

the other, suggesting that they may not always be obligatory

partners and may have independent functions. Accordingly,

the correlation, although significant, did not reach the top

Table 2. Approaches to Enable SLC De-orphanization

Objective Enabling New Technology References

Expression map of SLCs across the human

body, at single-cell and sub-cellular

resolution

large-scale RNA-seq; single-cell RNA-seq;

expression proteomics and antibody

mapping efforts; MALDI imaging mass

spectrometry; CyTOF

(Bendall et al., 2011; Clemencon et al.,

2015; Cornett et al., 2007; Kim et al., 2014;

Mele et al., 2015; Uhlen et al., 2015; Wilhelm

et al., 2014)

Human cell lines mutated in individual SLC

genes

CRISPR technology; insertional

mutagenesis in haploid cells

(Burckstummer et al., 2013; Carette et al.,

2009; Doudna and Charpentier, 2014)

Cell lines with multiple SLC gene deletions;

cells with minimal SLC repertoire

CRISPR-mediated genomic engineering (Doudna and Charpentier, 2014; Hsu et al.,

2014)

SLC genetic interaction landscape SLCome- and genome-wide CRISPR

inactivation and gain of function libraries;

k.o. cells

(Cong et al., 2013; Qi et al., 2013)

Chemical genomics high-throughput phenotypic screening (Carette et al., 2009; Reiling et al., 2011;

Winter et al., 2014)

SLC interactome label-free high-throughput AP-MS;

BirA-mediated BioID; membrane

interaction mapping

(Cox and Mann, 2011; Lambert et al., 2015;

Petschnigg et al., 2014; Varjosalo et al.,

2013)

Metabolomic data and SLC genetic

polymorphisms

genetic association studies; population-

wide whole-genome sequencing; rare

disease genome sequencing coupled with

deep metabolomics

(Shin et al., 2014)

Metabolome-wide transport assays, in

dependence of individual SLC gene

alteration

high-throughput accurate LC/ GC-mass

spectrometry and databases; libraries of

metabolites; k.o. cells

(Kell, 2004)

Transport assays using recombinant

proteins

proteoliposomes; liposome microarrays;

pure solutes, complex body fluids

(Krumpochova et al., 2012; Saliba et al.,

2014; Scalise et al., 2013)

High-throughput determination of 3D

structure

single-particle cryo-EM; high-throughput

crystallization protocols; serial

femtosecond crystallography

(Bai et al., 2015; Bartesaghi et al., 2015;

Chapman et al., 2011; Moraes et al., 2014;

Zeev-Ben-Mordehai et al., 2014; Zhou

et al., 2015)

Potent and selective chemical probes for

each SLC

better libraries; more accurate screening

technologies; assays to assess target

engagement and specificity in cells and

tissues

(Edwards et al., 2009; Frye, 2010)
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Figure 2. SLCs Are Expressed in Robust Tissue-Dependent Modules

(A) Network visualization of SLC co-expression. Nodes in the network represent SLCs. Edges between nodes correspond to significant correlations consistently

retrieved in three independent expression data sets from healthy human tissues. Only the top 2,500 most significant edges are shown, based on combined

p values of the three independent correlations. Gray nodes indicate SLCs with at least one disease association, and red node outlines indicate the presence of at

(legend continued on next page)
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2,500. To allow the interrogation of the full data set beyond what

can be reasonably visualized in a single network, we include an

extended list of SLC co-expression pairs across all tissues (Ta-

ble S2).

Not all SLCs are represented in the network because their

expression does not correlate strongly enough with any given

other to be among the top 2,500 that we chose to represent for

visualization. Of these SLCs, some 48 appear to be expressed

in all tissues and may thus represent a ‘‘core’’ of housekeeping

functions (Table S3). Membership to this group may make some

of them attractive to study for pharmacokinetic considerations.

We then looked at the distribution of disease-associated SLCs

across the network (dark gray filled nodes, Figure 2A). All clus-

ters (except the testis cluster) contain several positive SLCs,

confirming that SLC gene functions bear important pathophysi-

ological implications across many tissues and processes. The

SLCs for which high-affinity chemical agents have been devel-

oped are marked; their distribution was considerably less even

(red halos, Figure 2A). At least three cluster regions seem rela-

tively sparse in terms of drugs: heart and skeletal muscle, leuko-

cytes, and the intersection of liver and kidney. Perhaps these

regions merit more attention in the future.

The SLC families do not appear to group in clusters or tissues

(i.e., most SLC families appear distributed over the different

tissues), but there is a non-random pairing of co-expression be-

tween different SLC families whose pattern likely reflects meta-

bolic/biochemical dependencies (Figure 2B). For instance,

strong interaction between the SLC13 and SLC22 families is

likely to reflect an integration of energy and homeostatic regula-

tion of intermediate metabolism, particularly the Krebs cycle.

Enrichment in the interactions between families SLC5 (glucose

reuptake), SLC13 (citrate/dicarboxylate reuptake), and SLC47

(toxin/xenobiotic secretion) might be also explained by the role

of some of their members in kidney, where a coordinated trans-

port of their cargos is required. Furthermore, the sodium and

chloride symporter family SLC6, which transports monoamine

neurotransmitters and amino acid neurotransmitters, is heavily

linked with glutamate/neutral amino acid transporters of the

SLC1 family. This link suggests a connection at both a metabolic

and physiological level, especially important in brain tissue.

The robustness of SLC co-expression patterns across

different large-scale data sets was very high and clearly ex-

ceeded, for example, that of protein kinases (Figure S3B).

Possibly, SLC function has a particularly high degree of interde-

pendence reflective of the integrative nature of metabolism

required for homeostatic stability. The resulting co-expression

networks are likely to be reinforced by the integration with envi-

ronmental parameters.

The patterns of SLC co-expression may reflect normal cell

function; when we compared co-expression in different cancer

cell lines, we observed massive changes, corresponding to a

general loss of structural organization in the network. The

network of SLC co-expression in cancer is not robust, i.e., it is

not as reproducible across data sets, and it shows considerably

less clustering (Figure S3C). The degree by which cancer per-

turbs the SLC co-expression pattern is much higher than the dif-

ferences between normal tissues and cancer cell lines observed

with protein kinases.

Could loss of these ‘‘healthy’’ SLC co-expression patterns be

a good marker for the loss of homeostasis in certain diseases?

This analysis may suggest that there is a SLC regulatory circuitry

that may be crucial to medical and pharmacological consider-

ations and that might assist strategic choices in the effort to fill

the SLC knowledge gap. Armed with this knowledge, redun-

dancy and dependency are not annoying impediments of the

large SLC group but, rather, exploitable features.

Conclusions
In summary, SLCs are particularly understudied and fascinating

proteins, vital for correct cellular function by controlling the cor-

rect import andexport of themoleculesof life acrossmembranes.

They are important in disease and in the action and transport of

drugs. A broad attack on their structure, expression, regulation,

chemical structure-activity relationships, and functional charac-

terization in terms of transport and signaling is warranted. The

study of their regulation and interdependencies should be

particularly fascinating, as the functional target may be not only

a single protein but the vulnerability within the functional network,

perhaps involving ATP-dependent efflux transporters of the

ABC family as well. A full-force effort to study the ‘‘SLCome’’

would open the doors to the interface between human health

and metabolism, nutrition, and the environment. The large and

important family of SLCs should be neglected no longer.
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least one interacting small compound with an IC50 below 10 mM (OpenPHACTS). Edges are colored according to the tissue in which the two connected SLCs

share the highest expression (highest mean rank; Illumina Body Map data set), as indicated in the legend.

(B) SLC family co-expression enrichment network. Nodes in the network represent SLC families. Edges correspond to statistically enriched co-expression

betweenmembers of the connected SLC families, as calculated by a hypergeometric test. Edge color relates to the significance of the enrichment and edgewidth

is proportional to the number of co-expressed SLC pairs (see legend).
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Supplemental Figures

Figure S1. Publication Bias on SLCs

(A) Number of publications per SLC gene before 2003 (purple) and between 2012 and 2014 (green) are displayed in descending order according to the before

2003 count. Top and upcoming SLCs are labeled.

(B) Same as Figure 1B, but publications counts were retrieved by manual querying of PubMed abstracts including all gene names and synonyms for each SLC.

Insert shows high concordance between the automated (x axis) and the manually queried (y axis) publication counts per SLC.
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Figure S2. Few Disease-Associated SLCs Are Targeted by Small Compounds

Number of disease associations (y axis) and small compound interactions (IC50 smaller than 10mM; x axis) are shown for each SLC, in log scale. All data were

retrieved from OpenPHACTS. SLCs with neither disease associations nor interacting small compounds are excluded. Dot size indicates number of publications

(see legend). Neurotransmitter transporters (SLC family 6; red) and neglected targets (green) are highlighted.
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Figure S3. SLCs Are Expressed in Robust Tissue-Dependent Modules

(A) Same as Figure 2A, but edge colors are annotated with the 32 tissues dataset instead of the Illumina BodyMap dataset. Only selected tissues are highlighted:

liver (green) and kidney (blue) as in Figure 2A, together with small intestine and duodenum (pink). Other tissues are colored in gray.

(B) Significance of the overlap of top 1000 correlations between tissue datasets (32 tissues, Illumina Body Map, Fantom5 – tissue samples), between cancer

datasets (CCLE, Cosmic, and Cancer Cell Lines (Klijn et al., 2015) and between tissue and cancer datasets. P-values were calculated by a hypergeometric test.

(C) Same as in Figure 2A, but SLC co-expression is analyzed in cancer expression datasets (CCLE, Cosmic, and Cancer Cell Lines).
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2.3 Interlude I

The lack of knowledge regarding the transport mechanism of most drugs and drug-

like compounds combined with the understudied nature of Solute carriers (SLCs) opens

the door to the potential discovery of new drug-transporter relationships that can help to

decipher the mechanism of action of many therapeutic agents. To this end, the large-scale

pharmacogenomics datasets on panels of cancer cell lines developed in the last years constitute

a rich source of data that can be exploited using computational methods in order to identify

transporters that affect drug response.

In the next publication, we aimed at prioritizing SLC (and ABC) drug relationships by building

predictive models of drug sensitivity using the Genomics of Drug Sensitivity in Cancer (GDSC)

dataset, one of the largest and most comprehensive to date, which includes 1,000 molecularly

annotated cancer cell lines together with their response to 265 anti-cancer drugs. To get an

idea on the current knowledge of drug transport mediated by SLCs and ABCs, we first surveyed

public pharmacology resources and relevant publications, and obtained a connected network

that involved 100 transporters (approximately a fifth of the total) and 500 compounds. We then

characterized the expression of SLC and ABC genes across the GDSC cancer cell line panel,

roughly distinguishing similarly sized sets of specific and commonly expressed transporters.

Finally, we applied regularized linear regression methods (LASSO and Elastic Net) to predict

drug response based on SLC and ABC molecular data only. The most predictive models

identified both known and uncharacterized associations for a number of compounds, providing

a prioritization means of potentially pharmacologically relevant interactions.
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2.4 Manuscript #2
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The interplay between drugs and cell metabolism is a key factor in determining both
compound potency and toxicity. In particular, how and to what extent transmembrane
transporters affect drug uptake and disposition is currently only partially understood.
Most transporter proteins belong to two protein families: the ATP-Binding Cassette
(ABC) transporter family, whose members are often involved in xenobiotic efflux and
drug resistance, and the large and heterogeneous family of solute carriers (SLCs). We
recently argued that SLCs are collectively a rather neglected gene group, with most of its
members still poorly characterized, and thus likely to include many yet-to-be-discovered
associations with drugs. We searched publicly available resources and literature to
define the currently known set of drugs transported by ABCs or SLCs, which involved
∼500 drugs and more than 100 transporters. In order to extend this set, we then mined
the largest publicly available pharmacogenomics dataset, which involves approximately
1,000 molecularly annotated cancer cell lines and their response to 265 anti-cancer
compounds, and used regularized linear regression models (Elastic Net, LASSO) to
predict drug responses based on SLC and ABC data (expression levels, SNVs,
CNVs). The most predictive models included both known and previously unidentified
associations between drugs and transporters. To our knowledge, this represents the first
application of regularized linear regression to this set of genes, providing an extensive
prioritization of potentially pharmacologically interesting interactions.

Keywords: solute carriers, ABC transporters, drug sensitivity and resistance, drug transport, regularized linear
regression

INTRODUCTION

The role of cellular metabolism in determining the potency and distribution of drugs is
increasingly recognized (Zhao et al., 2013). Along with the enzymes involved in actual xenobiotic
transformation, such as members of the cytochrome and transferases families, a critical role is
played by transmembrane transporters, which directly affect both the uptake and the excretion
of drugs and their metabolites (Zhou et al., 2017). Among transmembrane transporters, two
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large families have been described: the family of ATP-binding
cassette (ABC) transporters and the family of solute carriers
(SLCs) (Hediger et al., 2013). ABC transporters are pumps
powered by the hydrolysis of ATP and show a remarkable broad
range of substrates, including lipids, secondary metabolites, and
xenobiotics. Members of this family, such as the ABCB/MDR and
ABCC/MRP proteins, have been associated with resistance to a
large number of structurally diverse compounds in cancer cells
(Fletcher et al., 2010). SLCs are secondary transporters involved
in uptake or efflux of metabolites and other chemical matter
(Cesar-Razquin et al., 2015). At more than 400 members and
counting, SLCs represent the second largest family of membrane
proteins and comprise uniporters, symporters and antiporters,
further grouped into subfamilies based on sequence similarity
(Hoglund et al., 2011). Among the reported SLC substrates are
all major building blocks of the cell, such as nucleic acids,
sugars, lipids, and amino acids as well as vitamins, metals, and
other ions (Hediger et al., 2013). Despite the critical processes
mediated by these proteins, a large portion of SLCs is still poorly
characterized and, in several cases, lacks any associations with
a substrate (Cesar-Razquin et al., 2015). Importantly, several
members of the SLCO (also known as Organic Anion Transporter
Proteins or OATPs) and SLC22 families (including the group of
organic cation transporters or OCTs, organic zwitterion/cation
transporters or OCTNs and organic anion transporters or OATs)
have been found to play prominent roles in the uptake and
excretion of drugs, especially in the liver and kidneys (Hagenbuch
and Stieger, 2013). Several other cases of SLCs mediating
the uptake of drugs have been reported, such as in the case
of methotrexate and related anti-folate drugs with the folate
transporter SLC19A1 (Zhao et al., 2011) or the anti-cancer
drug YM155/sepantronium bromide and the orphan transporter
SLC35F2 (Winter et al., 2014). Indeed, whether carrier-mediated
uptake is the rule or rather the exception is still a matter of
discussion (Dobson and Kell, 2008; Sugano et al., 2010). Due to
the understudied nature of transporters and SLCs in particular,
we can nonetheless expect that several other associations between
drugs and transporters, involving direct transport or indirect
effects, remain to be discovered and could provide novel insights
into the pharmacokinetics of drugs and drug-like compounds.

Analysis of basal gene expression and genomic features in
combination with drug sensitivity data allows the identification
of molecular markers that render cells both sensitive and resistant
to specific drugs. Such a pharmacogenomic analysis represents
a powerful method to prioritize in silico gene-compound
associations. Different statistical and machine learning (ML)
strategies have been used in the past to confirm known as well
as to identify novel drug–gene associations, although generally
in a genome-wide context (Iorio et al., 2016). For our study, we
mined the “Genomics of Drug Sensitivity in Cancer” (GDSC)
dataset (Iorio et al., 2016) which contains drug sensitivity data
to a set of 265 anti-cancer compounds over ∼1,000 molecularly
annotated cancer cell lines, in order to explore drug relationships
exclusively involving transporters (SLCs and ABCs). To such end,
we used regularized linear regression (Elastic Net, LASSO) to
generate predictive models from which to extract cooperative
sensitivity and resistance drug–transporter relationships, in what

represents, to our knowledge, the first work applying this type of
analysis to this group of genes.

MATERIALS AND METHODS

Data
Solute carriers and ABC genes were considered as in (Cesar-
Razquin et al., 2015). Known drug transport cases involving SLC
and ABC proteins were obtained from four main repositories
as of September 2017: DrugBank (Law et al., 2014), The
IUPHAR/BPS Guide to PHARMACOLOGY (Alexander et al.,
2015), KEGG: Kyoto Encyclopedia of Genes and Genomes
(Kanehisa and Goto, 2000), and UCSF-FDA TransPortal
(Morrissey et al., 2012). These data were complemented
with various other cases found in the literature (Sprowl and
Sparreboom, 2014; Winter et al., 2014; Nigam, 2015; Radic-
Sarikas et al., 2017). Source files were parsed using custom
python scripts, and all entries were manually curated, merged
together and redundancies eliminated. The final compound list
was searched against PubChem (Kim et al., 2016) in order to
systematize names. A list of FDA-approved drugs was obtained
from the organization’s website. Network visualization was done
using Cytoscape (Shannon et al., 2003).

All data corresponding to the GDSC dataset1 (drug sensitivity,
expression, copy number variations, single nucleotide variants,
compounds, and cell lines) were obtained from the original
website of the project as of September 2016. Drug sensitivity
and transcriptomics data were used as provided. Genomics data
were transformed into a binary matrix of genomic alterations
vs. cell lines, where three different modifications for every gene
were considered using the original source files: amplifications
(ampSLCx), deletions (delSLCx), and variants (varSLCx). An
amplification was annotated if there were more than two copies
of at least one of the alleles for the gene of interest, and a deletion
if at least one of the alleles was missing. Single nucleotide variants
were filtered in order to exclude synonymous SNVs as well as
nonsynonymous SNVs predicted not to be deleterious by either
SIFT (Ng and Henikoff, 2001), Polyphen2 (Adzhubei et al., 2010),
or FATHMM (Shihab et al., 2013).

LASSO Regression
LASSO regression analysis was performed using the “glmnet”
R package (Friedman et al., 2010). Expression values for all
genes in the dataset (17,419 genes in total) were used as input
features. For each compound, the analysis was iterated 50 times
over 10-fold cross validation. At each cross validation, features
were ranked based on their frequency of appearance (number of
times a feature has non zero coefficient for 100 default lambda
possibilities). We then averaged the ranking across the 500 runs
(50 iterations × 10 CV) in order to obtain a final list of genes
associated to each compound. In this context, the most predictive
gene for a certain drug does not necessarily have an average rank
of one, even though its final rank is first.

1http://www.cancerrxgene.org/downloads
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Elastic Net Regression
Elastic net regression analysis was performed using the “glmnet”
R package (Friedman et al., 2010). Genomic data (copy number
variations and single nucleotide variants) and transcriptional
profiles of SLC and ABC genes across the cell line panel were
used as input variables, either alone or in combination. Drug area
under the curve (AUC) values were used as response. Elastic net
parameters were fixed as follows: (i) alpha, the mixing parameter
that defines the penalty, was set to 0.5 in order to apply an
intermediate penalty between Ridge and LASSO, and (ii) lambda,
the tuning parameter that controls the overall strength of the
penalty, was determined individually for every model (drug) by
optimizing the mean squared cross-validated error.

For each compound, 500 Elastic Net models were generated
by a 100× fivefold cross-validation procedure. In order to assess
model performance, the Concordance Index (CI) (Harrell et al.,
1996; Papillon-Cavanagh et al., 2013) between the predicted and
observed AUC values was calculated for each run, and then
averaged across all models. This index estimates the fraction of
cell line pairs for which the model correctly predicts which of
the two is the most and least sensitive; hence CI values of 0.5
and 1 would indicate random and perfect predictors, respectively.
Feature weights were calculated by normalizing the fitted model
coefficients to the absolute maximum at every cross-validation
run. The final list of features associated with each compound
was built by computing the frequency of appearance of each
feature in all the 500 models as well as its average weight.
Features with positive weights are associated with a resistance
phenotype to the compound, and negative weights are indicative
of sensitivity.

RESULTS

SLC and ABCs as Drug Transporters
We collected data from public repositories as well as relevant
publications to define the current knowledge on transport of
chemical compounds by members of the SLC and ABC protein
classes. A total of 493 compounds linked to 107 transporters were
retrieved, which altogether formed a single large network with
a few other smaller components (Figure 1 and Supplementary
Table S1).

Within the largest network and in agreement with previous
reports (Nigam, 2015), three families are significantly enriched
(hypergeometric test, FDR ≤ 0.05): the SLCO/SLC21 family of
organic anion transporters (9/12 members) (Hagenbuch and
Stieger, 2013), the SLC22 family of organic anion, cation, and
zwitterion transporters (13/23) (Koepsell, 2013; Nigam, 2018),
and the ABCC family of multidrug resistance transporters (8/13)
(Vasiliou et al., 2009). Not surprisingly, ABCB1 (P-glycoprotein;
MDR1), the very well-studied efflux pump known for its broad
substrate specificity and mediation of resistance to a large amount
of drugs (Aller et al., 2009), is the most connected transporter in
the network, linked to more than 200 compounds. In particular,
106 compounds are connected exclusively with ABCB1 and
25 other are exclusively shared with ABCG2 (BCRP), another
well-known transporter and the one with the second highest

degree in the network (Robey et al., 2007; Figure 1B). Other
top-connected SLCs include members of the above mentioned
SLCO and SLC22 families, which also show several common
substrates (e.g., SLCO1B1 and SLCO1B3 share 36 compounds,
and SLC22A8 and SLC22A6 share 20), as well as members
of the SLC15 family (SLC15A1 and SLC15A2, which share 22
compounds), involved in the transport of beta-lactam antibiotics
and peptide-mimetics (Smith et al., 2013). In contrast to these
cases, other transporters appear related to one or only a few
compounds. One such case is SLC35F2, whose only reported
substrate to date is the anti-cancer drug YM155 (sepantronium
bromide) (Winter et al., 2014). Finally, while most chemical
compounds appear linked to one or two transporters, a few others
show higher connectivities (Figure 1C). A well-known example,
methotrexate is transported by more than 20 different SLC
and ABCs, including some belonging to families not commonly
involved in drug transport, such as the folate carriers SLC19A1
and SLC46A1.

Transporter Expression Landscape in
Cancer Cell Lines
The GDSC dataset contains expression data for 371 SLCs and
46 ABCs across a panel of ∼1,000 cell lines of different tissue
origin. Each of these cell lines effectively express between 167
and 255 transporters, with a median value of 195 (Figure 2A
and Supplementary Table S2). Although all together they
cover almost the whole transporter repertoire (414/417), the
distribution is clearly bimodal, with a common set of ∼130
transporters expressed in at least 900 cell lines and a more specific
set of ∼140 expressed in less than 100 (Figure 2B). Among the
most commonly expressed transporters, we find several members
of the SLC25 (mitochondrial carriers) and SLC35 (nucleoside-
sugars transporters) sub-families, the two largest among SLCs, as
well as several members of the SLC39 family of zinc transporters.
On the other end, many members of the SLC22 family, a large
and well known group of proteins involved in the transport
of drugs, as well as the SLC6 family, a well-studied family of
neurotransmitter transporters, show a more specific expression
pattern. As for ABCs, it is worth highlighting that subfamilies A
and C present half of their members in the set of transporters
of specific expression, while subfamily B has members in both
sets.

When looking at actual expression values across the panel,
some of the commonly expressed transporters coincide with
those of highest expression (Figure 2C). The most extreme
cases are SLC25A5, SLC25A3, SLC25A6, and SLC38A1, which
present very similar maximum and median values across the
cell line panel. On the contrary, other transporters such as
SLC26A3, SLC17A3, or SLC38A11 present a much wider range
of expression, being amongst the highest expressed in some cell
lines but completely absent from others.

Finally, substantial differences become apparent when
considering transporter expression patterns according to the
tissue of origin of the GDSC cancer cell lines (Figure 2D).
Cell lines belonging to the hematopoietic (blood) lineage,
which includes leukemias, lymphomas, and myelomas, present
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A

CB

FIGURE 1 | (A) Network visualization of known SLC/ABC-mediated drug transport cases. Circular nodes represent SLC and ABC transporters, and squares
represent chemical compounds. Drugs approved by the FDA (Food and Drug Administration) are displayed with thicker gray borders. Edges connect transporters to
compounds and their thickness indicates the number of sources supporting each connection (see section “Materials and Methods”). Size indicates node degree
(number of edges incident to the node). Relevant transporter families are color coded. (B) Transporter degree distribution. The inlet bar chart displays the
transporters connected to at least 15 compounds. Bar colors correspond to transporter families in (A). (C) Same as (B) for drugs.
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A B C

D

FIGURE 2 | (A) Number of transporters (SLCs and ABCs) expressed across cell lines in GDSC dataset. A cut-off of 3.5 in RMA units is set to consider a gene as
expressed (∼73% genes expressed). The red line indicates the median number of transporters expressed per cell line. The inlet lists the 11 cell lines expressing the
highest number of transporters, indicated between parentheses. (B) Number of cell lines expressing each of the transporters. The color bars and inlets indicate sets
of transporters showing more common or specific expression across the panel. (C) Median expression vs. maximum expression for each transporter across the cell
line panel. Color indicates the tissue of origin of the cell line presenting the maximum expression for the transporter. (D) Transporter Z-scores of the average
expression values within each tissue. Tissue names with number of cell lines between parenthesis are indicated on the x-axis. Transporters are ordered alphabetically
by family and name.

the largest proportion of transporters with highest average
expression values (28%), as indicated by Z-score, followed by
cancer cell lines belonging to skin, kidney, and the digestive

system. Interestingly, kidney cell lines also present the largest
number of transporters with low expression values, pointing to a
very wide range of expression and high specificity in those cells.
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LASSO Regression Shows Importance of
SLC Genes Across Whole Genome
We investigated the importance of SLC and ABC transporters
for drug response by applying regularized linear regression on
the GDSC dataset. To this end, we first built LASSO models
of sensitivity to each compound based on genome-wide gene
expression levels (17,419 genes in total) (Tibshirani, 1996), and
then looked for cases where a transporter ranked as the top (first)
predictor (see section “Materials and Methods”). The decision to
focus exclusively on the top predictor is supported by a literature
search. Indeed, the average number of PubMed publications
containing both the drug and the gene name was over 40 in the
case of top predictors, falling down to below 10 for the ones
ranked second (Supplementary Figure S1).

Consistent with their well-characterized role as drug-
transporters, the multi-drug resistance pump ABCB1, as well
as ABCG2, were the main predictors of resistance to a
large number of drugs (Table 1). More interestingly, several
compounds had an SLC as their best predictor (Table 2). Among
them, and in concordance with previous expression-sensitivity
data (Rees et al., 2016), we find the sensitive association of
sepantronium bromide (YM155) and SLC35F2, its main known
importer (Winter et al., 2014). Another sensitive association
involving SLC35F2 links this transporter to NSC-207895, a
MDMX inhibitor (Wang et al., 2011). Dimethyloxalylglycin
(DMOG), a synthetic analog of α-ketoglutarate that inhibits HIF
prolyl hydroxylase (Zhdanov et al., 2015), showed association
to two SLCs: monocarboxylate transporter SLC16A7 (MCT2)
was the main predictor for sensitivity to this compound,
while creatine transporter SLC6A8 (CT1) was associated with

TABLE 1 | LASSO ABC-drug top associations.

LASSO top hits, all 17,419
genes used

Top sensitive
associations
(average rank)

Top resistant
associations
(average rank)

ABCB1 YM155 (1)

Paclitaxel (1.1)

BI-2536 (6.0)

A-443654 (32)

Vinorelbine (1)

Thapsigargin (20)

AT-7519 (1.8)

WZ3105 (1)

PHA-793887 (2.2)

GSK690693 (15)

Vinblastine (1.1)

Docetaxel (1.2)

ZM447439 (77)

ZG-10 (1.3)

QL-VIII-58 (1)

QL-XII-61 (9.7)

ABCG2 CUDC-101 (12)

THZ-2-102-1 (1.8)

ABCA10 STF-62247 (20)

FR-180204 (22)

resistance. However, due to the high IC50 values of DMOG
(in the millimolar range), this association is unlikely to
be clinically relevant. Finally, cystine-glutamate transporter
SLC7A11 (Blomen et al., 2015) is associated to resistance
to the ROS-inducing drugs Shikonin, (5Z)-7-Oxozeaenol and
Piperlongumine. This is in agreement with previous studies
that highlighted a positive correlation of the expression of this
transporter and resistance to several drugs via import of the
cystine necessary for glutathione balance maintenance (Huang
et al., 2005).

Elastic Net Regression Identifies
Transporter–Drug Relationships
In order to further explore SLC and ABC involvement in drug
response, we decided to build new predictive models using
Elastic Net regression based on transporter molecular data only.
Assessment of model performance was done by cross-validation
using the CI (see section “Materials and Methods”)

We considered different predictors to build the models:
genomics (copy number variations and single nucleotide
variants), transcriptomics (gene expression) and a combination
of both. Among these, gene expression resulted to be most
predictive, in agreement with previous reports (Aydin et al.,
2014; Figure 3A). A total of 139 (53%) of the 265 drugs
included in the dataset had predictive models with a CI higher
than 0.60, and 36 (14%) higher than 0.65 (Figure 3B). For
those drugs, we then ranked genes based on their frequency
of appearance in the cross-validated models (indicative of
the robustness of the association) and their average weight
(indicative of the strength of the association as well as its
direction). In this context, increased levels of transporter
expression could therefore be associated with either sensitivity or
resistance to the drug, for example, through its uptake or efflux,
respectively (Figure 3C). Among the top ranked transporter–
drug associations, we identified several known cases of drug
transport. For instance, the strongest sensitivity association
with sepantronium bromide (YM155) corresponded again to
SLC35F2. Similarly, the strongest resistance association for this
drug was ABCB1, which includes YM155 among its many
substrates (Lamers et al., 2012; Voges et al., 2016; Radic-Sarikas
et al., 2017). Another example was methotrexate, for which

TABLE 2 | LASSO SLC-drug top associations.

LASSO top hits,
all 17,419 genes
used

Top sensitive
associations
(average rank)

Top resistant
associations
(average rank)

SLC16A7 DMOG (1)

SLC6A8 DMOG (40)

SLC30A2 CP724714 (28)

SLC35F2 YM155 (2.24)

SLC35F2 NSC-207895 (9.5)

SLC7A11 Shikonin (2)

SLC7A11 (5Z)-7-Oxozeaenol
(12)

SLC7A11 Piperlongumine (12)
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D E

FIGURE 3 | (A) Comparison of Elastic Net regression performance (Concordance Index) using different input data: gene expression, genomics (CNVs and SNVs)
and a combination of both. (B) CI value distribution using gene expression as input. Red bars indicate drugs with a median CI higher than 0.65, which were selected
for subsequent analysis. (C) Elastic Net results for drugs with the highest CI values. The top five associations are shown for each compound. Purple indicates
associations linked to sensitivity (higher expression value confers sensitivity to the compound), and orange indicates resistance. (E) Network representation of three
transporters appearing as “hubs” (e.g., connected to several different compounds) in the results, including the well-known multidrug resistance protein ABCB1.
(D) Same as (E) for MEK inhibitors, which show a similar association pattern.

the folate transporter SLC19A1, known to mediate its import
(Zhao et al., 2011), ranked second for sensitivity association
(Supplementary Table S3).

Two major patterns are apparent in the set of top-ranking
associations: genes showing similar profiles of resistance or
sensitivity across several different and unrelated compounds as

well as groups of genes showing a similar profile in relation to a
functionally related class of drugs (Figure 3C).

A prototypical case of the first pattern is ABCB1,
which is associated with resistance phenotypes to several
compounds (Figure 3D). Together with the aforementioned
YM155, resistance relationships were predicted for known
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substrates vinblastine and docetaxel (Fletcher et al., 2010),
17-AAG/Tanespimycin (Huang et al., 2007) and AT-7519
(Cihalova et al., 2015) as well as other not previously associated
compounds such as ZG-10 (a JNK1 inhibitor), the CDK2/5/7
inhibitor PHA-793887 and the broad kinase inhibitor WZ3105.
Similar to ABCB1, other transporters showed multiple resistance
and sensitivity associations to different compounds, particularly
kinases and chromatin-related enzymes. Two of these “hubs”
were SLC12A4/KCC1, a potassium-chloride cotransporter
involved in cell volume homeostasis (Arroyo et al., 2013), and
SLC35D2, an activated sugar transporter localized in the Golgi
(Song, 2013).

As an example of the second class of associations, some
of the best models were achieved for compounds belonging
to the MEK inhibitor drug class (Trametinib, Selumetinib,
Refametinib, CI-1040, PD-0325901, (5Z)-7-oxozeaenol), which
showed very similar patterns, with sensitivity associated to
SLC45A2, SLC27A1, SLC20A1, and SLC22A15 (Figure 3E).
SLC45A2 has been related to melanin synthesis and it is highly
expressed in melanomas (Park et al., 2017), a cancer type
sensitive to MEK inhibitors. Interestingly, SLC20A1/PiT1, a
sodium-dependent phosphate transporter (Olah et al., 1994), was
previously shown to regulate the ERK1/2 pathway independently
of phosphate transport in skeletal cells (Bon et al., 2018).
SLC27A1, a long-chain fatty acid transporter, and SLC22A15, an
orphan member of the well-known family of cationic transporters
involved in the transport of different compounds, were not
previously associated with this drug class.

Finally, we also observed a strong sensitivity relationship
between expression levels of the amino acid transporter
SLC7A5/LAT1 and the Her2 and EGFR kinase inhibitors
Afatinib, Gefitinib, and Bosutinib (Figure 2C), consistent with
previously published data (Timpe et al., 2015).

DISCUSSION

Transporters of the ABC and SLC superfamilies are increasingly
recognized as key players in determining the distribution and
metabolism of drugs and other xenobiotic compounds as they
possess distinct and extremely variable expression patterns across
cell lines and tissues (O’Hagan et al., 2018). Moreover, they
have been implicated in the development of resistance to several
chemotherapeutic drugs (Fletcher et al., 2010). A survey of
currently known drug transport relationships revealed that only
a fifth of the more than 500 SLCs and ABCs have been described
to be involved in the transport of drugs. These transporters
appear to be very unevenly distributed, with some genes and
families considerably more represented and better connected
than others (Figure 1). This is the case for several members of
the ABCB, ABCC, SLCO, and SL22 sub-families. Similarly, while
compounds such as methotrexate are linked to more than 20
transporters, most drugs are connected to only one.

To further expand this network, we took advantage of the
expression and drug sensitivity data available within the GDSC
project. We started by characterizing the expression patterns of
SLCs and ABCs in the GDSC panel of ∼1,000 cancer cell lines,

covering thirteen different tissues of origin (Figure 2). Roughly
80% of SLCs and 90% of ABCs were included in the datasets
and we observed a bimodal distribution of their expression, with
similarly sized sets of transporters either present in most cell
lines or specific to a few. In particular, a broad spectrum of
expressed transporters was detected in cell lines derived from the
hematopoietic (blood) lineage as well as in cell lines derived from
skin, kidney, and the digestive system. A large variability in the
level of expression was also observed within the superfamilies,
consistent with what recently reported by another recent study
(O’Hagan et al., 2018).

We then implemented a linear regression-based approach to
identify the set of transporters associated with sensitivity to each
compound across all cell lines. Previous reports undertook a
similar approach to identify associations of the ABC (Szakacs
et al., 2004) and SLCO/SLC22 (Okabe et al., 2008) families with
drug sensitivity within a limited set of about 60 cell lines. We
now extended these results to a much more comprehensive set
of cell lines while implementing regularized linear regression
approaches. In a first step, LASSO regression was used to assess
genome-wide importance of transporters as predictors for drug
sensitivity. The choice of the LASSO method was motivated by
its ability to shrink a large number of coefficients to zero, ideal for
models that make use of thousands of predictors. Moreover, being
a linear regression method, it can account for both positive and
negative interactions (i.e., resistance and sensitivity, for example,
by export and import in the case of a transporter), while at
the same time being more interpretable than more complex
models. Subsequently, we based our analysis on transporter data
only. By removing the effect of other genes in the models, we
could prioritize compounds that show a stronger dependency
on transporters, as well as to analyze potential cooperative
interactions among them. We used in this case Elastic Net
regression, a generalization of the LASSO that overcomes some
of its limitations and that has already been applied in similar
contexts (Zou and Hastie, 2005; Barretina et al., 2012; Iorio et al.,
2016).

We identify a large set of drug–transporter associations
roughly split between sensitivity and resistance relationships
(Figure 3 and Tables 1, 2). Known associations involving, for
example, ABCB1 expression levels with increasing resistance
to several unrelated compounds as well as known interactions
such as the associations between antifolates and SLC19A1 or
YM155 and SLC35F2 were clearly identified. Interestingly, we
also observed cases were, similarly to ABCB1, a single gene was
associated with several compounds, possibly as a result of an
alteration of the general metabolic state of the cell. We also
observed the opposite scenario, with several genes associated with
a functionally related class of compounds as in the case of the
MEK inhibitors and the genes SLC45A2, SLC27A1, SLC20A1,
and SLC22A15. To our knowledge, no transporter has so far
been identified for any member of this class of compounds, and
while the association with the skin-specific SLC45A2 transporter
is likely the result of the high sensitivity of melanoma cell lines to
these drugs, other associations are more difficult to interpret.

We propose the gene list reported here as a means of
prioritizing transporters that could explain the transport and
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pharmacodynamics of the associated compounds. While in many
cases these associations could be due to indirect effects, such as a
change in the metabolic state of the cells that renders them more
sensitive or resistant to a compound, some might correspond
to actual import or export processes. Further validation, for
example, modulating the expression levels of the transporters
or by transport assays, will be necessary in order to confirm
and distinguish such different scenarios. Finally, the power
of the analysis could also be increased by larger datasets,
for instance including additional compounds, as well as by
orthogonal or more accurate measurements. Availability of such
pharmacogenomics datasets will be of critical importance for the
further identification and characterization of transporter–drug
associations.

In conclusion, we provide here an overview of the known
ABC- and SLC-based drug transport relationships and expand
this with an in silico-derived ranking of transporter–drug
associations, identifying several novel and potential interesting
cases. On the one hand, these new interactions offer new insights
into the mode of drug transport across membranes, as well
as provide initial structure activity relationships (SARs) for
natural ligands, still unknown for many of these transporters.
On the other hand, as many of the compounds involved
in our analysis are clinically approved or candidates for
oncological treatments, we hope that this study will provide
novel hypotheses that could illuminate how transporters
affect their pharmacodynamics and pharmacokinetics, as well
as point to potential interactions with other compounds
transported by the same proteins (e.g., in combination
treatments), eventually leading to more specific and effective
therapies.
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2.5 Interlude II

Following the hypothesis that chemical compounds might need specific SLC transporters

to gain access to cells, we set out to experimentally uncover new SLC-drug dependencies by

means of a CRISPR-based genetic screen.

To this aim, we first selected a diverse set of 60 cytotoxic compounds comprising mostly

approved drugs that distributed with no apparent bias across the complete drug chemical

space. A CRISPR-Cas9 library was then constructed targeting 394 human SLC genes and

used to infect haploid cells in order to generate a pool of single SLC knock-outs. Next, we

treated the whole KO population with multiple concentrations of the selected compounds and

interrogated samples for sgRNA abundance using next-generation sequencing. Significantly

enriched sgRNAs in test samples versus controls were identified using a standard differential

expression analysis approach followed by an aggregation method that led to a final list of gene

candidates. Finally, validation of the most relevant candidates enabled us to identify a number

of SLC-drug dependencies, which might consist in both direct drug uptake events as well as

indirect associations in which SLCs modulate drug response by affecting cellular metabolism.

The significant proportion of compounds for which we found SLC associations suggests a

relevant and widespread role for SLC transporters in determining drug action and potency.
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Abstract 

The activity and potency of a drug is inherently affected by the metabolic state of its target  cell. 

Solute Carriers (SLCs) represent the largest family of transmembrane transporters and 

constitute major determinants of cellular metabolism. Moreover, SLCs have been shown to be 

required for the uptake of an increasing list of compounds into cells. To identify novel 

transporter-drug associations, we performed a series of genetic screens in the haploid human 

cell line HAP1 using a set of 60 cytotoxic compounds representative of the chemical space 

populated by approved drugs. By using a SLC-focused CRISPR/Cas9 lentiviral library we 

identified several transporters whose absence induced resistance to the drug tested. Both 

known (e.g. antifolates and the folate transporter SLC19A1, nucleoside analogs and SLC29A1) 

as well as novel interactions (e.g. artemisinin derivatives and SLC11A2/SLC16A1, cisplatin 

and SLC35A2/SLC38A5) were identified for a significant proportion of the compounds 

screened, suggesting an important and widespread role for SLCs in determining cellular 

activity and uptake of cytotoxic drugs and providing an experimentally validated set of SLC-

drug associations for a number of clinically relevant compounds. 
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Introduction 

Drugs and drug-like compounds targeting intracellular proteins and processes are inherently 

influenced by the metabolic state of the cell they enter. Cellular metabolism influences the 

rates of drug uptake and extrusion through the presence of transmembrane transporters, the 

availability of cofactors and target(s) and the processing of prodrugs into active forms. 

Moreover, drug modifying enzymes (DMEs), such as members of the cytochrome C family and 

glucosyltransferases1, add functional groups to xenobiotic compounds, facilitating their 

removal from the cell and eventually from the organism.  

Most of what is known about the uptake of drugs by membrane-bound transporters stems from 

the analysis of drug disposition in the kidney, liver, intestine and blood-brain-barrier, with a 

particular focus on the entry and exit of pharmacological agents from the blood circulation2,3. 

In particular, two families of transporters have been previously shown to directly interact with 

drugs: ATP-binding cassette transporters (ABCs)4 and Solute Carriers (SLCs)5. ABC 

transporters are generally involved with the extrusion of drugs, while SLCs have been mostly 

described to be involved in compound uptake, although exceptions to this rule exist such as in 

the case of MATE transporters6. Notably, SLCs represent a largely understudied family, 

counting more than 400 members of which ~30% are still considered orphan3. SLCs are 

divided on subfamilies based on sequence similarity and have been shown to transport a 

variety of molecules, ranging from nucleotides, sugars and lipids to aminoacids and peptides7,8, 

often with overlapping specificities. Consistent with their critical role in drug absorption and 

excretion, considerable knowledge has accumulated on a few large subfamilies of SLCs 

prevalently expressed in kidney, liver and intestine, such as the SLC22 and SLCO families9,10, 

and there is ample consensus in ascribing an important role for these transporters in 

pharmacokinetics of several drugs, which has been corroborated by several 

pharmacogenomic polyphormisms11. Accordingly, FDA and EMA now recommend testing of 

several ABC and SLC22/SLCO members for clinical drug interaction studies12. However, how 
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large the implication of membrane-bound transporters may be in the uptake and disposition of 

drugs at the target cell level, such as in muscle, brain or tumor cells, remains a matter of 

debate13–15. Several drugs have been reported to depend on protein carriers to enter cells, with 

prominent cases such as the family of antifolate drugs (e.g. methotrexate, pralatrexate, 

raltitrexed) and the folate transporters SLC19A1/RFC1 (reduced folate carrier 1) and 

SLC46A1/PCFT (proton-coupled folate transporter)16, or the nucleoside transporter 

SLC29A1/ENT1 (equilibrative nucleoside transporter 1) and several nucleoside analogs such 

as clofarabin, gemcitamine and fluorouracil17. In parallel, modulation of transporter activity or 

expression levels has been shown to affect the efficacy of drugs, independently of direct uptake 

events, thorough their effects on cellular metabolic processes such as glycolysis and oxidative 

phosphorylation18,19. 

Genetic screening offers a powerful tool to identify both direct and indirect interactions between 

a gene and a specific phenotype. Using insertional mutagenesis, we recently demonstrated 

that the presence of the intact SLC35F2 gene was the major determinant of the uptake of 

sepantronium bromide (YM155), a small molecule displaying anti-tumor activity in vitro and in 

vivo, in a variety of cell lines20. We hypothesized that, given the lack of information and 

molecular tools available for the solute carrier family3, it could be possible to identify several 

cases of dependencies beyond the above-mentioned examples, as well as several cases in 

which SLCs affect indirectly the potency of drugs. Using a SLC-specific CRISPR/Cas9 KO 

library, an unbiased genetic screening of a chemically diverse set of 60 cytotoxic drugs allowed 

us to identify and validate a large number of SLC-compound associations, providing insights 

into both direct uptake events and indirect associations affecting the metabolism and 

mechanism of action of the drugs tested. 
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Results 

Generation of a SLC-specific CRISPR/Cas9 library 

In order to interrogate all SLC genes in an unbiased manner, we constructed a CRISPR/Cas9 

library targeting 394 human SLC genes and pseudogenes with multiple sgRNAs per gene. 

Particular care was taken to avoid sgRNA with sequences sharing similarity with other SLC or 

ABC transporters. A set of negative control sgRNAs (predicted not to target any sequence in 

the genome) as well as a set of genes scoring as essential in the HAP1 and KBM7 cell lines 

based on previous insertional mutagenesis data21 were also included in the pool (Fig 1a, Suppl 

Table 1). The resulting library consisted of 2609 unique sgRNAs, allowing for highly scalable 

and multiplexable screening and sequencing protocols. Presence of all sgRNAs was confirmed 

by NGS sequencing (Suppl Fig 1a). Comparison of plasmid samples with samples taken 9 days 

post-infection showed significant depletion of sgRNAs targeting the set of essential genes (54/120, 

p-value = 8.2 x 10-26, Fisher’s exact test, Suppl Fig 1b). No significant depletion or enrichment 

was observed for the set of negative control sgRNAs (21/120, enrichment p-value = 0.29, depletion 

p-value = 1, Fisher’s exact test, Suppl Fig 1c). At the gene level, we identified several SLCs 

important for optimal fitness of HAP1 cells, including SLC35B1, the recently deorphanized 

ATP/ADP exchanger in the endoplasmic reticulum22 and MTCH2, a mitochondrial carrier involved 

in the regulation of apoptosis23 (Suppl Fig 1d). To validate the efficiency and specificity of our 

library, we screened for SLC genes responsible for resistance to YM155. Screening in HAP1 cells 

with 200nM YM155 for 72h resulted in a clear enrichment in sgRNAs targeting the SLC35F2 gene 

(Suppl Fig 1e), confirming that SLC35F2 is the sole SLC responsible for YM155 resistance and 

consistent with our previous results derived from gene-trapping experiments20. 

The SLC repertoire of HAP1 cells 

Immortalized human cell lines typically express 150-250 SLC genes, with abundancy patterns 

resembling those of tissues24,25. For our studies, we chose HAP1 cells, a human cell line 

bearing considerable technical advantages26,27. HAP1 cells express 207 human SLC genes, 

as assessed by transcriptional profiling using RNA-Seq28 (Fig 1b). Interestingly, these cells do 
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not express most members of the organic ion transporter SLC22 family that have been 

implicated in the uptake of drugs in kidney, gut and liver29. Moreover, by being haploid, loss-

of-function phenotypes induced by CRISPR/Cas9 technology should be more easily 

interpretable, as they do not represent composite mutants of different alleles. 

Identification of a set of cytotoxic drugs 

For our genetic screens, we aimed at selecting a set of compounds representative of the 

chemical space populated by drugs. We therefore tested cytotoxicity of a set of 1812 

compounds (2k library) including the CLOUD library30 and the NIH Clinical Collection as well 

as sets of epigenetic modifiers and toxic compounds. A subset of 270 (14.9%) compounds 

was found to be cytotoxic in HAP1 cells at the tested concentration (toxic set) (Fig 1c). A 8-

point dose-response curve was subsequently performed for each drug to determine IC50 

values. A subset of 60 drugs, which also included additional 9 compounds involved in DNA-

damage-based cytotoxicity, was then selected for screening with the CRISPR/Cas9 library 

(screen set). This set includes mostly approved drugs covering several different classes (Suppl 

Table 2). 

Chemical space analysis 

In order to assess if the selected set of compounds (screen set) was representative of the 

general drug-like space, a cheminformatics analysis was performed. Drugbank 5.1.131 was 

used as a reference of the known drug chemical space, and compared to all three above-

mentioned compound sets (2k library, toxic and screen, Suppl Fig 1f). All sets were curated 

according to the same protocol (see methods) and 22 physicochemical 2D descriptors were 

calculated for every compound (Suppl Table 3). Comparison of individual descriptor mean and 

median values showed no significant bias across the four compound sets. In order to visualize 

the distribution of all compounds in the chemical space, a principal component (PC) analysis 

was performed. The first and the second PCs were able to explain 62.1 % of the variance of 

the data (Fig 1d). Descriptors contributing the most to the variance of PC1-2 were number of 
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heavy atoms, molecular weight, labute surface area, number of heteroatoms, number of 

saturated rings, number of H-bond donors and polar surface area (TPSA) (Suppl Fig 1g). 

Importantly, compounds of all sets were similarly distributed along the two first PCs. Overall, 

this analysis confirmed that there is no significant difference in the distribution of 

physicochemical properties of the compound sets used in this study, and that the final screen 

set can be considered representative of the general drug chemical space. 

Genetic screening 

We then infected haploid HAP1 cells with the SLC KO library to generate a pool of cells each 

lacking, on average, a specific SLC. The population was treated with multiple concentrations 

(generally one, three and ten times the measured IC50) of the cytotoxic compounds for 72h. As 

expected, we retrieved all the samples treated with the IC50 concentrations, as well as 36/60 

(60%) of the treatments at 3X IC50 and 22/60 (37%) of the 10X IC50 treatments. Enrichment 

was first calculated at the sgRNA level using DESeq232 (Fig 2a) and then aggregated at the 

gene level using a slightly modified version of the GSEA algorithm33 (Fig 2b). When enrichment 

for SLC genes was calculated, we identified 201 SLC/drug associations involving 47 drugs (76 

treatments) and 101 SLCs (Figure 2c, Suppl Fig 2a) at FDR <1%. Enrichment was more 

prominent for higher selective pressures than for IC50 treatment in terms of hit strength and 

most of the SLCs identified are expressed in HAP1 cells (93/101, 92%, Suppl Fig 2b). 

Several clusters involving drugs belonging to the same classes were identified. One example 

is represented by the cluster of the antifolate drugs methotrexate, raltitrexed and pralatrexate, 

which all induced a strong enrichment in KOs of the reduced folate carrier RFC/SLC19A1. This 

transporter has been previously recognized to represent the main uptake route of these 

antimetabolites into cells16. In particular, pralatrexate was developed to exploit this entry route34 

and it shows exclusive enrichment for SLC19A1 in our screen (Fig 2c). Interestingly, within this 

cluster we find the structurally unrelated drug pentamidine, which is used for the treatment of 

African trypanosomiasis and leishmaniasis, as well as for the prevention and treatment of 
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pneumocystis pneumonia (PCP) in immunocompromised patients. The mechanism of action 

(MoA) of this drug is poorly understood but earlier reports suggested it might be involved with 

inhibition of the parasite dihydrofolate reductase35. Another cluster included the nucleoside-

like drugs decitabine, cytarabine, 5-azacytidine and gemcitabine, which all showed enrichment 

for the nucleoside transporter ENT1/SLC29A1 (Fig 2c). SLC29A1 was previously reported to 

act as an importer of these compounds17,36,37. As HAP1 cells express very low levels/do not 

express the additional nucleoside transporters SLC29A2, SLC28A1 and SLC28A3 (Fig1b), 

loss of SLC29A1 results in an impaired uptake of these compounds within the cell. Interestingly 

for some (i.e. cytarabine and decitabine), but not all of these compounds, we detected 

enrichment of the mitochondrial phosphate transporter SLC25A3. 

We also observed more specific interactions, such as the one between the antineoplastic drug 

mitoxantrone and the two transporters MATE1/SLC47A1 and MATE2/SLC47A2 (Fig 2c). 

Mitoxantrone was previously reported to inhibit the uptake/efflux of MATE1/SLC47A1 

substrates38,39, suggesting a direct interaction of this compound with these transporters.  

Moreover, we observed several cases of interactions providing insights in the MoA or metabolic 

impact of a drug treatment. One case is the one of the artemisinin-derivatives artesunate and 

dihydroartemisinin, which showed an enrichment for the SLC11A2 and SLC16A1 genes (Fig 

2c). These compounds, generally used for the treatment of malarial infections, have recently 

found use as antineoplastic agents40,41. Although the MoA is not fully understood, their 

cytotoxicity appears to be dependent on an iron/heme-dependent activation step and 

subsequent generation of ROS species42. SLC11A2, also known as DMT1 (divalent metal 

transporter 1), is an endosomal iron transporter which has been shown to control the pool of 

cytoplasmic iron43. SLC16A1, also known as MCT1 (monocarboxylate transporter 1) is a major 

lactate exporter that plays an important role in glycolytic metabolism44 and could be directly 

involved in drug uptake or affect the ROS response to these compounds. Finally, we also 

observed a very strong enrichment of the transporters SLC35B2, a nucleoside-sugar Golgi 
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transporter45, and SLC38A546, an amino acid transporter, upon treatment with the DNA-

damaging agent cisplatin (Fig 2c). 

Validation of selected SLC/drug associations by Multicolor Competition Assay 

We selected a set of 34 SLC/drug interactions for experimental validation (Suppl Table 4), 

involving 21 drugs and 13 SLCs. In order to validate the interactions, we applied a FACS-

based Multicolor Competition Assay (MCA), an approach that has been previously used to 

validate several forward genetics screen results47. In this assay, HAP1 cells carrying a sgRNA 

targeting a given SLC and an eGFP expression construct were mixed at 1:1 ratio with cells 

carrying an unspecific sgRNA (targeting the Renilla spp luciferase gene) and a mCherry 

construct. The mixed population was then treated with either vehicle or the cytotoxic compound 

at 1-3 times the IC50 and the ratio of GFP+/mCherry+ determined by FACS three and ten days 

later (Fig 3a). Two independent sgRNA were used for each gene targeted in order to avoid 

sgRNA-specific effects. Overall, this approach enabled us to validate several of the strongest 

interactions derived from the genetic screen (Fig 3b). In particular, we confirmed the strong 

effects of SLC19A1 and SLC29A1 loss on the resistance to antifolate and nucleoside analogs 

at both early (3 days) and late (10 days) timepoints. In addition, we also validated the effect of 

the loss of SLC20A1, a phosphate transporter, on methotrexate resistance and the effect of 

SLC25A3, a mitochondrial phosphate transporter, on cytarabine. We also observed strong and 

time-dependent enrichments of cells lacking SLC11A2 or SLC16A1 upon treatment with 

artesunate and dihydroartemisinin, as well as in the case of panobinostat and the amino acid 

transporter SLC1A5. Finally, we observed strong enrichment of SLC35B2- and SLC38A5-

lacking cells upon cisplatin treatment. This effect was already discernible for SLC38A5 after 

three days of treatment and became clear for both genes after ten days. Overall, we were able 

to confirm the majority (19/34) of the associations tested, therefore validating the approach 

and results of the genetic screen. 

  



Results: Manuscript #3

– 79 –

Discussion 

Transmembrane transporters represent a major class of metabolic genes involved in several 

cellular processes affecting drug potency and activity, including the uptake and extrusion of 

these xenobiotic compounds2,29. The identification of the orphan transporters SLC35F2 and 

SLC37A3 as the main mediators of the uptake of the cytotoxic compound YM15520 and of the 

release of bisphosphonates from intracellular vesicles48, respectively, provided clear examples 

of the use of genetic approaches to identify such relationships. However, despite the 

unambiguous involvement of SLC35F2 and SLC37A3 in drug transport, their substrate drugs 

are charged at physiological pH. It is therefore possible that these relationships are 

exceptional. Alternatively, most drugs thought to act on an intracellular target indeed require a 

membrane-bound transporter to gain access to the inside of cells. According to this hypothesis, 

the main reason of why it may so far not been common to identify obligate drug-transporter 

dependencies stems from the functional redundancy among transporters, particularly among 

the more than 400 SLC-encoding human genes, and the lack of an experimental set-up 

allowing for clear loss-of-function states5,48. We therefore reasoned that a focused forward 

genetic approach (Fig 1a, Suppl Table 1) could allow us to systematically survey how often 

SLCs affect compound activity and to identify new potential cases of interaction between a 

transporter and a drug or drug-like compound.  

As read-out compatible with genetic screening, we opted for viability, as it is results in strong 

selective pressures and allows us to focus on cytotoxic or cytostatic compounds of major 

clinical relevance. We selected a set of 60 compounds including mainly approved drugs (Fig 

1c, Suppl Table 2). A cheminformatics analysis showed no bias in physicochemical properties 

of this set compared to the DrugBank database, thus supporting its use as a set representative 

of the chemical space occupied by drugs (Fig 1d). 

Antimetabolites such as antifolates and nucleoside-analogs scored strongly in our setting, 

recapitulating the known cases of drug uptake mediated by transporters such as SLC19A1 and 
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SLC29A1 (Fig 2c, 3b). Interestingly, we also identify several additional strong interactions 

across different drug classes, such as the role of the iron transporter SLC11A2 in determining 

resistance to artemisinin derivatives (Fig 2c, 3b). This is consistent with the correlation between 

intracellular iron levels and drug cytotoxicity previously suggested for these compounds50. We 

also validated interactions between artesunate/dihydroartemisinin and the monocarboxylate 

transporter SLC16A1 as well as between cisplatin and the transporters SLC35A2 and 

SLC38A5. The latter is particularly interesting as SLC38A5 is a glutamine transporter 

expressed at high levels in cells of hematopoietic origin and several studies reported that 

cisplatin-resistant cells are dependent on glutaminolysis51,52. Further studies are ongoing to 

determine how loss of these transporters results in increased resistance to cytotoxicity. 

Moreover, we observed several interactions involving key, often essential, transporters 

involved in major energetic pathways such as SLC2A1/GLUT1, the major glucose transporter 

at the plasma membrane, SLC25A3, the mitochondrial phosphate transporter, or MTCH2, a 

mitochondrial carrier involved in apoptosis regulation (Fig 3b). It has been shown that 

resistance to cytotoxic drugs often requires major metabolic rearrangements: e.g. 

glutaminolysis and cisplatin resistance51,52, a switch to oxidative phosphorylation in cytarabine 

resistance53 or drug-specific dependence on glycolysis18. The fact that several of the SLC-drug 

associations identified involve SLCs important for cellular fitness therefore speaks to the 

enormous metabolic pressure a cytotoxic drug imposes on a target cell. 

In conclusion, we surveyed the role of SLCs on the cytotoxic activity of a diverse set of 

compounds, including several clinically approved drugs. We found significantly enriched SLCs 

for 80% of the molecules tested, pointing to a clear role of this family in determining cellular 

responses to a broad range of molecular insults. Importantly, we identified and validated 

several novel SLC-drug associations involving widely used drugs, such as cisplatin and 

artemisinin derivatives, which warrant further investigation and could provide important insights 

into transport events, MoAs and mechanism of resistance to these classes of compounds.  
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Materials and methods 

Generation of a SLC-wide CRISPR/Cas9 lentiviral library 

A set of single guide RNAs (sgRNAs) targeting 388 human SLC genes, generally with six 

sgRNA per gene, were manually selected (or generated) to include sequences with predicted 

high efficiency and specificity, as assessed in Doench et al54, and to minimize targeting of other 

SLCs or of ABC transporters (Suppl Table 1). sgRNAs targeting six SLC pseudogenes 

(SLC7A5P1, SLC7A5P2, SLC9A7P1, SLC2A3P1, SLC25AP5, SLC35E1P1) for which 

transcription was previously reported in at least two expression datasets  (FANTOM5, CCLE, 

ENCODE, Cosmic, GENCODE, Uhlen et al, Illumina)55–61 were also included. An additional set 

of 120 sgRNAs targeting 20 genes essential in both KBM7 and HAP1 cells21 based on the 

number of retroviral insertions observed were also selected (Suppl Table 1).  Finally, a set of 

120 non-targeting sgRNAs was included by generating random 20-mers and selecting for 

sequences with at least three (for the strong PAM NGG) or two (for the PAM NAG) mismatches 

from any genomic sequence with E-CRISP Evaluation62. Adapter sequences were added to 

the 5’ and 3’ sequences (5’prefix: TGGAAAGGACGAAACACCG, 3’suffix: 

GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC) to allow cloning by Gibson assembly 

in the lentiCRISPRv2 vector (Addgene #52961). The oligos were synthetized as a pool by LC 

Sciences (Houston, Texas, US). Full-length oligonucleotides (74 nt) were amplified by PCR 

using Phusion HS Flex (NEB) and size-selected using a 2% agarose gel (Primers: SLC_ArrayF 

TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGAC 

GAAACACCG, SLC_ArrayR 

ACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCT 

AGCTCTAAAAC) 

The vector was digested with BsmBI (NEB) for 1h @ 55˚C, heat inactivated for 20’ at 80˚C, 

following by incubation with Antarctic phosphatase (NEB) for 30’ at 37˚C. A 10 µl Gibson 

ligation reaction (NEB) was performed using 5 ng of the gel-purified inserts and 12.5 ng of the 
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vector, incubated for 1h at 50˚C and dialyzed against water for 30’ at RT. The reaction was 

then transformed in Lucigen Endura cells and plated on two 245 mm plates. Colonies 

(equivalent to approximately 200X coverage) were grown at 32˚C for 16-20h hours and then 

scraped from the plates. The plasmid was purified with the Endo-Free Mega prep kit (Qiagen).  

Library NGS sequencing 

Initial amplification of the library for NGS sequencing was performed by a two-step PCR 

protocol as described in Sanjana et al 63. Due to the presence of unspecific bands affecting the 

quality of the sequencing experiments, later samples were processed with a single-step PCR 

derived from Konermann et al 64. The PCR primers used to add barcodes and Illumina adapters 

were modified to allow for double indexing of samples. 

Enrichment analysis 

sgRNA sequences were extracted from NGS reads, matched against the original sgRNA 

library index and counted using an in-house python script. A two-step approach was 

implemented in order to obtain a final list of enriched candidate genes. First, differential 

abundance of individual sgRNAs was estimated using DESeq232. Models accounted for both 

treatment and time variables when time 0 samples were available; otherwise only the treatment 

factor was considered. Contrasts were performed individually for each treatment and dose vs 

controls (DMSO and untreated), and significance was tested using either one- or two-tailed 

Wald tests (i.e. alternative hypothesis LFC>0 for enrichment, and abs(LFC)>0 for enrichment 

or depletion, respectively). Then, sgRNAs were sorted by log2 fold change and aggregated 

into genes using Gene Set Enrichment Analysis (fgsea R package)33,65. To avoid false 

positives, only significant sgRNAs (p-value £ 0.05) were considered for enrichment, requiring 

also a minimum of two sgRNAs per gene. Gene enrichment significance was estimated by a 

permutation test using 108 permutations, and p-values were corrected for multiple testing using 

the Benjamini-Hochberg procedure (FDR).  
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Cell lines 

HAP1 cells (Horizon Genomics) were grown in IMDM media (Gibco) supplemented with 10% 

FCS (Gibco) and 1% penicillin/streptomycin. For screening purposes, haploid cells were 

selected by FACS sorting after staining with Vybrant DyeCycle Ruby stain (Thermo Fisher 

Scientific), expanded for 3-5 days and frozen until further use. For CRISPR-based knockout 

cell lines, sgRNAs were designed using CHOPCHOP63 and cloned into pLentiCRISPRv2 

(Addgene, #52961), LGPIG (pLentiGuide-PuroR-IRES-GFP) or LGPIC (pLentiGuide-PuroR-

IRES-mCherry)47. sgRen targeting Renilla luciferase cDNA was used as negative control 

sgRNA47. 

Drug cytotoxicity screens 

To mimic the genetic screen conditions, HAP1 cells were infected with a lentiCRISPRv2 vector 

carrying a sgRNA targeting the Renilla luciferase gene and selected with puromycin selection 

(1µg/ml) for 7 days. WT and lenti-infected cells were screened against a library composed of 

1812 compounds at a single concentration in the range of 10-50µM. Viability was measured 

by CellTiterGlo assay (Promega) after 72h of treatment. DMSO (0.1%) and Digitoxin (10 µM) 

were used a negative and positive controls to calculate cytotoxicity. Hits were defined as 

compounds giving more than 50% inhibition compared to DMSO controls. 8-point dose-

response curves were performed to determine the IC50 values of the cytotoxic compounds in 

lentivirus-infected HAP1 cells. 

Chemical space analysis 

Data curation was performed using a KNIME 3.6.066 workflow which incorporates the python 

packages  RDKit 2018.09.0167 and MolVS 0.1.168 for handling and standardizing molecules 

(python 3.6.669 was used). First, all compounds were neutralized by adding or removing 

protons. Then, compounds were cleaned by standardizing the representation of all aromatic 

rings, double bonds, hydrogens, tautomers and mesomers. Thereafter, all salts and mixtures 
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were removed. In order to remove duplicates InChIKeys were calculated and all compounds 

were aggregated according to these InChIKeys. Chiral centers were also removed, as this 

stereochemistry information is often incorrectly assigned, which can lead to a lower detection 

rate of duplicates. Furthermore, only 2D descriptors were calculated, which cannot differentiate 

between enantiomers or diastereomers. All 22 descriptors were computed with the RDKit 

nodes available in KNIME 3.6.0. Data visualization was performed in Rstudio 1.1.46370 with R 

3.4.471. Bar plots and violin plots were computed with ggplot2 3.1.072, the correlation of 

descriptors plot (Suppl Fig 1g) was computed with corrplot 0.8473. Principal component 

analysis (PCA) was performed with the R packages factoextra74 and FactoMineR75.  

Genetic screens  

Viral particles were generated by transient transfection of low passage, subconfluent HEK293T 

cells with the SLC-targeting library and packaging plasmids psPAX2, pMD2.G using PolyFect 

(Qiagen). After 24h the media was changed to fresh IMDM media supplemented with 10% 

FCS and antibiotics. The viral supernatant was collected after 48h, filtered and stored at -80C 

until further use. The supernatant dilution necessary to infect haploid HAP1 cells at a MOI 

(multiplicity of infection) of 0.2-0,3 was determined by puromycin survival after transduction as 

described in Sanjana et al76. HAP1 cells were infected in duplicates with the SLC KO library at 

high coverage (1000x) and after selection for 7 days with puromycin (1 µg/ml) an initial sample 

was collected to control for library composition. Cells were then treated with multiple 

concentrations (1X, 3X or 10X the IC50) of the cytotoxic compounds or vehicle (DMSO or DMF) 

controls for 72h and, when surviving cells were present, cell samples collected from both 

treated and control samples. 

Multicolor competition assay 

Flow cytometry-based multi-color competition assays (MCA) were performed as described 

previously47. Briefly, HAP1 cells expressing LGPIC-sgRen (mCherry-positive) were mixed in 

1:1 ratio with LGPIG (eGFP-positive) reporter cells containing sgRNAs targeting the gene of 
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interest. The mixed cell populations were incubated with vehicle or drug for up to 10 days. The 

respective percentage of viable (FSC/SSC) mCherry-positive and eGFP-positive cells at the 

indicated time points was quantified by flow cytometry. Samples were analysed on an LSR 

Fortessa (BD Biosciences) and data analysis was performed using FlowJo software (Tree Star 

Inc., USA).  
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Figure legends 

Figure 1. a: Schematic view of the composition of the SLC-focused CRISPR/Cas9 library and 

experimental outline of the genetic screen. b:  Circular plot showing SLCs expressed in Hap1 

cells according to RNAseq data from Brockmann et al. SLC families are indicated in the inner 

circle while expression level (log2 counts per 107 reads) is shown as blue bars. SLCs with an 

expression level above 9 are labeled. c: Schematic view of the compound sets and steps 

applied to the selection of a final set of drugs for screening. D: Principal component analysis 

of compounds in the DrugBank set of reference as well as in the sets tested in this study based 

on 22 annotated 2D chemical descriptors. 

Figure 2. a: sgRNA-level enrichment for samples treated with 10X IC50 methotrexate, as 

determined by DESeq2. All six sgRNAs targeting the SLC19A1 gene show significant 

enrichment. b: Gene-level enrichment for samples treated with 10X IC50 methotrexate, as 

determined by GSEA. Average log2 fold change for the significant sgRNAs for each gene is 

shown in the x-axis. c: Overview of significantly enriched SLCs (FDR<1%) identified upon 

treatment with different compounds. Significant enrichments for all different doses of the same 

compound are merged together in order to ease interpretation (union), always selecting the 

most significant value for repeats. SLC genes are ordered by name, and treatments are 

ordered by hierarchical clustering based on the gene-level results.   

Figure 3: a: Schematic view of the Multicolor Competition Assay (MCA). b: Validation of 

selected SLC/drug associations by MCA. Results are shown by gene tested. Ratios of 

GFP+/mCherry+ populations are shown for the indicated SLC/drug combinations at the given 

timepoints. 

Supplemental Figure 1: a: Violin plots of sgRNA count distributions in the SLC library plasmid 

samples and in the 9 days post-infection (p.i.) samples . b: Volcano plot (p-value vs. log2 fold 

change) for the differential representation of sgRNAs in samples collected 9 days p.i. vs. the 

plasmid library. P-values correspond to a two-tailed Wald test (DESeq2). sgRNA 
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corresponding to the set of 20 essential control genes are shown in green. c: Same as b., but 

in this case sgRNAs corresponding to the set of 120 non-target negative control sequences 

are shown in red. d: Gene-level enrichment in 9 days p.i. vs. plasmid library. e: YM155 

benchmarking screen. Read counts for the samples at day0, DMSO-treated and YM155-

treated samples are shown.  f: Venn diagram showing the compound subsets used for the 

chemoinformatic analysis g: Correlogram plot showing the 2D descriptors contribution to the 

PCA analysis. 

Suppl Figure 2: a: Overview of significantly enriched SLCs (FDR<1%) identified for all drug 

treatments. b: Expression levels in HAP1 cells for SLCs significantly enriched in our screen. 

 



Results: Manuscript #3

– 96 –

2k Library

Toxic

Screening

1812 
compounds

270
compounds

60
compounds

-20

-10

0

10

20

0 25 50 75
PC1 (44.9%)

PC
2 

(1
7.

2%
)

120 non-targeting
sgRNAs

3-5 days

SELECTION:

PCR amplification of region containing gRNA, multiplexing, NGS sequencing

gDNA gDNAgDNA

HAP1 cells

120 sgRNAs targeting
20 essential genes 

aa

Figure 1

MTCH1
MTCH2

SLC11A2
SLC12A2

SLC16A1

SLC19A1

SLC1A5

SLC20A1

SLC23A2

SLC25A1
SLC25A11

SLC25A13
SLC25A17SLC25A23

SLC25A29

SLC25A3

SLC25A36
SLC25A37

SLC25A38

SLC25A39

SLC25A4

SLC25A44
SLC25A46

SLC25A5

SLC26A2

SLC27A4

SLC29A1

SLC2A1

SLC30A5
SLC30A6

SLC30A9
SLC31A1

SLC35B1
SLC35B2
SLC35B4

SLC35E1

SLC37A4
SLC38A1

SLC38A10

SLC38A2
SLC38A5

SLC39A1

SLC39A10
SLC39A14

SLC39A6
SLC39A7

SLC39A9

SLC3A2

SLC41A1
SLC43A2

SLC44A1
SLC44A2

SLC4A2
SLC4A7

SLC5A6

SLC6A6
SLC6A8

SLC7A1

SLC7A11

SLC7A2
SLC7A5

SLC9A7

0

3

6

9

12

1 2
4

5
6

7

9
10
12
13
15

16
17

19
21

22
2425

26
27

29
30

31
34

35

36

38

39
41

43
45 4952

ex
pr

es
sio

n 
le

ve
l

HAP1

d

b

c

Drugbank
2k Library

Toxic

Screening

Subsets

lentiCRISPRv2

pooled lentiviral 
library

7 days antibiotic
selection

vehiclecytotoxic drugs

2346 sgRNAs 
targeting 394 SLCs 



Results: Manuscript #3

– 97 –

a b
SLC19A1

RPTORSLC25A3

MTCH2VMP1

CTNNBL1

SLC25A26

0

2

4

6

0 2 4 6
average log2 Fold Change

−l
og

10
 F

D
R

non significant
significant

Nb of guides
1

2

3

4

5

6

Nisoldipine
Cytarabine
Decitabine

Mitomycin C
5−Azacytidine

Cisplatin
Mitoxantrone

Vinorelbine
Pentamidine

Raltitrexed
Pralatrexate

Methotrexate
Artesunate

Dihydroartemisinin
Triptolide

Vinblastine
Clofarabine

Epirubicin
Etoposide
Belinostat

Methyl methanesulfonate
Paclitaxel

Temozolomide
Ponatinib
Sunitinib

Sulfinpyrazone
Digitoxin

Docetaxel
Topotecan

Gemcitabine
Idarubicin
Disulfiram
Entinostat

Homoharringtonine
Panobinostat

Mycophenolic acid
Resminostat

Tegaserod
Cerivastatin
Pracinostat
Mefloquine
Vindesine

Chidamide
Vincristine

Dronedarone
6-mercaptopurine

Chlorzoxazone

SLC
1A

4

SLC
1A

5

SLC
1A

7

SLC
2A

1

SLC
2A

3

SLC
2A

8

SLC
2A

10

SLC
4A

7

SLC
5A

1

SLC
5A

2

SLC
5A

9

SLC
5A

11

SLC
6A

2

SLC
6A

8

SLC
6A

9

SLC
7A

5

SLC
7A

6

SLC
7A

8

SLC
8A

1

SLC
8A

2

SLC
9A

2

SLC
9A

5

SLC
9B

1

SLC
9C

2

SLC
10

A2

SLC
10

A5

SLC
10

A7

SLC
11

A2

SLC
12

A3

SLC
12

A4

SLC
12

A9

SLC
15

A1

SLC
16

A1

SLC
16

A6

SLC
19

A1

SLC
20

A1

SLC
O4C

1

SLC
22

A3

SLC
22

A10

SLC
22

A17

SLC
24

A1

SLC
24

A4

SLC
24

A5

MTCH2

SLC
25

A1P
5

SLC
25

A3

SLC
25

A10

SLC
25

A17

SLC
25

A18

SLC
25

A21

SLC
25

A25

SLC
25

A26

SLC
25

A35

SLC
25

A40

SLC
25

A41

SLC
25

A42

SLC
25

A46

SLC
25

A51

SLC
25

A52

SLC
26

A2

SLC
26

A5

SLC
26

A6

SLC
26

A11

SLC
27

A3

SLC
29

A1

SLC
30

A2

SLC
31

A2

SLC
35

A1

SLC
35

A2

SLC
35

A3

SLC
35

A4

SLC
35

B1

SLC
35

B2

SLC
35

B4

SLC
35

C1

SLC
35

D2

SLC
35

F2

SLC
35

F4

SLC
35

G3

SLC
35

G4

SLC
36

A1

SLC
36

A4

SLC
37

A3

SLC
38

A1

SLC
38

A2

SLC
38

A5

SLC
38

A7

SLC
38

A9

SLC
38

A10

SLC
38

A11

SLC
39

A7

SLC
39

A10

SLC
39

A14

SLC
40

A1
RHAG

SLC
44

A1

SLC
47

A1

SLC
47

A2

FLV
CR2

SLC
50

A1

SLC
51

B

−log10 FDR

2 3 4 5 6 7

c

SLC19A14

SLC19A16

SLC19A12

SLC19A13

SLC19A11

SLC19A15

RPTOR4

MTCH21

RPTOR3

RPTOR5

MTCH26
SLC25A33

RPTOR10

50

100

0 2 4 6
log2 Fold Change

−l
og

10
 F

D
R

non significant
significant

Figure 2



Results: Manuscript #3

– 98 –

a
Figure 3

SLC KO
GFP+

SgRen
mCherry+

mix 1:1 drug

vehicle

3 & 10 days
compare
GFP+/mCherry+
ratios

b

G
FP

+/
m

C
he

rr
y+

 ra
tio

SLC20A1

1

2

5

10

DMSO
d3 d10

Pentamidine
d3 d10

Methotrexate
d3 d10

SLC25A3

1

2

DMSO
d3 d10

Decitabine
d3 d10

Cytarabine
d3 d10

SLC29A1

1

10

100

1000

DMSO

d3 d10

DMF

d3 d10

5-azacyt.

d3 d10

Cytarab.

d3 d10

Decitab.

d3 d10

Topotec.

d3 d10

Gemcitab.

d3 d10

SLC11A2

1

2

5

10

20

50

DMSO
d3 d10

Artesunate
d3 d10

Dihydroartemisinin
d3 d10

SLC16A1

1

2

5

10

20

DMSO
d3 d10

Artesunate
d3 d10

Dihydroartem.
d3 d10

Nisoldipine
d3 d10

SLC1A5

1

2

d3

Vinorelb.

d3 d10

DMSO

d10

Mitoxantr.

d3 d10

Homoharr.

3 d10

Panobino.

d3 d10

Entino.

d3 d10

SLC38A5

1

2

5

10

SLC47A1

DMSO
d3 d10

Mitoxantrone
d3 d10

1

1.5

DMSO
d3 d10

Sulfinpyrazone
d3 d10

Digitoxin
d3 d10

SLC35A1

1

1.5

SLC47A2

1

KO-1

1.5

KO-2

SLC19A1

1

2

5

10

DMSO
d3 d10

Pralatrex. Raltritrex. Pentamid. Methotrex.
d3 d10 d3 d10 d3 d10 d3 d10

MTCH2

1

2

5

10

20

DMSO Decitabine Cytarabine Nisoldipine Belinostat
d3 d10 d3 d10 d3 d10 d3 d10 d3 d10

SLC35A2

1

2

5

10

DMSO DMF Cisplatin 5-azacytidine
d3 d10 d3 d10 d3 d10 d3 d10

DMSO
d3 d10

Mitoxantrone
d3 d10

CisplatinDMFDMSO
d3 d10 d3 d10 d3 d10



Results: Manuscript #3

– 99 –

log2 FoldChange

0

10

20

30

−5.0 −2.5 0.0 2.5 5.0

−l
og

10
 F

D
R

positive controls
other

0

10

20

30

−5.0 −2.5 0.0 2.5 5.0
log2 FoldChange

−l
og

10
 F

D
R

negative controls
other

RCC1

MTCH2

SLC35B1 SLC35F2

SLC39A10
URI1NUP153

SAE1
SLC2A1

RPL13A

VPS13D

SLC35G5

SLC25A3

SLC16A1

CTCF SLC39A5

VMP1

SLC1A4

U2AF2 SLC9A2

SLC25A43

0

1

2

3

4

−3 −2 −1 0 1 2 3

average log2 Fold Change

−l
og

10
 F

D
R

Nb of guides
1
2

3

4
5

6

non significant
significant

0
0

1

0

0

47

18032

2
7 44

165
656

642

Drugbank:
8774 compounds

Toxic:
257 compounds

Screen:
58 compounds

2k Library:
1562 compounds

0

0

0.09

0.18

0.28

0.37

0.46

0.55

0.64

0.74

0.83

0.92Di
m

.1

Di
m

.2

Di
m

.3

Di
m

.4

Di
m

.5

Di
m

.6

Di
m

.7

Di
m

.8

Di
m

.9

SlogP

LabuteASA

TPSA

ExactMW

NumRotatableBonds

NumHBD

NumHBA

NumAmideBonds

NumHeteroAtoms

NumHeavyAtoms

NumAtoms

NumRings

NumAromaticRings

NumSaturatedRings

NumAliphaticRings

NumAromaticHeterocycles

NumSaturatedHeterocycles

NumAliphaticHeterocycles

NumAromaticCarbocycles

NumSaturatedCarbocycles

NumAliphaticCarbocycles

FractionCSP3

a

SLC KO plasmid

replicate 1 replicate 2 replicate 1 replicate 2

SLC KO 9 days

0

5

10

lo
g2

 (c
ou

nt
s 

+ 
1)

b

d

f g

c

e

Supplemental Figure 1

0

1000

2000

3000

4000

5000

6000

7000

8000

SLC genes

time 0 unselected YM155 selected

SLC35F2

co
un

ts



Results: Manuscript #3

– 100 –

Mitomycin C_1.5X
5−Azacytidine_2X

Cisplatin_1X
Topotecan_1X

5−Azacytidine_10X
Gemcitabine_2X

Cytarabine_3X
Decitabine_1X

Cytarabine_10X
Decitabine_3X

Decitabine_10X
Nisoldipine_3X
Raltitrexed_1X

Methotrexate_1X
Pralatrexate_10X
Pralatrexate_3X

Methotrexate_10X
Methotrexate_3X
Pentamidine_3X
Raltitrexed_10X

Raltitrexed_3X
Dihydroartemisinin_1X

Panobinostat_1X
Entinostat_10X

Panobinostat_10X
Homoharringtonine_3X

Vinorelbine_3X
Mitoxantrone_10X

Disulfiram_3X
Epirubicin_1X
Idarubicin_1X

Dihydroarthemisin_3X
Artesunate_10X

Dihydroarthemisin_10X
Digitoxin_1X

Sulfinpyrazone_1X
Vinblastine_10X

Triptolide_10X
Sunitinib_10X
Sunitinib_3X

Clofarabine_1X
Epirubicin_3X
Etoposide_1X
Belinostat_3X

Methyl methanesulfonate_1X
Paclitaxel_3X
Ponatinib_3X

Temozolomide_1X
Ponatinib_1X

Resminostat_3X
Mitoxantrone_3X

Vinorelbine_1X
Mitomycin C_1X

Docetaxel_3X
Mefloquine_1X

Mycophenolic acid_1X
Tegaserod_1X

Cerivastatin_1X
Pracinostat_3X

Mycophenolic acid_5X
Panobinostat_3X

Docetaxel_1X
Sunitinib_1X

Chidamide_1X
Vindesine_10X

Pentamidine_1X
Triptolide_1X

Nisoldipine_1X
Ponatinib_10X

Vincristine_10X
Disulfiram_1X
Vindesine_3X

Cytarabine_1X
Dronedarone_1X

6-mercaptopurine_1X
Chlorzoxazone_1X

SLC
1A

4

SLC
1A

5

SLC
1A

7

SLC
2A

1

SLC
2A

3

SLC
2A

8

SLC
2A

10

SLC
4A

7

SLC
5A

1

SLC
5A

2

SLC
5A

9

SLC
5A

11

SLC
6A

2

SLC
6A

8

SLC
6A

9

SLC
7A

5

SLC
7A

6

SLC
7A

8

SLC
8A

1

SLC
8A

2

SLC
9A

2

SLC
9A

5

SLC
9B

1

SLC
9C

2

SLC
10

A2

SLC
10

A5

SLC
10

A7

SLC
11

A2

SLC
12

A3

SLC
12

A4

SLC
12

A9

SLC
15

A1

SLC
16

A1

SLC
16

A6

SLC
19

A1

SLC
20

A1

SLC
O4C

1

SLC
22

A3

SLC
22

A10

SLC
22

A17

SLC
24

A1

SLC
24

A4

SLC
24

A5

MTCH2

SLC
25

A1P
5

SLC
25

A3

SLC
25

A10

SLC
25

A17

SLC
25

A18

SLC
25

A21

SLC
25

A25

SLC
25

A26

SLC
25

A35

SLC
25

A40

SLC
25

A41

SLC
25

A42

SLC
25

A46

SLC
25

A51

SLC
25

A52

SLC
26

A2

SLC
26

A5

SLC
26

A6

SLC
26

A11

SLC
27

A3

SLC
29

A1

SLC
30

A2

SLC
31

A2

SLC
35

A1

SLC
35

A2

SLC
35

A3

SLC
35

A4

SLC
35

B1

SLC
35

B2

SLC
35

B4

SLC
35

C1

SLC
35

D2

SLC
35

F2

SLC
35

F4

SLC
35

G3

SLC
35

G4

SLC
36

A1

SLC
36

A4

SLC
37

A3

SLC
38

A1

SLC
38

A2

SLC
38

A5

SLC
38

A7

SLC
38

A9

SLC
38

A10

SLC
38

A11

SLC
39

A7

SLC
39

A10

SLC
39

A14

SLC
40

A1
RHAG

SLC
44

A1

SLC
47

A1

SLC
47

A2

FLV
CR2

SLC
50

A1

SLC
51

B

2 3 4 5 6 7

−log10 FDR

8

a

Supplemental Figure 2

b

0

2

4

6

8

10

12

14

SLC
1A

4

SLC
1A

5

SLC
1A

7

SLC
2A

1

SLC
2A

3

SLC
2A

8

SLC
2A

10

SLC
4A

7

SLC
5A

1

SLC
5A

2

SLC
5A

9

SLC
5A

11

SLC
6A

8

SLC
6A

9

SLC
7A

5

SLC
7A

6

SLC
7A

8

SLC
8A

1

SLC
8A

2

SLC
9A

2

SLC
9A

5

SLC
9B

1

SLC
9C

2

SLC
10

A2

SLC
10

A5

SLC
10

A7

SLC
11

A2

SLC
12

A3

SLC
12

A4

SLC
15

A1

SLC
16

A1

SLC
19

A1

SLC
20

A1

SLC
O4C

1

SLC
22

A3

SLC
22

A10

SLC
22

A17

SLC
24

A1

SLC
24

A4

SLC
24

A5

MTCH2

SLC
25

A3

SLC
25

A18

SLC
25

A25

SLC
25

A26

SLC
25

A28

SLC
25

A35

SLC
25

A40

SLC
25

A41

SLC
25

A42

SLC
25

A46

SLC
25

A51

SLC
25

A52

SLC
26

A2

SLC
26

A5

SLC
26

A6

SLC
26

A11

SLC
27

A3

SLC
29

A1

SLC
30

A2

SLC
31

A1

SLC
31

A2

SLC
35

A1

SLC
35

A2

SLC
35

A3

SLC
35

A4

SLC
35

B1

SLC
35

B2

SLC
35

B4

SLC
35

C1

SLC
35

D2

SLC
35

F2

SLC
35

G3

SLC
36

A1

SLC
36

A4

SLC
37

A3

SLC
38

A1

SLC
38

A2

SLC
38

A5

SLC
38

A7

SLC
38

A9

SLC
38

A11

SLC
39

A7

SLC
39

A10

SLC
39

A14

SLC
40

A1
RHAG

SLC
44

A1

SLC
47

A1

SLC
47

A2

FLV
CR2

SLC
50

A1

SLC
51

B

Ex
pr

es
si

on
 L

ev
el

HAP1 wt lines
X2204_1_WT_TB485_CGATGTA

X2204_2_WT_TB117_TGACCAA

X2204_3_WT_TB794_ACAGTGA

X2634_1_Hap1_TB1525_A_ATCACGA

X2634_2_Hap1_TB_0389__A_CGATGTA

X2634_9_TB1525_SS_O_N__A_GATCAGA

X2634_17_Hap1_TB1525__B_CAGATCA

X3582_1_HAP1_wt_clone_793_ATCATTCC

X3582_2_HAP1_wt_clone_796_ATTGGCTC

X3846_1_Hap1_IMDM_24h_TGACCAA



Results: Manuscript #3

– 101 –

Supplemental Table 1. Targeted SLCs and positive controls (~6 sgRNAs per gene) 

SLC genes and pseudogenes Positive 
controls 

SLC1A1 SLC6A1 SLC9A7P1 SLC16A10 SLC22A12 SLC25A26 SLC27A6 SLC35F2 SLC41A1 CEP85 
SLC1A2 SLC6A2 SLC9A8 SLC16A11 SLC22A13 SLC25A27 SLC28A1 SLC35F3 SLC41A2 CTCF 
SLC1A3 SLC6A3 SLC9A9 SLC16A12 SLC22A14 SLC25A28 SLC28A2 SLC35F4 SLC41A3 CTNNBL1 
SLC1A4 SLC6A4 SLC9B1 SLC16A13 SLC22A15 SLC25A29 SLC28A3 SLC35F5 RHAG DYRK1A 
SLC1A5 SLC6A5 SLC9B2 SLC16A14 SLC22A16 SLC25A30 SLC29A1 SLC35F6 RHBG KANSL1 
SLC1A6 SLC6A6 SLC9C1 SLC17A1 SLC22A17 SLC25A31 SLC29A2 SLC35G1 RHCG MED26 
SLC1A7 SLC6A7 SLC9C2 SLC17A2 SLC22A18 SLC25A32 SLC29A3 SLC35G2 SLC43A1 NBAS 
SLC2A1 SLC6A8 SLC10A1 SLC17A3 SLC22A20 SLC25A33 SLC29A4 SLC35G3 SLC43A2 NFYC 
SLC2A2 SLC6A9 SLC10A2 SLC17A4 SLC22A23 SLC25A34 SLC30A1 SLC35G4 SLC43A3 NIPBL 
SLC2A3 SLC6A11 SLC10A3 SLC17A5 SLC22A24 SLC25A35 SLC30A2 SLC35G5 SLC44A1 NUP153 
SLC2A3P1 SLC6A12 SLC10A4 SLC17A6 SLC22A25 SLC25A36 SLC30A3 SLC35G6 SLC44A2 PAFAH1B1 
SLC2A4 SLC6A13 SLC10A5 SLC17A7 SLC22A31 SLC25A37 SLC30A4 SLC36A1 SLC44A3 RCC1 
SLC2A5 SLC6A14 SLC10A6 SLC17A8 SLC23A1 SLC25A38 SLC30A5 SLC36A2 SLC44A4 RPL13A 
SLC2A6 SLC6A15 SLC10A7 SLC17A9 SLC23A2 SLC25A39 SLC30A6 SLC36A3 SLC44A5 RPTOR 
SLC2A7 SLC6A16 SLC11A1 SLC18A1 SLC23A3 SLC25A40 SLC30A7 SLC36A4 SLC45A1 SAE1 
SLC2A8 SLC6A17 SLC11A2 SLC18A2 SLC24A1 SLC25A41 SLC30A8 SLC37A1 SLC45A2 SRBD1 
SLC2A9 SLC6A18 SLC12A1 SLC18A3 SLC24A2 SLC25A42 SLC30A9 SLC37A2 SLC45A3 U2AF2 
SLC2A10 SLC6A19 SLC12A2 SLC18B1 SLC24A3 SLC25A43 SLC30A10 SLC37A3 SLC45A4 URI1 
SLC2A11 SLC6A20 SLC12A3 SLC19A1 SLC24A4 SLC25A44 SLC31A1 SLC37A4 SLC46A1 VMP1 
SLC2A12 SLC7A1 SLC12A4 SLC19A2 SLC24A5 SLC25A45 SLC31A2 SLC38A1 SLC46A2 VPS13D 
SLC2A13 SLC7A2 SLC12A5 SLC19A3 MTCH1 SLC25A46 SLC32A1 SLC38A2 SLC46A3  
SLC2A14 SLC7A3 SLC12A6 SLC20A1 MTCH2 SLC25A47 SLC33A1 SLC38A3 SLC47A1  
SLC3A1 SLC7A4 SLC12A7 SLC20A2 SLC25A1 SLC25A48 SLC34A1 SLC38A4 SLC47A2  
SLC3A2 SLC7A5 SLC12A8 SLCO1A2 SLC25A1P5 SLC25A51 SLC34A2 SLC38A5 SLC48A1  
SLC4A2 SLC7A5P1 SLC12A9 SLCO1B1 SLC25A2 SLC25A52 SLC34A3 SLC38A6 DIRC2  
SLC4A3 SLC7A5P2 SLC13A1 SLCO1B3 SLC25A3 SLC25A53 SLC35A1 SLC38A7 FLVCR1  
SLC4A4 SLC7A6 SLC13A2 SLCO1C1 SLC25A4 UCP1 SLC35A2 SLC38A8 FLVCR2  
SLC4A5 SLC7A7 SLC13A3 SLCO2A1 SLC25A5 UCP2 SLC35A3 SLC38A9 MFSD7  
SLC4A7 SLC7A8 SLC13A4 SLCO2B1 SLC25A6 UCP3 SLC35A4 SLC38A10 SLC50A1  
SLC4A8 SLC7A9 SLC13A5 SLCO3A1 SLC25A10 SLC26A1 SLC35A5 SLC38A11 SLC51A  
SLC4A9 SLC7A10 SLC14A1 SLCO4A1 SLC25A11 SLC26A2 SLC35B1 SLC39A1 SLC51B  
SLC4A10 SLC7A11 SLC14A2 SLCO4C1 SLC25A12 SLC26A3 SLC35B2 SLC39A2 SLC52A1  
SLC4A11 SLC7A13 SLC15A1 SLCO5A1 SLC25A13 SLC26A4 SLC35B3 SLC39A3 SLC52A2  
SLC5A1 SLC7A14 SLC15A2 SLCO6A1 SLC25A14 SLC26A5 SLC35B4 SLC39A4 SLC52A3  
SLC5A2 SLC8A1 SLC15A3 SLC22A1 SLC25A15 SLC26A6 SLC35C1 SLC39A5   
SLC5A3 SLC8A2 SLC15A4 SLC22A2 SLC25A16 SLC26A7 SLC35C2 SLC39A6   
SLC5A4 SLC8A3 SLC16A1 SLC22A3 SLC25A17 SLC26A8 SLC35D1 SLC39A7   
SLC5A5 SLC8B1 SLC16A2 SLC22A4 SLC25A18 SLC26A9 SLC35D2 SLC39A8   
SLC5A6 SLC9A1 SLC16A3 SLC22A5 SLC25A19 SLC26A10 SLC35D3 SLC39A9   
SLC5A7 SLC9A2 SLC16A4 SLC22A6 SLC25A20 SLC26A11 SLC35E1 SLC39A10   
SLC5A8 SLC9A3 SLC16A5 SLC22A7 SLC25A21 SLC27A1 SLC35E1P1 SLC39A11   
SLC5A9 SLC9A4 SLC16A6 SLC22A8 SLC25A22 SLC27A2 SLC35E2B SLC39A12   
SLC5A10 SLC9A5 SLC16A7 SLC22A9 SLC25A23 SLC27A3 SLC35E3 SLC39A13   
SLC5A11 SLC9A6 SLC16A8 SLC22A10 SLC25A24 SLC27A4 SLC35E4 SLC39A14   
SLC5A12 SLC9A7 SLC16A9 SLC22A11 SLC25A25 SLC27A5 SLC35F1 SLC40A1   
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Supplemental Table 2. Screened compounds. 
 
 

Class Subclass Name Status* 

antineoplastic 

purine analogs 6-mercaptopurine A 

nucleoside analogs 

5-azacitidine A 

clofarabine A 

cytarabine A 

decitabine A 

gemcitabine A 

antifolates 
methotrexate A 

pralatrexate A 

raltitrexed A 

HDAC inhibitors 

belinostat A 
chidamide 
(tucidinostat) I 

entinostat I 

panobinostat A 

pracinostat I 

resminostat I 

romidepsin A 

vorinostat A 

microtubule inhibitors 
(destabilizing) 

vinblastine A 

vincristine A 

vindesine A 

vinorelbine A 

microtubule inhibitors 
(stabilizing) 

docetaxel A 

paclitaxel A 

proteasome inhibitors bortezomib A 

carfilzomib A 

RTK inhibitors 
crizotinib A 

ponatinib A 

sunitinib A 

topoisomerase I 
inhibitors 

topotecan A 

irinotecan A 
 
*based on DrugBank: A (approved), A, W (approved, withdrawn), I (investigational), E (experimental)  
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Supplemental Table 2 (cont). Screened compounds. 
 

Class Subclass Name Status* 

antineoplastic 

topoisomerase II 
inhibitors 

doxorubicin A 
epirubicin A 
etoposide A 
idarubicin A 
mitoxantrone A 

protein translation 
inhibitors 

homoharringtonine 
(omacetaxine 
mepesuccinate) 

A 

transcription inhibitors dactinomycin A 

alkylating 

cisplatin A 
methyl 
methanesulfonate A 

mitomycin C A 
temozolomide A 

other triptolide I 

antiparasitic 
antimalarial 

artesunate A 
dihydroartemisinin 
(artenimol) I 

mefloquine A 
antihelmintic albendazole A 

antiprotozoal pentamidine A 

antiarrhythmic 
type III: K-channel blocker 

amiodarone A 
dronedarone A 

type V digitoxin A 
antihypertensive Ca-channel blocker nisoldipine A 

anti-inflammatory NSAID oxyphenbutazone A, W 
immunosuppressant  mycophenolic acid A 

hypolipidemic HMG-CoA reductase 
inhibitor cerivastatin A, W 

antipasmodic 
 chlorzoxazone A 
 metaxalone A 

prokinetic serotonin agonist tegaserod A, W 

mineralocorticoid   desoxycorticosterone 
pivalate E 

uricosuric   sulfinpyrazone A 
alcohol deterrent   disulfiram A 

 
*based on DrugBank: A (approved), A, W (approved, withdrawn), I (investigational), E (experimental)  
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Supplemental Table 3. Descriptors used in the chemical space analysis 
 

Descriptor name Description 

SlogP Smarts LogP, Octanol Water Partition Coefficient 

LabuteASA Labute’s Approximate Surface Area, approximated surface area of a 
molecule (J. Mol. Graph. Mod. 18, 464-77 (2000)) 

TPSA Total Polar surface area 

ExactMW Molecular weight 
NumRotatableBonds Number of rotatable bonds 

NumHBD Number of hydrogen bond donors 

NumHBA Number of hydrogen bond acceptors 
NumAmideBonds Number of amide bonds 

NumHeteroAtoms Number of hetero atoms 
NumHeavyAtoms Number of heavy atoms 

NumAtoms Number of atoms 

NumRings Number of rings 
NumAromaticRings Number of aromatic rings 

NumSaturatedRings Number of saturated rings 

NumAliphaticRings Number of aliphatic rings 
NumAromaticHeterocycles Number of aromatic heterocycles 

NumSaturatedHeterocycles Number of saturated heterocycles 
NumAliphaticHeterocycles Number of aliphatic heterocycles 

NumAromaticCarbocycles Number of aromatic carbocycles 

NumSaturatedCarbocycles Number of saturated carbocycles 
NumAliphaticCarbocycles Number of aliphatic carbocycles 

FractionCSP3 Fraction of sp3 hybridized Carbons 
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Supplemental Table 4. Selected SLC-drug interactions for validation 

 
 

Gene  Drug  Gene Drug 

SLC1A5 

Mitoxantrone  

MTCH2 

Decitabine 
Vinorelbine  Cytarabine 
Homoharringtonine  Nisoldipine 
Panobinostat  Belinostat 
Entinostat  

SLC29A1 

Gemcitabine 

SLC11A2 
Artesunate  Topotecan 
Dihydroarthemisinin  Decitabine 

SLC16A1 
Artesunate  Cytarabine 
Dihydroarthemisinin  5-azacytidine 
Nisoldipine  

SLC35A1 
Sulfinpyrazone 

SLC19A1 

Pralatraxate  Digitoxin 
Raltitrexed  

SLC35A2 
Cisplatin 

Pentamidine  5-azacytidine 
Methotrexate  SLC38A5 Cisplatin 

SLC20A1 
Pentamidine  SLC47A1 Mitoxantrone 
Methotrexate  SLC47A2 Mitoxantrone 

SLC25A3 
Decitabine    

Cytarabine    
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Discussion 3
3.1 General discussion

Transmembrane transporters are known mediators of drug uptake and disposition, but the

extent of their contribution is only partially understood. While it has been traditionally assumed

that drug-like compounds can passively diffuse across lipoidal membranes following the well-

known Lipiniski’s "rule of 5" (Ro5), the hypothesis that every drug needs a specific carrier

to enter cells has been gaining support in the last years, although it still remains a matter

of controversy (Di et al, 2012; Dobson & Kell, 2008; Kell, 2015; 2016; Matsson et al, 2015;

Smith et al, 2014; Sugano et al, 2010). If that were the case, new dependencies between

drugs and transporters are to be discovered that could shed light on the pharmacokinetics and

pharmacodynamics of many therapeutic agents.

Of the two main protein superfamilies involved in drug transport, the ATP-binding cassette

(ABC) transporters are relatively well characterized and many of its members are known

promiscuous carriers that mediate the export of a great deal of compounds and are involved in

multidrug resistance in cancer (MDR). In contrast, the larger and heterogenous group of Solute

carriers (SLC), with more than 400 members, does not seem to garner the attention it deserves

given its relevance for cell physiology and pharmacology.

Indeed, we have shown that SLCs have the largest publication asymmetry of all human

gene groups as well as a lower number of publications than the average. This effect cannot

be explained solely by their transmembrane nature, which makes them generally more difficult

to isolate and characterize than soluble proteins, since other membrane protein families such

as ABCs, ion channels or GPCRs do not show such uneven distributions. Furthermore, the

identity of the SLCs that receive most of the research attention seems to have changed only

very slightly in the last decade, pointing to a lack of exploratory efforts within the family.

Together with technical barriers for the establishment of cell systems and screening assays,

the late adoption of a unifying nomenclature for SLCs, which has obscured the consideration
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of common principles, and the overlapping specificities and compensatory effects of many of

these transporters, which can confound experimental results, might have strongly contributed

to this knowledge deficit (Hediger et al, 2013; Hediger et al, 2004).

More specifically, SLCs also seem to be understudied from the standpoint of drug discovery.

Although there is ample evidence of their druggability, only ~7% of SLCs (~26 members) are

targets of known drugs or drugs in development. This is clearly far from the hundreds of GPCR

targets that have already been established, which account for at least 40% of this family

(excluding olfactory receptors) (Lin et al, 2015; Rask-Andersen et al, 2013; Rask-Andersen et

al, 2014). When considering SLCs associated with human diseases, only one fourth was found

to be targeted by at least one active compound, therefore leaving an enormous underexplored

space of great therapeutic potential. Similarly, a compilation of currently known drug-transporter

interactions revealed that most of the cases involved only a few SLC families of broad specificity

(i.e. SLCO, SLC22, SLC15, SLC47), although transport relationships with carriers of narrower

specificities are also being increasingly described (Fets et al, 2018; Winter et al, 2014; Yu et al,

2018; Zhao et al, 2011). Therefore, given their undercharacterized or even orphan nature as

well as the known participation of some of their members in drug transport, SLCs seem to be

promising candidates for unraveling the transport mechanism and metabolic dependencies of

many drugs and drug-like compounds.

Within the framework of this thesis, we have aimed at identifying these SLC-drug

relationships by using both experimental and computational methods in two orthogonal

approaches, namely drug sensitivity predictive modeling and CRISPR-Cas9 genetic screening.

Predictive models of drug sensitivity built on pharmacogenomics datasets of panels of

molecularly annotated cancer cell lines have been extensively used in order to find genetic

markers that affect drug response as well as to uncover the mechanism of action of drug-

like compounds (Barretina et al, 2012; Garnett et al, 2012; Iorio et al, 2016). In the case

of transporters, previous studies have already sought to associate drug response with the

expression level of members of the ABC and SLCO/SLC22 families (Okabe et al, 2008; Szakács

et al, 2004). However, these studies were based on a relatively limited set of cell lines (the NCI-

60 panel) and only looked for correlations with individual genes, therefore possibly overlooking
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the redundancy and cooperative effects that often exist among transporters. Moreover, they

only considered the two best known SLC families involved in drug transport, ignoring all

the ~400 remaining members of this group. In contrast, we now exploited a more recent

and comprehensive pharmacogenomics dataset while considering the combined effect of all

transporters at once in linear models of drug sensitivity.

Regularized linear regression is a powerful method that has already been successfully used

for the prediction of drug sensitivity, although generally in a genome-wide context (Barretina et

al, 2012; Garnett et al, 2012; Papillon-Cavanagh et al, 2013). One of the main strengths of

these techniques, apart from their robustness, is the interpretability of their results. By using

large numbers of predictors, they achieve high predictive powers, while the simple, weighted

linear combination of features in their models allows the identification and assessment of

individual contributions. In our case, we used SLC and ABC molecular data only, with the aim

of prioritizing drugs that show a greater dependency on transporters and identifying specific

individual transporter associations to sensitive and resistant phenotypes, thereby removing

the effect of other genes. This is, to our knowledge, the first application of regularized linear

regression to this specific set of proteins.

Of the different data types employed for prediction, gene expression alone turned out to

be the most predictive, even superior to the combination with genomic descriptors. This was

in agreement with previous studies, and it is likely due to the increased information content

present in continuous expression values compared with the discrete nature of copy number

variations (CNVs) or single nucleotide variants (SNVs) (Geeleher et al, 2014; Jang et al, 2014).

Using gene expression data for modeling, we obtained good predictive models (CI≥0.6) for

more than half of the compounds included in the dataset, and then ranked genes within the

models by frequency of appearance and relative weight. This allowed us to identify both known

and undescribed individual transporter-drug relationships as well as cooperative effects. For

instance, drug response to the anticancer drug sepantronium bromide (YM155) was mainly

determined by the expression level of two transporters acting in opposite directions, which

corresponded to its already described uptake and extrusion carriers (SLC35F2 and ABCB1,

respectively). Also, resistance associations with the promiscuous exporter ABCB1 included

known substrates (e.g. tanespimycin, vinblastine, docetaxel) as well as other compounds not
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previously reported (e.g. ZG-10, PHA-793887, WZ3105). More interestingly, the group of MEK

inhibitors, for which no specific transporters have been yet reported, displayed a similar pattern

of sensitivity associations to several genes. Such relationships point to cooperative interactions

among transporters that in some cases are more likely to consist in indirect effects that affect

cell metabolism (e.g. the melanoma-associated SLC45A2 or the sodium-dependent phosphate

transporter SLC20A1) while in other could correspond to actual transport mechanisms (e.g. the

orphan member of the SLC22 family of drug transporters SLC22A15).

Experimental validation will be required to confirm such associations as well as to distinguish

direct from indirect effects. To this end, specific transport assays and drug sensitivity testing

in cells with altered transporter expression, such as CRISPR-Cas9 knock-outs or RNAi knock-

downs, could be used. As an illustration, a recent study published after our Elastic Net analysis

confirmed SLC16A7 (MCT2) as the main uptake transporter of the HIF prolyl-hydroxylase

inhibitor dimethyloxalylglycin (DMOG) (Fets et al, 2018). DMOG was indeed one of the

compounds for which we obtained better predictive models (CI=0.67) and SLC16A7 appeared

as its main sensitivity predictor. Similarly, another member of the same family, SLC16A1

(MCT1), ranked second in our analysis and was also proven to mediate DMOG transport,

although with a much lower affinity than SLC16A7. Nevertheless, it is also important to

consider when performing these validations the possibility of compensatory effects among

transporters of overlapping specificities (i.e. downregulation or inactivation of a putative drug

transporter compensated by upregulation of another with similar substrate specificity), which

can obscure the identification of correctly predicted transport mechanisms. Such cases can

considerably difficult validations and might require more complex experimental set-ups, such

us the generation of cell lines bearing multiple gene knock-outs simultaneously.

A major limitation of drug response prediction is the size and quality of pharmacogenomics

datasets. Indeed, while the performance of diverse modeling approaches is generally

comparable, input data has been reported as the most important determinant of model

performance (Bayer et al, 2013). The generation of new cell line sensitivity data will certainly

increase the statistical power of prediction algorithms, but a more important benefit might

be obtained from the standardization of laboratory techniques, a more stringent control of

experimental conditions and special care in data curation.
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A plethora of external variables can affect the quantitative results of cytotoxicity assays,

including culture media composition (e.g. serum, glucose concentration, pH), incubation time,

seeding cell density, compound dose range, and the specific method used in the assay (Crouch

& Slater, 2001; Fellows & O’Donovan, 2007; Weinstein & Lorenzi, 2013). In this sense,

some studies have raised concerns about the concordance between cell line sensitivity data

coming from different consortia, pointing to severe inconsistencies in these pharmacogenomics

datasets and highlighting their negative impact in assessing gene-drug associations using

computational methods (Cortés-Ciriano & Bender, 2016; Haibe-Kains et al, 2013; Safikhani

et al, 2016). In contrast, others have contested such studies by showing that similar predictors

of drug sensitivity can be identified in different datasets if robust statistics and biologically

grounded analytical methods are used (Cancer Cell Line Encyclopedia Consortium &Genomics

of Drug Sensitivity in Cancer Consortium, 2015; Haverty et al, 2016). Ultimately, these reports

suggest that careful attention needs to be paid when comparing and integrating cytotoxicity data

obtained in different set-ups in order to derive robust biological conclusions, given the inherent

noise and variability of drug sensitivity measurements.

In contrast to drug sensitivity data, molecular profiles of cancer cell lines are highly consistent

across datasets (Haibe-Kains et al, 2013). However, given that the most predictive models

are based on gene expression, model performance could also be enhanced by a more robust

assessment of the transcriptome, for instance, using RNA-seq instead of microarrays to quantify

transcript levels. RNA-seq indeed avoids many issues inherent to microarray technology (e.g.

cross- and non-specific probe hybridization, high background noise, limited detection range),

and is able to detect a larger dynamic range of expression levels, providing absolute instead

of relative values, as well as to quantify the whole transcriptome, as it does not rely on a

pre-designed set of detection probes (Zhao et al, 2014). Such advantages lead to better

estimates of gene expression that have also been shown to be highly reproducible across

different laboratories (’t Hoen et al, 2013; Xu et al, 2013). Although all main pharmacogenomics

datasets to date provide microarray gene expression data, RNA-seq data for larger numbers of

cancer cell lines is becoming available and should therefore be considered in order to improve

the prediction power of computational models of drug sensitivity (Garcia-Alonso et al, 2018; Klijn

et al, 2015). Nevertheless, probably the most important limitation of using gene expression
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for drug sensitivity prediction is the uncertain relationship between mRNA levels and protein

abundance, and the relationship of either of the two to actual protein function, especially given

the range of transport rates among SLCs and ABCs (Liu et al, 2016; Taslimifar et al, 2017).

Quantitative proteomics data of cancer cell lines, which is so far scarce and even harder to

obtain for membrane proteins, could at least partially overcome this limitation in the near future

(Gholami et al, 2013; Hörmann et al, 2016; Zhao et al, 2017).

Another aspect that can be explored in order to optimize these models is the compound

activity parameter used as dependent variable. Most studies reported in the literature use IC50
or, as in our case, AUC values, which are generally preferred to the former as they are able

to capture both potency and efficacy and seem to be more robust (Fallahi-Sichani et al, 2013).

However, these measures are highly dependent on cell division rate, thus varying significantly

between experiments due to factors unrelated to the underlying biology, such as differences

in growth conditions or assay duration. For this reason, some authors have proposed the use

of alternative methods based on the comparison of growth rates that are independent of cell

division and would only require small changes in standard experimental protocols, representing

a promising alternative to traditional drug response metrics (Hafner et al, 2016).

The second approach we used for interrogating SLC-drug interactions was a CRISPR-

Cas9-based genetic screen. The CRISPR-Cas9 system is especially well suited for the

generation of pools of cells bearing individual gene knock-outs that can be then tested for a

specific phenotype in order to find genomic causative links (Doench, 2018). In our case, we

generated a population of cells each lacking a single SLC gene that was subsequently subject

to treatment with cytotoxic compounds in order to identify those SLCs that conferred drug

resistance, as these could represent new cases of carrier-mediated drug uptake. Moreover, the

use of HAP1 cells as a model system, a human haploid cell line that expresses less than half

of the total SLC repertoire, can greatly simplify experimental result interpretation, as it avoids

confounding allelic effects and reduces, at least partially, the expected substrate redundancy

among SLCs (Carette et al, 2011). Furthermore, the compounds used for sensitivity testing

were selected with the aim of covering a wide range of physicochemical properties, as shown

by the corresponding cheminformatics analysis, and they were tested in multiple concentrations

in order to account for dose effects. All these considerations contributed to the design of a
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genetic screening approach that enabled the detection of SLC-drug dependencies in a robust

and unbiased manner.

In order to obtain a list of resistance-conferring candidate genes, we first assessed

enrichment of individual sgRNA guides by applying the DESeq2 method, a common approach

for differential gene expression analysis in RNA-seq experiments, and then aggregated guides

into genes by using a modified version of the standard gene set enrichment analysis algorithm

(GSEA) (Love et al, 2014; Sergushichev, 2016; Subramanian et al, 2005). Although other

methods for CRISPR-Cas9 screen analysis exist, this approach has been proven successful

in the past (Sedlyarov et al, 2018; Winter et al, 2017) and gave us full control of the different

variables affecting our screen. For instance, it enables the consideration of complex designs to

model read count variances, including different time points (i.e. before and after drug treatment)

and concentrations, thus providing amore accurate estimation of fold changes and probabilities.

The amount of samples retrieved after treatment decreased with increasing drug

concentrations, but enrichment was stronger for the higher selective pressures. In total, we

could identify ~200 significant SLC-drug associations (FDR <1%), involving 47 compounds at

different doses and 101 transporters, and were able to validate the majority of a selected

set of high-scoring candidates (19/34) using flow cytometry-based multicolor competition

assays (MCA). Some of these associations corresponded to known transport events. For

example, the folate transporter SLC19A1 was extremely enriched in all samples treated with

antifolates (i.e. methotrexate, pralatrexate, raltitrexed), in agreement with being their main

uptake route into cells (Zhao & Goldman, 2013), and treatment with nucleoside analogs (i.e.

gemcitabine, cytarabine, decitabine) led to the enrichment of SLC29A1, their main nucleoside

transporter expressed in HAP1 cells. Among the newly discovered interactions, a few are likely

to consist in direct transport instances, such as the association between the monocarboxylate

transporter SLC16A1 and the antimalarials artesunate/dihydroartemisinin or between the

glutamine transporter SLC38A5 and the chemotherapy agent cisplatin. Further validation

experiments are ongoing in order to prove such cases. In contrast, other associations might

rather correspond to SLC-mediated changes in cellular metabolism that affect drug action.

As an illustration, the interaction between SLC11A2, an endosomal iron transporter, and the

above-mentioned artemisinin derivatives fits the described requirement of iron for the activation
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of these compounds (Cui & Su, 2009). Similarly, other cases involved participants of major

energetic pathways, such as the glucose transporter SLC2A1 (GLUT1), or the mitochondrial

transporters SLC25A3, a phosphate carrier, andMTCH2, a transporter involved in the regulation

of apoptosis.

Although this screening approach was successful in identifying multiple transporter-drug

interactions, we did not manage to get significant enrichments for a number of compounds.

The already mentioned functional redundancy that exists among many SLC transporters,

which cannot be resolved in single gene KO set-ups, is a very plausible reason behind this.

Multiple gene KO experiments, where several transporters are deactivated simultaneously,

might serve to counteract the compensatory effects resulting from such overlapping specificities

and uncover the otherwise obscured phenotypes. In this sense, combinatorial CRISPR-Cas9

screens have already been tested, which normally involve the use of dual guide RNAs (Han et

al, 2017; Shen et al, 2017; Wong et al, 2016). Alternatively, double KOs could also be obtained

by deploying the sgRNA library used in our screen on a previously developed panel of KO

cells. However, these combinatorial alternatives also present several drawbacks. On the one

hand, the number of combinations increases exponentially, making such screens increasingly

more laborious to set up and practically unfeasable for more than triple KOs if large numbers

of genes are considered, as it is the case for transporters. On the other hand, the more genes

are knocked-out simultaneously in a cell, the more likely this will have a deleterious effect in

cell growth that is not related to drug treatment, especially considering the key role of SLCs

in mediating the transport of all major biomolecules. In relation to this, another reason for the

lack of results for a number of compounds might be that the SLCs involved in their transport

or potency are actually essential in HAP1 cells, and thus their KOs are not viable. Using other

cell lines as a model could therefore be necessary in order to complement and compare the

results obtained in this screen, not restricting them to a specific cellular genotype. Finally, our

screen was based on differential cell survival and thus restricted to cytotoxic compounds, but

more complex, FACS- or image-based read-outs could also be explored in order to increase the

number of drugs and doses tested and uncover other transporter-drug dependencies (Feldman

et al, 2018; Parnas et al, 2015).
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3.2 Conclusion and future prospects

Altogether, this thesis provides one of the first systematic functional analyses of Solute

carriers as a group, focusing on their role as key mediators of drug action. We have addressed

our objective by using a double strategy, which consisted, on the one hand, in exploiting by

means of computational methods the high information content present in publicly available

large-scale pharmacogenomics datasets of panels of molecularly annotated cancer cell lines,

and, on the other hand, in applying state-of-the-art techniques for genetic screening and

drug sensitivity testing. The combination of both approaches has enabled us to successfully

retrieve known SLC-mediated drug transport cases while identifying an important number of

previously uncovered relationships, some of which we validated. It is important to bear if

mind that, if confirmed, these interactions might not only correspond to transport events but

also represent indirect effects by which SLCs, via the transport of endogenous ligands or

participation in signaling cascades, are able to modify the cellular inner milieu and metabolism

thereby modulating drug response. Either case provides highly valuable information on how

transporters affect the mode of action of drug-like compounds.

As we have shown, SLCs constitute an extremely neglected gene group, with a large

proportion of their members being barely characterized, yet with an essential role in physiology

and an important potential for pharmacology and therapeutics. In this sense, deorphanizing

the "SLCome" can highly benefit from systematic analyses, like the one presented here,

that consider the whole set of SLCs at once, as these are able to capture functional

interdependencies that would be missed with more reductionist approaches. Such strategy

has actually proved efficient in the past for other gene families such as GPCRs or kinases (Barr

et al, 2009; Edwards et al, 2009). Although we here only focused on the role of SLCs in drug

response, integrative studies in the future will have to look systematically into other aspects

of SLC biology, including structure, endogenous substrate specificity, participation in signaling

pathways, regulation, or association to disease.

In summary, while many of them remain to be further analyzed and validated, the set

of SLC-drug associations reported here provides a significant prioritization of potentially

pharmacologically relevant relationships, and offers new insights into the mechanism of
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drug transport across membranes as well as on the influence of transporters on the

pharmacodynamics and pharmacokinetics of therapeutic agents. Such understanding is of

key importance in order to achieve more specific and effective treatments in the future, moving

towards precision medicine.
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